A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM.
An enzyme that catalyzes the conversion of L-alanine and 2-oxoglutarate to pyruvate and L-glutamate. (From Enzyme Nomenclature, 1992) EC 2.6.1.2.
A pyridoxal-phosphate protein that reversibly catalyzes the conversion of L-alanine to D-alanine. EC 5.1.1.1.
An NAD-dependent enzyme that catalyzes the reversible DEAMINATION of L-ALANINE to PYRUVATE and AMMONIA. The enzyme is needed for growth when ALANINE is the sole CARBON or NITROGEN source. It may also play a role in CELL WALL synthesis because L-ALANINE is an important constituent of the PEPTIDOGLYCAN layer.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC 2.6.1.1.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.
A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
A subclass of enzymes of the transferase class that catalyze the transfer of an amino group from a donor (generally an amino acid) to an acceptor (generally a 2-keto acid). Most of these enzymes are pyridoxyl phosphate proteins. (Dorland, 28th ed) EC 2.6.1.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells.
The rate dynamics in chemical or physical systems.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter.
A spectrum of clinical liver diseases ranging from mild biochemical abnormalities to ACUTE LIVER FAILURE, caused by drugs, drug metabolites, and chemicals from the environment.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter.
Proteins prepared by recombinant DNA technology.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
A thiol-containing non-essential amino acid that is oxidized to form CYSTINE.
An enzyme, sometimes called GGT, with a key role in the synthesis and degradation of GLUTATHIONE; (GSH, a tripeptide that protects cells from many toxins). It catalyzes the transfer of the gamma-glutamyl moiety to an acceptor amino acid.
A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair.
Blood tests that are used to evaluate how well a patient's liver is working and also to help diagnose liver conditions.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to alpha helices, beta strands (which align to form beta sheets) or other types of coils. This is the first folding level of protein conformation.
Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.
Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS.
A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons.
An essential branched-chain amino acid important for hemoglobin formation.
A transfer RNA which is specific for carrying alanine to sites on the ribosomes in preparation for protein synthesis.
Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure.
An intermediate compound in the metabolism of carbohydrates, proteins, and fats. In thiamine deficiency, its oxidation is retarded and it accumulates in the tissues, especially in nervous structures. (From Stedman, 26th ed)
An essential amino acid that is required for the production of HISTAMINE.
Pyruvates, in the context of medical and biochemistry definitions, are molecules that result from the final step of glycolysis, containing a carboxylic acid group and an aldehyde group, playing a crucial role in cellular metabolism, including being converted into Acetyl-CoA to enter the Krebs cycle or lactate under anaerobic conditions.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
Commonly observed structural components of proteins formed by simple combinations of adjacent secondary structures. A commonly observed structure may be composed of a CONSERVED SEQUENCE which can be represented by a CONSENSUS SEQUENCE.
An essential amino acid. It is often added to animal feed.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
Established cell cultures that have the potential to propagate indefinitely.
A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.
A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
An enzyme that activates alanine with its specific transfer RNA. EC 6.1.1.7.
A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM.
Pathological processes of the LIVER.
Antibiotic substance produced by Streptomyces garyphalus.
A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway.
CELL LINES derived from the CV-1 cell line by transformation with a replication origin defective mutant of SV40 VIRUS, which codes for wild type large T antigen (ANTIGENS, POLYOMAVIRUS TRANSFORMING). They are used for transfection and cloning. (The CV-1 cell line was derived from the kidney of an adult male African green monkey (CERCOPITHECUS AETHIOPS).)
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE.
A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
Proteins found in any species of bacterium.
An essential amino acid that is physiologically active in the L-form.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels.
The region of an enzyme that interacts with its substrate to cause the enzymatic reaction.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
A normal intermediate in the fermentation (oxidation, metabolism) of sugar. The concentrated form is used internally to prevent gastrointestinal fermentation. (From Stedman, 26th ed)
Proteins produced from GENES that have acquired MUTATIONS.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
A genetic disorder characterized by excretion of large amounts of OXALATES in urine; NEPHROLITHIASIS; NEPHROCALCINOSIS; early onset of RENAL FAILURE; and often a generalized deposit of CALCIUM OXALATE. There are subtypes classified by the enzyme defects in glyoxylate metabolism.
Stable nitrogen atoms that have the same atomic number as the element nitrogen, but differ in atomic weight. N-15 is a stable nitrogen isotope.
Lipid infiltration of the hepatic parenchymal cells resulting in a yellow-colored liver. The abnormal lipid accumulation is usually in the form of TRIGLYCERIDES, either as a single large droplet or multiple small droplets. Fatty liver is caused by an imbalance in the metabolism of FATTY ACIDS.
An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals.
This is the active form of VITAMIN B 6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (PYRIDOXAMINE).
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
A bile pigment that is a degradation product of HEME.
Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.
Elements of limited time intervals, contributing to particular results or situations.
A solvent for oils, fats, lacquers, varnishes, rubber waxes, and resins, and a starting material in the manufacturing of organic compounds. Poisoning by inhalation, ingestion or skin absorption is possible and may be fatal. (Merck Index, 11th ed)
A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed)
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
INFLAMMATION of the LIVER in humans caused by HEPATITIS B VIRUS lasting six months or more. It is primarily transmitted by parenteral exposure, such as transfusion of contaminated blood or blood products, but can also be transmitted via sexual or intimate personal contact.
Galactosamine is a type of amino monosaccharide that is a key component of many glycosaminoglycans, and is commonly found in animal tissues, often used in research and pharmaceutical applications for its role in cellular metabolism and synthesis of various biological molecules.
A compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed)
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
Analgesic antipyretic derivative of acetanilide. It has weak anti-inflammatory properties and is used as a common analgesic, but may cause liver, blood cell, and kidney damage.
The process of cleaving a chemical compound by the addition of a molecule of water.
A class of enzymes that catalyze oxidation-reduction reactions of amino acids.
A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey (C. pygerythrus) is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research.
A PYRIDOXAL PHOSPHATE containing enzyme that catalyzes the reversible transfer of an amino group between D-Alanine and alpha-ketoglutarate to form PYRUVATE and D-GLUTAMATE, respectively. It plays a role in the synthesis of the bacterial CELL WALL. This enzyme was formerly classified as EC 2.6.1.10.
Liver disease in which the normal microcirculation, the gross vascular anatomy, and the hepatic architecture have been variably destroyed and altered with fibrous septa surrounding regenerated or regenerating parenchymal nodules.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Lengthy and continuous deprivation of food. (Stedman, 25th ed)
CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells.
A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin.
Biochemical identification of mutational changes in a nucleotide sequence.
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)
A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442)
A sulfur-containing essential L-amino acid that is important in many body functions.
Glyoxylates are organic compounds that are intermediate products in the metabolic pathways responsible for the breakdown and synthesis of various molecules, including amino acids and carbohydrates, and are involved in several biochemical processes such as the glyoxylate cycle.
Amino acid transporter systems capable of transporting neutral amino acids (AMINO ACIDS, NEUTRAL).
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
Peptides composed of two amino acid units.
Salts and esters of hydroxybutyric acid.
A closely related group of antigens found in the plasma only during the infective phase of hepatitis B or in virulent chronic hepatitis B, probably indicating active virus replication; there are three subtypes which may exist in a complex with immunoglobulins G.
A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed)
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist.
Peptides composed of between two and twelve amino acids.
The metabolic substances ACETONE; 3-HYDROXYBUTYRIC ACID; and acetoacetic acid (ACETOACETATES). They are produced in the liver and kidney during FATTY ACIDS oxidation and used as a source of energy by the heart, muscle and brain.
A subclass of EXOPEPTIDASES that act on the free N terminus end of a polypeptide liberating a single amino acid residue. EC 3.4.11.
INFLAMMATION of the LIVER in humans that is caused by HEPATITIS C VIRUS lasting six months or more. Chronic hepatitis C can lead to LIVER CIRRHOSIS.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Transport proteins that carry specific substances in the blood or across cell membranes.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Amino acids which have a branched carbon chain.
INFLAMMATION of the LIVER in humans caused by HEPATITIS C VIRUS, a single-stranded RNA virus. Its incubation period is 30-90 days. Hepatitis C is transmitted primarily by contaminated blood parenterally, and is often associated with transfusion and intravenous drug abuse. However, in a significant number of cases, the source of hepatitis C infection is unknown.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Analyses for a specific enzyme activity, or of the level of a specific enzyme that is used to assess health and disease risk, for early detection of disease or disease prediction, diagnosis, and change in disease status.
An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC 1.4.1.2.

Carbon 13 NMR study of nonenzymatic reactions of pyridoxal 5'-phosphate with selected amino acids and of related reactions. (1/5406)

Carbon 13 nuclear magnetic resonance spectroscopy has been used to monitor the nonenzymatic reactions of pyridoxal 5'-phosphate with glycine, alanine, valine, serine, and with several other model compounds. Isotopically enriched amino acids were employed so that low concentrations could be utilized while still allowing relatively rapid acquisition of spectral data. The results for alanine and serine are particularly noteworthy in that alanine is deaminated to pyruvate and pyruvate is aminated to alanine, but contrary to the enzymatic reactions of various serine dehydratases wherein serine is converted to pyruvate, the nonenzymatic reaction utilizing serine results in hydroxypruvate rather than pyruvate formation. In the reverse reaction, hydroxypyruvate is aminated to serine but very inefficiently relative to the amination of pyruvate to alanine. The experimental results have been formulated into a proposed reaction mechanism for deamination of amino acids by pyridoxal-P.  (+info)

Biochemical and electrophysiological studies on the mechanism of action of PNU-151774E, a novel antiepileptic compound. (2/5406)

PNU-151774E [(S)-(+)-2-(4-(3-fluorobenzyloxy)benzylamino)propanamide methanesulfonate], a new anticonvulsant that displays a wide therapeutic window, has a potency comparable or superior to that of most classic anticonvulsants. PNU-151774E is chemically unrelated to current antiepileptics. In animal seizure models it possesses a broad spectrum of action. In the present study, the action mechanism of PNU-151774E has been investigated using electrophysiological and biochemical assays. Binding studies performed with rat brain membranes show that PNU-151774E has high affinity for binding site 2 of the sodium channel receptor, which is greater than that of phenytoin or lamotrigine (IC50, 8 microM versus 47 and 185 microM, respectively). PNU-151774E reduces sustained repetitive firing in a use-dependent manner without modifying the first action potential in hippocampal cultured neurons. In the same preparation PNU-151774E inhibits tetrodotoxin-sensitive fast sodium currents and high voltage-activated calcium currents under voltage-clamp conditions. These electrophysiological activities of PNU-151774E correlate with its ability to inhibit veratrine and KCl-induced glutamate release in rat hippocampal slices (IC50, 56.4 and 185.5 microM, respectively) and calcium inward currents in mouse cortical neurons. On the other hand, PNU-151774E does not affect whole-cell gamma-aminobutryic acid- and glutamate-induced currents in cultured mouse cortical neurons. These results suggest that PNU-151774E exerts its anticonvulsant activity, at least in part, through inhibition of sodium and calcium channels, stabilizing neuronal membrane excitability and inhibiting transmitter release. The possible relevance of these pharmacological properties to its antiepileptic potential is discussed.  (+info)

Role of glutamine in human carbohydrate metabolism in kidney and other tissues. (3/5406)

Glutamine is the most abundant amino acid in the human body and is involved in more metabolic processes than any other amino acid. Until recently, the understanding of many aspects of glutamine metabolism was based on animal and in vitro data. However, recent studies using isotopic and balance techniques have greatly advanced the understanding of glutamine metabolism in humans and its role in glucose metabolism in the kidney and other tissues. There is now evidence that in postabsorptive humans, glutamine is an important glucose precursor and makes a significant contribution to the addition of new carbon to the glucose carbon pool. The importance of alanine for gluconeogenesis, viewed in terms of the addition of new carbons, is less than previously assumed. It appears that glutamine is predominantly a renal gluconeogenic substrate, whereas alanine gluconeogenesis is essentially confined to the liver. As shown recently, renal gluconeogenesis contributes 20 to 25% to whole-body glucose production. Moreover, glutamine has been shown not only to stimulate net muscle glycogen storage but also to stimulate gluconeogenesis in normal humans. Finally, in humans with type II diabetes, conversion of glutamine to glucose is increased (more so than that of alanine). The available evidence on the hormonal regulation of glutamine gluconeogenesis in kidney and liver and its alterations under pathological conditions are discussed.  (+info)

Structural determinants of the eosinophil: chemotactic activity of the acidic tetrapeptides of eosinophil chemotactic factor of anaphylaxis. (4/5406)

The acidic tetrapeptides of ECF-A, Ala/Val-Gly-Ser-Glu, exhibit peak in vitro chemotactic activity for human eosinophils at concentrations of 3 X 10(-8) M to 10(-6) M, and rapidly deactivate eosinophils to homologous and other stimuli at concentrations as low as 10(-10) M. The analogue Leu-Gly-Ser-Glu reaches peak activity at 10(-8)M-10(-7)M, while Phe-Gly-Ser-Glu requires 10(-4)M to elicit a peak response. Although inversion of the order of glycine and serine does not alter the eosinophil chemotactic activity of the tetrapeptides, deletion of glycine increases by 10-fold the concentration required for peak chemotactic activity, indicating the critical nature of the spacing between NH2- and COOH-terminal residues. The substituent COOH-terminal tripeptide, which is only marginally chemotactic, irreversibly suppresses eosinophil chemotactic responsiveness at a concentration 10,000-fold higher than concentrations necessary for deactivation by the intact tetrapeptide. The high concentration of tripeptide required for this cell directed effect, which is assumed to be analogous to deactivation, is attributed to the absence of the NH2-terminal residue which would facilitate effective interaction with the eosinophil. A substituent NH2-terminal tripeptide and amides of the NH2-terminal amino acids, which are devoid of chemotactic and deactivating activities, reversibly inhibit the tetrapeptide stimulus in a dose-response fashion. The additional finding that the NH2-terminal tripeptide protects the eosinophil from deactivation by the intact tetrapeptide confirms that the competitive interaction is stimulus specific.  (+info)

Variants of ribonuclease inhibitor that resist oxidation. (5/5406)

Human ribonuclease inhibitor (hRI) is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonucleases. hRI has 32 cysteine residues. The oxidation of these cysteine residues to form disulfide bonds is a rapid, cooperative process that inactivates hRI. The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence: Cys94 and Cys95, and Cys328 and Cys329. A cystine formed from such adjacent cysteine residues would likely contain a perturbing cis peptide bond within its eight-membered ring, which would disrupt the structure of hRI and could facilitate further oxidation. We find that replacing Cys328 and Cys329 with alanine residues has little effect on the affinity of hRI for bovine pancreatic ribonuclease A (RNase A), but increases its resistance to oxidation by 10- to 15-fold. Similar effects are observed for the single variants, C328A hRI and C329A hRI, suggesting that oxidation resistance arises from the inability to form a Cys328-Cys329 disulfide bond. Replacing Cys94 and Cys95 with alanine residues increases oxidation resistance to a lesser extent, and decreases the affinity of hRI for RNase A. The C328A, C329A, and C328A/C329A variants are likely to be more useful than wild-type hRI for inhibiting pancreatic-type ribonucleases in vitro and in vivo. We conclude that replacing adjacent cysteine residues can confer oxidation resistance in a protein.  (+info)

Multiplex sequence analysis demonstrates the competitive growth advantage of the A-to-G mutants of clarithromycin-resistant Helicobacter pylori. (6/5406)

Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates.  (+info)

The Escherichia coli Ada protein can interact with two distinct determinants in the sigma70 subunit of RNA polymerase according to promoter architecture: identification of the target of Ada activation at the alkA promoter. (7/5406)

The methylated form of the Ada protein (meAda) activates transcription from the Escherichia coli ada, aidB, and alkA promoters with different mechanisms. In this study we identify amino acid substitutions in region 4 of the RNA polymerase subunit sigma70 that affect Ada-activated transcription at alkA. Substitution to alanine of residues K593, K597, and R603 in sigma70 region 4 results in decreased Ada-dependent binding of RNA polymerase to the alkA promoter in vitro and impairs alkA transcription both in vivo and in vitro, suggesting that these residues define a determinant for meAda-sigma70 interaction. In a previous study (P. Landini, J. A. Bown, M. R. Volkert, and S. J. W. Busby, J. Biol. Chem. 273:13307-13312, 1998), we showed that a set of negatively charged amino acids in sigma70 region 4 is involved in meAda-sigma70 interaction at the ada and aidB promoters. However, the alanine substitutions of positively charged residues K593, K597, and R603 do not affect meAda-dependent transcription at ada and aidB. Unlike the sigma70 amino acids involved in the interaction with meAda at the ada and aidB promoters, K593, K597, and R603 are not conserved in sigmaS, an alternative sigma subunit of RNA polymerase mainly expressed during the stationary phase of growth. While meAda is able to promote transcription by the sigmaS form of RNA polymerase (EsigmaS) at ada and aidB, it fails to do so at alkA. We propose that meAda can activate transcription at different promoters by contacting distinct determinants in sigma70 region 4 in a manner dependent on the location of the Ada binding site.  (+info)

CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. (8/5406)

Metabotropic glutamate receptors (mGluRs) are a family of G protein-coupled receptors characterized by a large, extracellular N-terminal domain comprising the glutamate-binding site. In the current study, we examined the pharmacological profile and site of action of the non-amino-acid antagonist 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester (CPCCOEt). CPCCOEt selectively inhibited glutamate-induced increases in intracellular calcium at human mGluR1b (hmGluR1b) with an apparent IC50 of 6.5 microM while having no agonist or antagonist activity at hmGluR2, -4a, -5a, -7b, and -8a up to 100 microM. Schild analysis indicated that CPCCOEt acts in a noncompetitive manner by decreasing the efficacy of glutamate-stimulated phosphoinositide hydrolysis without affecting the EC50 value or Hill coefficient of glutamate. Similarly, CPCCOEt did not displace [3H]glutamate binding to membranes prepared from mGluR1a-expressing cells. To elucidate the site of action, we systematically exchanged segments and single amino acids between hmGluR1b and the related subtype, hmGluR5a. Substitution of Thr815 and Ala818, located at the extracellular surface of transmembrane segment VII, with the homologous amino acids of hmGluR5a eliminated CPCCOEt inhibition of hmGluR1b. In contrast, introduction of Thr815 and Ala818 at the homologous positions of hmGluR5a conferred complete inhibition by CPCCOEt (IC50 = 6.6 microM), i.e., a gain of function. These data suggest that CPCCOEt represents a novel class of G protein-coupled receptor antagonists inhibiting receptor signaling without affecting ligand binding. We propose that the interaction of CPCCOEt with Thr815 and Ala818 of mGluR1 disrupts receptor activation by inhibiting an intramolecular interaction between the agonist-bound extracellular domain and the transmembrane domain.  (+info)

Alanine is an alpha-amino acid that is used in the biosynthesis of proteins. The molecular formula for alanine is C3H7NO2. It is a non-essential amino acid, which means that it can be produced by the human body through the conversion of other nutrients, such as pyruvate, and does not need to be obtained directly from the diet.

Alanine is classified as an aliphatic amino acid because it contains a simple carbon side chain. It is also a non-polar amino acid, which means that it is hydrophobic and tends to repel water. Alanine plays a role in the metabolism of glucose and helps to regulate blood sugar levels. It is also involved in the transfer of nitrogen between tissues and helps to maintain the balance of nitrogen in the body.

In addition to its role as a building block of proteins, alanine is also used as a neurotransmitter in the brain and has been shown to have a calming effect on the nervous system. It is found in many foods, including meats, poultry, fish, eggs, dairy products, and legumes.

Alanine transaminase (ALT) is a type of enzyme found primarily in the cells of the liver and, to a lesser extent, in the cells of other tissues such as the heart, muscles, and kidneys. Its primary function is to catalyze the reversible transfer of an amino group from alanine to another alpha-keto acid, usually pyruvate, to form pyruvate and another amino acid, usually glutamate. This process is known as the transamination reaction.

When liver cells are damaged or destroyed due to various reasons such as hepatitis, alcohol abuse, nonalcoholic fatty liver disease, or drug-induced liver injury, ALT is released into the bloodstream. Therefore, measuring the level of ALT in the blood is a useful diagnostic tool for evaluating liver function and detecting liver damage. Normal ALT levels vary depending on the laboratory, but typically range from 7 to 56 units per liter (U/L) for men and 6 to 45 U/L for women. Elevated ALT levels may indicate liver injury or disease, although other factors such as muscle damage or heart disease can also cause elevations in ALT.

Alanine racemase is an enzyme that catalyzes the conversion of the amino acid alanine between its two stereoisomeric forms, D-alanine and L-alanine. This enzyme plays a crucial role in the biosynthesis of peptidoglycan, a major component of bacterial cell walls. In humans, alanine racemase is found in the cytosol of many tissues, including the liver, kidneys, and brain. It is also an important enzyme in the metabolism of amino acids and has been implicated in various disease processes, including neurodegenerative disorders and cancer.

Alanine Dehydrogenase (ADH) is an enzyme that catalyzes the reversible conversion between alanine and pyruvate with the reduction of nicotinamide adenine dinucleotide (NAD+) to nicotinamide adenine dinucleotide hydride (NADH). This reaction plays a role in the metabolism of amino acids, particularly in the catabolism of alanine.

In humans, there are multiple isoforms of ADH that are expressed in different tissues and have different functions. The isoform known as ALDH4A1 is primarily responsible for the conversion of alanine to pyruvate in the liver. Deficiencies or mutations in this enzyme can lead to a rare genetic disorder called 4-hydroxybutyric aciduria, which is characterized by elevated levels of 4-hydroxybutyric acid in the urine and neurological symptoms.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Aspartate aminotransferases (ASTs) are a group of enzymes found in various tissues throughout the body, including the heart, liver, and muscles. They play a crucial role in the metabolic process of transferring amino groups between different molecules.

In medical terms, AST is often used as a blood test to measure the level of this enzyme in the serum. Elevated levels of AST can indicate damage or injury to tissues that contain this enzyme, such as the liver or heart. For example, liver disease, including hepatitis and cirrhosis, can cause elevated AST levels due to damage to liver cells. Similarly, heart attacks can also result in increased AST levels due to damage to heart muscle tissue.

It is important to note that an AST test alone cannot diagnose a specific medical condition, but it can provide valuable information when used in conjunction with other diagnostic tests and clinical evaluation.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

An amino acid substitution is a type of mutation in which one amino acid in a protein is replaced by another. This occurs when there is a change in the DNA sequence that codes for a particular amino acid in a protein. The genetic code is redundant, meaning that most amino acids are encoded by more than one codon (a sequence of three nucleotides). As a result, a single base pair change in the DNA sequence may not necessarily lead to an amino acid substitution. However, if a change does occur, it can have a variety of effects on the protein's structure and function, depending on the nature of the substituted amino acids. Some substitutions may be harmless, while others may alter the protein's activity or stability, leading to disease.

Serine is an amino acid, which is a building block of proteins. More specifically, it is a non-essential amino acid, meaning that the body can produce it from other compounds, and it does not need to be obtained through diet. Serine plays important roles in the body, such as contributing to the formation of the protective covering of nerve fibers (myelin sheath), helping to synthesize another amino acid called tryptophan, and taking part in the metabolism of fatty acids. It is also involved in the production of muscle tissues, the immune system, and the forming of cell structures. Serine can be found in various foods such as soy, eggs, cheese, meat, peanuts, lentils, and many others.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Transaminases, also known as aminotransferases, are a group of enzymes found in various tissues of the body, particularly in the liver, heart, muscle, and kidneys. They play a crucial role in the metabolism of amino acids, the building blocks of proteins.

There are two major types of transaminases: aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Both enzymes are normally present in low concentrations in the bloodstream. However, when tissues that contain these enzymes are damaged or injured, such as during liver disease or muscle damage, the levels of AST and ALT in the blood may significantly increase.

Measurement of serum transaminase levels is a common laboratory test used to assess liver function and detect liver injury or damage. Increased levels of these enzymes in the blood can indicate conditions such as hepatitis, liver cirrhosis, drug-induced liver injury, heart attack, and muscle disorders. It's important to note that while elevated transaminase levels may suggest liver disease, they do not specify the type or cause of the condition, and further diagnostic tests are often required for accurate diagnosis and treatment.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Glutamine is defined as a conditionally essential amino acid in humans, which means that it can be produced by the body under normal circumstances, but may become essential during certain conditions such as stress, illness, or injury. It is the most abundant free amino acid found in the blood and in the muscles of the body.

Glutamine plays a crucial role in various biological processes, including protein synthesis, energy production, and acid-base balance. It serves as an important fuel source for cells in the intestines, immune system, and skeletal muscles. Glutamine has also been shown to have potential benefits in wound healing, gut function, and immunity, particularly during times of physiological stress or illness.

In summary, glutamine is a vital amino acid that plays a critical role in maintaining the health and function of various tissues and organs in the body.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Aspartic acid is an α-amino acid with the chemical formula HO2CCH(NH2)CO2H. It is one of the twenty standard amino acids, and it is a polar, negatively charged, and hydrophilic amino acid. In proteins, aspartic acid usually occurs in its ionized form, aspartate, which has a single negative charge.

Aspartic acid plays important roles in various biological processes, including metabolism, neurotransmitter synthesis, and energy production. It is also a key component of many enzymes and proteins, where it often contributes to the formation of ionic bonds and helps stabilize protein structure.

In addition to its role as a building block of proteins, aspartic acid is also used in the synthesis of other important biological molecules, such as nucleotides, which are the building blocks of DNA and RNA. It is also a component of the dipeptide aspartame, an artificial sweetener that is widely used in food and beverages.

Like other amino acids, aspartic acid is essential for human health, but it cannot be synthesized by the body and must be obtained through the diet. Foods that are rich in aspartic acid include meat, poultry, fish, dairy products, eggs, legumes, and some fruits and vegetables.

Drug-Induced Liver Injury (DILI) is a medical term that refers to liver damage or injury caused by the use of medications or drugs. This condition can vary in severity, from mild abnormalities in liver function tests to severe liver failure, which may require a liver transplant.

The exact mechanism of DILI can differ depending on the drug involved, but it generally occurs when the liver metabolizes the drug into toxic compounds that damage liver cells. This can happen through various pathways, including direct toxicity to liver cells, immune-mediated reactions, or metabolic idiosyncrasies.

Symptoms of DILI may include jaundice (yellowing of the skin and eyes), fatigue, abdominal pain, nausea, vomiting, loss of appetite, and dark urine. In severe cases, it can lead to complications such as ascites, encephalopathy, and bleeding disorders.

The diagnosis of DILI is often challenging because it requires the exclusion of other potential causes of liver injury. Liver function tests, imaging studies, and sometimes liver biopsies may be necessary to confirm the diagnosis. Treatment typically involves discontinuing the offending drug and providing supportive care until the liver recovers. In some cases, medications that protect the liver or promote its healing may be used.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Glycine is a simple amino acid that plays a crucial role in the body. According to the medical definition, glycine is an essential component for the synthesis of proteins, peptides, and other biologically important compounds. It is also involved in various metabolic processes, such as the production of creatine, which supports muscle function, and the regulation of neurotransmitters, affecting nerve impulse transmission and brain function. Glycine can be found as a free form in the body and is also present in many dietary proteins.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Threonine is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through the diet. Its chemical formula is HO2CCH(NH2)CH(OH)CH3. Threonine plays a crucial role in various biological processes, including protein synthesis, immune function, and fat metabolism. It is particularly important for maintaining the structural integrity of proteins, as it is often found in their hydroxyl-containing regions. Foods rich in threonine include animal proteins such as meat, dairy products, and eggs, as well as plant-based sources like lentils and soybeans.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Cysteine is a semi-essential amino acid, which means that it can be produced by the human body under normal circumstances, but may need to be obtained from external sources in certain conditions such as illness or stress. Its chemical formula is HO2CCH(NH2)CH2SH, and it contains a sulfhydryl group (-SH), which allows it to act as a powerful antioxidant and participate in various cellular processes.

Cysteine plays important roles in protein structure and function, detoxification, and the synthesis of other molecules such as glutathione, taurine, and coenzyme A. It is also involved in wound healing, immune response, and the maintenance of healthy skin, hair, and nails.

Cysteine can be found in a variety of foods, including meat, poultry, fish, dairy products, eggs, legumes, nuts, seeds, and some grains. It is also available as a dietary supplement and can be used in the treatment of various medical conditions such as liver disease, bronchitis, and heavy metal toxicity. However, excessive intake of cysteine may have adverse effects on health, including gastrointestinal disturbances, nausea, vomiting, and headaches.

Gamma-glutamyltransferase (GGT), also known as gamma-glutamyl transpeptidase, is an enzyme found in many tissues, including the liver, bile ducts, and pancreas. GGT is involved in the metabolism of certain amino acids and plays a role in the detoxification of various substances in the body.

GGT is often measured as a part of a panel of tests used to evaluate liver function. Elevated levels of GGT in the blood may indicate liver disease or injury, bile duct obstruction, or alcohol consumption. However, it's important to note that several other factors can also affect GGT levels, so abnormal results should be interpreted in conjunction with other clinical findings and diagnostic tests.

A point mutation is a type of genetic mutation where a single nucleotide base (A, T, C, or G) in DNA is altered, deleted, or substituted with another nucleotide. Point mutations can have various effects on the organism, depending on the location of the mutation and whether it affects the function of any genes. Some point mutations may not have any noticeable effect, while others might lead to changes in the amino acids that make up proteins, potentially causing diseases or altering traits. Point mutations can occur spontaneously due to errors during DNA replication or be inherited from parents.

Liver function tests (LFTs) are a group of blood tests that are used to assess the functioning and health of the liver. These tests measure the levels of various enzymes, proteins, and waste products that are produced or metabolized by the liver. Some common LFTs include:

1. Alanine aminotransferase (ALT): An enzyme found primarily in the liver, ALT is released into the bloodstream in response to liver cell damage. Elevated levels of ALT may indicate liver injury or disease.
2. Aspartate aminotransferase (AST): Another enzyme found in various tissues, including the liver, heart, and muscles. Like ALT, AST is released into the bloodstream following tissue damage. High AST levels can be a sign of liver damage or other medical conditions.
3. Alkaline phosphatase (ALP): An enzyme found in several organs, including the liver, bile ducts, and bones. Elevated ALP levels may indicate a blockage in the bile ducts, liver disease, or bone disorders.
4. Gamma-glutamyl transferase (GGT): An enzyme found mainly in the liver, pancreas, and biliary system. Increased GGT levels can suggest liver disease, alcohol consumption, or the use of certain medications.
5. Bilirubin: A yellowish pigment produced when hemoglobin from red blood cells is broken down. Bilirubin is processed by the liver and excreted through bile. High bilirubin levels can indicate liver dysfunction, bile duct obstruction, or certain types of anemia.
6. Albumin: A protein produced by the liver that helps maintain fluid balance in the body and transports various substances in the blood. Low albumin levels may suggest liver damage, malnutrition, or kidney disease.
7. Total protein: A measure of all proteins present in the blood, including albumin and other types of proteins produced by the liver. Decreased total protein levels can indicate liver dysfunction or other medical conditions.

These tests are often ordered together as part of a routine health checkup or when evaluating symptoms related to liver function or disease. The results should be interpreted in conjunction with clinical findings, medical history, and other diagnostic tests.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Secondary protein structure refers to the local spatial arrangement of amino acid chains in a protein, typically described as regular repeating patterns held together by hydrogen bonds. The two most common types of secondary structures are the alpha-helix (α-helix) and the beta-pleated sheet (β-sheet). In an α-helix, the polypeptide chain twists around itself in a helical shape, with each backbone atom forming a hydrogen bond with the fourth amino acid residue along the chain. This forms a rigid rod-like structure that is resistant to bending or twisting forces. In β-sheets, adjacent segments of the polypeptide chain run parallel or antiparallel to each other and are connected by hydrogen bonds, forming a pleated sheet-like arrangement. These secondary structures provide the foundation for the formation of tertiary and quaternary protein structures, which determine the overall three-dimensional shape and function of the protein.

Gluconeogenesis is a metabolic pathway that occurs in the liver, kidneys, and to a lesser extent in the small intestine. It involves the synthesis of glucose from non-carbohydrate precursors such as lactate, pyruvate, glycerol, and certain amino acids. This process becomes particularly important during periods of fasting or starvation when glucose levels in the body begin to drop, and there is limited carbohydrate intake to replenish them.

Gluconeogenesis helps maintain blood glucose homeostasis by providing an alternative source of glucose for use by various tissues, especially the brain, which relies heavily on glucose as its primary energy source. It is a complex process that involves several enzymatic steps, many of which are regulated to ensure an adequate supply of glucose while preventing excessive production, which could lead to hyperglycemia.

Mutagenesis is the process by which the genetic material (DNA or RNA) of an organism is changed in a way that can alter its phenotype, or observable traits. These changes, known as mutations, can be caused by various factors such as chemicals, radiation, or viruses. Some mutations may have no effect on the organism, while others can cause harm, including diseases and cancer. Mutagenesis is a crucial area of study in genetics and molecular biology, with implications for understanding evolution, genetic disorders, and the development of new medical treatments.

Proline is an organic compound that is classified as a non-essential amino acid, meaning it can be produced by the human body and does not need to be obtained through the diet. It is encoded in the genetic code as the codon CCU, CCC, CCA, or CCG. Proline is a cyclic amino acid, containing an unusual secondary amine group, which forms a ring structure with its carboxyl group.

In proteins, proline acts as a structural helix breaker, disrupting the alpha-helix structure and leading to the formation of turns and bends in the protein chain. This property is important for the proper folding and function of many proteins. Proline also plays a role in the stability of collagen, a major structural protein found in connective tissues such as tendons, ligaments, and skin.

In addition to its role in protein structure, proline has been implicated in various cellular processes, including signal transduction, apoptosis, and oxidative stress response. It is also a precursor for the synthesis of other biologically important compounds such as hydroxyproline, which is found in collagen and elastin, and glutamate, an excitatory neurotransmitter in the brain.

Leucine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through the diet. It is one of the three branched-chain amino acids (BCAAs), along with isoleucine and valine. Leucine is critical for protein synthesis and muscle growth, and it helps to regulate blood sugar levels, promote wound healing, and produce growth hormones.

Leucine is found in various food sources such as meat, dairy products, eggs, and certain plant-based proteins like soy and beans. It is also available as a dietary supplement for those looking to increase their intake for athletic performance or muscle recovery purposes. However, it's important to consult with a healthcare professional before starting any new supplement regimen.

'RNA, Transfer, Ala' refers to a specific type of transfer RNA (tRNA) molecule that is involved in protein synthesis. In molecular biology, the term 'RNA' stands for ribonucleic acid, which is a nucleic acid present in the cells of all living organisms. Transfer RNAs are a type of RNA that help translate genetic information from messenger RNA (mRNA) into proteins during the process of protein synthesis or translation.

'Transfer, Ala' more specifically refers to a transfer RNA molecule that carries the amino acid alanine (Ala) to the ribosome during protein synthesis. Each tRNA has a specific anticodon sequence that can base-pair with a complementary codon sequence in the mRNA, and it also carries a specific amino acid that corresponds to that codon. In this case, the anticodon on the 'Transfer, Ala' tRNA molecule is capable of base-pairing with any one of the three codons (GCU, GCC, GCA, or GCG) that specify alanine in the genetic code.

Therefore, 'RNA, Transfer, Ala' can be defined as a type of transfer RNA molecule that carries and delivers the amino acid alanine to the growing polypeptide chain during protein synthesis.

Glutamates are the salt or ester forms of glutamic acid, which is a naturally occurring amino acid and the most abundant excitatory neurotransmitter in the central nervous system. Glutamate plays a crucial role in various brain functions, such as learning, memory, and cognition. However, excessive levels of glutamate can lead to neuronal damage or death, contributing to several neurological disorders, including stroke, epilepsy, and neurodegenerative diseases like Alzheimer's and Parkinson's.

Glutamates are also commonly found in food as a natural flavor enhancer, often listed under the name monosodium glutamate (MSG). While MSG has been extensively studied, its safety remains a topic of debate, with some individuals reporting adverse reactions after consuming foods containing this additive.

Pyruvic acid, also known as 2-oxopropanoic acid, is a key metabolic intermediate in both anaerobic and aerobic respiration. It is a carboxylic acid with a ketone functional group, making it a β-ketoacid. In the cytosol, pyruvate is produced from glucose during glycolysis, where it serves as a crucial link between the anaerobic breakdown of glucose and the aerobic process of cellular respiration in the mitochondria.

During low oxygen availability or high energy demands, pyruvate can be converted into lactate through anaerobic glycolysis, allowing for the continued production of ATP (adenosine triphosphate) without oxygen. In the presence of adequate oxygen and functional mitochondria, pyruvate is transported into the mitochondrial matrix where it undergoes oxidative decarboxylation to form acetyl-CoA by the enzyme pyruvate dehydrogenase complex (PDC). This reaction also involves the reduction of NAD+ to NADH and the release of CO2. Acetyl-CoA then enters the citric acid cycle, where it is further oxidized to produce energy in the form of ATP, NADH, FADH2, and GTP (guanosine triphosphate) through a series of enzymatic reactions.

In summary, pyruvic acid is a vital metabolic intermediate that plays a significant role in energy production pathways, connecting glycolysis to both anaerobic and aerobic respiration.

Histidine is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C6H9N3O2. Histidine plays a crucial role in several physiological processes, including:

1. Protein synthesis: As an essential amino acid, histidine is required for the production of proteins, which are vital components of various tissues and organs in the body.

2. Hemoglobin synthesis: Histidine is a key component of hemoglobin, the protein in red blood cells responsible for carrying oxygen throughout the body. The imidazole side chain of histidine acts as a proton acceptor/donor, facilitating the release and uptake of oxygen by hemoglobin.

3. Acid-base balance: Histidine is involved in maintaining acid-base homeostasis through its role in the biosynthesis of histamine, which is a critical mediator of inflammatory responses and allergies. The decarboxylation of histidine results in the formation of histamine, which can increase vascular permeability and modulate immune responses.

4. Metal ion binding: Histidine has a high affinity for metal ions such as zinc, copper, and iron. This property allows histidine to participate in various enzymatic reactions and maintain the structural integrity of proteins.

5. Antioxidant defense: Histidine-containing dipeptides, like carnosine and anserine, have been shown to exhibit antioxidant properties by scavenging reactive oxygen species (ROS) and chelating metal ions. These compounds may contribute to the protection of proteins and DNA from oxidative damage.

Dietary sources of histidine include meat, poultry, fish, dairy products, and wheat germ. Histidine deficiency is rare but can lead to growth retardation, anemia, and impaired immune function.

Pyruvate is a negatively charged ion or group of atoms, called anion, with the chemical formula C3H3O3-. It is formed from the decomposition of glucose and other sugars in the process of cellular respiration. Pyruvate plays a crucial role in the metabolic pathways that generate energy for cells.

In the cytoplasm, pyruvate is produced through glycolysis, where one molecule of glucose is broken down into two molecules of pyruvate, releasing energy and producing ATP (adenosine triphosphate) and NADH (reduced nicotinamide adenine dinucleotide).

In the mitochondria, pyruvate can be further metabolized through the citric acid cycle (also known as the Krebs cycle) to produce more ATP. The process involves the conversion of pyruvate into acetyl-CoA, which then enters the citric acid cycle and undergoes a series of reactions that generate energy in the form of ATP, NADH, and FADH2 (reduced flavin adenine dinucleotide).

Overall, pyruvate is an important intermediate in cellular respiration and plays a central role in the production of energy for cells.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Lactates, also known as lactic acid, are compounds that are produced by muscles during intense exercise or other conditions of low oxygen supply. They are formed from the breakdown of glucose in the absence of adequate oxygen to complete the full process of cellular respiration. This results in the production of lactate and a hydrogen ion, which can lead to a decrease in pH and muscle fatigue.

In a medical context, lactates may be measured in the blood as an indicator of tissue oxygenation and metabolic status. Elevated levels of lactate in the blood, known as lactic acidosis, can indicate poor tissue perfusion or hypoxia, and may be seen in conditions such as sepsis, cardiac arrest, and severe shock. It is important to note that lactates are not the primary cause of acidemia (low pH) in lactic acidosis, but rather a marker of the underlying process.

Amino acid motifs are recurring patterns or sequences of amino acids in a protein molecule. These motifs can be identified through various sequence analysis techniques and often have functional or structural significance. They can be as short as two amino acids in length, but typically contain at least three to five residues.

Some common examples of amino acid motifs include:

1. Active site motifs: These are specific sequences of amino acids that form the active site of an enzyme and participate in catalyzing chemical reactions. For example, the catalytic triad in serine proteases consists of three residues (serine, histidine, and aspartate) that work together to hydrolyze peptide bonds.
2. Signal peptide motifs: These are sequences of amino acids that target proteins for secretion or localization to specific organelles within the cell. For example, a typical signal peptide consists of a positively charged n-region, a hydrophobic h-region, and a polar c-region that directs the protein to the endoplasmic reticulum membrane for translocation.
3. Zinc finger motifs: These are structural domains that contain conserved sequences of amino acids that bind zinc ions and play important roles in DNA recognition and regulation of gene expression.
4. Transmembrane motifs: These are sequences of hydrophobic amino acids that span the lipid bilayer of cell membranes and anchor transmembrane proteins in place.
5. Phosphorylation sites: These are specific serine, threonine, or tyrosine residues that can be phosphorylated by protein kinases to regulate protein function.

Understanding amino acid motifs is important for predicting protein structure and function, as well as for identifying potential drug targets in disease-associated proteins.

Lysine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. Its chemical formula is (2S)-2,6-diaminohexanoic acid. Lysine is necessary for the growth and maintenance of tissues in the body, and it plays a crucial role in the production of enzymes, hormones, and antibodies. It is also essential for the absorption of calcium and the formation of collagen, which is an important component of bones and connective tissue. Foods that are good sources of lysine include meat, poultry, fish, eggs, and dairy products.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Ammonia is a colorless, pungent-smelling gas with the chemical formula NH3. It is a compound of nitrogen and hydrogen and is a basic compound, meaning it has a pH greater than 7. Ammonia is naturally found in the environment and is produced by the breakdown of organic matter, such as animal waste and decomposing plants. In the medical field, ammonia is most commonly discussed in relation to its role in human metabolism and its potential toxicity.

In the body, ammonia is produced as a byproduct of protein metabolism and is typically converted to urea in the liver and excreted in the urine. However, if the liver is not functioning properly or if there is an excess of protein in the diet, ammonia can accumulate in the blood and cause a condition called hyperammonemia. Hyperammonemia can lead to serious neurological symptoms, such as confusion, seizures, and coma, and is treated by lowering the level of ammonia in the blood through medications, dietary changes, and dialysis.

A conserved sequence in the context of molecular biology refers to a pattern of nucleotides (in DNA or RNA) or amino acids (in proteins) that has remained relatively unchanged over evolutionary time. These sequences are often functionally important and are highly conserved across different species, indicating strong selection pressure against changes in these regions.

In the case of protein-coding genes, the corresponding amino acid sequence is deduced from the DNA sequence through the genetic code. Conserved sequences in proteins may indicate structurally or functionally important regions, such as active sites or binding sites, that are critical for the protein's activity. Similarly, conserved non-coding sequences in DNA may represent regulatory elements that control gene expression.

Identifying conserved sequences can be useful for inferring evolutionary relationships between species and for predicting the function of unknown genes or proteins.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Alanine-tRNA ligase is an enzyme that plays a crucial role in protein synthesis. Its primary function is to join alanine, one of the 20 standard amino acids, with its corresponding transfer RNA (tRNA). This enzyme catalyzes the formation of an alanine-tRNA complex, which is essential for translating genetic information from messenger RNA (mRNA) into a specific sequence of amino acids during protein synthesis.

In humans, there are two types of alanine-tRNA ligases: cytoplasmic and mitochondrial. The cytoplasmic enzyme is responsible for attaching alanine to cytosolic tRNAs, while the mitochondrial enzyme performs this function for mitochondrial tRNAs. Both forms of the enzyme are necessary for maintaining proper cellular functions and overall health.

Deficiencies or mutations in alanine-tRNA ligase can lead to various genetic disorders, such as mitochondrial disorders, that may result in neurological symptoms, muscle weakness, and other health issues.

Glutamic acid is an alpha-amino acid, which is one of the 20 standard amino acids in the genetic code. The systematic name for this amino acid is (2S)-2-Aminopentanedioic acid. Its chemical formula is HO2CCH(NH2)CH2CH2CO2H.

Glutamic acid is a crucial excitatory neurotransmitter in the human brain, and it plays an essential role in learning and memory. It's also involved in the metabolism of sugars and amino acids, the synthesis of proteins, and the removal of waste nitrogen from the body.

Glutamic acid can be found in various foods such as meat, fish, beans, eggs, dairy products, and vegetables. In the human body, glutamic acid can be converted into gamma-aminobutyric acid (GABA), another important neurotransmitter that has a calming effect on the nervous system.

Liver diseases refer to a wide range of conditions that affect the normal functioning of the liver. The liver is a vital organ responsible for various critical functions such as detoxification, protein synthesis, and production of biochemicals necessary for digestion.

Liver diseases can be categorized into acute and chronic forms. Acute liver disease comes on rapidly and can be caused by factors like viral infections (hepatitis A, B, C, D, E), drug-induced liver injury, or exposure to toxic substances. Chronic liver disease develops slowly over time, often due to long-term exposure to harmful agents or inherent disorders of the liver.

Common examples of liver diseases include hepatitis, cirrhosis (scarring of the liver tissue), fatty liver disease, alcoholic liver disease, autoimmune liver diseases, genetic/hereditary liver disorders (like Wilson's disease and hemochromatosis), and liver cancers. Symptoms may vary widely depending on the type and stage of the disease but could include jaundice, abdominal pain, fatigue, loss of appetite, nausea, and weight loss.

Early diagnosis and treatment are essential to prevent progression and potential complications associated with liver diseases.

Cycloserine is an antibiotic medication used to treat tuberculosis (TB) that is resistant to other antibiotics. It works by killing or inhibiting the growth of the bacteria that cause TB. Cycloserine is a second-line drug, which means it is used when first-line treatments have failed or are not effective.

The medical definition of Cycloserine is:

A bacteriostatic antibiotic derived from Streptomyces orchidaceus that inhibits gram-positive and gram-negative bacteria by interfering with peptidoglycan synthesis in the bacterial cell wall. It has been used to treat tuberculosis, but its use is limited due to its adverse effects, including neurotoxicity, which can manifest as seizures, dizziness, and confusion. Cycloserine is also used in the treatment of urinary tract infections and other bacterial infections that are resistant to other antibiotics. It is available in oral form and is typically taken two to four times a day.

Valine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through diet. It is a hydrophobic amino acid, with a branched side chain, and is necessary for the growth, repair, and maintenance of tissues in the body. Valine is also important for muscle metabolism, and is often used by athletes as a supplement to enhance physical performance. Like other essential amino acids, valine must be obtained through foods such as meat, fish, dairy products, and legumes.

COS cells are a type of cell line that are commonly used in molecular biology and genetic research. The name "COS" is an acronym for "CV-1 in Origin," as these cells were originally derived from the African green monkey kidney cell line CV-1. COS cells have been modified through genetic engineering to express high levels of a protein called SV40 large T antigen, which allows them to efficiently take up and replicate exogenous DNA.

There are several different types of COS cells that are commonly used in research, including COS-1, COS-3, and COS-7 cells. These cells are widely used for the production of recombinant proteins, as well as for studies of gene expression, protein localization, and signal transduction.

It is important to note that while COS cells have been a valuable tool in scientific research, they are not without their limitations. For example, because they are derived from monkey kidney cells, there may be differences in the way that human genes are expressed or regulated in these cells compared to human cells. Additionally, because COS cells express SV40 large T antigen, they may have altered cell cycle regulation and other phenotypic changes that could affect experimental results. Therefore, it is important to carefully consider the choice of cell line when designing experiments and interpreting results.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

Phenylalanine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through diet or supplementation. It's one of the building blocks of proteins and is necessary for the production of various molecules in the body, such as neurotransmitters (chemical messengers in the brain).

Phenylalanine has two forms: L-phenylalanine and D-phenylalanine. L-phenylalanine is the form found in proteins and is used by the body for protein synthesis, while D-phenylalanine has limited use in humans and is not involved in protein synthesis.

Individuals with a rare genetic disorder called phenylketonuria (PKU) must follow a low-phenylalanine diet or take special medical foods because they are unable to metabolize phenylalanine properly, leading to its buildup in the body and potential neurological damage.

Circular dichroism (CD) is a technique used in physics and chemistry to study the structure of molecules, particularly large biological molecules such as proteins and nucleic acids. It measures the difference in absorption of left-handed and right-handed circularly polarized light by a sample. This difference in absorption can provide information about the three-dimensional structure of the molecule, including its chirality or "handedness."

In more technical terms, CD is a form of spectroscopy that measures the differential absorption of left and right circularly polarized light as a function of wavelength. The CD signal is measured in units of millidegrees (mdeg) and can be positive or negative, depending on the type of chromophore and its orientation within the molecule.

CD spectra can provide valuable information about the secondary and tertiary structure of proteins, as well as the conformation of nucleic acids. For example, alpha-helical proteins typically exhibit a strong positive band near 190 nm and two negative bands at around 208 nm and 222 nm, while beta-sheet proteins show a strong positive band near 195 nm and two negative bands at around 217 nm and 175 nm.

CD spectroscopy is a powerful tool for studying the structural changes that occur in biological molecules under different conditions, such as temperature, pH, or the presence of ligands or other molecules. It can also be used to monitor the folding and unfolding of proteins, as well as the binding of drugs or other small molecules to their targets.

Nitrogen is not typically referred to as a medical term, but it is an element that is crucial to medicine and human life.

In a medical context, nitrogen is often mentioned in relation to gas analysis, respiratory therapy, or medical gases. Nitrogen (N) is a colorless, odorless, and nonreactive gas that makes up about 78% of the Earth's atmosphere. It is an essential element for various biological processes, such as the growth and maintenance of organisms, because it is a key component of amino acids, nucleic acids, and other organic compounds.

In some medical applications, nitrogen is used to displace oxygen in a mixture to create a controlled environment with reduced oxygen levels (hypoxic conditions) for therapeutic purposes, such as in certain types of hyperbaric chambers. Additionally, nitrogen gas is sometimes used in cryotherapy, where extremely low temperatures are applied to tissues to reduce pain, swelling, and inflammation.

However, it's important to note that breathing pure nitrogen can be dangerous, as it can lead to unconsciousness and even death due to lack of oxygen (asphyxiation) within minutes.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Arginine is an α-amino acid that is classified as a semi-essential or conditionally essential amino acid, depending on the developmental stage and health status of the individual. The adult human body can normally synthesize sufficient amounts of arginine to meet its needs, but there are certain circumstances, such as periods of rapid growth or injury, where the dietary intake of arginine may become necessary.

The chemical formula for arginine is C6H14N4O2. It has a molecular weight of 174.20 g/mol and a pKa value of 12.48. Arginine is a basic amino acid, which means that it contains a side chain with a positive charge at physiological pH levels. The side chain of arginine is composed of a guanidino group, which is a functional group consisting of a nitrogen atom bonded to three methyl groups.

In the body, arginine plays several important roles. It is a precursor for the synthesis of nitric oxide, a molecule that helps regulate blood flow and immune function. Arginine is also involved in the detoxification of ammonia, a waste product produced by the breakdown of proteins. Additionally, arginine can be converted into other amino acids, such as ornithine and citrulline, which are involved in various metabolic processes.

Foods that are good sources of arginine include meat, poultry, fish, dairy products, nuts, seeds, and legumes. Arginine supplements are available and may be used for a variety of purposes, such as improving exercise performance, enhancing wound healing, and boosting immune function. However, it is important to consult with a healthcare provider before taking arginine supplements, as they can interact with certain medications and have potential side effects.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Isoleucine is an essential branched-chain amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C6H13NO2. Isoleucine is crucial for muscle protein synthesis, hemoglobin formation, and energy regulation during exercise or fasting. It is found in various foods such as meat, fish, eggs, dairy products, legumes, and nuts. Deficiency of isoleucine may lead to various health issues like muscle wasting, fatigue, and mental confusion.

A catalytic domain is a portion or region within a protein that contains the active site, where the chemical reactions necessary for the protein's function are carried out. This domain is responsible for the catalysis of biological reactions, hence the name "catalytic domain." The catalytic domain is often composed of specific amino acid residues that come together to form the active site, creating a unique three-dimensional structure that enables the protein to perform its specific function.

In enzymes, for example, the catalytic domain contains the residues that bind and convert substrates into products through chemical reactions. In receptors, the catalytic domain may be involved in signal transduction or other regulatory functions. Understanding the structure and function of catalytic domains is crucial to understanding the mechanisms of protein function and can provide valuable insights for drug design and therapeutic interventions.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Lactic acid, also known as 2-hydroxypropanoic acid, is a chemical compound that plays a significant role in various biological processes. In the context of medicine and biochemistry, lactic acid is primarily discussed in relation to muscle metabolism and cellular energy production. Here's a medical definition for lactic acid:

Lactic acid (LA): A carboxylic acid with the molecular formula C3H6O3 that plays a crucial role in anaerobic respiration, particularly during strenuous exercise or conditions of reduced oxygen availability. It is formed through the conversion of pyruvate, catalyzed by the enzyme lactate dehydrogenase (LDH), when there is insufficient oxygen to complete the final step of cellular respiration in the Krebs cycle. The accumulation of lactic acid can lead to acidosis and muscle fatigue. Additionally, lactic acid serves as a vital intermediary in various metabolic pathways and is involved in the production of glucose through gluconeogenesis in the liver.

A mutant protein is a protein that has undergone a genetic mutation, resulting in an altered amino acid sequence and potentially changed structure and function. These changes can occur due to various reasons such as errors during DNA replication, exposure to mutagenic substances, or inherited genetic disorders. The alterations in the protein's structure and function may have no significant effects, lead to benign phenotypic variations, or cause diseases, depending on the type and location of the mutation. Some well-known examples of diseases caused by mutant proteins include cystic fibrosis, sickle cell anemia, and certain types of cancer.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Primary hyperoxaluria is a rare genetic disorder characterized by overproduction of oxalate in the body due to mutations in specific enzymes involved in oxalate metabolism. There are three types of primary hyperoxaluria (PH1, PH2, and PH3), with PH1 being the most common and severe form.

In primary hyperoxaluria type 1 (PH1), there is a deficiency or dysfunction in the enzyme alanine-glyoxylate aminotransferase (AGT), which leads to an accumulation of glyoxylate. Glyoxylate is then converted to oxalate, resulting in increased oxalate production. Oxalate is a compound that naturally occurs in the body but is primarily excreted through the kidneys. When there is an overproduction of oxalate, it can lead to the formation of calcium oxalate crystals in various tissues, including the kidneys. This can cause recurrent kidney stones, nephrocalcinosis (calcium deposits in the kidneys), and eventually chronic kidney disease or end-stage renal failure.

Primary hyperoxaluria type 2 (PH2) is caused by a deficiency or dysfunction in the enzyme glyoxylate reductase/hydroxypyruvate reductase (GRHPR), leading to an accumulation of glyoxylate, which is subsequently converted to oxalate. PH2 has a milder clinical presentation compared to PH1.

Primary hyperoxaluria type 3 (PH3) is a rare form caused by mutations in the gene HOGA1, which encodes for 4-hydroxy-2-oxoglutarate aldolase. This enzyme deficiency results in an increase in glyoxylate and, subsequently, oxalate production.

Early diagnosis and management of primary hyperoxaluria are crucial to prevent or slow down the progression of kidney damage. Treatment options include increased fluid intake, medications to reduce stone formation (such as potassium citrate), and in some cases, liver-kidney transplantation.

Nitrogen isotopes are different forms of the nitrogen element (N), which have varying numbers of neutrons in their atomic nuclei. The most common nitrogen isotope is N-14, which contains 7 protons and 7 neutrons in its nucleus. However, there are also heavier stable isotopes such as N-15, which contains one extra neutron.

In medical terms, nitrogen isotopes can be used in research and diagnostic procedures to study various biological processes. For example, N-15 can be used in a technique called "nitrogen-15 nuclear magnetic resonance (NMR) spectroscopy" to investigate the metabolism of nitrogen-containing compounds in the body. Additionally, stable isotope labeling with nitrogen-15 has been used in clinical trials and research studies to track the fate of drugs and nutrients in the body.

In some cases, radioactive nitrogen isotopes such as N-13 or N-16 may also be used in medical imaging techniques like positron emission tomography (PET) scans to visualize and diagnose various diseases and conditions. However, these applications are less common than the use of stable nitrogen isotopes.

Fatty liver, also known as hepatic steatosis, is a medical condition characterized by the abnormal accumulation of fat in the liver. The liver's primary function is to process nutrients, filter blood, and fight infections, among other tasks. When excess fat builds up in the liver cells, it can impair liver function and lead to inflammation, scarring, and even liver failure if left untreated.

Fatty liver can be caused by various factors, including alcohol consumption, obesity, nonalcoholic fatty liver disease (NAFLD), viral hepatitis, and certain medications or medical conditions. NAFLD is the most common cause of fatty liver in the United States and other developed countries, affecting up to 25% of the population.

Symptoms of fatty liver may include fatigue, weakness, weight loss, loss of appetite, nausea, abdominal pain or discomfort, and jaundice (yellowing of the skin and eyes). However, many people with fatty liver do not experience any symptoms, making it essential to diagnose and manage the condition through regular check-ups and blood tests.

Treatment for fatty liver depends on the underlying cause. Lifestyle changes such as weight loss, exercise, and dietary modifications are often recommended for people with NAFLD or alcohol-related fatty liver disease. Medications may also be prescribed to manage related conditions such as diabetes, high cholesterol, or metabolic syndrome. In severe cases of liver damage, a liver transplant may be necessary.

Tryptophan is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C11H12N2O2. Tryptophan plays a crucial role in various biological processes as it serves as a precursor to several important molecules, including serotonin, melatonin, and niacin (vitamin B3). Serotonin is a neurotransmitter involved in mood regulation, appetite control, and sleep-wake cycles, while melatonin is a hormone that regulates sleep-wake patterns. Niacin is essential for energy production and DNA repair.

Foods rich in tryptophan include turkey, chicken, fish, eggs, cheese, milk, nuts, seeds, and whole grains. In some cases, tryptophan supplementation may be recommended to help manage conditions related to serotonin imbalances, such as depression or insomnia, but this should only be done under the guidance of a healthcare professional due to potential side effects and interactions with other medications.

Pyridoxal phosphate (PLP) is the active form of vitamin B6 and functions as a cofactor in various enzymatic reactions in the human body. It plays a crucial role in the metabolism of amino acids, carbohydrates, lipids, and neurotransmitters. Pyridoxal phosphate is involved in more than 140 different enzyme-catalyzed reactions, making it one of the most versatile cofactors in human biochemistry.

As a cofactor, pyridoxal phosphate helps enzymes carry out their functions by facilitating chemical transformations in substrates (the molecules on which enzymes act). In particular, PLP is essential for transamination, decarboxylation, racemization, and elimination reactions involving amino acids. These processes are vital for the synthesis and degradation of amino acids, neurotransmitters, hemoglobin, and other crucial molecules in the body.

Pyridoxal phosphate is formed from the conversion of pyridoxal (a form of vitamin B6) by the enzyme pyridoxal kinase, using ATP as a phosphate donor. The human body obtains vitamin B6 through dietary sources such as whole grains, legumes, vegetables, nuts, and animal products like poultry, fish, and pork. It is essential to maintain adequate levels of pyridoxal phosphate for optimal enzymatic function and overall health.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Bilirubin is a yellowish pigment that is produced by the liver when it breaks down old red blood cells. It is a normal byproduct of hemoglobin metabolism and is usually conjugated (made water-soluble) in the liver before being excreted through the bile into the digestive system. Elevated levels of bilirubin can cause jaundice, a yellowing of the skin and eyes. Increased bilirubin levels may indicate liver disease or other medical conditions such as gallstones or hemolysis. It is also measured to assess liver function and to help diagnose various liver disorders.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Carbon tetrachloride is a colorless, heavy, and nonflammable liquid with a mild ether-like odor. Its chemical formula is CCl4. It was previously used as a solvent and refrigerant, but its use has been largely phased out due to its toxicity and ozone-depleting properties.

Inhalation, ingestion, or skin contact with carbon tetrachloride can cause harmful health effects. Short-term exposure can lead to symptoms such as dizziness, headache, nausea, and vomiting. Long-term exposure has been linked to liver and kidney damage, as well as an increased risk of cancer.

Carbon tetrachloride is also a potent greenhouse gas and contributes to climate change. Its production and use are regulated by international agreements aimed at protecting human health and the environment.

Asparagine is an organic compound that is classified as a naturally occurring amino acid. It contains an amino group, a carboxylic acid group, and a side chain consisting of a single carbon atom bonded to a nitrogen atom, making it a neutral amino acid. Asparagine is encoded by the genetic codon AAU or AAC in the DNA sequence.

In the human body, asparagine plays important roles in various biological processes, including serving as a building block for proteins and participating in the synthesis of other amino acids. It can also act as a neurotransmitter and is involved in the regulation of cellular metabolism. Asparagine can be found in many foods, particularly in high-protein sources such as meat, fish, eggs, and dairy products.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Chronic Hepatitis B is a persistent infection of the liver caused by the hepatitis B virus (HBV), which can lead to chronic inflammation and scarring of the liver over time. It is defined as the presence of hepatitis B surface antigen (HBsAg) in the blood for more than six months.

The infection can be asymptomatic or may cause nonspecific symptoms such as fatigue, loss of appetite, nausea, and joint pain. A small percentage of people with chronic HBV infection may develop serious complications, including cirrhosis, liver failure, and liver cancer. Treatment options for chronic hepatitis B include antiviral medications that can help to suppress the virus and reduce the risk of liver damage. Vaccination is available to prevent hepatitis B infection.

Galactosamine is not a medical condition but a chemical compound. Medically, it might be referred to in the context of certain medical tests or treatments. Here's the scientific definition:

Galactosamine is an amino sugar, a type of monosaccharide (simple sugar) that contains a functional amino group (-NH2) as well as a hydroxyl group (-OH). More specifically, galactosamine is a derivative of galactose, with the chemical formula C6H13NO5. It is an important component of many glycosaminoglycans (GAGs), which are complex carbohydrates found in animal tissues, particularly in connective tissue and cartilage.

In some medical applications, galactosamine has been used as a building block for the synthesis of GAG analogs or as a component of substrates for enzyme assays. It is also used in research to study various biological processes, such as cell growth and differentiation.

Urea is not a medical condition but it is a medically relevant substance. Here's the definition:

Urea is a colorless, odorless solid that is the primary nitrogen-containing compound in the urine of mammals. It is a normal metabolic end product that is excreted by the kidneys and is also used as a fertilizer and in various industrial applications. Chemically, urea is a carbamide, consisting of two amino groups (NH2) joined by a carbon atom and having a hydrogen atom and a hydroxyl group (OH) attached to the carbon atom. Urea is produced in the liver as an end product of protein metabolism and is then eliminated from the body by the kidneys through urination. Abnormal levels of urea in the blood, known as uremia, can indicate impaired kidney function or other medical conditions.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

A missense mutation is a type of point mutation in which a single nucleotide change results in the substitution of a different amino acid in the protein that is encoded by the affected gene. This occurs when the altered codon (a sequence of three nucleotides that corresponds to a specific amino acid) specifies a different amino acid than the original one. The function and/or stability of the resulting protein may be affected, depending on the type and location of the missense mutation. Missense mutations can have various effects, ranging from benign to severe, depending on the importance of the changed amino acid for the protein's structure or function.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

Enzyme stability refers to the ability of an enzyme to maintain its structure and function under various environmental conditions, such as temperature, pH, and the presence of denaturants or inhibitors. A stable enzyme retains its activity and conformation over time and across a range of conditions, making it more suitable for industrial and therapeutic applications.

Enzymes can be stabilized through various methods, including chemical modification, immobilization, and protein engineering. Understanding the factors that affect enzyme stability is crucial for optimizing their use in biotechnology, medicine, and research.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Acetaminophen is a medication used to relieve pain and reduce fever. It is a commonly used over-the-counter drug and is also available in prescription-strength formulations. Acetaminophen works by inhibiting the production of prostaglandins, chemicals in the body that cause inflammation and trigger pain signals.

Acetaminophen is available in many different forms, including tablets, capsules, liquids, and suppositories. It is often found in combination with other medications, such as cough and cold products, sleep aids, and opioid pain relievers.

While acetaminophen is generally considered safe when used as directed, it can cause serious liver damage or even death if taken in excessive amounts. It is important to follow the dosing instructions carefully and avoid taking more than the recommended dose, especially if you are also taking other medications that contain acetaminophen.

If you have any questions about using acetaminophen or are concerned about potential side effects, it is always best to consult with a healthcare professional.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

Amino acid oxidoreductases are a class of enzymes that catalyze the reversible oxidation and reduction reactions involving amino acids. They play a crucial role in the metabolism of amino acids by catalyzing the interconversion of L-amino acids to their corresponding α-keto acids, while simultaneously reducing a cofactor such as NAD(P)+ or FAD.

The reaction catalyzed by these enzymes can be represented as follows:

L-amino acid + H2O + Coenzyme (Oxidized) → α-keto acid + NH3 + Coenzyme (Reduced)

Amino acid oxidoreductases are classified into two main types based on their cofactor requirements and reaction mechanisms. The first type uses FAD as a cofactor and is called amino acid flavoprotein oxidoreductases. These enzymes typically catalyze the oxidative deamination of L-amino acids to form α-keto acids, ammonia, and reduced FAD. The second type uses pyridine nucleotides (NAD(P)+) as cofactors and is called amino acid pyridine nucleotide-dependent oxidoreductases. These enzymes catalyze the reversible interconversion of L-amino acids to their corresponding α-keto acids, while simultaneously reducing or oxidizing NAD(P)H/NAD(P)+.

Amino acid oxidoreductases are widely distributed in nature and play important roles in various biological processes, including amino acid catabolism, nitrogen metabolism, and the biosynthesis of various secondary metabolites. Dysregulation of these enzymes has been implicated in several diseases, including neurodegenerative disorders and cancer. Therefore, understanding the structure, function, and regulation of amino acid oxidoreductases is crucial for developing novel therapeutic strategies to treat these diseases.

'Cercopithecus aethiops' is the scientific name for the monkey species more commonly known as the green monkey. It belongs to the family Cercopithecidae and is native to western Africa. The green monkey is omnivorous, with a diet that includes fruits, nuts, seeds, insects, and small vertebrates. They are known for their distinctive greenish-brown fur and long tail. Green monkeys are also important animal models in biomedical research due to their susceptibility to certain diseases, such as SIV (simian immunodeficiency virus), which is closely related to HIV.

D-Alanine transaminase (DAT or Dalat) is an enzyme that catalyzes the reversible transfer of an amino group from D-alanine to α-ketoglutarate, producing pyruvate and D-glutamate. It is found in various bacteria and plays a role in their metabolism. However, it is not typically considered a medically significant enzyme in humans, as it is not commonly used as a clinical marker of liver or other organ function.

Liver cirrhosis is a chronic, progressive disease characterized by the replacement of normal liver tissue with scarred (fibrotic) tissue, leading to loss of function. The scarring is caused by long-term damage from various sources such as hepatitis, alcohol abuse, nonalcoholic fatty liver disease, and other causes. As the disease advances, it can lead to complications like portal hypertension, fluid accumulation in the abdomen (ascites), impaired brain function (hepatic encephalopathy), and increased risk of liver cancer. It is generally irreversible, but early detection and treatment of underlying causes may help slow down its progression.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

Starvation is a severe form of malnutrition, characterized by insufficient intake of calories and nutrients to meet the body's energy requirements. This leads to a catabolic state where the body begins to break down its own tissues for energy, resulting in significant weight loss, muscle wasting, and weakness. Prolonged starvation can also lead to serious medical complications such as organ failure, electrolyte imbalances, and even death. It is typically caused by a lack of access to food due to poverty, famine, or other social or economic factors, but can also be a result of severe eating disorders such as anorexia nervosa.

CHO cells, or Chinese Hamster Ovary cells, are a type of immortalized cell line that are commonly used in scientific research and biotechnology. They were originally derived from the ovaries of a female Chinese hamster (Cricetulus griseus) in the 1950s.

CHO cells have several characteristics that make them useful for laboratory experiments. They can grow and divide indefinitely under appropriate conditions, which allows researchers to culture large quantities of them for study. Additionally, CHO cells are capable of expressing high levels of recombinant proteins, making them a popular choice for the production of therapeutic drugs, vaccines, and other biologics.

In particular, CHO cells have become a workhorse in the field of biotherapeutics, with many approved monoclonal antibody-based therapies being produced using these cells. The ability to genetically modify CHO cells through various methods has further expanded their utility in research and industrial applications.

It is important to note that while CHO cells are widely used in scientific research, they may not always accurately represent human cell behavior or respond to drugs and other compounds in the same way as human cells do. Therefore, results obtained using CHO cells should be validated in more relevant systems when possible.

Tyrosine is an non-essential amino acid, which means that it can be synthesized by the human body from another amino acid called phenylalanine. Its name is derived from the Greek word "tyros," which means cheese, as it was first isolated from casein, a protein found in cheese.

Tyrosine plays a crucial role in the production of several important substances in the body, including neurotransmitters such as dopamine, norepinephrine, and epinephrine, which are involved in various physiological processes, including mood regulation, stress response, and cognitive functions. It also serves as a precursor to melanin, the pigment responsible for skin, hair, and eye color.

In addition, tyrosine is involved in the structure of proteins and is essential for normal growth and development. Some individuals may require tyrosine supplementation if they have a genetic disorder that affects tyrosine metabolism or if they are phenylketonurics (PKU), who cannot metabolize phenylalanine, which can lead to elevated tyrosine levels in the blood. However, it is important to consult with a healthcare professional before starting any supplementation regimen.

DNA Mutational Analysis is a laboratory test used to identify genetic variations or changes (mutations) in the DNA sequence of a gene. This type of analysis can be used to diagnose genetic disorders, predict the risk of developing certain diseases, determine the most effective treatment for cancer, or assess the likelihood of passing on an inherited condition to offspring.

The test involves extracting DNA from a patient's sample (such as blood, saliva, or tissue), amplifying specific regions of interest using polymerase chain reaction (PCR), and then sequencing those regions to determine the precise order of nucleotide bases in the DNA molecule. The resulting sequence is then compared to reference sequences to identify any variations or mutations that may be present.

DNA Mutational Analysis can detect a wide range of genetic changes, including single-nucleotide polymorphisms (SNPs), insertions, deletions, duplications, and rearrangements. The test is often used in conjunction with other diagnostic tests and clinical evaluations to provide a comprehensive assessment of a patient's genetic profile.

It is important to note that not all mutations are pathogenic or associated with disease, and the interpretation of DNA Mutational Analysis results requires careful consideration of the patient's medical history, family history, and other relevant factors.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

Alpha-ketoglutaric acid, also known as 2-oxoglutarate, is not an acid in the traditional sense but is instead a key molecule in the Krebs cycle (citric acid cycle), which is a central metabolic pathway involved in cellular respiration. Alpha-ketoglutaric acid is a crucial intermediate in the process of converting carbohydrates, fats, and proteins into energy through oxidation. It plays a vital role in amino acid synthesis and the breakdown of certain amino acids. Additionally, it serves as an essential cofactor for various enzymes involved in numerous biochemical reactions within the body. Any medical conditions or disorders related to alpha-ketoglutaric acid would typically be linked to metabolic dysfunctions or genetic defects affecting the Krebs cycle.

Methionine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. It plays a crucial role in various biological processes, including:

1. Protein synthesis: Methionine is one of the building blocks of proteins, helping to create new proteins and maintain the structure and function of cells.
2. Methylation: Methionine serves as a methyl group donor in various biochemical reactions, which are essential for DNA synthesis, gene regulation, and neurotransmitter production.
3. Antioxidant defense: Methionine can be converted to cysteine, which is involved in the formation of glutathione, a potent antioxidant that helps protect cells from oxidative damage.
4. Homocysteine metabolism: Methionine is involved in the conversion of homocysteine back to methionine through a process called remethylation, which is essential for maintaining normal homocysteine levels and preventing cardiovascular disease.
5. Fat metabolism: Methionine helps facilitate the breakdown and metabolism of fats in the body.

Foods rich in methionine include meat, fish, dairy products, eggs, and some nuts and seeds.

Glyoxylates are organic compounds that are intermediates in various metabolic pathways, including the glyoxylate cycle. The glyoxylate cycle is a modified version of the Krebs cycle (also known as the citric acid cycle) and is found in plants, bacteria, and some fungi.

Glyoxylates are formed from the breakdown of certain amino acids or from the oxidation of one-carbon units. They can be converted into glycine, an important amino acid involved in various metabolic processes. In the glyoxylate cycle, glyoxylates are combined with acetyl-CoA to form malate and succinate, which can then be used to synthesize glucose or other organic compounds.

Abnormal accumulation of glyoxylates in the body can lead to the formation of calcium oxalate crystals, which can cause kidney stones and other health problems. Certain genetic disorders, such as primary hyperoxaluria, can result in overproduction of glyoxylates and increased risk of kidney stone formation.

Neutral amino acid transport systems refer to a group of membrane transporters that facilitate the movement of neutral amino acids across cell membranes. Neutral amino acids are those that have a neutral charge at physiological pH and include amino acids such as alanine, serine, threonine, valine, leucine, isoleucine, methionine, cysteine, tyrosine, phenylalanine, and tryptophan.

There are several different transport systems that have been identified for neutral amino acids, each with its own specificity and affinity for different amino acids. Some of the major neutral amino acid transport systems include:

1. System A: This transporter preferentially transports small, neutral amino acids such as alanine, serine, and threonine. It is found in many tissues, including the intestines, kidneys, and brain.
2. System B0+: This transporter preferentially transports large, neutral amino acids such as leucine, isoleucine, valine, methionine, and phenylalanine. It is found in many tissues, including the intestines, kidneys, and brain.
3. System L: This transporter preferentially transports large, neutral amino acids such as leucine, isoleucine, valine, methionine, and phenylalanine. It is found in many tissues, including the intestines, kidneys, and brain.
4. System y+: This transporter preferentially transports cationic amino acids such as lysine and arginine, but it can also transport some neutral amino acids. It is found in many tissues, including the intestines, kidneys, and brain.
5. System b0,+: This transporter preferentially transports cationic amino acids such as lysine and arginine, but it can also transport some neutral amino acids. It is found in many tissues, including the intestines, kidneys, and brain.

These transport systems play important roles in maintaining amino acid homeostasis in the body, as well as in various physiological processes such as protein synthesis, neurotransmitter synthesis, and cell signaling. Dysregulation of these transport systems has been implicated in several diseases, including cancer, neurological disorders, and metabolic disorders.

Alkaline phosphatase (ALP) is an enzyme found in various body tissues, including the liver, bile ducts, digestive system, bones, and kidneys. It plays a role in breaking down proteins and minerals, such as phosphate, in the body.

The medical definition of alkaline phosphatase refers to its function as a hydrolase enzyme that removes phosphate groups from molecules at an alkaline pH level. In clinical settings, ALP is often measured through blood tests as a biomarker for various health conditions.

Elevated levels of ALP in the blood may indicate liver or bone diseases, such as hepatitis, cirrhosis, bone fractures, or cancer. Therefore, physicians may order an alkaline phosphatase test to help diagnose and monitor these conditions. However, it is essential to interpret ALP results in conjunction with other diagnostic tests and clinical findings for accurate diagnosis and treatment.

A dipeptide is a type of molecule that is formed by the condensation of two amino acids. In this process, the carboxyl group (-COOH) of one amino acid combines with the amino group (-NH2) of another amino acid, releasing a water molecule and forming a peptide bond.

The resulting molecule contains two amino acids joined together by a single peptide bond, which is a type of covalent bond that forms between the carboxyl group of one amino acid and the amino group of another. Dipeptides are relatively simple molecules compared to larger polypeptides or proteins, which can contain hundreds or even thousands of amino acids linked together by multiple peptide bonds.

Dipeptides have a variety of biological functions in the body, including serving as building blocks for larger proteins and playing important roles in various physiological processes. Some dipeptides also have potential therapeutic uses, such as in the treatment of hypertension or muscle wasting disorders.

Hydroxybutyrates are compounds that contain a hydroxyl group (-OH) and a butyric acid group. More specifically, in the context of clinical medicine and biochemistry, β-hydroxybutyrate (BHB) is often referred to as a "ketone body."

Ketone bodies are produced by the liver during periods of low carbohydrate availability, such as during fasting, starvation, or a high-fat, low-carbohydrate diet. BHB is one of three major ketone bodies, along with acetoacetate and acetone. These molecules serve as alternative energy sources for the brain and other tissues when glucose levels are low.

In some pathological states, such as diabetic ketoacidosis, the body produces excessive amounts of ketone bodies, leading to a life-threatening metabolic acidosis. Elevated levels of BHB can also be found in other conditions like alcoholism, severe illnesses, and high-fat diets.

It is important to note that while BHB is a hydroxybutyrate, not all hydroxybutyrates are ketone bodies. The term "hydroxybutyrates" can refer to any compound containing both a hydroxyl group (-OH) and a butyric acid group.

Hepatitis B e antigen (HBeAg) is a protein produced by the hepatitis B virus (HBV) during its replication process. It can be found in the blood of individuals infected with HBV. The presence of HBeAg generally indicates that the virus is actively replicating in the liver and that the individual has high levels of viral load.

HBeAg is a serological marker used to assess the severity and activity of HBV infection, as well as the response to antiviral treatment. In particular, the disappearance of HBeAg from the blood (known as seroconversion) is often associated with a decrease in viral replication and an improvement in liver disease. However, the presence of HBeAg does not necessarily mean that the individual will develop symptoms or liver damage, as some people can remain asymptomatic carriers of the virus for many years.

It's important to note that not all HBV strains produce HBeAg, and some mutant strains may not produce detectable levels of this antigen even when the virus is actively replicating. Therefore, additional tests may be needed to confirm the presence or absence of HBV infection in these cases.

I'm sorry for any confusion, but "thermodynamics" is not a term that has a specific medical definition. It is a branch of physics that deals with the relationships between heat and other forms of energy. However, the principles of thermodynamics can be applied to biological systems, including those in the human body, such as in the study of metabolism or muscle function. But in a medical context, "thermodynamics" would not be a term used independently as a diagnosis, treatment, or any medical condition.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

L-Lactate Dehydrogenase (LDH) is an enzyme found in various tissues within the body, including the heart, liver, kidneys, muscles, and brain. It plays a crucial role in the process of energy production, particularly during anaerobic conditions when oxygen levels are low.

In the presence of the coenzyme NADH, LDH catalyzes the conversion of pyruvate to lactate, generating NAD+ as a byproduct. Conversely, in the presence of NAD+, LDH can convert lactate back to pyruvate using NADH. This reversible reaction is essential for maintaining the balance between lactate and pyruvate levels within cells.

Elevated blood levels of LDH may indicate tissue damage or injury, as this enzyme can be released into the circulation following cellular breakdown. As a result, LDH is often used as a nonspecific biomarker for various medical conditions, such as myocardial infarction (heart attack), liver disease, muscle damage, and certain types of cancer. However, it's important to note that an isolated increase in LDH does not necessarily pinpoint the exact location or cause of tissue damage, and further diagnostic tests are usually required for confirmation.

Oligopeptides are defined in medicine and biochemistry as short chains of amino acids, typically containing fewer than 20 amino acid residues. These small peptides are important components in various biological processes, such as serving as signaling molecules, enzyme inhibitors, or structural elements in some proteins. They can be found naturally in foods and may also be synthesized for use in medical research and therapeutic applications.

Ketone bodies, also known as ketones or ketoacids, are organic compounds that are produced by the liver during the metabolism of fats when carbohydrate intake is low. They include acetoacetate (AcAc), beta-hydroxybutyrate (BHB), and acetone. These molecules serve as an alternative energy source for the body, particularly for the brain and heart, when glucose levels are insufficient to meet energy demands.

In a healthy individual, ketone bodies are present in low concentrations; however, during periods of fasting, starvation, or intense physical exertion, ketone production increases significantly. In some pathological conditions like uncontrolled diabetes mellitus, the body may produce excessive amounts of ketones, leading to a dangerous metabolic state called diabetic ketoacidosis (DKA).

Elevated levels of ketone bodies can be detected in blood or urine and are often used as an indicator of metabolic status. Monitoring ketone levels is essential for managing certain medical conditions, such as diabetes, where maintaining optimal ketone concentrations is crucial to prevent complications.

Aminopeptidases are a group of enzymes that catalyze the removal of amino acids from the N-terminus of polypeptides and proteins. They play important roles in various biological processes, including protein degradation, processing, and activation. Aminopeptidases are classified based on their specificity for different types of amino acids and the mechanism of their action. Some of the well-known aminopeptidases include leucine aminopeptidase, alanyl aminopeptidase, and arginine aminopeptidase. They are widely distributed in nature and found in various tissues and organisms, including bacteria, plants, and animals. In humans, aminopeptidases are involved in several physiological functions, such as digestion, immune response, and blood pressure regulation.

Chronic Hepatitis C is a liver infection caused by the hepatitis C virus (HCV) that lasts for more than six months. This long-term infection can lead to scarring of the liver (cirrhosis), which can cause serious health problems, such as liver failure or liver cancer, in some individuals. The infection is usually asymptomatic until complications arise, but it can be detected through blood tests that identify antibodies to the virus or viral RNA. Chronic hepatitis C is typically managed with antiviral therapy, which can help clear the virus from the body and reduce the risk of liver damage.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Branched-chain amino acids (BCAAs) are a group of three essential amino acids: leucine, isoleucine, and valine. They are called "branched-chain" because of their chemical structure, which has a side chain that branches off from the main part of the molecule.

BCAAs are essential because they cannot be produced by the human body and must be obtained through diet or supplementation. They are crucial for muscle growth and repair, and play a role in energy production during exercise. BCAAs are also important for maintaining proper immune function and can help to reduce muscle soreness and fatigue after exercise.

Foods that are good sources of BCAAs include meat, poultry, fish, eggs, dairy products, and legumes. BCAAs are also available as dietary supplements, which are often used by athletes and bodybuilders to enhance muscle growth and recovery. However, it is important to note that excessive intake of BCAAs may have adverse effects on liver function and insulin sensitivity, so it is recommended to consult with a healthcare provider before starting any new supplement regimen.

Hepatitis C is a liver infection caused by the hepatitis C virus (HCV). It's primarily spread through contact with contaminated blood, often through sharing needles or other equipment to inject drugs. For some people, hepatitis C is a short-term illness but for most — about 75-85% — it becomes a long-term, chronic infection that can lead to serious health problems like liver damage, liver failure, and even liver cancer. The virus can infect and inflame the liver, causing symptoms like jaundice (yellowing of the skin and eyes), abdominal pain, fatigue, and dark urine. Many people with hepatitis C don't have any symptoms, so they might not know they have the infection until they experience complications. There are effective treatments available for hepatitis C, including antiviral medications that can cure the infection in most people. Regular testing is important to diagnose and treat hepatitis C early, before it causes serious health problems.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Clinical enzyme tests are laboratory tests that measure the amount or activity of certain enzymes in biological samples, such as blood or bodily fluids. These tests are used to help diagnose and monitor various medical conditions, including organ damage, infection, inflammation, and genetic disorders.

Enzymes are proteins that catalyze chemical reactions in the body. Some enzymes are found primarily within specific organs or tissues, so elevated levels of these enzymes in the blood can indicate damage to those organs or tissues. For example, high levels of creatine kinase (CK) may suggest muscle damage, while increased levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) can indicate liver damage.

There are several types of clinical enzyme tests, including:

1. Serum enzyme tests: These measure the level of enzymes in the blood serum, which is the liquid portion of the blood after clotting. Examples include CK, AST, ALT, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH).
2. Urine enzyme tests: These measure the level of enzymes in the urine. An example is N-acetyl-β-D-glucosaminidase (NAG), which can indicate kidney damage.
3. Enzyme immunoassays (EIAs): These use antibodies to detect and quantify specific enzymes or proteins in a sample. They are often used for the diagnosis of infectious diseases, such as HIV or hepatitis.
4. Genetic enzyme tests: These can identify genetic mutations that cause deficiencies in specific enzymes, leading to inherited metabolic disorders like phenylketonuria (PKU) or Gaucher's disease.

It is important to note that the interpretation of clinical enzyme test results should be done by a healthcare professional, taking into account the patient's medical history, symptoms, and other diagnostic tests.

Glutamate Dehydrogenase (GLDH or GDH) is a mitochondrial enzyme that plays a crucial role in the metabolism of amino acids, particularly within liver and kidney tissues. It catalyzes the reversible oxidative deamination of glutamate to alpha-ketoglutarate, which links amino acid metabolism with the citric acid cycle and energy production. This enzyme is significant in clinical settings as its levels in blood serum can be used as a diagnostic marker for diseases that damage liver or kidney cells, since these cells release GLDH into the bloodstream upon damage.

Fermentation routes to L-alanine are complicated by alanine racemase. Racemic alanine can be prepared by the condensation of ... is so-called alanine scanning, where every position in turn is mutated to alanine. Hydrogenation of alanine gives the amino ... forming alanine and α-ketoglutarate. The alanine enters the bloodstream, and is transported to the liver. The alanine ... Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine ...
L-alanine dehydrogenase, NAD+-linked alanine dehydrogenase, alpha-alanine dehydrogenase, NAD+-dependent alanine dehydrogenase, ... alanine oxidoreductase, and NADH-dependent alanine dehydrogenase. T Alanine dehydrogenase contains both a N-terminus and C- ... Alanine dehydrogenase (EC 1.4.1.1) is an enzyme that catalyzes the chemical reaction L-alanine + H2O + NAD+ ⇌ {\displaystyle \ ... The systematic name of this enzyme class is L-alanine:NAD+ oxidoreductase (deaminating). Other names in common use include ...
... (ALT) is a transaminase enzyme (EC 2.6.1.2). It is also called alanine aminotransferase (ALT or ALAT) and ... Alanine+transaminase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) ALT: analyte monograph; The ... It catalyzes the two parts of the alanine cycle. Serum ALT level, serum AST (aspartate transaminase) level, and their ratio ( ... ALT catalyzes the transfer of an amino group from L-alanine to α-ketoglutarate, the products of this reversible transamination ...
... α-alanine). The IUPAC name for β-alanine is 3-aminopropanoic acid. Unlike its counterpart α-alanine, β-alanine has no ... histidine and β-alanine. Hence, by weight, only about 40% of the dose is available as β-alanine. Because β-alanine dipeptides ... β-alanine > taurine ≫ alanine, L-serine > proline). β-alanine has five known receptor sites, including GABA-A, GABA-C a co- ... β-Alanine (or beta-alanine) is a naturally occurring beta amino acid, which is an amino acid in which the amino group is ...
Watanabe Y, Iwaki-Egawa S, Mizukoshi H, Fujimoto Y (July 1995). "Identification of an alanine aminopeptidase in human maternal ...
This enzyme is also called L-alanine racemase. This enzyme participates in alanine and aspartate metabolism and D-alanine ... D-alanine Hence, this enzyme has one substrate, L-alanine, and one product, D-alanine. This enzyme belongs to the family of ... The D-alanine produced by alanine racemase is used for peptidoglycan biosynthesis. Peptidoglycan is found in the cell walls of ... Alanine racemase can be found in some invertebrates. Bacteria can have one (alr gene) or two alanine racemase genes. Bacterial ...
This is predicted by the Alanine-World model. Morrison KL, Weiss GA (June 2001). "Combinatorial alanine-scanning". Curr Opin ... and 3 in domain II with alanine. A bioassay Culex pipiens was followed to test the activities. The alanine scanning method ... In addition, alanine scanning is also used to determine which functional motif of Cry4Aa has the mosquitocidal activity. Cry4Aa ... In molecular biology, alanine scanning is a site-directed mutagenesis technique used to determine the contribution of a ...
... (EC 3.4.17.6, N-benzoyl-L-alanine-amidohydrolase) is an enzyme. This enzyme catalyses the following ... Alanine+carboxypeptidase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (EC 3.4.17). ... 3. An enzyme specific for N-acyl linkages to alanine". The Journal of Biological Chemistry. 244 (16): 4467-72. PMID 5806587. ... Miyagawa, E.; Takahiro, H.; Yoshinobu, M. (1986). "Purification and properties of N-benzoyl-L-alanine amidohydrolase from ...
... alanine-transfer RNA ligase, alanine transfer RNA synthetase, alanine tRNA synthetase, alanine translase, alanyl-transfer ... In enzymology, an alanine-tRNA ligase (EC 6.1.1.7) is an enzyme that catalyzes the chemical reaction ATP + L-alanine + tRNAAla ... The systematic name of this enzyme class is L-alanine:tRNAAla ligase (AMP-forming). Other names in common use include alanyl- ... Webster GC (1961). "Isolation of an alanine-activating enzyme from pig liver". Biochim. Biophys. Acta. 49: 141-152. doi:10.1016 ...
a 206-418-1 EINECS for D-alanine ^a 200-273-8 EINECS for L-alanine ^a CID 602 from PubChem ^a CID 5950 from PubChem (Articles ...
... may refer to: Alanine transaminase, an enzyme 4-aminobutyrate transaminase, an enzyme This set ...
Other names in common use include alanine-oxomalonate aminotransferase, L-alanine-ketomalonate transaminase, and alanine- ... In enzymology, an alanine-oxomalonate transaminase (EC 2.6.1.47) is an enzyme that catalyzes the chemical reaction L-alanine + ... The systematic name of this enzyme class is L-alanine:oxomalonate aminotransferase. ... the two substrates of this enzyme are L-alanine and oxomalonate, whereas its two products are pyruvate and aminomalonate. This ...
Other names in common use include AGT, alanine-glyoxylate aminotransferase, alanine-glyoxylic aminotransferase, and L-alanine- ... In enzymology, an alanine-glyoxylate transaminase (EC 2.6.1.44) is an enzyme that catalyzes the chemical reaction L-alanine + ... Noguchi T, Okuno E, Takada Y, Minatogawa Y, Okai K, Kido R (1978). "Characteristics of hepatic alanine-glyoxylate ... This enzyme participates in alanine and aspartate metabolism and glycine, serine and threonine metabolism. It employs one ...
Other names in common use include beta-alanine-pyruvate aminotransferase, and beta-alanine-alpha-alanine transaminase. This ... In enzymology, a beta-alanine-pyruvate transaminase (EC 2.6.1.18) is an enzyme that catalyzes the chemical reaction L-alanine ... the two substrates of this enzyme are L-alanine and 3-oxopropanoate, whereas its two products are pyruvate and beta-alanine. ... HAYAISHI O, NISHIZUKA Y, TATIBANA M, TAKESHITA M, KUNO S (1961). "Enzymatic studies on the metabolism of beta-alanine". J. Biol ...
... beta-alanine ligase (AMP-forming). This enzyme participates in beta-alanine metabolism and pantothenate and CoA biosynthesis. ... In enzymology, a pantoate-β-alanine ligase (EC 6.3.2.1) is an enzyme that catalyzes the chemical reaction ATP + (R)-pantoate + ... Maas WK (1956). "Mechanism of the enzymatic synthesis of pantothenate from beta-alanine and pantoate". Fed. Proc. 15: 305-306. ... and beta-alanine, whereas its 3 products are AMP, diphosphate, and (R)-pantothenate. This enzyme belongs to the family of ...
In enzymology, a D-alanine 2-hydroxymethyltransferase (EC 2.1.2.7) is an enzyme that catalyzes the chemical reaction 5,10- ... The systematic name of this enzyme class is 5,10-methylenetetrahydrofolate:D-alanine 2-hydroxymethyltransferase. This enzyme is ... D-alanine, and H2O, whereas its two products are tetrahydrofolate and 2-methylserine. This enzyme belongs to the family of ... methylenetetrahydrofolate + D-alanine + H2O ⇌ {\displaystyle \rightleftharpoons } tetrahydrofolate + 2-methylserine The 3 ...
... is the ethyl ester of the non-essential amino acid β-alanine. It would be expected to hydrolyse within ... Part I. Glycine ethyl ester, β-alanine ethyl ester, acetylcholine, and methylbetaine methyl ester". Journal of the Chemical ... the body to form β-alanine. Kodaira, Toshiyuki; Miyake, Hideo; Hayashi, Koichiro; Okamura, Seizo (1965). "The Synthesis and ...
D-alanine ⇌ {\displaystyle \rightleftharpoons } NH3 + gamma-L-glutamyl-D-alanine Thus, the two substrates of this enzyme are L- ... glutamine and D-alanine, whereas its two products are NH3 and gamma-L-glutamyl-D-alanine. This enzyme belongs to the family of ... The systematic name of this enzyme class is L-glutamine:D-alanine gamma-glutamyltransferase. Kawasaki Y, Ogawa T, Sasaoka K ( ... In enzymology, a D-alanine gamma-glutamyltransferase (EC 2.3.2.14) is an enzyme that catalyzes the chemical reaction L- ...
Weiss JH, Koh J, Choi D (1989). "Neurotoxicity of β -N-methylamino-L-alanine (BMAA) and β-N-oxalylamino-L-alanine (BOAA) on ... β-Methylamino-L-alanine, or BMAA, is a non-proteinogenic amino acid produced by cyanobacteria. BMAA is a neurotoxin. Its ... BMAA is a derivative of the amino acid alanine with a methylamino group on the side chain. This non-proteinogenic amino acid is ... Murch SJ, Cox PA, Banack SA, Steele JC, Sacks OW (2004). "Occurrence of b-methylamino-L-alanine (BMAA) in ALS/PDC patients from ...
Other names in common use include L-alanine-alpha-keto acid aminotransferase, leucine-alanine transaminase, alanine-keto acid ... In enzymology, an alanine-oxo-acid transaminase (EC 2.6.1.12) is an enzyme that catalyzes the chemical reaction L-alanine + a 2 ... Sallach HJ (1956). "Formation of serine from hydroxypyruvate and L-alanine" (PDF). J. Biol. Chem. 223 (2): 1101-1108. Wilson DG ... This enzyme participates in alanine and aspartate metabolism. It employs one cofactor, pyridoxal phosphate. ALTENBERN RA, ...
... ribosomal-protein L-alanine ⇌ {\displaystyle \rightleftharpoons } CoA + ribosomal-protein N-acetyl-L-alanine Thus, the two ... The systematic name of this enzyme class is acetyl-CoA:ribosomal-protein-L-alanine N-acetyltransferase. This enzyme is also ... In enzymology, a ribosomal-protein-alanine N-acetyltransferase (EC 2.3.1.128) is an enzyme that catalyzes the chemical reaction ... whereas its two products are CoA and ribosomal-protein N-acetyl-L-alanine. This enzyme belongs to the family of transferases, ...
The enzyme 3-chloro-D-alanine dehydrochlorinase (EC 4.5.1.2) catalyzes the reaction 3-chloro-D-alanine + H2O = pyruvate + ... "Synthesis of D-cysteine from 3-chloro-D-alanine and hydrogen sulfide by 3-chloro-D-alanine hydrogen chloride-lyase (deaminating ... Other names in common use include β-chloro-D-alanine dehydrochlorinase, and 3-chloro-D-alanine chloride-lyase (deaminating). It ... The systematic name of this enzyme class is 3-chloro-D-alanine chloride-lyase (deaminating; pyruvate-forming). ...
... (EC 6.1.2.1, VanA, VanB, VanD) is an enzyme with systematic name D-alanine:(R)-lactate ligase (ADP ... D-alanine---(R)-lactate+ligase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology v t e ( ... This enzyme catalyses the following chemical reaction D-alanine + (R)-lactate + ATP ⇌ {\displaystyle \rightleftharpoons } D- ... The product of this enzyme can be incorporated into the peptidoglycan pentapeptide instead of the usual D-alanyl-D-alanine ...
... (EC 6.3.2.35, VanC, VanE, VanG) is an enzyme with systematic name D-alanine:D-serine ligase (ADP- ... "Sequence of the vanC gene of Enterococcus gallinarum BM4174 encoding a D-alanine:D-alanine ligase-related protein necessary for ... D-alanine-D-serine+ligase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology v t e ( ... can be incorporated into the peptidoglycan pentapeptide instead of the usual D-alanyl-D-alanine dipeptide. Dutka-Malen S, ...
The systematic name of this enzyme class is N-acetyl-beta-alanine amidohydrolase. This enzyme participates in beta-alanine ... beta-alanine Thus, the two substrates of this enzyme are N-acetyl-beta-alanine and H2O, whereas its two products are acetate ... In enzymology, a N-acetyl-beta-alanine deacetylase (EC 3.5.1.21) is an enzyme that catalyzes the chemical reaction N-acetyl- ... Fujimoto D, Koyama T, Tamiya N (1968). "N-Acetyl-beta-alanine deacetylase in hog kidney". Biochim. Biophys. Acta. 167: 407-413 ...
N-acylmuramyl-L-alanine amidase, acetylmuramoyl-alanine amidase, N-acetylmuramic acid L-alanine amidase, acetylmuramyl-alanine ... Other names in common use include acetylmuramyl-L-alanine amidase, N-acetylmuramyl-L-alanine amidase, ... In enzymology, a N-acetylmuramoyl-L-alanine amidase (EC 3.5.1.28) is an enzyme that catalyzes a chemical reaction that cleaves ... Herbold DR, Glaser L (1975). "Interaction of N-acetylmuramic acid L-alanine amidase with cell wall polymers". J. Biol. Chem. ...
In enzymology, a D-alanine-D-alanine ligase (EC 6.3.2.4) is an enzyme that catalyzes the chemical reaction ATP + 2 D-alanine ... D-alanine ligase (ADP-forming). Other names in common use include alanine:alanine ligase (ADP-forming), and alanylalanine ... The N-terminal region of the D-alanine-D-alanine ligase is thought to be involved in substrate binding, while the C-terminus is ... the two substrates of this enzyme are ATP and D-alanine, whereas its 3 products are ADP, phosphate, and D-alanyl-D-alanine. ...
... may refer to: Beta-pyrazolylalanine synthase, an enzyme Pyrazolylalanine synthase, an enzyme ...
4-phosphopantoate-beta-alanine+ligase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology ... 4-Phosphopantoate-β-alanine ligase (EC 6.3.2.36, phosphopantothenate synthetase, TK1686 protein) is an enzyme with systematic ... β-alanine ⇌ {\displaystyle \rightleftharpoons } AMP + diphosphate + (R)-4'-phosphopantothenate The conversion of (R)-pantoate ... name (R)-4-phosphopantoate:beta-alanine ligase (AMP-forming). This enzyme catalyses the following chemical reaction ATP + (R)-4 ...
D-alanine: membrane acceptor ligase, D-alanine-D-alanyl carrier protein ligase, D-alanine-membrane acceptor ligase, and D- ... This enzyme participates in d-alanine metabolism. BADDILEY J, NEUHAUS FC (1960). "The enzymic activation of D-alanine". Biochem ... In enzymology, a D-alanine-poly(phosphoribitol) ligase (EC 6.1.1.13) is an enzyme that catalyzes the chemical reaction ATP + D- ... The systematic name of this enzyme class is D-alanine:poly(phosphoribitol) ligase (AMP-forming). Other names in common use ...
Fermentation routes to L-alanine are complicated by alanine racemase. Racemic alanine can be prepared by the condensation of ... is so-called alanine scanning, where every position in turn is mutated to alanine. Hydrogenation of alanine gives the amino ... forming alanine and α-ketoglutarate. The alanine enters the bloodstream, and is transported to the liver. The alanine ... Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine ...
D-alanine (CHEBI:15570) is a alanine (CHEBI:16449). L-alanine (CHEBI:16977) is a alanine (CHEBI:16449). L-alanine-2,3,3,3-d4 ( ... alanine-2,3,3,3-d4 (CHEBI:143534) is a alanine (CHEBI:16449). alanine-d7 (CHEBI:132498) is a alanine (CHEBI:16449). alaninium ( ... alanine (CHEBI:16449) is conjugate base of alaninium (CHEBI:32440) alanine (CHEBI:16449) is tautomer of alanine zwitterion ( ... alanine (CHEBI:16449) is a α-amino acid (CHEBI:33704) alanine (CHEBI:16449) is conjugate acid of alaninate (CHEBI:32439) ...
What is beta-alanine and what does it do? Read on to learn more about this supplement, including potential benefits and risks, ... Beta-alanine is a non-essential amino acid. This means that the body produces it so that people do not have to get it through ... While beta-alanine is present in protein sources such as meat, a person is unlikely to consume a sufficient amount from their ... Beta-alanine is a commonly available supplement in many sports-related products. However, it is also present in many protein ...
1127829550,Acid,Adenine,AdenosineAlanine,Animals,Arginine,BindingBinding,Caffeine,CalciumCalcium,CellCentralCentral,Channel ... 11507100Acid,Alanine,Caffeine,CalciumCalcium,ChannelChannel,Dose-ResponseDrug,Gating,GlutamicGovt,Humans,IonMagnesium,Mutation ... 11429443Acid,AdenosineAlanine,Animals,Caffeine,CalciumCalcium,ChannelChannel,Co,Dose-ResponseDrug,Electrophysiology,Gating,Gl, ... U.S.12388308AcidAlanine,Algorithms,AminoAnimals,Blockers,CalciumCalcium,Cardiac,Cardiovascular,ChannelChannel,Channels,Computer ...
In the Users Guide - See Clinical Pathology section - Guide to interpretation of AHL biochemistry profiles* - Alanine ...
Beta-Alanine for Cyclists: Does It Help?. by Lana Vrzic March 16, 2022. ...
An alanine aminotransferase (ALT) test measures ALT in your blood. When your liver is damaged, ALT can be released into your ... An alanine aminotransferase (ALT) test measures the level of the enzyme ALT in your blood. This test can help doctors evaluate ... An ALT test is also known as a serum glutamic-pyruvic transaminase (SGPT) test or an alanine transaminase test. ... Alanine aminotransferase (ALT). (2019).. https://labtestsonline.org/tests/alanine-aminotransferase-alt. *. ALT Blood Test. ( ...
Asparagine is the amide of aspartic acid. The amide group does not carry a formal charge under any biologically relevant pH conditions. The amide is rather easily hydrolyzed, converting asparagine to aspartic acid. This process is thought to be one of the factors related to the molecular basis of aging.. Asparagine has a high propensity to hydrogen bond, since the amide group can accept two and donate two hydrogen bonds. It is found on the surface as well as buried within proteins. Asparagine is a common site for attachment of carbohydrates in glycoproteins. ...
Carbobenzyloxy-L-alanine; Z-Ala-OH; Linear Formula: CH3CH(NHCO2CH2C6H5)CO2H; Empirical Formula: C11H13NO4; find related ... Z-L-Alanine 0.98; CAS No.: 1142-20-7; Synonyms: ...
Retrieved from "https://citizendium.org/wiki/index.php?title=Alanine/Definition&oldid=503995" ...
Alanine aminotransferase from Pyrococcus furiosus Pfu-1397077-001. Zhou, W., Tempel, W., Shah, A., Chen, L., Liu, Z.-J., Lee, D ... Alanine aminotransferase from Pyrococcus furiosus Pfu-1397077-001. *PDB DOI: https://doi.org/10.2210/pdb1XI9/pdb ...
... response of the secondary standard measuring system based on the detection of radiation-induced free radicals in alanine for ... Uncertainties in alanine/ESR dosimetry at PTB,. Phys. Med. Biol. 51 S. 5419-5440 (2006) ... The representation of the structure of the alanine probes which is actually pitted was simplified and represented as a ... which was obtained with the aid of the irradiated alanine probes after a 60Co calibration, to the nominal dose Dnom, traced ...
Beta-Alanine! What is it, and what does it do? Find out all about it right here! Increase your in-set endurance! Beat the burn! ... What is Beta-Alanine?. Beta-alanine is one of the two amino acids (histidine being the other) that make up the protein ... Is Beta-Alanine Like Creatine?. Beta alanine has been compared to creatine since it first hit the market. In some cases it is ... A creatine and beta-alanine group that took the same amount of creatine but with 1.6g of beta-alanine twice daily. Finally, a ...
The directed movement of alanine, 2-aminopropanoic acid, into, out of or within a cell, or between cells, by means of some ...
Helical preferences of alanine, glycine, and aminoisobutyric homopeptides. Posted June 8th, 2010 by pschmidtke Title. Helical ... Alanine/chemistry/metabolism; Aminoisobutyric Acids/chemistry/metabolism; Carbon Tetrachloride; Chemistry, Molecular; Models, ... The stability between helical conformations of homopeptides of alanine, glycine, and aminoisobutyric acid has been studied by ...
Alanine is found in prostate fluid, and may play an important role in prostate health. Sources of alanine are meat, poultry, ... Alanine is one of the 20 most common natural amino acids. It is hydrophobic, with a methyl group side chain, and is the second- ... Alanine is a non-essential amino acid that is involved in the metabolism of tryptophan and the vitamin pyridoxine. It is one of ...
An enzyme that catalyzes the conversion of L-alanine and 2-oxoglutarate to pyruvate and L-glutamate. (From Enzyme Nomenclature ... Glutamic Alanine Transaminase; Transaminase, Alanine; Transaminase, Glutamic-Alanine; Transaminase, Glutamic-Pyruvic; Alanine ... Glutamic-Alanine Transaminase; Alanine 2 Oxoglutarate Aminotransferase; Aminotransferase, Alanine; Aminotransferase, Alanine-2- ... Alanine Transaminase (SGPT). Subscribe to New Research on Alanine Transaminase An enzyme that catalyzes the conversion of L- ...
Alanine. Non-essential amino acid. Supports the immune system and strengthens it by producing antibodies; aids in the ...
Learn how beta-alanine supplementation can improve your performance and results at the gym. ... Beta-alanine is the beta form of the amino acid alanine (meaning the amino group is in the beta position). It is the rate ... Beta-alanine is more than just tingles. Learn how beta-alanine supplementation can improve your performance and results at the ... Beta-Alanine is one of the most well-researched supplements and has substantial evidence to support its use. It can improve ...
... ... with abnormal serum alanine aminotransferase (ALT) activity in a national, population-based study. ...
Beta-Alanine (750mg) information including description from Now, supplement facts, and suggested use. Order online for quick ... Beta-Alanine (750mg) Description from Now Beta-Alanine is a non-essential amino acid that is used by muscle cells to synthesize ... NOW Beta-Alanine is backed by scientific research demonstrating that CarnoSyn supplementation results in delayed muscle fatigue ... Carnosine is a dipeptide (Beta-Alanine plus Histidine) that functions as a buffer for the hydrogen ions (acid) produced during ...
Beta Alanine is best known as the ingredient in pre workouts that gives you "The Tingles". Beta Alanine in addition to ... If youre looking for a Pre-Workout supplement without Beta-Alanine youve come to the right place. Beta Alanine is a non- ... If youre looking for other Preworkouts without Beta Alanine checkout our Beta Alanine Free Preworkout Collection. EHP Labs ... While many people love the effects and the tingles beta alanine gives users, some people hate it and find it to be itchy and/or ...
Prolab Beta Alanine Extreme®. Prolab Beta Alanine Extreme® delays muscle fatigue and helps extend high intensity training ... Beta Alanine BCAA Plus Amino Gel Bundle. Rating * Select Rating. 1 star (worst). 2 stars. 3 stars (average). 4 stars. 5 stars ( ... Beta Alanine can help take your training to a higher level and allow you to workout longer. ... sessions with a dynamic blend of CarnoSyn® Beta Alanine and the amino acid L-Histidine. ...
005524Common Name: NOD.Tg B:16 alanine, line B (low), Ins1null, Ins2null ...
β-alanine supplementation improves high-intensity exercise capacity. I investigated the influence of β-alanine supplementation ... Also I wanted to know if β-alanine would assist team sport athletes who are required to sprint repeatedly.. ... The aim was to consider factors that influence how the findings of β-alanine research relate to practice. Others have examined ... I also examined the factors that potentially influence an athletes decision to use β-alanine including side effects and dosage ...
A humble amino acid that packs a tingling punch to skin too which beta alanine is very well known for. A great tool for ... ATP Science Beta Alanine boasts the incredible ability to increase muscle carnosine better than carnosine itself! ... What is ATP Science Beta Alanine?. ATP Science Beta Alanine is a dietary supplement that contains pure beta-alanine, a non- ... Is ATP Science Beta Alanine pure?. Atp science beta alanine is made by 100% pharmaceutical grade Beta alanine is has no ...
Natural Alternatives Internationals new SR CarnoSyn allows for a high dose of beta-alanine to be released over several hours, ... Beta-alanine, an amino acid that contributes to the synthesis of muscle carnosine, has won favor among many athletes over the ... When asked whether it would be challenging to market beta-alanine to a whole new group of consumers who may not be familiar ... NAIs new SR CarnoSyn offers a micro-encapsulated form of beta-alanine that gradually releases the ingredient over a period of ...
UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase) ... Timeline for Protein MurD (UDP-N-acetylmuramoyl-L-alanine:D- ... Lineage for Protein: MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase). *Root: SCOP 1.55 *. Class c: Alpha and beta ... More info for Protein MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase) from c.59.1.1: MurD/MurF C-terminal domain. ... Protein MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase) from c.59.1.1: MurD/MurF C-terminal domain is called Protein ...
  • NOW uses CarnoSyn, a patented form of Beta-Alanine that has been clinically tested and shown to increase muscle Carnosine content, allowing muscles to work harder and longer during intense exercise. (allstarhealth.com)
  • NOW Beta-Alanine is backed by scientific research demonstrating that CarnoSyn supplementation results in delayed muscle fatigue and rapid recovery time, thereby helping you attain your strength and endurance training goals. (allstarhealth.com)
  • Prolab Beta Alanine Extreme ® delays muscle fatigue and helps extend high intensity training sessions with a dynamic blend of CarnoSyn ® Beta Alanine and the amino acid L-Histidine. (prolab.com)
  • Natural Alternatives International's new SR CarnoSyn allows for a high dose of beta-alanine to be released over several hours, thereby reducing the chance of off-putting paresthesia sensations. (nutritionaloutlook.com)
  • NAI's new SR CarnoSyn offers a micro-encapsulated form of beta-alanine that gradually releases the ingredient over a period of 8-14 hours, allowing for a high dosage with a low likelihood of paresthesia. (nutritionaloutlook.com)
  • With SR CarnoSyn allowing for sustained release of high-dose beta-alanine, NAI sees the opportunity to bring the ingredient to many consumers who may previously have been turned off by the accompanying paresthesia sensation, including vegetarians and seniors. (nutritionaloutlook.com)
  • When asked whether it would be challenging to market beta-alanine to a whole new group of consumers who may not be familiar with the ingredient, LeDoux was confident the research profile behind CarnoSyn-including recent studies on improved combat performance in military populations, improved mobility in nursing-home populations, and reduced incidence of concussive stress-make it a prime ingredient to bring to a broader audience. (nutritionaloutlook.com)
  • CarnoSyn ® Beta Alanine enhances athletic performance and exercise capacity helping you build more lean muscle mass. (prolab.com)
  • Make room for another supplement: CarnoSyn® Beta-Alanine. (mri-performance.com)
  • Contains 100% pure Carnosyn® form of beta-alanine. (cardiffsportsnutrition.co.uk)
  • Because it increases carnosine levels, beta-alanine supplementation may help improve athletic performance by decreasing fatigue and boosting endurance and performance during high intensity exercise. (medicalnewstoday.com)
  • Some evidence notes that beta-alanine supplementation can improve performance in endurance sports, such as long distance running. (medicalnewstoday.com)
  • Supplementation with beta-alanine may help a person increase muscle mass by allowing them to train intensely and for longer periods. (medicalnewstoday.com)
  • This means people following a vegan or vegetarian diet will likely have significantly less beta-alanine and carnosine in their system and require supplementation to enhance athletic performance. (medicalnewstoday.com)
  • Essential Supplementation - Beta-Alanine: Help or Hype? (muscleandstrength.com)
  • Learn how beta-alanine supplementation can improve your performance and results at the gym. (muscleandstrength.com)
  • There have been conjectures that beta-alanine works separately and synergistically with creatine supplementation . (muscleandstrength.com)
  • β-alanine supplementation improves high-intensity exercise capacity. (bmj.com)
  • I investigated the influence of β-alanine supplementation combined with high intensity training on performance. (bmj.com)
  • Beta Alanine supplementation increases muscle carnosine better than taking carnosine itself. (mrsupplement.com.au)
  • The study found that twenty-four weeks of beta alanine supplementation increased muscle carnosine content and improved high-intensity cycling capacity. (mrsupplement.com.au)
  • But for more casual consumers, the chance of paresthesia, a tingling sensation that can accompany beta-alanine supplementation, may be a prohibitive factor dissuading them from using the ingredient. (nutritionaloutlook.com)
  • Objective To conduct a systematic review and meta-analysis of the evidence on the effects of β-alanine supplementation on exercise capacity and performance. (bmj.com)
  • Eligibility criteria for selecting studies Inclusion/exclusion criteria limited articles to double-blinded, placebo-controlled studies investigating the effects of β-alanine supplementation on an exercise measure. (bmj.com)
  • These data allow individuals to make informed decisions as to the likelihood of an ergogenic effect with β-alanine supplementation based on their chosen exercise modality. (bmj.com)
  • The best way to increase carnosine is through BETA-ALANINE supplementation. (allmaxnutrition.com)
  • An ALT test is also known as a serum glutamic-pyruvic transaminase (SGPT) test or an alanine transaminase test. (healthline.com)
  • However, by supplementing with extra beta-alanine, we can dramatically increase carnosine levels. (illpumpyouup.com)
  • Beta Alanine increases the carnosine levels inside your muscles. (prolab.com)
  • We examined whether central adiposity and metabolic markers explain the association of body mass index (BMI as kg/m(2)) with abnormal serum alanine aminotransferase (ALT) activity in a national, population-based study. (nih.gov)
  • Their mean serum alanine aminotransferase level at the initiation of therapy was 37.5 +/- 2.1 IU/l with a range of 10-59 (normal values being 40 IU/l or less). (nih.gov)
  • Despite having normal or near normal serum alanine aminotransferase levels, 9 subjects had chronic persistent hepatitis, 13 had chronic active hepatitis and 15 had chronic active hepatitis + cirrhosis documented by histopathologic assessment of their liver biopsies. (nih.gov)
  • Vitamin E and changes in serum alanine aminotransferase levels in patients with non-alcoholic steatohepatitis. (medscape.com)
  • Effect of liver steatosis on liver stiffness measurement in chronic hepatitis B patients with normal serum alanine aminotransferase levels: A multicentre cohort study. (bvsalud.org)
  • Seven hundred and fifty-five patients with CHB and normal serum alanine aminotransferase levels, who underwent vibration -controlled transient elastography and liver biopsy , were included in the study. (bvsalud.org)
  • We conclude that liver steatosis has no significant effect on transient elastography -measured LSM in CHB patients with normal serum alanine aminotransferase levels. (bvsalud.org)
  • The researchers compared this to an actual "infusion" of intact L-carnosine and found that taking beta-alanine was just as effective, meaning that adding intact carnosine adds no further increase than what beta-alanine can give you alone. (illpumpyouup.com)
  • When you take a supplement, it will help to ensure that you are getting the correct dose of beta-alanine each day. (rebelliouspixels.com)
  • Most research studies on beta-alanine have been conducted using doses between 2.6-6.4 grams per day. (muscleandstrength.com)
  • In April 2017, a huge 'meta-analysis' study 2 (a study were they combined all studies on beta alanine) was published in the British Journal or Sports Medicine and guess what it showed? (mrsupplement.com.au)
  • Taking beta-alanine supplements may mean a person can increase the length of time they can perform high intensity exercises before experiencing exhaustion. (medicalnewstoday.com)
  • Comparison of hepatitis C virus testing strategies: birth cohort versus elevated alanine aminotransferase levels. (medscape.com)
  • Beta-alanine is more than just tingles. (muscleandstrength.com)
  • While many people love the effects and the tingles beta alanine gives users, some people hate it and find it to be itchy and/or uncomfortable. (bestpricenutrition.com)
  • Beta Alanine in addition to supporting immune health, improves exercise performance by decreasing muscle fatigue and improving muscle endurance. (bestpricenutrition.com)
  • Beta-alanine, an amino acid that contributes to the synthesis of muscle carnosine, has won favor among many athletes over the last decade thanks to its ability to help delay the onset of muscle fatigue and failure. (nutritionaloutlook.com)
  • Beta Alanine Extreme ® delays muscle fatigue by buffering against lactic acid buildup to help yield a few more growth-stimulating reps. (prolab.com)
  • Beta-alanine is a commonly available supplement in many sports-related products. (medicalnewstoday.com)
  • Despite the well-known tingly feeling associated with Beta-alanine and its use in pre-workout supplements , there is a lot of misinformation and hyperbole surrounding it as a supplement. (muscleandstrength.com)
  • If you're looking for a Pre-Workout supplement without Beta-Alanine you've come to the right place. (bestpricenutrition.com)
  • That's why SR CarnoSyn's slow-release mechanism could be a game changer for consumers looking to effectively supplement with beta-alanine without experiencing paresthesia. (nutritionaloutlook.com)
  • If you want to take advantage of all the benefits that beta-alanine offers, you may want to try a beta-alanine supplement. (rebelliouspixels.com)
  • Beta-alanine is a great supplement to use if you want to build muscles. (rebelliouspixels.com)
  • Backed by research, BETA-ALANINE is the one essential bodybuilding supplement you need to get your hands on. (allmaxnutrition.com)
  • ALLMAX BETA-ALANINE supplement is available in 100 g and 400 g sizes. (allmaxnutrition.com)
  • Beta-alanine is a leading research driven sports supplement that has shown positive effects in improving performance especially during high intensity activities such as weight training and activities that last from between 40 seconds to a few minutes. (cardiffsportsnutrition.co.uk)
  • However, beta-alanine joins with the amino acid histidine to form a dipeptide called carnosine . (medicalnewstoday.com)
  • Beta-alanine is one of the two amino acids (histidine being the other) that make up the protein carnosine. (illpumpyouup.com)
  • In 1911 he would discover and identify its constituent amino acids, beta-alanine and histidine. (illpumpyouup.com)
  • When you ingest carnosine it's either eliminated or broken down into beta-alanine and histidine. (illpumpyouup.com)
  • Carnosine is a dipeptide (Beta-Alanine plus Histidine) that functions as a buffer for the hydrogen ions (acid) produced during strenuous exercise, thus helping to maintain optimum muscular pH. (allstarhealth.com)
  • A dipeptide, carnosine is composed of two aminos: histidine and, you guessed it, beta alanine. (allmaxnutrition.com)
  • The histidine residues, which are located in pairs close to each other, were pairwise substituted for either alanine or arginine. (lu.se)
  • L-Alanine is produced industrially by decarboxylation of L-aspartate by the action of aspartate 4-decarboxylase. (wikipedia.org)
  • Beta alanine increases stamina and endurance by buffering metabolic acid and waste as it is made. (mrsupplement.com.au)
  • While the exercise type and duration of physical activity likely play a large role, evidence notes that beta-alanine provides an ergogenic effect , meaning it gives energy to help improve performance. (medicalnewstoday.com)
  • In the second step, the amino group of the newly-formed glutamate is transferred to pyruvate by an aminotransferase enzyme, regenerating the α-ketoglutarate, and converting the pyruvate to alanine. (wikipedia.org)
  • An alanine aminotransferase (ALT) test measures the level of the enzyme ALT in your blood. (healthline.com)
  • An enzyme that catalyzes the conversion of L-alanine and 2-oxoglutarate to pyruvate and L-glutamate. (curehunter.com)
  • PubChem: Alanine] Alanine acts as a substrate for alanine aminotransferase (ALT), an enzyme commonly measured to determine liver health. (loinc.org)
  • Alanine aminotransferase (ALT) is an enzyme found primarily in the liver and kidney. (medscape.com)
  • Alanine aminotransferase (ALT) is an enzyme whose activity became the principal biomarker for liver disease . (bvsalud.org)
  • In addition to beta-alanine increasing muscle endurance, there have been some small improvements in fat reduction reported in the literature. (muscleandstrength.com)
  • As an anabolic fuel, BETA-ALANINE provides the stimulus to increase anaerobic and aerobic endurance and delays in muscular fatigue, allowing you to push through every workout by providing the fuel to accelerate maximal workout power. (allmaxnutrition.com)
  • BETA-ALANINE can improve muscular strength and endurance to provide a more powerful training session. (allmaxnutrition.com)
  • This occurs after just four weeks of supplementing 4 to 6 grams per day of beta-alanine. (illpumpyouup.com)
  • In a recent study, twenty-five active males were supplemented with 6.4 grams per day of beta alanine or a placebo for a 24 week period. (mrsupplement.com.au)
  • Beta-Alanine is one of the most well-researched supplements and has substantial evidence to support its use. (muscleandstrength.com)
  • You can also use beta-alanine with other supplements to help you build muscles. (rebelliouspixels.com)
  • With this in mind, NutraKey has developed one of the most powerful B-alanine supplements yet - ultra micronized for maximum bioavailability and absorption without the waste of other B-alanine formulas. (tigerfitness.com)
  • Similar to creatine, beta-alanine takes a little time to build up in muscle. (illpumpyouup.com)
  • Creatine augments the phosphagen system, while beta-alanine augments the capacity of the glycolytic system. (muscleandstrength.com)
  • As such, beta-alanine and creatine are often stacked together and sold as an excellent combination for individuals looking to increase performance in their anaerobic training. (muscleandstrength.com)
  • So what is Creatine, Glutamine, and Beta-Alanine all about? (tryabouttime.com)
  • The post Why use Creatine + Glutamine + Beta-Alanine appeared first on About Time . (tryabouttime.com)
  • The methyl side-chain of alanine is non-reactive and is therefore hardly ever directly involved in protein function. (wikipedia.org)
  • In this model the selection of monomers (i.e. amino acids) for ribosomal protein synthesis is rather limited to those Alanine derivatives that are suitable for building α-helix or β-sheet secondary structural elements. (wikipedia.org)
  • Alanine is one of the primary amino acids (secondary to leucine) used for protein construction. (loinc.org)
  • Alanine can be synthesized from pyruvate and branched chain amino acids such as valine, leucine, and isoleucine. (wikipedia.org)
  • Alanine is produced by reductive amination of pyruvate, a two-step process. (wikipedia.org)
  • The net result is that pyruvate and ammonia are converted to alanine, consuming one reducing equivalent. (wikipedia.org)
  • 721 Because transamination reactions are readily reversible and pyruvate is present in all cells, alanine can be easily formed and thus has close links to metabolic pathways such as glycolysis, gluconeogenesis, and the citric acid cycle. (wikipedia.org)
  • Moreover, most cases are biopsied only after 6 months or more of abnormal alanine aminotransferase levels have been documented. (nih.gov)
  • Prevalence and metabolic determinants of abnormal alanine aminotransferase: A cross-sectional study of Iranian adults, 2018-2022. (bvsalud.org)
  • Many of the effects of beta-alanine happen by boosting the synthesis of carnosine. (illpumpyouup.com)
  • We performed an alanine scan of the non-glycine residues up through residue 11 of Dyn B amide to explore the role of these side chains in the activity of Dyn B. The analogs were synthesized by fluorenylmethyloxycarbonyl (Fmoc)-based solid phase peptide synthesis and evaluated for their opioid receptor affinities and opioid potency and efficacy at KOR. (ku.edu)
  • Beta-alanine is the beta form of the amino acid alanine (meaning the amino group is in the beta position). (muscleandstrength.com)
  • In mammals, alanine plays a key role in glucose-alanine cycle between tissues and liver. (wikipedia.org)
  • Alanine aminotransferase measurements are used in the diagnosis and treatment of certain liver diseases (e.g. viral hepatitis and cirrhosis) and heart diseases. (cdc.gov)
  • Alanine aminotransferase (ALT) is usually measured concurrently with AST as part of a liver function panel to determine the source of organ damage. (medscape.com)
  • Alanine is an aliphatic amino acid, because the side-chain connected to the α-carbon atom is a methyl group (-CH3). (wikipedia.org)
  • The L-isomer of alanine (left-handed) is the one that is incorporated into proteins. (wikipedia.org)
  • Alanine is the simplest α-amino acid after glycine. (wikipedia.org)
  • The stability between helical conformations of homopeptides of alanine, glycine, and aminoisobutyric acid has been studied by means of quantum-mechanical methods. (ub.edu)
  • https://www.mrsupplement.com.au/atp-science-beta-alanine?variation=12394 ATP Science Beta Alanine (250g / 208 Serves Natural) ATP Science Beta Alanine is a rate limiting amino acid that is essential to help reduce fatigue during high-intensity exercise and clear lactic acid faster. (mrsupplement.com.au)
  • These improvements in performance mean that beta-alanine can also aid in lean-mass gains and it has also shown promise as an antioxidant and anti-aging compound. (cardiffsportsnutrition.co.uk)
  • Beta Alanine Extreme ® also supports prolonged stamina and can help reduce muscle soreness during and after training allowing for faster recovery time between sets and between workouts. (prolab.com)
  • This means that, taken before workouts, NutraKey Beta-alanine could provide an immediate boost to both your workout and recovery - resulting in increased lean muscle, strength, and more efficient workouts. (tigerfitness.com)
  • You would have to take a lot of carnosine to approach the increased concentrations achieved by taking beta-alanine . (illpumpyouup.com)
  • Beta Alanine is a non-essential amino acid that has been shown in research to increase muscular Carnosine concentrations. (allmaxnutrition.com)
  • By promoting high intra-muscular Carnosine concentrations, BETA-ALANINE acts as a precursor to Nitric Oxide (NO) production and works to reduce intra-muscular acidification created by intense exercise and heavy training. (allmaxnutrition.com)
  • I also examined the factors that potentially influence an athlete's decision to use β-alanine including side effects and dosage compliance. (bmj.com)
  • The more BETA-ALANINE we have on board, the more carnosine the body can produce and the longer and harder we can train. (allmaxnutrition.com)
  • The properties of the secondary standard measuring system, which is based on the detection of radiation-induced free radicals in alanine by means of electron spin resonance (ESR) spectroscopy, are well known for irradiations in the 60 Co reference field [1]. (ptb.de)
  • Millimeter-wave spectroscopy of of-alanine was carried out by using continuous molecular beam. (ubc.ca)
  • BETA-ALANINE delays muscular fatigue allowing you to increase your performance output. (allmaxnutrition.com)
  • The International Society of Sports Nutrition (ISSN) notes that while more research is necessary, appropriate levels of beta-alanine are safe and can help improve exercise performance. (medicalnewstoday.com)
  • Increased alanine levels are seen in patients with lactic acidosis, carbamoyl phosphate synthetase deficiency, histidinemia, hyperprolinemia, and ornithine transcarbamylase deficiency. (loinc.org)
  • In patients with a mitochondrial disease, elevated alanine levels are primarily seen during times of physiologic stress or regression. (loinc.org)
  • Spreading dose times evenly results in sustained levels of beta-alanine. (tigerfitness.com)
  • Beta-alanine helps regulate acid in muscles and prevent this fatigue. (medicalnewstoday.com)
  • Beta-alanine and carnosine together help improve the muscles' functionality due to various body processes during exercise. (medicalnewstoday.com)
  • If you want to build muscles, you may consider using beta-alanine. (rebelliouspixels.com)
  • Beta Alanine Extreme ® floods the muscles with the specialized amino acid carnosine to work as a buffer against lactic acid buildup, allowing higher intensity for a more extended period before fatigue occurs. (prolab.com)
  • Beta-alanine is most naturally found in the muscles of sprinters and people who can naturally back on pounds of muscle with little effort. (tigerfitness.com)
  • Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. (wikipedia.org)
  • L-alanine is second only to leucine in rate of occurrence, accounting for 7.8% of the primary structure in a sample of 1,150 proteins. (wikipedia.org)
  • 721 Alanine is one of the twenty canonical α-amino acids used as building blocks (monomers) for the ribosome-mediated biosynthesis of proteins. (wikipedia.org)
  • Beta- alanine is classified as a non-proteinogenic amino acid because it is not used in the building of proteins. (illpumpyouup.com)
  • As opposed to the amino alanine, BETA-ALANINE is a non-proteinogenic amino-acid (it's not reassembled into proteins upon ingestion). (allmaxnutrition.com)
  • In this study, viremic women exhibited significantly higher alanine aminotransferase (ALT), creatinine, and uric acid values as well as significantly lower white blood cell count compared with nonviremic women. (nursingcenter.com)