Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power.
Proteins, generally found in the CYTOPLASM, that specifically bind ANDROGENS and mediate their cellular actions. The complex of the androgen and receptor migrates to the CELL NUCLEUS where it induces transcription of specific segments of DNA.
Compounds which inhibit or antagonize the biosynthesis or actions of androgens.
Compounds that bind to and inhibit the activation of ANDROGEN RECEPTORS.
A potent androgenic metabolite of TESTOSTERONE. It is produced by the action of the enzyme 3-OXO-5-ALPHA-STEROID 4-DEHYDROGENASE.
A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL.
Tumors or cancer of the PROSTATE.
Steroidal compounds related to TESTOSTERONE, the major mammalian male sex hormone. Testosterone congeners include important testosterone precursors in the biosynthetic pathways, metabolites, derivatives, and synthetic steroids with androgenic activities.
A synthetic non-aromatizable androgen and anabolic steroid. It binds strongly to the androgen receptor and has therefore also been used as an affinity label for this receptor in the prostate and in prostatic tumors.
An antiandrogen with about the same potency as cyproterone in rodent and canine species.
A disorder of sexual development transmitted as an X-linked recessive trait. These patients have a karyotype of 46,XY with end-organ resistance to androgen due to mutations in the androgen receptor (RECEPTORS, ANDROGEN) gene. Severity of the defect in receptor quantity or quality correlates with their phenotypes. In these genetic males, the phenotypic spectrum ranges from those with normal female external genitalia, through those with genital ambiguity as in Reifenstein Syndrome, to that of a normal male with INFERTILITY.
A gland in males that surrounds the neck of the URINARY BLADDER and the URETHRA. It secretes a substance that liquefies coagulated semen. It is situated in the pelvic cavity behind the lower part of the PUBIC SYMPHYSIS, above the deep layer of the triangular ligament, and rests upon the RECTUM.
A delta-4 C19 steroid that is produced not only in the TESTIS, but also in the OVARY and the ADRENAL CORTEX. Depending on the tissue type, androstenedione can serve as a precursor to TESTOSTERONE as well as ESTRONE and ESTRADIOL.
Certain tumors that 1, arise in organs that are normally dependent on specific hormones and 2, are stimulated or caused to regress by manipulation of the endocrine environment.
C18 steroid with androgenic and anabolic properties. It is generally prepared from alkyl ethers of ESTRADIOL to resemble TESTOSTERONE but less one carbon at the 19 position.
The unspecified form of the steroid, normally a major metabolite of TESTOSTERONE with androgenic activity. It has been implicated as a regulator of gonadotropin secretion.
A major C19 steroid produced by the ADRENAL CORTEX. It is also produced in small quantities in the TESTIS and the OVARY. Dehydroepiandrosterone (DHEA) can be converted to TESTOSTERONE; ANDROSTENEDIONE; ESTRADIOL; and ESTRONE. Most of DHEA is sulfated (DEHYDROEPIANDROSTERONE SULFATE) before secretion.
An enzyme that catalyzes the reduction of TESTOSTERONE to 5-ALPHA DIHYDROTESTOSTERONE.
An agent with anti-androgen and progestational properties. It shows competitive binding with dihydrotestosterone at androgen receptor sites.
The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS.
A microsomal cytochrome P450 enzyme that catalyzes the 17-alpha-hydroxylation of progesterone or pregnenolone and subsequent cleavage of the residual two carbons at C17 in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP17 gene, generates precursors for glucocorticoid, androgen, and estrogen synthesis. Defects in CYP17 gene cause congenital adrenal hyperplasia (ADRENAL HYPERPLASIA, CONGENITAL) and abnormal sexual differentiation.
The circulating form of a major C19 steroid produced primarily by the ADRENAL CORTEX. DHEA sulfate serves as a precursor for TESTOSTERONE; ANDROSTENEDIONE; ESTRADIOL; and ESTRONE.
A cell line derived from cultured tumor cells.
An oxidoreductase that catalyzes the conversion of 3-oxo-delta4 steroids into their corresponding 5alpha form. It plays an important role in the conversion of TESTOSTERONE into DIHYDROTESTOSTERONE and PROGESTERONE into DIHYDROPROGESTERONE.
An enzyme that catalyzes the desaturation (aromatization) of the ring A of C19 androgens and converts them to C18 estrogens. In this process, the 19-methyl is removed. This enzyme is membrane-bound, located in the endoplasmic reticulum of estrogen-producing cells of ovaries, placenta, testes, adipose, and brain tissues. Aromatase is encoded by the CYP19 gene, and functions in complex with NADPH-FERRIHEMOPROTEIN REDUCTASE in the cytochrome P-450 system.
Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE.
Development of female secondary SEX CHARACTERISTICS in the MALE. It is due to the effects of estrogenic metabolites of precursors from endogenous or exogenous sources, such as ADRENAL GLANDS or therapeutic drugs.
The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids.
A condition caused by the excessive secretion of ANDROGENS from the ADRENAL CORTEX; the OVARIES; or the TESTES. The clinical significance in males is negligible. In women, the common manifestations are HIRSUTISM and VIRILISM as seen in patients with POLYCYSTIC OVARY SYNDROME and ADRENOCORTICAL HYPERFUNCTION.
Steroid hormones produced by the GONADS. They stimulate reproductive organs, germ cell maturation, and the secondary sex characteristics in the males and the females. The major sex steroid hormones include ESTRADIOL; PROGESTERONE; and TESTOSTERONE.
Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds.
Carrier proteins produced in the Sertoli cells of the testis, secreted into the seminiferous tubules, and transported via the efferent ducts to the epididymis. They participate in the transport of androgens. Androgen-binding protein has the same amino acid sequence as SEX HORMONE-BINDING GLOBULIN. They differ by their sites of synthesis and post-translational oligosaccharide modifications.
An ester of TESTOSTERONE with a propionate substitution at the 17-beta position.
A saclike, glandular diverticulum on each ductus deferens in male vertebrates. It is united with the excretory duct and serves for temporary storage of semen. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A glycoprotein migrating as a beta-globulin. Its molecular weight, 52,000 or 95,000-115,000, indicates that it exists as a dimer. The protein binds testosterone, dihydrotestosterone, and estradiol in the plasma. Sex hormone-binding protein has the same amino acid sequence as ANDROGEN-BINDING PROTEIN. They differ by their sites of synthesis and post-translational oligosaccharide modifications.
The male reproductive organs. They are divided into the external organs (PENIS; SCROTUM;and URETHRA) and the internal organs (TESTIS; EPIDIDYMIS; VAS DEFERENS; SEMINAL VESICLES; EJACULATORY DUCTS; PROSTATE; and BULBOURETHRAL GLANDS).
A complex disorder characterized by infertility, HIRSUTISM; OBESITY; and various menstrual disturbances such as OLIGOMENORRHEA; AMENORRHEA; ANOVULATION. Polycystic ovary syndrome is usually associated with bilateral enlarged ovaries studded with atretic follicles, not with cysts. The term, polycystic ovary, is misleading.
The process in developing sex- or gender-specific tissue, organ, or function after SEX DETERMINATION PROCESSES have set the sex of the GONADS. Major areas of sex differentiation occur in the reproductive tract (GENITALIA) and the brain.
Those characteristics that distinguish one SEX from the other. The primary sex characteristics are the OVARIES and TESTES and their related hormones. Secondary sex characteristics are those which are masculine or feminine but not directly related to reproduction.
An anti-androgen that, in the form of its acetate (CYPROTERONE ACETATE), also has progestational properties. It is used in the treatment of hypersexuality in males, as a palliative in prostatic carcinoma, and, in combination with estrogen, for the therapy of severe acne and hirsutism in females.
A group of polycyclic compounds closely related biochemically to TERPENES. They include cholesterol, numerous hormones, precursors of certain vitamins, bile acids, alcohols (STEROLS), and certain natural drugs and poisons. Steroids have a common nucleus, a fused, reduced 17-carbon atom ring system, cyclopentanoperhydrophenanthrene. Most steroids also have two methyl groups and an aliphatic side-chain attached to the nucleus. (From Hawley's Condensed Chemical Dictionary, 11th ed)
Antineoplastic agents that are used to treat hormone-sensitive tumors. Hormone-sensitive tumors may be hormone-dependent, hormone-responsive, or both. A hormone-dependent tumor regresses on removal of the hormonal stimulus, by surgery or pharmacological block. Hormone-responsive tumors may regress when pharmacologic amounts of hormones are administered regardless of whether previous signs of hormone sensitivity were observed. The major hormone-responsive cancers include carcinomas of the breast, prostate, and endometrium; lymphomas; and certain leukemias. (From AMA Drug Evaluations Annual 1994, p2079)
A condition observed in WOMEN and CHILDREN when there is excess coarse body hair of an adult male distribution pattern, such as facial and chest areas. It is the result of elevated ANDROGENS from the OVARIES, the ADRENAL GLANDS, or exogenous sources. The concept does not include HYPERTRICHOSIS, which is an androgen-independent excessive hair growth.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue.
The convoluted cordlike structure attached to the posterior of the TESTIS. Epididymis consists of the head (caput), the body (corpus), and the tail (cauda). A network of ducts leaving the testis joins into a common epididymal tubule proper which provides the transport, storage, and maturation of SPERMATOZOA.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Unsaturated androstanes which are substituted with one or more hydroxyl groups in any position in the ring system.
A synthetic hormone used for androgen replacement therapy and as an hormonal antineoplastic agent (ANTINEOPLASTIC AGENTS, HORMONAL).
Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes.
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity.
Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes.
Drugs that inhibit 3-OXO-5-ALPHA-STEROID 4-DEHYDROGENASE. They are commonly used to reduce the production of DIHYDROTESTOSTERONE.
Condition resulting from deficient gonadal functions, such as GAMETOGENESIS and the production of GONADAL STEROID HORMONES. It is characterized by delay in GROWTH, germ cell maturation, and development of secondary sex characteristics. Hypogonadism can be due to a deficiency of GONADOTROPINS (hypogonadotropic hypogonadism) or due to primary gonadal failure (hypergonadotropic hypogonadism).
Thiohydantoin benzene derivative.
Catalyze the oxidation of 3-hydroxysteroids to 3-ketosteroids.
The external and internal organs related to reproduction.
Unsaturated derivatives of the ESTRANES with methyl groups at carbon-13, with no carbon at carbon-10, and with no more than one carbon at carbon-17. They must contain one or more double bonds.
An intermediate in TESTOSTERONE biosynthesis, found in the TESTIS or the ADRENAL GLANDS. Androstenediol, derived from DEHYDROEPIANDROSTERONE by the reduction of the 17-keto group (17-HYDROXYSTEROID DEHYDROGENASES), is converted to TESTOSTERONE by the oxidation of the 3-beta hydroxyl group to a 3-keto group (3-HYDROXYSTEROID DEHYDROGENASES).
Supporting cells projecting inward from the basement membrane of SEMINIFEROUS TUBULES. They surround and nourish the developing male germ cells and secrete ANDROGEN-BINDING PROTEIN and hormones such as ANTI-MULLERIAN HORMONE. The tight junctions of Sertoli cells with the SPERMATOGONIA and SPERMATOCYTES provide a BLOOD-TESTIS BARRIER.
A metabolite of PROGESTERONE with a hydroxyl group at the 17-alpha position. It serves as an intermediate in the biosynthesis of HYDROCORTISONE and GONADAL STEROID HORMONES.
An orally active 3-OXO-5-ALPHA-STEROID 4-DEHYDROGENASE inhibitor. It is used as a surgical alternative for treatment of benign PROSTATIC HYPERPLASIA.
Proteins that enhance gene expression when associated with ligand bound activated NUCLEAR RECEPTORS. The coactivators may act through an enzymatic process that affects the rate of transcription or the structure of chromatin. Alternatively nuclear receptor coactivators can function as adaptor proteins that bring nuclear receptors into close proximity with transcriptional complexes.
A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND.
Increase in constituent cells in the PROSTATE, leading to enlargement of the organ (hypertrophy) and adverse impact on the lower urinary tract function. This can be caused by increased rate of cell proliferation, reduced rate of cell death, or both.
A potent synthetic long-acting agonist of GONADOTROPIN-RELEASING HORMONE that regulates the synthesis and release of pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
These compounds stimulate anabolism and inhibit catabolism. They stimulate the development of muscle mass, strength, and power.
Tumors or cancer of the PROSTATE which can grow in the presence of low or residual amount of androgen hormones such as TESTOSTERONE.
Steroid-producing cells in the interstitial tissue of the TESTIS. They are under the regulation of PITUITARY HORMONES; LUTEINIZING HORMONE; or interstitial cell-stimulating hormone. TESTOSTERONE is the major androgen (ANDROGENS) produced.
A birth defect due to malformation of the URETHRA in which the urethral opening is below its normal location. In the male, the malformed urethra generally opens on the ventral surface of the PENIS or on the PERINEUM. In the female, the malformed urethral opening is in the VAGINA.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
A transcription factor that partners with ligand bound GLUCOCORTICOID RECEPTORS and ESTROGEN RECEPTORS to stimulate GENETIC TRANSCRIPTION. It plays an important role in FERTILITY as well as in METABOLISM of LIPIDS.
A synthetic long-acting agonist of GONADOTROPIN-RELEASING HORMONE. Goserelin is used in treatments of malignant NEOPLASMS of the prostate, uterine fibromas, and metastatic breast cancer.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important.
Steroidal compounds in which one or more carbon atoms in the steroid ring system have been substituted with nitrogen atoms.
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
A class of enzymes that catalyzes the oxidation of 17-hydroxysteroids to 17-ketosteroids. EC 1.1.-.
The measurement of an organ in volume, mass, or heaviness.
Achievement of full sexual capacity in animals and in humans.
The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA.
The external reproductive organ of males. It is composed of a mass of erectile tissue enclosed in three cylindrical fibrous compartments. Two of the three compartments, the corpus cavernosa, are placed side-by-side along the upper part of the organ. The third compartment below, the corpus spongiosum, houses the urethra.
One of the ESTROGEN RECEPTORS that has greater affinity for ISOFLAVONES than ESTROGEN RECEPTOR ALPHA does. There is great sequence homology with ER alpha in the DNA-binding domain but not in the ligand binding and hinge domains.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Absence of hair from areas where it is normally present.
The flattened stroma cells forming a sheath or theca outside the basal lamina lining the mature OVARIAN FOLLICLE. Thecal interstitial or stromal cells are steroidogenic, and produce primarily ANDROGENS which serve as precusors of ESTROGENS in the GRANULOSA CELLS.
A developmental defect in which a TESTIS or both TESTES failed to descend from high in the ABDOMEN to the bottom of the SCROTUM. Testicular descent is essential to normal SPERMATOGENESIS which requires temperature lower than the BODY TEMPERATURE. Cryptorchidism can be subclassified by the location of the maldescended testis.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
An X-linked recessive form of spinal muscular atrophy. It is due to a mutation of the gene encoding the ANDROGEN RECEPTOR.
In gonochoristic organisms, congenital conditions in which development of chromosomal, gonadal, or anatomical sex is atypical. Effects from exposure to abnormal levels of GONADAL HORMONES in the maternal environment, or disruption of the function of those hormones by ENDOCRINE DISRUPTORS are included.
An anabolic steroid that has been used in the treatment of male HYPOGONADISM, delayed puberty in males, and in the treatment of breast neoplasms in women.
Disorders characterized by an abnormal reduction in muscle volume due to a decrease in the size or number of muscle fibers. Atrophy may result from diseases intrinsic to muscle tissue (e.g., MUSCULAR DYSTROPHY) or secondary to PERIPHERAL NERVOUS SYSTEM DISEASES that impair innervation to muscle tissue (e.g., MUSCULAR ATROPHY, SPINAL).
The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS.
An endocrine state in men, characterized by a significant decline in the production of TESTOSTERONE; DEHYDROEPIANDROSTERONE; and other hormones such as HUMAN GROWTH HORMONE. Andropause symptoms are related to the lack of androgens including DEPRESSION, sexual dysfunction, and OSTEOPOROSIS. Andropause may also result from hormonal ablation therapy for malignant diseases.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects.
CELL LINES derived from the CV-1 cell line by transformation with a replication origin defective mutant of SV40 VIRUS, which codes for wild type large T antigen (ANTIGENS, POLYOMAVIRUS TRANSFORMING). They are used for transfection and cloning. (The CV-1 cell line was derived from the kidney of an adult male African green monkey (CERCOPITHECUS AETHIOPS).)
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)
A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
One of the ESTROGEN RECEPTORS that has marked affinity for ESTRADIOL. Its expression and function differs from, and in some ways opposes, ESTROGEN RECEPTOR BETA.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses.
A stage of development at which the ADRENAL GLANDS undergo maturation leading to the capability of producing increasing amounts of adrenal androgens, DEHYDROEPIANDROSTERONE and ANDROSTENEDIONE. Adrenarche usually begins at about 7 or 8 years of age before the signs of PUBERTY and continues throughout puberty.
Pregnane derivatives containing two double bonds anywhere within the ring structures.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
All the organs involved in reproduction and the formation and release of URINE. It includes the kidneys, ureters, BLADDER; URETHRA, and the organs of reproduction - ovaries, UTERUS; FALLOPIAN TUBES; VAGINA; and CLITORIS in women and the testes; SEMINAL VESICLES; PROSTATE; seminal ducts; and PENIS in men.
Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example.
An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from ANDROSTENEDIONE directly, or from TESTOSTERONE via ESTRADIOL. In humans, it is produced primarily by the cyclic ovaries, PLACENTA, and the ADIPOSE TISSUE of men and postmenopausal women.
Nucleotide sequences, usually upstream, which are recognized by specific regulatory transcription factors, thereby causing gene response to various regulatory agents. These elements may be found in both promoter and enhancer regions.
Small containers or pellets of a solid drug implanted in the body to achieve sustained release of the drug.
A group of inherited disorders of the ADRENAL GLANDS, caused by enzyme defects in the synthesis of cortisol (HYDROCORTISONE) and/or ALDOSTERONE leading to accumulation of precursors for ANDROGENS. Depending on the hormone imbalance, congenital adrenal hyperplasia can be classified as salt-wasting, hypertensive, virilizing, or feminizing. Defects in STEROID 21-HYDROXYLASE; STEROID 11-BETA-HYDROXYLASE; STEROID 17-ALPHA-HYDROXYLASE; 3-beta-hydroxysteroid dehydrogenase (3-HYDROXYSTEROID DEHYDROGENASES); TESTOSTERONE 5-ALPHA-REDUCTASE; or steroidogenic acute regulatory protein; among others, underlie these disorders.

Plasma concentration changes in LH and FSH following electrochemical stimulation of the medial preoptic are or dorsal anterior hypothalamic area of estrogen- or androgen-sterilized rats.(1/3406)

 (+info)

The effects of androgens and antiandrogens on hormone-responsive human breast cancer in long-term tissue culture. (2/3406)

We have examined five human breast cancer cell lines in continuous tissue culture for androgen responsiveness. One of these cell lines shows a 2- to 4-fold stimulation of thymidine incorporation into DNA, apparent as early as 10 hr following androgen addition to cells incubated in serum-free medium. This stimulation is accompanied by an acceleration in cell replication. Antiandrogens [cyproterone acetate (6-chloro-17alpha-acetate-1,2alpha-methylene-4,6-pregnadiene-3,20-dione) and R2956 (17beta-hydroxy-2,2,17alpha-trimethoxyestra-4,9,11-triene-1-one)] inhibit both protein and DNA synthesis below control levels and block androgen-mediated stimulation. Prolonged incubation (greater than 72 hr) in antiandrogen is lethal. The MCF- cell line contains high-affinity receptors for androgenic steroids demonstrable by sucrose density gradients and competitive protein binding analysis. By cross-competition studies, androgen receptors are distinguishable from estrogen receptors also found in this cell line. Concentrations of steroid that saturate androgen receptor sites in vitro are about 1000 times lower than concentrations that maximally stimulate the cells. Changes in quantity and affinity of androgen binding to intact cells at 37 degrees as compared with usual binding techniques using cytosol preparation at 0 degrees do not explain this difference between dissociation of binding and effect. However, this difference can be explained by conversion of [3H]-5alpha-dihydrotestosterone to 5alpha-androstanediol and more polar metabolites at 37 degrees. An examination of incubation media, cytoplasmic extracts and crude nuclear pellets reveals probable conversion of [3H]testosterone to [3H]-5alpha-dihydrotestosterone. Our data provide compelling evidence that some human breast cancer, at least in vitro, may be androgen dependent.  (+info)

Kinetics of neuroendocrine differentiation in an androgen-dependent human prostate xenograft model. (3/3406)

It was previously shown in the PC-295 xenograft that the number of chromogranin A (CgA)-positive neuroendocrine (NE) cells increased after androgen withdrawal. NE cells did not proliferate and differentiated from G0-phase-arrested cells. Here we further characterized NE differentiation, androgen receptor status, and apoptosis-associated Bcl-2 expression in the PC-295 model after androgen withdrawal to assess the origin of NE cells. PC-295 tumor volumes decreased by 50% in 4 days. Intraperitoneal bromodeoxyuridine (BrdU) incorporation and MIB-1 labeling decreased to 0%, and the apoptosis was maximal at day 4. Androgen receptor expression and prostate-specific antigen (PSA) serum levels decreased rapidly within 2 days. The number of NE cells increased 6-fold at day 4 and 30-fold at day 7. Five and ten percent of the CgA-positive cells were BrdU positive after continuous BrdU labeling for 2 and 4 days, respectively. However, no MIB-1 expression was observed in CgA-positive cells. NE cells expressed the regulated secretory pathway marker secretogranin III but were negative for androgen receptor and Bcl-2. Bcl-2 expression did increase in the non-NE tumor cells. In conclusion, androgen withdrawal leads to a rapid PC-295 tumor regression and a proliferation-independent induction of NE differentiation. The strictly androgen-independent NE cells that were still present after 21 days differentiated mainly from G0-phase-arrested cells.  (+info)

Sodefrin: a novel sex pheromone in a newt. (4/3406)

The abdominal gland in the male red-bellied newt, Cynops pyrrhogaster, is the source of a female-attracting pheromone. An attempt was made to isolate and characterize the female-attracting pheromone in the abdominal glands of male newts. The active substance, named sodefrin (from the Japanese 'sodefuri' which means 'soliciting') has been isolated and shown to be a novel decapeptide with the sequence, Ser-Ile-Pro-Ser-Lys-Asp-Ala-Leu-Leu-Lys. Its minimum effective concentration in water is 0.1-1.0 pmol 1-1. Synthetic sodefrin shows a female-attracting activity similar to that of the native peptide, and acts through the olfactory organ of female newts. Electrophysiological studies reveal that sodefrin evokes a marked electroolfactogram response in the vomeronasal epithelium in sexually mature females and in ovariectomized females treated with prolactin and oestrogen. The pheromonal activity of sodefrin appears to be species-specific since it does not attract females of a congeneric species, the sword-tailed newt C. ensicauda. However, C. ensicauda has a variant of sodefrin differing from that in C. pyrrhogaster by substitutions of Leu for Pro at position 3 and Gln for Leu at position 8. The C. ensicauda variant sodefrin does not attract C. pyrrhogaster females. Genes encoding the sodefrin precursor protein have been cloned in both C. pyrrhogaster and C. ensicauda. Immunostaining of the abdominal gland using the antiserum against sodefrin shows that sodefrin occurs in the epithelial cells, predominantly within the secretory granules. Sodefrin content, detected by immunoassay, in C. pyrrhogaster males decreases after castration and hypophysectomy and increases markedly in the castrated and hypophysectomized newts after treatment with androgen and prolactin. This combination of hormones also enhances sodefrin mRNA content in the abdominal gland as assessed by northern blot analysis using sodefrin cDNA.  (+info)

Relationship between metabolism of androstenone and skatole in intact male pigs. (5/3406)

The relationship between the metabolism of androsterone and skatole, the major compounds responsible for boar taint, was investigated in F4 Swedish Yorkshire x European Wild Pig intact males. The metabolism of androstenone and skatole were studied in liver microsomes, and the testicular steroid production was measured in testes microsomes. Including androstenone in the assays of skatole metabolism reduced the formation of 6-hydroxyskatole (pro-MII), and three other skatole metabolites (P<.05). The formation of three additional metabolites was not affected. Liver microsomal incubations of androstenone produced two metabolites, I and II. The rate of the formation of metabolite I and the rate of androstenone metabolism were correlated with the rate of skatole metabolism. Liver metabolism of androstenone was not related to levels of androstenone in fat. Testicular synthesis of 16-androstene steroids was correlated with combined synthesis of estrogens and androgens, plasma levels of androstenone, levels of skatole in fat, and skatole metabolism in the liver (P<.05). Plasma levels of estrone sulfate were correlated with levels of skatole in fat and with androstenone levels in fat and plasma and were negatively correlated with synthesis of skatole metabolite F-1 and pro-MII sulfation. These results indicate that the liver metabolism of androstenone and skatole are related. However, it is likely that the relationship between levels of androstenone and skatole in fat is due more to a link between the testicular synthesis of androstenone rather than to the metabolism of androstenone and skatole in the liver. Sex steroids may affect this relationship because of their biosynthesis along with androstenone and possible inhibition of skatole metabolism in the liver.  (+info)

The relationship between a polymorphism in CYP17 with plasma hormone levels and breast cancer. (6/3406)

The A2 allele of CYP17 has been associated with polycystic ovarian syndrome, elevated levels of certain steroid hormones in premenopausal women, and increased breast cancer risk. We prospectively assessed the association between the A2 allele of CYP17 and breast cancer risk in a case-control study nested within the Nurses' Health Study cohort. We also evaluated associations between this CYP17 genotype and plasma steroid hormone levels among postmenopausal controls not using hormone replacement to assess the biological significance of this genetic variant. Women with the A2 allele were not at an increased risk of incident breast cancer [OR (odds ratio), 0.85; 95% CI (confidence interval), 0.65-1.12] or advanced breast cancer (OR, 0.84; 95% CI, 0.54-1.32). We did observe evidence that the inverse association of late age at menarche with breast cancer may be modified by the CYP17 A2 allele. The protective effect of later age at menarche was only observed among women without the A2 allele (A1/A1 genotype: for age at menarche > or =13 versus <13; OR, 0.57; 95% CI, 0.36-0.90; A1/A2 and A2/A2 genotypes: OR, 1.05; 95% CI, 0.76-1.45; P for interaction = 0.07). Among controls, we found women with the A2/A2 genotype to have elevated levels of estrone (+14.3%, P = 0.01), estradiol (+13.8%, P = 0.08), testosterone (+8.6%, P = 0.34), androstenedione (+17.1%, P = 0.06), dehydroepiandrosterone (+14.4%, P = 0.02), and dehydroepiandrosterone sulfate (+7.2%, P = 0.26) compared with women with the A1/A1 genotype. These data suggest that the A2 allele of CYP17 modifies endogenous hormone levels, but is not a strong independent risk factor for breast cancer.  (+info)

Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. (7/3406)

PURPOSE: To evaluate the prognostic significance of a bone scan index (BSI) based on the weighted proportion of tumor involvement in individual bones, in relation to other factors and to survival in patients with androgen-independent prostate cancer. PATIENTS AND METHODS: Baseline radionuclide bone scans were reviewed in 191 assessable patients with androgen-independent disease who were enrolled onto an open, randomized trial of liarozole versus prednisone. The extent of skeletal involvement was assessed by scoring each scan using the BSI and independently according to the number of metastatic lesions. The relationship of the scored bone involvement to other known prognostic factors was explored in single- and multiple-variable analyses. RESULTS: In single-variable analyses, the pretreatment factors found to be associated with survival were age (P = .0446), performance status (P = .0005), baseline prostate-specific antigen (P = .0001), hemoglobin (P = .0001), alkaline phosphatase (P = .0002), AST (P = .0021), lactate dehydrogenase (P = .0001), and treatment (P = .0098). The extent of osseous disease was significant using both the BSI (P = .0001) and the number of lesions present (P = .0001). In multiple-variable proportional hazards analyses, only BSI, age, hemoglobin, lactate dehydrogenase, and treatment arm were associated with survival. When the patient population was divided into three equal groups, with BSI values of < 1.4%, 1.4% to 5.1%, and > 5.1%, median survivals of 18.3, 15.5, and 8.1 months, respectively, were observed (P = .0079). CONCLUSION: The BSI quantifies the extent of skeletal involvement by tumor. It allows the identification of patients with distinct prognoses for stratification in clinical trials. Further study is needed to assess the utility of serial BSI determinations in monitoring treatment effects. The BSI may be particularly useful in the evaluation of agents for which prostate-specific antigen changes do not reflect clinical outcomes accurately.  (+info)

Phase I trial of docetaxel with estramustine in androgen-independent prostate cancer. (8/3406)

PURPOSE: To evaluate the toxicity, efficacy, and pharmacokinetics of docetaxel when combined with oral estramustine and dexamethasone in a phase I study in patients with progressive metastatic androgen-independent prostate cancer. PATIENTS AND METHODS: Thirty-four men were stratified into minimally pretreated (MPT) and extensively pretreated (EPT) groups. Estramustine 280 mg PO tid was administered 1 hour before or 2 hours after meals on days 1 through 5, with escalated doses of docetaxel from 40 to 80 mg/m2 on day 2. Treatment was repeated every 21 days. RESULTS: Thirty-four patients were assessable for toxicity and 33 for response. In the MPT patients, dose-limiting myelosuppression was reached at 80 mg/m2, with six patients experiencing grade 3/4 granulocytopenia. In EPT patients, escalation above 70 mg/m2 was not attempted. Fourteen MPT (70%) and six EPT (50%) patients had a > or = 50% decline in serum PSA on two consecutive measurements taken at least 2 weeks apart. The overall 50% PSA response rate was 63% (95% confidence interval [CI], 28% to 81%). Of the 18 patients with bidimensionally measurable disease, five (28%; 95% CI, 11% to 54%) achieved a partial response. At the time of entry onto the study, 15 patients required narcotic analgesics for bone pain; after treatment, eight (53%) discontinued their pain medications. The area under the curve for docetaxel increased linearly from 40 to 70 mg/m2. At 80 mg/m2, the measured area under the curve was 8.37 (standard deviation, 0.724), which was significantly higher than the previously reported values. CONCLUSION: The recommended phase II dose of docetaxel combined with estramustine is 70 mg/m2 in MPT patients and 60 mg/m2 in EPT patients. This combination is active in men with androgen-independent prostate cancer.  (+info)

Androgens are a class of hormones that are primarily responsible for the development and maintenance of male sexual characteristics and reproductive function. Testosterone is the most well-known androgen, but other androgens include dehydroepiandrosterone (DHEA), androstenedione, and dihydrotestosterone (DHT).

Androgens are produced primarily by the testes in men and the ovaries in women, although small amounts are also produced by the adrenal glands in both sexes. They play a critical role in the development of male secondary sexual characteristics during puberty, such as the growth of facial hair, deepening of the voice, and increased muscle mass.

In addition to their role in sexual development and function, androgens also have important effects on bone density, mood, and cognitive function. Abnormal levels of androgens can contribute to a variety of medical conditions, including infertility, erectile dysfunction, acne, hirsutism (excessive hair growth), and prostate cancer.

Androgen receptors (ARs) are a type of nuclear receptor protein that are expressed in various tissues throughout the body. They play a critical role in the development and maintenance of male sexual characteristics and reproductive function. ARs are activated by binding to androgens, which are steroid hormones such as testosterone and dihydrotestosterone (DHT). Once activated, ARs function as transcription factors that regulate gene expression, ultimately leading to various cellular responses.

In the context of medical definitions, androgen receptors can be defined as follows:

Androgen receptors are a type of nuclear receptor protein that bind to androgens, such as testosterone and dihydrotestosterone, and mediate their effects on gene expression in various tissues. They play critical roles in the development and maintenance of male sexual characteristics and reproductive function, and are involved in the pathogenesis of several medical conditions, including prostate cancer, benign prostatic hyperplasia, and androgen deficiency syndromes.

Androgen antagonists are a class of drugs that block the action of androgens, which are hormones that contribute to male sexual development and characteristics. They work by binding to androgen receptors in cells, preventing the natural androgens from attaching and exerting their effects. This can be useful in treating conditions that are caused or worsened by androgens, such as prostate cancer, hirsutism (excessive hair growth in women), and acne. Examples of androgen antagonists include flutamide, bicalutamide, and spironolactone.

Androgen receptor antagonists are a class of drugs that block the action of androgens, which are hormones responsible for the development and maintenance of male sexual characteristics. These drugs work by binding to the androgen receptors in cells, preventing the natural androgens such as testosterone and dihydrotestosterone from binding and exerting their effects.

Androgen receptor antagonists are often used in the treatment of prostate cancer because androgens can stimulate the growth of prostate cancer cells. By blocking the action of androgens, these drugs can help to slow or stop the growth of prostate cancer tumors. Some examples of androgen receptor antagonists include flutamide, bicalutamide, and enzalutamide.

It's important to note that androgen receptor antagonists can have side effects, including hot flashes, breast tenderness or enlargement, decreased sex drive, and impotence. Additionally, long-term use of these drugs can lead to muscle loss, bone density loss, and an increased risk of fractures. As with any medication, it's important to discuss the potential benefits and risks with a healthcare provider before starting treatment.

Dihydrotestosterone (DHT) is a sex hormone and androgen that plays a critical role in the development and maintenance of male characteristics, such as facial hair, deep voice, and muscle mass. It is synthesized from testosterone through the action of the enzyme 5-alpha reductase. DHT is essential for the normal development of the male genitalia during fetal development and for the maturation of the sexual organs at puberty.

In addition to its role in sexual development, DHT also contributes to the growth of hair follicles, the health of the prostate gland, and the maintenance of bone density. However, an excess of DHT has been linked to certain medical conditions, such as benign prostatic hyperplasia (BPH) and androgenetic alopecia (male pattern baldness).

DHT exerts its effects by binding to androgen receptors in various tissues throughout the body. Once bound, DHT triggers a series of cellular responses that regulate gene expression and influence the growth and differentiation of cells. In some cases, these responses can lead to unwanted side effects, such as hair loss or prostate enlargement.

Medications that block the action of 5-alpha reductase, such as finasteride and dutasteride, are sometimes used to treat conditions associated with excess DHT production. These drugs work by reducing the amount of DHT available to bind to androgen receptors, thereby alleviating symptoms and slowing disease progression.

In summary, dihydrotestosterone is a potent sex hormone that plays a critical role in male sexual development and function. While it is essential for normal growth and development, an excess of DHT has been linked to certain medical conditions, such as BPH and androgenetic alopecia. Medications that block the action of 5-alpha reductase are sometimes used to treat these conditions by reducing the amount of DHT available to bind to androgen receptors.

Testosterone is a steroid hormone that belongs to androsten class of hormones. It is primarily secreted by the Leydig cells in the testes of males and, to a lesser extent, by the ovaries and adrenal glands in females. Testosterone is the main male sex hormone and anabolic steroid. It plays a key role in the development of masculine characteristics, such as body hair and muscle mass, and contributes to bone density, fat distribution, red cell production, and sex drive. In females, testosterone contributes to sexual desire and bone health. Testosterone is synthesized from cholesterol and its production is regulated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH).

Prostatic neoplasms refer to abnormal growths in the prostate gland, which can be benign or malignant. The term "neoplasm" simply means new or abnormal tissue growth. When it comes to the prostate, neoplasms are often referred to as tumors.

Benign prostatic neoplasms, such as prostate adenomas, are non-cancerous overgrowths of prostate tissue. They usually grow slowly and do not spread to other parts of the body. While they can cause uncomfortable symptoms like difficulty urinating, they are generally not life-threatening.

Malignant prostatic neoplasms, on the other hand, are cancerous growths. The most common type of prostate cancer is adenocarcinoma, which arises from the glandular cells in the prostate. Prostate cancer often grows slowly and may not cause any symptoms for many years. However, some types of prostate cancer can be aggressive and spread quickly to other parts of the body, such as the bones or lymph nodes.

It's important to note that while prostate neoplasms can be concerning, early detection and treatment can significantly improve outcomes for many men. Regular check-ups with a healthcare provider are key to monitoring prostate health and catching any potential issues early on.

Testosterone congeners refer to structural analogs or derivatives of testosterone, which is the primary male sex hormone and an androgen. These are compounds that have a similar chemical structure to testosterone and may exhibit similar biological activities. Testosterone congeners can be naturally occurring or synthetic and include a variety of compounds such as androgens, anabolic steroids, and estrogens. They can be used in medical treatments, but some are also misused for performance enhancement or other non-medical purposes, which can lead to various health risks and side effects.

Metribolone is a synthetic anabolic-androgenic steroid (AAS) drug, which is not widely used in clinical medicine. Its chemical structure and pharmacological properties are similar to the natural male hormone testosterone. It has been used in research settings to study its effects on muscle growth, bone density, and sexual development. However, due to its potential for abuse and serious side effects, it is not approved for use in many countries.

It's important to note that the possession, distribution, and use of anabolic steroids without a valid prescription is illegal and can be dangerous to one's health. It can cause a range of adverse effects such as liver damage, cardiovascular disease, hormonal imbalances, and psychological issues among others.

Flutamide is an anti-androgen medication, which is primarily used to treat prostate cancer. It works by blocking the action of androgens (male hormones), such as testosterone, on cancer cells. This helps to slow down or stop the growth of prostate cancer cells. Flutamide may be given in combination with other medications, such as a luteinizing hormone-releasing hormone (LHRH) agonist, to enhance its effectiveness. It is usually taken by mouth in the form of tablets.

Flutamide can have side effects, including breast tenderness and enlargement, hot flashes, nausea, vomiting, diarrhea, and loss of sexual desire. In rare cases, it may cause more serious side effects such as liver damage. It is important to be monitored by a healthcare professional while taking this medication to ensure that it is working properly and to manage any potential side effects.

Androgen Insensitivity Syndrome (AIS) is a genetic condition that occurs in individuals who are genetically male (have one X and one Y chromosome) but are resistant to androgens, which are hormones that play a role in male sexual development. This resistance is caused by changes (mutations) in the gene for the androgen receptor.

There are three main types of AIS: complete androgen insensitivity syndrome (CAIS), partial androgen insensitivity syndrome (PAIS), and mild androgen insensitivity syndrome (MAIS).

In CAIS, individuals are completely resistant to androgens, which results in the development of female external genitalia at birth. Despite having testes, these individuals do not have a functioning male reproductive system and typically have a female gender identity. They may be diagnosed during adolescence when they do not begin to menstruate or experience other signs of puberty.

In PAIS and MAIS, the degree of androgen insensitivity varies, resulting in a range of physical characteristics that can include both male and female features. These individuals may have ambiguous genitalia at birth, and their gender identity may not align with their genetic sex.

It's important to note that people with AIS are typically healthy and do not have an increased risk of medical conditions beyond those related to their hormonal differences. However, they may face challenges related to their gender identity, sexual development, and fertility. It is recommended that individuals with AIS receive comprehensive medical care and support from a team of healthcare professionals who specialize in this condition.

The prostate is a small gland that is part of the male reproductive system. Its main function is to produce a fluid that, together with sperm cells from the testicles and fluids from other glands, makes up semen. This fluid nourishes and protects the sperm, helping it to survive and facilitating its movement.

The prostate is located below the bladder and in front of the rectum. It surrounds part of the urethra, the tube that carries urine and semen out of the body. This means that prostate problems can affect urination and sexual function. The prostate gland is about the size of a walnut in adult men.

Prostate health is an important aspect of male health, particularly as men age. Common prostate issues include benign prostatic hyperplasia (BPH), which is an enlarged prostate not caused by cancer, and prostate cancer, which is one of the most common types of cancer in men. Regular check-ups with a healthcare provider can help to detect any potential problems early and improve outcomes.

Androstenedione is a steroid hormone produced by the adrenal glands, ovaries, and testes. It is a precursor to both male and female sex hormones, including testosterone and estrogen. In the adrenal glands, it is produced from cholesterol through a series of biochemical reactions involving several enzymes. Androstenedione can also be converted into other steroid hormones, such as dehydroepiandrosterone (DHEA) and estrone.

In the body, androstenedione plays an important role in the development and maintenance of secondary sexual characteristics, such as facial hair and a deep voice in men, and breast development and menstrual cycles in women. It also contributes to bone density, muscle mass, and overall physical strength.

Androstenedione is available as a dietary supplement and has been marketed as a way to boost athletic performance and increase muscle mass. However, its effectiveness for these purposes is not supported by scientific evidence, and it may have harmful side effects when taken in high doses or for extended periods of time. Additionally, the use of androstenedione as a dietary supplement is banned by many sports organizations, including the International Olympic Committee and the National Collegiate Athletic Association.

Hormone-dependent neoplasms are a type of tumor that requires the presence of specific hormones to grow and multiply. These neoplasms have receptors on their cell surfaces that bind to the hormones, leading to the activation of signaling pathways that promote cell division and growth.

Examples of hormone-dependent neoplasms include breast cancer, prostate cancer, and endometrial cancer. In breast cancer, for instance, estrogen and/or progesterone can bind to their respective receptors on the surface of cancer cells, leading to the activation of signaling pathways that promote tumor growth. Similarly, in prostate cancer, androgens such as testosterone can bind to androgen receptors on the surface of cancer cells, promoting cell division and tumor growth.

Hormone-dependent neoplasms are often treated with hormonal therapies that aim to reduce or block the production of the relevant hormones or interfere with their ability to bind to their respective receptors. This can help slow down or stop the growth of the tumor and improve outcomes for patients.

Nandrolone is a synthetic anabolic-androgenic steroid, which is a type of hormone that is similar to testosterone. It is often used in medical settings for the treatment of certain conditions such as muscle wasting diseases, osteoporosis, and breast cancer in women. Nandrolone promotes muscle growth and increases appetite, which can help individuals with muscle wasting diseases or other conditions that cause muscle loss to maintain their strength and weight.

Nandrolone is also known by its brand names Deca-Durabolin and Durabolin. It works by increasing the production of proteins in the body, which helps to build muscle mass. Nandrolone can have both anabolic (muscle-building) and androgenic (masculinizing) effects, although it is generally considered to be less androgenic than testosterone.

Like other anabolic steroids, nandrolone can have a number of side effects, including acne, hair loss, liver damage, and mood changes. It can also cause virilization in women, which refers to the development of male characteristics such as a deep voice, facial hair, and a decrease in breast size. Nandrolone is classified as a controlled substance in many countries due to its potential for abuse and dependence.

Androstane-3,17-diol is a steroid hormone, specifically a 17-ketosteroid, that is synthesized from the metabolism of androgens such as testosterone. It exists in two forms: 5α-androstane-3α,17β-diol and 5β-androstane-3α,17β-diol, which differ based on the configuration of the A ring at the 5 position. These compounds are weak androgens themselves but serve as important intermediates in steroid hormone metabolism. They can be further metabolized to form other steroid hormones or their metabolites, such as androstanediol glucuronide, which is a major urinary metabolite of testosterone and dihydrotestosterone.

Dehydroepiandrosterone (DHEA) is a steroid hormone produced by the adrenal glands. It serves as a precursor to other hormones, including androgens such as testosterone and estrogens such as estradiol. DHEA levels typically peak during early adulthood and then gradually decline with age.

DHEA has been studied for its potential effects on various health conditions, including aging, cognitive function, sexual dysfunction, and certain chronic diseases. However, the evidence supporting its use for these purposes is generally limited and inconclusive. As with any supplement or medication, it's important to consult with a healthcare provider before taking DHEA to ensure safety and effectiveness.

3-Oxo-5-alpha-steroid 4-dehydrogenase is an enzyme that plays a role in steroid metabolism. It is involved in the conversion of certain steroids into others by removing hydrogen atoms and adding oxygen to create double bonds in the steroid molecule. Specifically, this enzyme catalyzes the dehydrogenation of 3-oxo-5-alpha-steroids at the 4th position, which results in the formation of a 4,5-double bond.

The enzyme is found in various tissues throughout the body and is involved in the metabolism of several important steroid hormones, including cortisol, aldosterone, and androgens. It helps to regulate the levels of these hormones in the body by converting them into their active or inactive forms as needed.

Deficiencies or mutations in the 3-oxo-5-alpha-steroid 4-dehydrogenase enzyme can lead to various medical conditions, such as congenital adrenal hyperplasia, which is characterized by abnormal hormone levels and development of sexual characteristics.

Cyproterone acetate is a synthetic steroid hormone with anti-androgen and progestogenic properties. It works by blocking the action of androgens (male sex hormones) in the body, which helps to reduce symptoms associated with excessive androgen production such as severe acne or hirsutism (excessive hair growth).

Cyproterone acetate is used in the treatment of conditions such as prostate cancer, where it can help to slow the growth of cancer cells by reducing the levels of androgens in the body. It is also used in the treatment of sexual deviations, such as pedophilia or exhibitionism, as it can reduce sexual desire.

In addition, cyproterone acetate is sometimes used in combination with estrogen in hormone replacement therapy for transgender women to suppress the production of testosterone and promote feminization.

It's important to note that cyproterone acetate can have significant side effects and its use should be under the close supervision of a healthcare professional.

The testis, also known as the testicle, is a male reproductive organ that is part of the endocrine system. It is located in the scrotum, outside of the abdominal cavity. The main function of the testis is to produce sperm and testosterone, the primary male sex hormone.

The testis is composed of many tiny tubules called seminiferous tubules, where sperm are produced. These tubules are surrounded by a network of blood vessels, nerves, and supportive tissues. The sperm then travel through a series of ducts to the epididymis, where they mature and become capable of fertilization.

Testosterone is produced in the Leydig cells, which are located in the interstitial tissue between the seminiferous tubules. Testosterone plays a crucial role in the development and maintenance of male secondary sexual characteristics, such as facial hair, deep voice, and muscle mass. It also supports sperm production and sexual function.

Abnormalities in testicular function can lead to infertility, hormonal imbalances, and other health problems. Regular self-examinations and medical check-ups are recommended for early detection and treatment of any potential issues.

Steroid 17-alpha-hydroxylase, also known as CYP17A1, is a cytochrome P450 enzyme that plays a crucial role in steroid hormone biosynthesis. It is located in the endoplasmic reticulum of cells in the adrenal glands and gonads. This enzyme catalyzes the 17-alpha-hydroxylation and subsequent lyase cleavage of pregnenolone and progesterone, converting them into dehydroepiandrosterone (DHEA) and androstenedione, respectively. These steroid intermediates are essential for the biosynthesis of both glucocorticoids and sex steroids, including cortisol, aldosterone, estrogens, and testosterone.

Defects in the CYP17A1 gene can lead to several disorders, such as congenital adrenal hyperplasia (CAH) due to 17-alpha-hydroxylase deficiency, which is characterized by decreased production of cortisol and sex steroids and increased mineralocorticoid levels. This condition results in sexual infantilism, electrolyte imbalances, and hypertension.

Dehydroepiandrosterone sulfate (DHEA-S) is a steroid hormone that is produced by the adrenal glands. It is a modified form of dehydroepiandrosterone (DHEA), which is converted to DHEA-S in the body for storage and later conversion back to DHEA or other steroid hormones, such as testosterone and estrogen. DHEA-S is often measured in the blood as a marker of adrenal function. It is also available as a dietary supplement, although its effectiveness for any medical purpose is not well established.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

Cholestenone 5 alpha-reductase is an enzyme that plays a role in the conversion of cholesterol and other steroid hormones in the body. Specifically, it catalyzes the reduction of 5,7-dihydroxycholest-4-en-3-one (also known as cholestenone) to 5α-androstan-3α,17β-diol, which is a precursor to the male sex hormone testosterone.

This enzyme is found in various tissues throughout the body, including the prostate gland, skin, and liver. In the prostate gland, 5 alpha-reductase helps regulate the growth and function of the gland by converting testosterone to dihydrotestosterone (DHT), a more potent form of the hormone.

Inhibitors of 5 alpha-reductase are sometimes used as medications to treat conditions such as benign prostatic hyperplasia (BPH) and male pattern baldness, as reducing DHT levels can help alleviate symptoms associated with these conditions.

Aromatase is a enzyme that belongs to the cytochrome P450 superfamily, and it is responsible for converting androgens into estrogens through a process called aromatization. This enzyme plays a crucial role in the steroid hormone biosynthesis pathway, particularly in females where it is primarily expressed in adipose tissue, ovaries, brain, and breast tissue.

Aromatase inhibitors are used as a treatment for estrogen receptor-positive breast cancer in postmenopausal women, as they work by blocking the activity of aromatase and reducing the levels of circulating estrogens in the body.

Nitriles, in a medical context, refer to a class of organic compounds that contain a cyano group (-CN) bonded to a carbon atom. They are widely used in the chemical industry and can be found in various materials, including certain plastics and rubber products.

In some cases, nitriles can pose health risks if ingested, inhaled, or come into contact with the skin. Short-term exposure to high levels of nitriles can cause irritation to the eyes, nose, throat, and respiratory tract. Prolonged or repeated exposure may lead to more severe health effects, such as damage to the nervous system, liver, and kidneys.

However, it's worth noting that the medical use of nitriles is not very common. Some nitrile gloves are used in healthcare settings due to their resistance to many chemicals and because they can provide a better barrier against infectious materials compared to latex or vinyl gloves. But beyond this application, nitriles themselves are not typically used as medications or therapeutic agents.

Feminization is a process or condition in which typically male characteristics are diminished or absent, and female characteristics become more prominent. This term is often used in the context of transgender health to describe hormone therapy that helps individuals align their physical appearance with their gender identity. The goal of feminizing hormone therapy is to promote the development of secondary sexual characteristics such as breast development, softer skin, reduced muscle mass and body hair, and fat redistribution to create a more typically female body shape. It's important to note that every individual's experience with feminization is unique, and the specific changes experienced may vary depending on factors such as age, genetics, and the duration of hormone therapy.

Estradiol is a type of estrogen, which is a female sex hormone. It is the most potent and dominant form of estrogen in humans. Estradiol plays a crucial role in the development and maintenance of secondary sexual characteristics in women, such as breast development and regulation of the menstrual cycle. It also helps maintain bone density, protect the lining of the uterus, and is involved in cognition and mood regulation.

Estradiol is produced primarily by the ovaries, but it can also be synthesized in smaller amounts by the adrenal glands and fat cells. In men, estradiol is produced from testosterone through a process called aromatization. Abnormal levels of estradiol can contribute to various health issues, such as hormonal imbalances, infertility, osteoporosis, and certain types of cancer.

Hyperandrogenism is a medical condition characterized by excessive levels of androgens (male sex hormones) in the body. This can lead to various symptoms such as hirsutism (excessive hair growth), acne, irregular menstrual periods, and infertility in women. It can be caused by conditions like polycystic ovary syndrome (PCOS), congenital adrenal hyperplasia, and tumors in the ovaries or adrenal glands. Proper diagnosis and management of hyperandrogenism is important to prevent complications and improve quality of life.

Gonadal steroid hormones, also known as gonadal sex steroids, are hormones that are produced and released by the gonads (i.e., ovaries in women and testes in men). These hormones play a critical role in the development and maintenance of secondary sexual characteristics, reproductive function, and overall health.

The three main classes of gonadal steroid hormones are:

1. Androgens: These are male sex hormones that are primarily produced by the testes but also produced in smaller amounts by the ovaries and adrenal glands. The most well-known androgen is testosterone, which plays a key role in the development of male secondary sexual characteristics such as facial hair, deepening of the voice, and increased muscle mass.
2. Estrogens: These are female sex hormones that are primarily produced by the ovaries but also produced in smaller amounts by the adrenal glands. The most well-known estrogen is estradiol, which plays a key role in the development of female secondary sexual characteristics such as breast development and the menstrual cycle.
3. Progestogens: These are hormones that are produced by the ovaries during the second half of the menstrual cycle and play a key role in preparing the uterus for pregnancy. The most well-known progestogen is progesterone, which also plays a role in maintaining pregnancy and regulating the menstrual cycle.

Gonadal steroid hormones can have significant effects on various physiological processes, including bone density, cognitive function, mood, and sexual behavior. Disorders of gonadal steroid hormone production or action can lead to a range of health problems, including infertility, osteoporosis, and sexual dysfunction.

Estrogens are a group of steroid hormones that are primarily responsible for the development and regulation of female sexual characteristics and reproductive functions. They are also present in lower levels in males. The main estrogen hormone is estradiol, which plays a key role in promoting the growth and development of the female reproductive system, including the uterus, fallopian tubes, and breasts. Estrogens also help regulate the menstrual cycle, maintain bone density, and have important effects on the cardiovascular system, skin, hair, and cognitive function.

Estrogens are produced primarily by the ovaries in women, but they can also be produced in smaller amounts by the adrenal glands and fat cells. In men, estrogens are produced from the conversion of testosterone, the primary male sex hormone, through a process called aromatization.

Estrogen levels vary throughout a woman's life, with higher levels during reproductive years and lower levels after menopause. Estrogen therapy is sometimes used to treat symptoms of menopause, such as hot flashes and vaginal dryness, or to prevent osteoporosis in postmenopausal women. However, estrogen therapy also carries risks, including an increased risk of certain cancers, blood clots, and stroke, so it is typically recommended only for women who have a high risk of these conditions.

Androgen-binding protein (ABP) is a protein that binds specifically to androgens, which are hormones such as testosterone that play a role in male sexual development and masculine characteristics. ABP is produced in the Sertoli cells of the testes and helps to regulate the levels of androgens within the testes by storing them and slowly releasing them over time. This is important for maintaining normal sperm production and male reproductive function.

ABP is also found in other tissues, including the prostate gland, where it may play a role in regulating the growth and development of this tissue. Abnormal levels of ABP have been associated with certain medical conditions, such as prostate cancer and infertility.

Testosterone Propionate is a synthetic form of testosterone, an androgenic hormone naturally produced in the human body. The propionate ester is attached to the testosterone molecule to regulate its release into the bloodstream after injection. This results in a slower release and longer duration of action compared to unesterified testosterone.

Testosterone Propionate is primarily used in medical treatments for conditions associated with low testosterone levels, such as hypogonadism or delayed puberty in males. It helps to stimulate the development of male sexual characteristics, maintain bone density, and support red blood cell production.

It's important to note that Testosterone Propionate is available only through a prescription and its use should be under the supervision of a healthcare professional due to potential side effects and interactions with other medications or health conditions.

The seminal vesicles are a pair of glands located in the male reproductive system, posterior to the urinary bladder and superior to the prostate gland. They are approximately 5 cm long and have a convoluted structure with many finger-like projections called infoldings. The primary function of seminal vesicles is to produce and secrete a significant portion of the seminal fluid, which makes up the bulk of semen along with spermatozoa from the testes and fluids from the prostate gland and bulbourethral glands.

The secretion of the seminal vesicles is rich in fructose, which serves as an energy source for sperm, as well as various proteins, enzymes, vitamins, and minerals that contribute to maintaining the optimal environment for sperm survival, nourishment, and transport. During sexual arousal and ejaculation, the smooth muscles in the walls of the seminal vesicles contract, forcing the stored secretion into the urethra, where it mixes with other fluids before being expelled from the body as semen.

Sex Hormone-Binding Globulin (SHBG) is a protein produced mainly in the liver that plays a crucial role in regulating the active forms of the sex hormones, testosterone and estradiol, in the body. SHBG binds to these hormones in the bloodstream, creating a reservoir of bound hormones. Only the unbound (or "free") fraction of testosterone and estradiol is considered biologically active and can easily enter cells to exert its effects.

By binding to sex hormones, SHBG helps control their availability and transport in the body. Factors such as age, sex, infection with certain viruses (like hepatitis or HIV), liver disease, obesity, and various medications can influence SHBG levels and, consequently, impact the amount of free testosterone and estradiol in circulation.

SHBG is an essential factor in maintaining hormonal balance and has implications for several physiological processes, including sexual development, reproduction, bone health, muscle mass, and overall well-being. Abnormal SHBG levels can contribute to various medical conditions, such as hypogonadism (low testosterone levels), polycystic ovary syndrome (PCOS), and certain types of cancer.

"Male genitalia" refers to the reproductive and sexual organs that are typically present in male individuals. These structures include:

1. Testes: A pair of oval-shaped glands located in the scrotum that produce sperm and testosterone.
2. Epididymis: A long, coiled tube that lies on the surface of each testicle where sperm matures and is stored.
3. Vas deferens: A pair of muscular tubes that transport sperm from the epididymis to the urethra.
4. Seminal vesicles: Glands that produce a fluid that mixes with sperm to create semen.
5. Prostate gland: A small gland that surrounds the urethra and produces a fluid that also mixes with sperm to create semen.
6. Bulbourethral glands (Cowper's glands): Two pea-sized glands that produce a lubricating fluid that is released into the urethra during sexual arousal.
7. Urethra: A tube that runs through the penis and carries urine from the bladder out of the body, as well as semen during ejaculation.
8. Penis: The external organ that serves as both a reproductive and excretory organ, expelling both semen and urine.

Polycyctic Ovary Syndrome (PCOS) is a complex endocrine-metabolic disorder characterized by the presence of hyperandrogenism (excess male hormones), ovulatory dysfunction, and polycystic ovaries. The Rotterdam criteria are commonly used for diagnosis, which require at least two of the following three features:

1. Oligo- or anovulation (irregular menstrual cycles)
2. Clinical and/or biochemical signs of hyperandrogenism (e.g., hirsutism, acne, or high levels of androgens in the blood)
3. Polycystic ovaries on ultrasound examination (presence of 12 or more follicles measuring 2-9 mm in diameter, or increased ovarian volume >10 mL)

The exact cause of PCOS remains unclear, but it is believed to involve a combination of genetic and environmental factors. Insulin resistance and obesity are common findings in women with PCOS, which can contribute to the development of metabolic complications such as type 2 diabetes, dyslipidemia, and cardiovascular disease.

Management of PCOS typically involves a multidisciplinary approach that includes lifestyle modifications (diet, exercise, weight loss), medications to regulate menstrual cycles and reduce hyperandrogenism (e.g., oral contraceptives, metformin, anti-androgens), and fertility treatments if desired. Regular monitoring of metabolic parameters and long-term follow-up are essential for optimal management and prevention of complications.

"Sex differentiation" is a term used in the field of medicine, specifically in reproductive endocrinology and genetics. It refers to the biological development of sexual characteristics that distinguish males from females. This process is regulated by hormones and genetic factors.

There are two main stages of sex differentiation: genetic sex determination and gonadal sex differentiation. Genetic sex determination occurs at fertilization, where the combination of X and Y chromosomes determines the sex of the individual (typically, XX = female and XY = male). Gonadal sex differentiation then takes place during fetal development, where the genetic sex signals the development of either ovaries or testes.

Once the gonads are formed, they produce hormones that drive further sexual differentiation, leading to the development of internal reproductive structures (such as the uterus and fallopian tubes in females, and the vas deferens and seminal vesicles in males) and external genitalia.

It's important to note that while sex differentiation is typically categorized as male or female, there are individuals who may have variations in their sexual development, leading to intersex conditions. These variations can occur at any stage of the sex differentiation process and can result in a range of physical characteristics that do not fit neatly into male or female categories.

"Sex characteristics" refer to the anatomical, chromosomal, and genetic features that define males and females. These include both primary sex characteristics (such as reproductive organs like ovaries or testes) and secondary sex characteristics (such as breasts or facial hair) that typically develop during puberty. Sex characteristics are primarily determined by the presence of either X or Y chromosomes, with XX individuals usually developing as females and XY individuals usually developing as males, although variations and exceptions to this rule do occur.

Cyproterone is an anti-androgen medication that works by blocking the action of androgens (male hormones such as testosterone) in the body. It is used to treat conditions such as prostate cancer, hirsutism (excessive hair growth), and severe acne that have not responded to other treatments. Cyproterone is also used in conjunction with estrogen therapy to help reduce sexual desire in individuals with paraphilic disorders or gender identity disorder.

The medication comes in the form of tablets and is usually taken once or twice a day, depending on the condition being treated. Common side effects of cyproterone include breast tenderness, decreased sex drive, and irregular menstrual periods. More serious side effects may include liver damage, blood clots, and an increased risk of certain types of cancer.

It is important to follow the instructions of a healthcare provider when taking cyproterone, as the medication can interact with other medications and have potentially serious side effects. Regular monitoring by a healthcare provider is also necessary to ensure that the medication is working effectively and to monitor for any potential side effects.

Steroids, also known as corticosteroids, are a type of hormone that the adrenal gland produces in your body. They have many functions, such as controlling the balance of salt and water in your body and helping to reduce inflammation. Steroids can also be synthetically produced and used as medications to treat a variety of conditions, including allergies, asthma, skin conditions, and autoimmune disorders.

Steroid medications are available in various forms, such as oral pills, injections, creams, and inhalers. They work by mimicking the effects of natural hormones produced by your body, reducing inflammation and suppressing the immune system's response to prevent or reduce symptoms. However, long-term use of steroids can have significant side effects, including weight gain, high blood pressure, osteoporosis, and increased risk of infections.

It is important to note that anabolic steroids are a different class of drugs that are sometimes abused for their muscle-building properties. These steroids are synthetic versions of the male hormone testosterone and can have serious health consequences when taken in large doses or without medical supervision.

Antineoplastic agents, hormonal, are a class of drugs used to treat cancers that are sensitive to hormones. These agents work by interfering with the production or action of hormones in the body. They can be used to slow down or stop the growth of cancer cells and may also help to relieve symptoms caused by the spread of cancer.

Hormonal therapies can work in one of two ways: they can either block the production of hormones or prevent their action on cancer cells. For example, some hormonal therapies work by blocking the action of estrogen or testosterone, which are hormones that can stimulate the growth of certain types of cancer cells.

Examples of hormonal agents used to treat cancer include:

* Aromatase inhibitors (such as letrozole, anastrozole, and exemestane), which block the production of estrogen in postmenopausal women
* Selective estrogen receptor modulators (such as tamoxifen and raloxifene), which block the action of estrogen on cancer cells
* Luteinizing hormone-releasing hormone agonists (such as leuprolide, goserelin, and triptorelin), which block the production of testosterone in men
* Antiandrogens (such as bicalutamide, flutamide, and enzalutamide), which block the action of testosterone on cancer cells

Hormonal therapies are often used in combination with other treatments, such as surgery or radiation therapy. They may be used to shrink tumors before surgery, to kill any remaining cancer cells after surgery, or to help control the spread of cancer that cannot be removed by surgery. Hormonal therapies can also be used to relieve symptoms and improve quality of life in people with advanced cancer.

It's important to note that hormonal therapies are not effective for all types of cancer. They are most commonly used to treat breast, prostate, and endometrial cancers, which are known to be sensitive to hormones. Hormonal therapies may also be used to treat other types of cancer in certain situations.

Like all medications, hormonal therapies can have side effects. These can vary depending on the specific drug and the individual person. Common side effects of hormonal therapies include hot flashes, fatigue, mood changes, and sexual dysfunction. Some hormonal therapies can also cause more serious side effects, such as an increased risk of osteoporosis or blood clots. It's important to discuss the potential risks and benefits of hormonal therapy with a healthcare provider before starting treatment.

Hirsutism is a medical condition characterized by excessive hair growth in women in areas where hair growth is typically androgen-dependent, such as the face, chest, lower abdomen, and inner thighs. This hair growth is often thick, dark, and coarse, resembling male-pattern hair growth. Hirsutism can be caused by various factors, including hormonal imbalances, certain medications, and genetic conditions. It's essential to consult a healthcare professional if you experience excessive or unwanted hair growth to determine the underlying cause and develop an appropriate treatment plan.

Neoplastic gene expression regulation refers to the processes that control the production of proteins and other molecules from genes in neoplastic cells, or cells that are part of a tumor or cancer. In a normal cell, gene expression is tightly regulated to ensure that the right genes are turned on or off at the right time. However, in cancer cells, this regulation can be disrupted, leading to the overexpression or underexpression of certain genes.

Neoplastic gene expression regulation can be affected by a variety of factors, including genetic mutations, epigenetic changes, and signals from the tumor microenvironment. These changes can lead to the activation of oncogenes (genes that promote cancer growth and development) or the inactivation of tumor suppressor genes (genes that prevent cancer).

Understanding neoplastic gene expression regulation is important for developing new therapies for cancer, as targeting specific genes or pathways involved in this process can help to inhibit cancer growth and progression.

The epididymis is a tightly coiled tube located on the upper and posterior portion of the testicle that serves as the site for sperm maturation and storage. It is an essential component of the male reproductive system. The epididymis can be divided into three parts: the head (where newly produced sperm enter from the testicle), the body, and the tail (where mature sperm exit and are stored). Any abnormalities or inflammation in the epididymis may lead to discomfort, pain, or infertility.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Androstenols are a type of steroid compound that is found in both animals and humans. They are classified as pheromones, which are chemicals that can affect the behavior or physiology of other members of the same species. Androstenols are found in high concentrations in male sweat, and they have been suggested to play a role in human sexual attraction and communication.

In particular, androstenols are thought to have a positive and calming effect on people, and may help to reduce stress and anxiety. They have also been shown to increase feelings of approachability and friendliness between individuals. Some studies have suggested that androstenols may be particularly effective at enhancing social interactions in women.

Androstenols are often used in perfumes and colognes, as well as in aromatherapy products, because of their potential to promote positive social interactions and reduce stress. However, it is important to note that the effects of androstenols on human behavior and physiology are still not fully understood, and more research is needed to confirm their role in human communication and attraction.

Methyltestosterone is a synthetic form of the hormone testosterone, which is primarily used in the treatment of low testosterone levels (hypogonadism) in men. It has a methyl group attached to it, which allows it to be taken orally and still have significant effects on the body.

Testosterone is an androgen hormone that plays important roles in the development and maintenance of male sex characteristics, such as deepening of the voice, growth of facial and body hair, and increased muscle mass. It also helps maintain bone density, red blood cell production, and sex drive.

Methyltestosterone is available in various forms, including tablets and capsules, and its use should be under the supervision of a healthcare professional due to potential side effects and risks associated with its use, such as liver toxicity, increased risk of cardiovascular events, and changes in cholesterol levels.

It's important to note that methyltestosterone is not approved for use in women, as it can cause virilization (development of male sex characteristics) and other side effects.

Steroid receptors are a type of nuclear receptor protein that are activated by the binding of steroid hormones or related molecules. These receptors play crucial roles in various physiological processes, including development, homeostasis, and metabolism. Steroid receptors function as transcription factors, regulating gene expression when activated by their respective ligands.

There are several subtypes of steroid receptors, classified based on the specific steroid hormones they bind to:

1. Glucocorticoid receptor (GR): Binds to glucocorticoids, which regulate metabolism, immune response, and stress response.
2. Mineralocorticoid receptor (MR): Binds to mineralocorticoids, which regulate electrolyte and fluid balance.
3. Androgen receptor (AR): Binds to androgens, which are male sex hormones that play a role in the development and maintenance of male sexual characteristics.
4. Estrogen receptor (ER): Binds to estrogens, which are female sex hormones that play a role in the development and maintenance of female sexual characteristics.
5. Progesterone receptor (PR): Binds to progesterone, which is a female sex hormone involved in the menstrual cycle and pregnancy.
6. Vitamin D receptor (VDR): Binds to vitamin D, which plays a role in calcium homeostasis and bone metabolism.

Upon ligand binding, steroid receptors undergo conformational changes that allow them to dimerize, interact with co-regulatory proteins, and bind to specific DNA sequences called hormone response elements (HREs) in the promoter regions of target genes. This interaction leads to the recruitment of transcriptional machinery, ultimately resulting in the modulation of gene expression. Dysregulation of steroid receptor signaling has been implicated in various diseases, including cancer, metabolic disorders, and inflammatory conditions.

Luteinizing Hormone (LH) is a glycoprotein hormone, which is primarily produced and released by the anterior pituitary gland. In women, a surge of LH triggers ovulation, the release of an egg from the ovaries during the menstrual cycle. During pregnancy, LH stimulates the corpus luteum to produce progesterone. In men, LH stimulates the testes to produce testosterone. It plays a crucial role in sexual development, reproduction, and maintaining the reproductive system.

Transcriptional activation is the process by which a cell increases the rate of transcription of specific genes from DNA to RNA. This process is tightly regulated and plays a crucial role in various biological processes, including development, differentiation, and response to environmental stimuli.

Transcriptional activation occurs when transcription factors (proteins that bind to specific DNA sequences) interact with the promoter region of a gene and recruit co-activator proteins. These co-activators help to remodel the chromatin structure around the gene, making it more accessible for the transcription machinery to bind and initiate transcription.

Transcriptional activation can be regulated at multiple levels, including the availability and activity of transcription factors, the modification of histone proteins, and the recruitment of co-activators or co-repressors. Dysregulation of transcriptional activation has been implicated in various diseases, including cancer and genetic disorders.

5-alpha Reductase Inhibitors are a class of drugs that block the action of the enzyme 5-alpha reductase, which is responsible for converting testosterone to dihydrotestosterone (DHT). DHT is a more potent form of testosterone that plays a key role in the development and maintenance of male sexual characteristics and is involved in the pathogenesis of benign prostatic hyperplasia (BPH) and androgenetic alopecia (male pattern baldness).

By inhibiting the action of 5-alpha reductase, these drugs reduce the levels of DHT in the body, which can help to shrink the prostate gland and improve symptoms of BPH such as difficulty urinating, frequent urination, and weak urine stream. They are also used off-label to treat hair loss in men.

Examples of 5-alpha reductase inhibitors include finasteride (Proscar, Propecia) and dutasteride (Avodart). Common side effects of these drugs may include decreased libido, erectile dysfunction, and breast tenderness or enlargement.

Hypogonadism is a medical condition characterized by the inability of the gonads (testes in males and ovaries in females) to produce sufficient amounts of sex hormones, such as testosterone and estrogen. This can lead to various symptoms including decreased libido, erectile dysfunction in men, irregular menstrual periods in women, and reduced fertility in both sexes. Hypogonadism may be caused by genetic factors, aging, injury to the gonads, or certain medical conditions such as pituitary disorders. It can be treated with hormone replacement therapy.

Phenytoin is an anticonvulsant drug, which is chemically classified as a hydantoin. The term "phenylthiohydantoin" refers to the functional group that makes up the core structure of phenytoin and other related compounds. This group consists of a phenyl ring (a benzene ring with a hydrogen atom replaced by a hydrocarbon group) attached to a thiocarbonyl group (-C=S), which is in turn attached to a hydantoin ring.

The hydantoin ring is a six-membered ring containing two nitrogen atoms and two carbonyl groups, which makes it a cyclic urea derivative. Phenytoin's chemical formula is C15H14N2O2S, and its molecular structure can be represented as follows:

![Phenytoin Molecular Structure](https://www.researchgate.net/profile/Mohamed-Abdelkader-Elshaer-3/publication/327516849/figure/fig1/AS:616830886369744@1524486833308/Schematic-representation-of-phenytoin-structure.png)

Phenytoin is primarily used as an antiepileptic drug to control tonic-clonic (grand mal) and complex partial seizures. It works by stabilizing the inactive state of voltage-gated sodium channels in the brain, which reduces their excitability and helps prevent abnormal electrical activity leading to seizures.

In a medical context, "phenylthiohydantoin" is not typically used as a standalone definition but rather refers to the core structure of phenytoin and related compounds.

3-Hydroxysteroid dehydrogenases (3-HSDs) are a group of enzymes that play a crucial role in steroid hormone biosynthesis. These enzymes catalyze the conversion of 3-beta-hydroxy steroids to 3-keto steroids, which is an essential step in the production of various steroid hormones, including progesterone, cortisol, aldosterone, and sex hormones such as testosterone and estradiol.

There are several isoforms of 3-HSDs that are expressed in different tissues and have distinct substrate specificities. For instance, 3-HSD type I is primarily found in the ovary and adrenal gland, where it catalyzes the conversion of pregnenolone to progesterone and 17-hydroxyprogesterone to 17-hydroxycortisol. On the other hand, 3-HSD type II is mainly expressed in the testes, adrenal gland, and placenta, where it catalyzes the conversion of dehydroepiandrosterone (DHEA) to androstenedione and androstenedione to testosterone.

Defects in 3-HSDs can lead to various genetic disorders that affect steroid hormone production and metabolism, resulting in a range of clinical manifestations such as adrenal insufficiency, ambiguous genitalia, and sexual development disorders.

Genitalia, also known as the genitals, refer to the reproductive organs located in the pelvic region. In males, these include the penis and testicles, while in females, they consist of the vulva, vagina, clitoris, and ovaries. Genitalia are essential for sexual reproduction and can also be associated with various medical conditions, such as infections, injuries, or congenital abnormalities.

I apologize, but "estrenes" is not a term commonly used in medical terminology in English. It may be a term used in another language or context. If you could provide more context or clarify what you are looking for, I would be happy to help further.

Androstenediol is an endogenous steroid hormone that is produced in the body from dehydroepiandrosterone (DHEA) and converted into testosterone and estrogens. It exists in two forms: 5-androstenediol and 4-androstenediol, with 5-androstenediol being the more abundant form in the human body.

In the context of medical definitions, androstenediol is a weak androgen that can be converted into testosterone or estradiol, depending on the needs of the body. It plays a role in the development and maintenance of secondary sexual characteristics, such as facial hair and deepening of the voice in males, and breast development and menstrual cycles in females.

Androstenediol is also available as a dietary supplement and has been marketed for its potential performance-enhancing effects. However, its use as a performance-enhancing drug is banned by many sports organizations due to concerns about its potential to enhance athletic performance and its unknown safety profile.

Sertoli cells, also known as sustentacular cells or nurse cells, are specialized cells in the seminiferous tubules of the testis in mammals. They play a crucial role in supporting and nurturing the development of sperm cells (spermatogenesis). Sertoli cells create a microenvironment within the seminiferous tubules that facilitates the differentiation, maturation, and survival of germ cells.

These cells have several essential functions:

1. Blood-testis barrier formation: Sertoli cells form tight junctions with each other, creating a physical barrier called the blood-testis barrier, which separates the seminiferous tubules into basal and adluminal compartments. This barrier protects the developing sperm cells from the immune system and provides an isolated environment for their maturation.
2. Nutrition and support: Sertoli cells provide essential nutrients and growth factors to germ cells, ensuring their proper development and survival. They also engulf and digest residual bodies, which are byproducts of spermatid differentiation.
3. Phagocytosis: Sertoli cells have phagocytic properties, allowing them to remove debris and dead cells within the seminiferous tubules.
4. Hormone metabolism: Sertoli cells express receptors for various hormones, such as follicle-stimulating hormone (FSH), testosterone, and estradiol. They play a role in regulating hormonal signaling within the testis by metabolizing these hormones or producing inhibins, which modulate FSH secretion from the pituitary gland.
5. Regulation of spermatogenesis: Sertoli cells produce and secrete various proteins and growth factors that influence germ cell development and proliferation. They also control the release of mature sperm cells into the epididymis through a process called spermiation.

17-α-Hydroxyprogesterone is a naturally occurring hormone produced by the adrenal glands and, in smaller amounts, by the ovaries and testes. It is an intermediate in the biosynthesis of steroid hormones, including cortisol, aldosterone, and sex hormones such as testosterone and estrogen.

In a medical context, 17-α-Hydroxyprogesterone may also refer to a synthetic form of this hormone that is used in the treatment of certain medical conditions. For example, a medication called 17-alpha-hydroxyprogesterone caproate (17-OHP) is used to reduce the risk of preterm birth in women who have previously given birth prematurely. It works by suppressing uterine contractions and promoting fetal lung maturity.

It's important to note that 17-alpha-Hydroxyprogesterone should only be used under the supervision of a healthcare provider, as it can have side effects and may interact with other medications.

Finasteride is a synthetic 4-azasteroid compound that acts as a specific inhibitor of Type II 5α-reductase, an intracellular enzyme that converts testosterone to dihydrotestosterone (DHT). DHT is a hormonal byproduct thought to be responsible for the development and worsening of benign prostatic hyperplasia (BPH) and androgenetic alopecia (AGA), also known as male pattern baldness.

Finasteride is available in two formulations: finasteride 1 mg (Proscar) and finasteride 5 mg (Propecia). Finasteride 1 mg is used to treat BPH, while finasteride 5 mg is used for the treatment of AGA in men. The drug works by reducing the production of DHT, which in turn slows down the progression of BPH and AGA.

It's important to note that finasteride is not approved for use in women or children, and it should be used with caution in men due to potential side effects such as decreased sexual desire, difficulty in achieving an erection, and a decrease in the amount of semen produced.

Nuclear receptor coactivators are a group of proteins that interact with nuclear receptors, which are transcription factors that regulate gene expression in response to various signals such as hormones and metabolites. Nuclear receptor coactivators function to enhance the ability of nuclear receptors to activate transcription of their target genes. They do this by binding to nuclear receptors and recruiting additional proteins, including histone modifiers and chromatin remodeling complexes, which help to create a permissive environment for transcription. Nuclear receptor coactivators play important roles in various physiological processes, including development, metabolism, and reproduction, and their dysregulation has been implicated in several diseases, including cancer.

Gonadotropin-Releasing Hormone (GnRH), also known as Luteinizing Hormone-Releasing Hormone (LHRH), is a hormonal peptide consisting of 10 amino acids. It is produced and released by the hypothalamus, an area in the brain that links the nervous system to the endocrine system via the pituitary gland.

GnRH plays a crucial role in regulating reproduction and sexual development through its control of two gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These gonadotropins, in turn, stimulate the gonads (ovaries or testes) to produce sex steroids and eggs or sperm.

GnRH acts on the anterior pituitary gland by binding to its specific receptors, leading to the release of FSH and LH. The hypothalamic-pituitary-gonadal axis is under negative feedback control, meaning that when sex steroid levels are high, they inhibit the release of GnRH, which subsequently decreases FSH and LH secretion.

GnRH agonists and antagonists have clinical applications in various medical conditions, such as infertility treatments, precocious puberty, endometriosis, uterine fibroids, prostate cancer, and hormone-responsive breast cancer.

Prostatic hyperplasia, also known as benign prostatic hyperplasia (BPH), is a noncancerous enlargement of the prostate gland. The prostate gland surrounds the urethra, the tube that carries urine and semen out of the body. When the prostate gland enlarges, it can squeeze or partially block the urethra, causing problems with urination, such as a weak stream, difficulty starting or stopping the flow, and more frequent urination, especially at night. Prostatic hyperplasia is a common condition as men age and does not necessarily lead to cancer. However, it can cause significant discomfort and decreased quality of life if left untreated. Treatment options include medications, minimally invasive procedures, and surgery.

Leuprolide is a synthetic hormonal analog of gonadotropin-releasing hormone (GnRH or LHRH). It acts as a potent agonist of GnRH receptors, leading to the suppression of pituitary gland's secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). This, in turn, results in decreased levels of sex hormones such as testosterone and estrogen.

Leuprolide is used clinically for the treatment of various conditions related to hormonal imbalances, including:
- Prostate cancer: Leuprolide can help slow down the growth of prostate cancer cells by reducing testosterone levels in the body.
- Endometriosis: By lowering estrogen levels, leuprolide can alleviate symptoms associated with endometriosis such as pelvic pain and menstrual irregularities.
- Central precocious puberty: Leuprolide is used to delay the onset of puberty in children who experience it prematurely by inhibiting the release of gonadotropins.
- Uterine fibroids: Lowering estrogen levels with leuprolide can help shrink uterine fibroids and reduce symptoms like heavy menstrual bleeding and pelvic pain.

Leuprolide is available in various formulations, such as injectable depots or implants, for long-term hormonal suppression. Common side effects include hot flashes, mood changes, and potential loss of bone density due to prolonged hormone suppression.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

An ovary is a part of the female reproductive system in which ova or eggs are produced through the process of oogenesis. They are a pair of solid, almond-shaped structures located one on each side of the uterus within the pelvic cavity. Each ovary measures about 3 to 5 centimeters in length and weighs around 14 grams.

The ovaries have two main functions: endocrine (hormonal) function and reproductive function. They produce and release eggs (ovulation) responsible for potential fertilization and development of an embryo/fetus during pregnancy. Additionally, they are essential in the production of female sex hormones, primarily estrogen and progesterone, which regulate menstrual cycles, sexual development, and reproduction.

During each menstrual cycle, a mature egg is released from one of the ovaries into the fallopian tube, where it may be fertilized by sperm. If not fertilized, the egg, along with the uterine lining, will be shed, leading to menstruation.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Anabolic agents are a class of drugs that promote anabolism, the building up of body tissues. These agents are often used medically to help people with certain medical conditions such as muscle wasting diseases, osteoporosis, and delayed puberty. Anabolic steroids are one type of anabolic agent. They mimic the effects of testosterone, the male sex hormone, leading to increased muscle mass and strength. However, anabolic steroids also have significant side effects and can be addictive. Therefore, their use is regulated and they are only available by prescription in many countries. Abuse of anabolic steroids for non-medical purposes, such as to improve athletic performance or appearance, is illegal and can lead to serious health consequences.

Castration-resistant prostate cancer (CRPC) is a more advanced form of prostate cancer that no longer responds to treatments that lower levels of male hormones, such as orchiectomy (surgical removal of the testicles) or medical castration with luteinizing hormone-releasing hormone (LHRH) agonists or antagonists. Despite these interventions, the cancer continues to progress and grow. This is often due to the development of mechanisms that allow the cancer cells to produce their own male hormones or become less dependent on them for growth and survival. CRPC is a complex and heterogeneous disease with various clinical manifestations and treatment options, which may include chemotherapy, novel hormonal therapies, immunotherapy, and/or radiation therapy.

Leydig cells, also known as interstitial cells of Leydig or interstitial cell-stroma, are cells in the testes that produce and release testosterone and other androgens into the bloodstream. They are located in the seminiferous tubules of the testis, near the blood vessels, and are named after Franz Leydig, the German physiologist who discovered them in 1850.

Leydig cells contain cholesterol esters, which serve as precursors for the synthesis of testosterone. They respond to luteinizing hormone (LH) released by the anterior pituitary gland, which stimulates the production and release of testosterone. Testosterone is essential for the development and maintenance of male secondary sexual characteristics, such as facial hair, deep voice, and muscle mass. It also plays a role in sperm production and bone density.

In addition to their endocrine function, Leydig cells have been shown to have non-hormonal functions, including phagocytosis, antigen presentation, and immune regulation. However, these functions are not as well understood as their hormonal roles.

Hypospadias is a congenital condition in males where the urethral opening (meatus), which is the end of the urethra through which urine exits, is not located at the tip of the penis but instead appears on the underside of the penis. The severity of hypospadias can vary, with some cases having the meatus located closer to the tip and others further down on the shaft or even at the scrotum or perineum (the area between the scrotum and the anus). This condition affects about 1 in every 200-250 male newborns. The exact cause of hypospadias is not fully understood, but it's believed to be a combination of genetic and environmental factors. Surgical correction is usually recommended during infancy or early childhood to prevent complications such as difficulty urinating while standing, problems with sexual function, and psychological issues related to body image.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Nuclear Receptor Coactivator 2 (NCoA-2, also known as SRC-2 or TIF2) is a protein that functions as a transcriptional coactivator. It plays an essential role in the regulation of gene expression by interacting with nuclear receptors, which are transcription factors that bind to specific DNA sequences and control the expression of target genes.

NCoA-2 contains several functional domains, including an intrinsic histone acetyltransferase (HAT) domain, which can acetylate histone proteins and modify chromatin structure, leading to the activation of gene transcription. NCoA-2 also has a bromodomain, which recognizes and binds to acetylated lysine residues on histones, further contributing to its ability to modulate chromatin structure and function.

NCoA-2 interacts with various nuclear receptors, such as the estrogen receptor (ER), glucocorticoid receptor (GR), progesterone receptor (PR), and androgen receptor (AR). By binding to these receptors, NCoA-2 enhances their transcriptional activity, ultimately influencing various physiological processes, including cell growth, differentiation, and metabolism.

Dysregulation of NCoA-2 has been implicated in several diseases, such as cancer, where its overexpression can contribute to tumor progression and hormone resistance. Therefore, understanding the molecular mechanisms underlying NCoA-2 function is crucial for developing novel therapeutic strategies targeting nuclear receptor signaling pathways.

Goserelin is a synthetic hormone drug that is used to treat various types of cancer, including breast, prostate, and endometrial cancer. It is a long-acting form of a hormone called gonadotropin-releasing hormone (GnRH) agonist.

When Goserelin is administered, it initially stimulates the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland, which in turn stimulate the production of sex hormones such as estrogen and testosterone. However, after a few weeks of continuous administration, Goserelin suppresses the release of FSH and LH, leading to reduced levels of sex hormones.

In cancer treatment, this reduction in sex hormones can help slow down or stop the growth of certain types of cancer cells that are sensitive to these hormones. Goserelin is typically administered as an implant under the skin every 1-3 months, depending on the specific indication and dosage regimen.

It's important to note that Goserelin can have side effects, including hot flashes, mood changes, and reduced sexual desire, among others. It may also affect bone density and increase the risk of fractures in some people. Therefore, it should be used under the close supervision of a healthcare provider.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

Estrogen receptors (ERs) are a type of nuclear receptor protein that are expressed in various tissues and cells throughout the body. They play a critical role in the regulation of gene expression and cellular responses to the hormone estrogen. There are two main subtypes of ERs, ERα and ERβ, which have distinct molecular structures, expression patterns, and functions.

ERs function as transcription factors that bind to specific DNA sequences called estrogen response elements (EREs) in the promoter regions of target genes. When estrogen binds to the ER, it causes a conformational change in the receptor that allows it to recruit co-activator proteins and initiate transcription of the target gene. This process can lead to a variety of cellular responses, including changes in cell growth, differentiation, and metabolism.

Estrogen receptors are involved in a wide range of physiological processes, including the development and maintenance of female reproductive tissues, bone homeostasis, cardiovascular function, and cognitive function. They have also been implicated in various pathological conditions, such as breast cancer, endometrial cancer, and osteoporosis. As a result, ERs are an important target for therapeutic interventions in these diseases.

I'm sorry for any confusion, but "Azasteroids" is not a medical term or concept. The term "azasteroids" is used in the field of chemistry to refer to a class of compounds that are structurally similar to steroids but have an aziridine ring (a three-membered ring containing two carbon atoms and one nitrogen atom) instead of the usual four-membered ring in the steroid structure.

These compounds may have potential applications in various fields, including medicinal chemistry, but they are not a medical concept or diagnosis. If you have any questions related to medical terminology or health concerns, I would be happy to help you with those!

Follicle-Stimulating Hormone (FSH) is a glycoprotein hormone secreted and released by the anterior pituitary gland. In females, it promotes the growth and development of ovarian follicles in the ovary, which ultimately leads to the maturation and release of an egg (ovulation). In males, FSH stimulates the testes to produce sperm. It works in conjunction with luteinizing hormone (LH) to regulate reproductive processes. The secretion of FSH is controlled by the hypothalamic-pituitary-gonadal axis and its release is influenced by the levels of gonadotropin-releasing hormone (GnRH), estrogen, inhibin, and androgens.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

17-Hydroxysteroid dehydrogenases (17-HSDs) are a group of enzymes that play a crucial role in steroid hormone biosynthesis. They are involved in the conversion of 17-ketosteroids to 17-hydroxy steroids or vice versa, by adding or removing a hydroxyl group (–OH) at the 17th carbon atom of the steroid molecule. This conversion is essential for the production of various steroid hormones, including cortisol, aldosterone, and sex hormones such as estrogen and testosterone.

There are several isoforms of 17-HSDs, each with distinct substrate specificities, tissue distributions, and functions:

1. 17-HSD type 1 (17-HSD1): This isoform primarily catalyzes the conversion of estrone (E1) to estradiol (E2), an active form of estrogen. It is mainly expressed in the ovary, breast, and adipose tissue.
2. 17-HSD type 2 (17-HSD2): This isoform catalyzes the reverse reaction, converting estradiol (E2) to estrone (E1). It is primarily expressed in the placenta, prostate, and breast tissue.
3. 17-HSD type 3 (17-HSD3): This isoform is responsible for the conversion of androstenedione to testosterone, an essential step in male sex hormone biosynthesis. It is predominantly expressed in the testis and adrenal gland.
4. 17-HSD type 4 (17-HSD4): This isoform catalyzes the conversion of dehydroepiandrosterone (DHEA) to androstenedione, an intermediate step in steroid hormone biosynthesis. It is primarily expressed in the placenta.
5. 17-HSD type 5 (17-HSD5): This isoform catalyzes the conversion of cortisone to cortisol, a critical step in glucocorticoid biosynthesis. It is predominantly expressed in the adrenal gland and liver.
6. 17-HSD type 6 (17-HSD6): This isoform catalyzes the conversion of androstenedione to testosterone, similar to 17-HSD3. However, it has a different substrate specificity and is primarily expressed in the ovary.
7. 17-HSD type 7 (17-HSD7): This isoform catalyzes the conversion of estrone (E1) to estradiol (E2), similar to 17-HSD1. However, it has a different substrate specificity and is primarily expressed in the ovary.
8. 17-HSD type 8 (17-HSD8): This isoform catalyzes the conversion of DHEA to androstenedione, similar to 17-HSD4. However, it has a different substrate specificity and is primarily expressed in the testis.
9. 17-HSD type 9 (17-HSD9): This isoform catalyzes the conversion of estrone (E1) to estradiol (E2), similar to 17-HSD1. However, it has a different substrate specificity and is primarily expressed in the placenta.
10. 17-HSD type 10 (17-HSD10): This isoform catalyzes the conversion of DHEA to androstenedione, similar to 17-HSD4. However, it has a different substrate specificity and is primarily expressed in the testis.
11. 17-HSD type 11 (17-HSD11): This isoform catalyzes the conversion of estrone (E1) to estradiol (E2), similar to 17-HSD1. However, it has a different substrate specificity and is primarily expressed in the placenta.
12. 17-HSD type 12 (17-HSD12): This isoform catalyzes the conversion of DHEA to androstenedione, similar to 17-HSD4. However, it has a different substrate specificity and is primarily expressed in the testis.
13. 17-HSD type 13 (17-HSD13): This isoform catalyzes the conversion of estrone (E1) to estradiol (E2), similar to 17-HSD1. However, it has a different substrate specificity and is primarily expressed in the placenta.
14. 17-HSD type 14 (17-HSD14): This isoform catalyzes the conversion of DHEA to androstenedione, similar to 17-HSD4. However, it has a different substrate specificity and is primarily expressed in the testis.
15. 17-HSD type 15 (17-HSD15): This isoform catalyzes the conversion of estrone (E1) to estradiol (E2), similar to 17-HSD1. However, it has a different substrate specificity and is primarily expressed in the placenta.
16. 17-HSD type 16 (17-HSD16): This isoform catalyzes the conversion of DHEA to androstenedione, similar to 17-HSD4. However, it has a different substrate specificity and is primarily expressed in the testis.
17. 17-HSD type 17 (17-HSD17): This isoform catalyzes the conversion of estrone (E1) to estradiol (E2), similar to 17-HSD1. However, it has a different substrate specificity and is primarily expressed in the placenta.
18. 17-HSD type 18 (17-HSD18): This isoform catalyzes the conversion of DHEA to androstenedione, similar to 17-HSD4. However, it has a different substrate specificity and is primarily expressed in the testis.
19. 17-HSD type 19 (17-HSD19): This isoform catalyzes the conversion of estrone (E1) to estradiol (E2), similar to 17-HSD1. However, it has a different substrate specificity and is primarily expressed in the placenta.
20. 17-HSD type 20 (17-HSD20): This isoform catalyzes the conversion of DHEA to androstenedione, similar to 17-HSD4. However, it has a different substrate specificity and is primarily expressed in the testis.
21. 17-HSD type 21 (17-HSD21): This isoform catalyzes the conversion of estrone (E1) to estradiol (E2), similar to 17-HSD1. However, it has a different substrate specificity and is primarily expressed in the placenta.
22. 17-HSD type 22 (17-HSD22): This isoform catalyzes the conversion of DHEA to androstenedione, similar to 17-HSD4. However, it has a different substrate specificity and is primarily expressed in the testis.
23. 17-HSD type 23 (17-HSD23): This isoform catalyzes the conversion of estrone (E1) to estradiol (E2), similar to 17-HSD1. However, it has a different substrate specificity and is primarily expressed in the placenta.
24. 17-HSD type 24 (17-HSD24): This isoform catalyzes the conversion of DHEA to androstenedione, similar to 17-HSD4. However, it has a different substrate specificity and is primarily expressed in the testis.
25. 17-HSD type 25 (17-HSD25): This isoform catalyzes the conversion of estrone (E1) to estradiol (E2), similar to 17-HSD1. However, it has a different substrate specificity and is primarily expressed in the placenta.
26. 17-HSD type 26 (17-HSD26): This isoform catalyzes the conversion of DHEA to androstenedione, similar to 17-HSD4. However

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

Sexual maturation is the process of physical development during puberty that leads to the ability to reproduce. This process involves the development of primary and secondary sexual characteristics, changes in hormone levels, and the acquisition of reproductive capabilities. In females, this includes the onset of menstruation and the development of breasts and hips. In males, this includes the deepening of the voice, growth of facial hair, and the production of sperm. Achieving sexual maturation is an important milestone in human development and typically occurs during adolescence.

Spermatogenesis is the process by which sperm cells, or spermatozoa, are produced in male organisms. It occurs in the seminiferous tubules of the testes and involves several stages:

1. Spermatocytogenesis: This is the initial stage where diploid spermatogonial stem cells divide mitotically to produce more spermatogonia, some of which will differentiate into primary spermatocytes.
2. Meiosis: The primary spermatocytes undergo meiotic division to form haploid secondary spermatocytes, which then divide again to form haploid spermatids. This process results in the reduction of chromosome number from 46 (diploid) to 23 (haploid).
3. Spermiogenesis: The spermatids differentiate into spermatozoa, undergoing morphological changes such as the formation of a head and tail. During this stage, most of the cytoplasm is discarded, resulting in highly compacted and streamlined sperm cells.
4. Spermation: The final stage where mature sperm are released from the seminiferous tubules into the epididymis for further maturation and storage.

The entire process takes approximately 72-74 days in humans, with continuous production throughout adulthood.

The penis is a part of the male reproductive and urinary systems. It has three parts: the root, the body, and the glans. The root attaches to the pelvic bone and the body makes up the majority of the free-hanging portion. The glans is the cone-shaped end that protects the urethra, the tube inside the penis that carries urine from the bladder and semen from the testicles.

The penis has a dual function - it acts as a conduit for both urine and semen. During sexual arousal, the penis becomes erect when blood fills two chambers inside its shaft. This process is facilitated by the relaxation of the smooth muscles in the arterial walls and the trappping of blood in the corpora cavernosa. The stiffness of the penis enables sexual intercourse. After ejaculation, or when the sexual arousal passes, the muscles contract and the blood flows out of the penis back into the body, causing it to become flaccid again.

The foreskin, a layer of skin that covers the glans, is sometimes removed in a procedure called circumcision. Circumcision is often performed for religious or cultural reasons, or as a matter of family custom. In some countries, it's also done for medical reasons, such as to treat conditions like phimosis (an inability to retract the foreskin) or balanitis (inflammation of the glans).

It's important to note that any changes in appearance, size, or function of the penis should be evaluated by a healthcare professional, as they could indicate an underlying medical condition.

Estrogen Receptor beta (ER-β) is a protein that is encoded by the gene ESR2 in humans. It belongs to the family of nuclear receptors, which are transcription factors that regulate gene expression in response to hormonal signals. ER-β is one of two main estrogen receptors, the other being Estrogen Receptor alpha (ER-α), and it plays an important role in mediating the effects of estrogens in various tissues, including the breast, uterus, bone, brain, and cardiovascular system.

Estrogens are steroid hormones that play a critical role in the development and maintenance of female reproductive and sexual function. They also have important functions in other tissues, such as maintaining bone density and promoting cognitive function. ER-β is widely expressed in many tissues, including those outside of the reproductive system, suggesting that it may have diverse physiological roles beyond estrogen-mediated reproduction.

ER-β has been shown to have both overlapping and distinct functions from ER-α, and its expression patterns differ between tissues. For example, in the breast, ER-β is expressed at higher levels in normal tissue compared to cancerous tissue, suggesting that it may play a protective role against breast cancer development. In contrast, in the uterus, ER-β has been shown to have anti-proliferative effects and may protect against endometrial cancer.

Overall, ER-β is an important mediator of estrogen signaling and has diverse physiological roles in various tissues. Understanding its functions and regulation may provide insights into the development of novel therapies for a range of diseases, including cancer, osteoporosis, and cardiovascular disease.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Alopecia is a medical term that refers to the loss of hair or baldness. It can occur in various parts of the body, but it's most commonly used to describe hair loss from the scalp. Alopecia can have several causes, including genetics, hormonal changes, medical conditions, and aging.

There are different types of alopecia, such as:

* Alopecia Areata: It is a condition that causes round patches of hair loss on the scalp or other parts of the body. The immune system attacks the hair follicles, causing the hair to fall out.
* Androgenetic Alopecia: Also known as male pattern baldness or female pattern baldness, it's a genetic condition that causes gradual hair thinning and eventual hair loss, typically following a specific pattern.
* Telogen Effluvium: It is a temporary hair loss condition caused by stress, medication, pregnancy, or other factors that can cause the hair follicles to enter a resting phase, leading to shedding and thinning of the hair.

The treatment for alopecia depends on the underlying cause. In some cases, such as with telogen effluvium, hair growth may resume without any treatment. However, other forms of alopecia may require medical intervention, including topical treatments, oral medications, or even hair transplant surgery in severe cases.

Theca cells are specialized cells that are part of the follicle where the egg matures in the ovary. They are located in the outer layer of the follicle and play an important role in producing hormones necessary for the growth and development of the follicle and the egg within it. Specifically, they produce androgens, such as testosterone, which are then converted into estrogens by another type of cells in the follicle called granulosa cells. These hormones help to thicken the lining of the uterus in preparation for a possible pregnancy. In some cases, theca cells can become overactive and produce too much testosterone, leading to conditions such as polycystic ovary syndrome (PCOS).

Cryptorchidism is a medical condition in which one or both of a male infant's testicles fail to descend from the abdomen into the scrotum before birth or within the first year of life. Normally, the testicles descend from the abdomen into the scrotum during fetal development in the second trimester. If the testicles do not descend on their own, medical intervention may be necessary to correct the condition.

Cryptorchidism is a common birth defect, affecting about 3-5% of full-term and 30% of preterm male infants. In most cases, the testicle will descend on its own within the first six months of life. If it does not, treatment may be necessary to prevent complications such as infertility, testicular cancer, and inguinal hernia.

Treatment for cryptorchidism typically involves surgery to bring the testicle down into the scrotum. This procedure is called orchiopexy and is usually performed before the age of 2. In some cases, hormonal therapy may be used as an alternative to surgery. However, this approach has limited success and is generally only recommended in certain situations.

Overall, cryptorchidism is a treatable condition that can help prevent future health problems if addressed early on. Regular check-ups with a pediatrician or healthcare provider can help ensure timely diagnosis and treatment of this condition.

The cell nucleus is a membrane-bound organelle found in the eukaryotic cells (cells with a true nucleus). It contains most of the cell's genetic material, organized as DNA molecules in complex with proteins, RNA molecules, and histones to form chromosomes.

The primary function of the cell nucleus is to regulate and control the activities of the cell, including growth, metabolism, protein synthesis, and reproduction. It also plays a crucial role in the process of mitosis (cell division) by separating and protecting the genetic material during this process. The nuclear membrane, or nuclear envelope, surrounding the nucleus is composed of two lipid bilayers with numerous pores that allow for the selective transport of molecules between the nucleoplasm (nucleus interior) and the cytoplasm (cell exterior).

The cell nucleus is a vital structure in eukaryotic cells, and its dysfunction can lead to various diseases, including cancer and genetic disorders.

X-linked bulbospinal neuronopathy, also known as Kennedy's disease, is a rare inherited motor neuron disorder that affects males. It is caused by a mutation in the androgen receptor (AR) gene on the X chromosome. The condition is characterized by progressive muscle weakness and atrophy, primarily affecting the bulbar muscles of the throat and tongue, as well as the limbs.

The mutation in the AR gene leads to an abnormal accumulation of the protein within nerve cells, which can ultimately result in their death. This can cause symptoms such as difficulty speaking, swallowing, and breathing, as well as muscle cramps and fasciculations (twitching). The condition typically progresses slowly over several decades.

There is no cure for X-linked bulbospinal neuronopathy, but treatments can help manage the symptoms. This may include physical therapy, speech therapy, and assistive devices to aid in breathing and swallowing.

Disorders of Sex Development (DSD) are a group of conditions that occur when there is a difference in the development and assignment of sex characteristics. These differences may be apparent at birth, at puberty, or later in life. DSD can affect chromosomes, gonads, genitals, or secondary sexual characteristics, and can result from genetic mutations or environmental factors during fetal development.

DSDs were previously referred to as "intersex" conditions, but the term "Disorders of Sex Development" is now preferred in medical settings because it is more descriptive and less stigmatizing. DSDs are not errors or abnormalities, but rather variations in human development that require sensitive and individualized care.

The diagnosis and management of DSD can be complex and may involve a team of healthcare providers, including endocrinologists, urologists, gynecologists, psychologists, and genetic counselors. Treatment options depend on the specific type of DSD and may include hormone therapy, surgery, or other interventions to support physical and emotional well-being.

Fluoxymesterone is a synthetic androgenic anabolic steroid hormone. It is derived from testosterone and has been structurally modified to increase its androgenic effects while reducing its estrogenic and progestogenic activity. Fluoxymesterone is used in medical treatment for conditions such as hypogonadism, delayed puberty, and breast cancer in women. It works by replacing the missing testosterone in men or mimicking the effects of testosterone in the body.

Fluoxymesterone is known to have a high anabolic and androgenic activity, and it is commonly abused for non-medical purposes such as improving physical performance, muscle mass, and strength. However, its use for these purposes is not approved by regulatory agencies and can lead to serious health consequences.

Fluoxymesterone is available in oral form and is typically taken two to three times a day due to its short half-life. Its side effects may include acne, hair loss, liver toxicity, mood changes, aggression, and changes in sexual function. It is important to use this medication under the supervision of a healthcare provider and follow their instructions carefully to minimize the risk of adverse effects.

Atrophic muscular disorders are medical conditions that involve the progressive loss of muscle mass and weakness due to the degeneration of muscle tissue. This process occurs because of a decrease in the size or number of muscle fibers, which can be caused by various factors such as nerve damage, lack of use, or underlying diseases.

There are two main types of atrophic muscular disorders: neurogenic and myopathic. Neurogenic atrophy is caused by damage to the nerves that supply the muscles, leading to muscle weakness and wasting. Examples of conditions that can cause neurogenic atrophy include motor neuron disease, spinal cord injury, and peripheral neuropathy.

Myopathic atrophy, on the other hand, is caused by primary muscle diseases that affect the muscle fibers themselves. Conditions such as muscular dystrophy, metabolic myopathies, and inflammatory myopathies can all lead to myopathic atrophy.

Symptoms of atrophic muscular disorders may include muscle weakness, wasting, cramping, spasms, and difficulty with movement and coordination. Treatment for these conditions depends on the underlying cause and may involve physical therapy, medication, or surgery. In some cases, the damage to the muscles may be irreversible, and the goal of treatment is to manage symptoms and maintain function as much as possible.

Progesterone is a steroid hormone that is primarily produced in the ovaries during the menstrual cycle and in pregnancy. It plays an essential role in preparing the uterus for implantation of a fertilized egg and maintaining the early stages of pregnancy. Progesterone works to thicken the lining of the uterus, creating a nurturing environment for the developing embryo.

During the menstrual cycle, progesterone is produced by the corpus luteum, a temporary structure formed in the ovary after an egg has been released from a follicle during ovulation. If pregnancy does not occur, the levels of progesterone will decrease, leading to the shedding of the uterine lining and menstruation.

In addition to its reproductive functions, progesterone also has various other effects on the body, such as helping to regulate the immune system, supporting bone health, and potentially influencing mood and cognition. Progesterone can be administered medically in the form of oral pills, intramuscular injections, or vaginal suppositories for various purposes, including hormone replacement therapy, contraception, and managing certain gynecological conditions.

Andropause is a term that is sometimes used to describe the gradual decrease in hormone production that occurs in middle-aged men. The term is not widely accepted or used in the medical community, and it is not officially recognized as a medical condition.

The more commonly used medical term for this phenomenon is "testosterone deficiency" or "hypogonadism," which refers to a decrease in the production of the hormone testosterone by the testes. This can lead to various symptoms such as decreased sex drive, fatigue, mood changes, and difficulty with concentration and memory.

It's important to note that while some men may experience these symptoms as they age, not all men will develop a testosterone deficiency. Additionally, other factors such as chronic medical conditions or medications can also contribute to these symptoms. A healthcare provider can evaluate symptoms and perform tests to determine if a testosterone deficiency is present and recommend appropriate treatment options.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

Hormones are defined as chemical messengers that are produced by endocrine glands or specialized cells and are transported through the bloodstream to tissues and organs, where they elicit specific responses. They play crucial roles in regulating various physiological processes such as growth, development, metabolism, reproduction, and mood. Examples of hormones include insulin, estrogen, testosterone, adrenaline, and thyroxine.

COS cells are a type of cell line that are commonly used in molecular biology and genetic research. The name "COS" is an acronym for "CV-1 in Origin," as these cells were originally derived from the African green monkey kidney cell line CV-1. COS cells have been modified through genetic engineering to express high levels of a protein called SV40 large T antigen, which allows them to efficiently take up and replicate exogenous DNA.

There are several different types of COS cells that are commonly used in research, including COS-1, COS-3, and COS-7 cells. These cells are widely used for the production of recombinant proteins, as well as for studies of gene expression, protein localization, and signal transduction.

It is important to note that while COS cells have been a valuable tool in scientific research, they are not without their limitations. For example, because they are derived from monkey kidney cells, there may be differences in the way that human genes are expressed or regulated in these cells compared to human cells. Additionally, because COS cells express SV40 large T antigen, they may have altered cell cycle regulation and other phenotypic changes that could affect experimental results. Therefore, it is important to carefully consider the choice of cell line when designing experiments and interpreting results.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

The adrenal glands are a pair of endocrine glands that are located on top of the kidneys. Each gland has two parts: the outer cortex and the inner medulla. The adrenal cortex produces hormones such as cortisol, aldosterone, and androgens, which regulate metabolism, blood pressure, and other vital functions. The adrenal medulla produces catecholamines, including epinephrine (adrenaline) and norepinephrine (noradrenaline), which help the body respond to stress by increasing heart rate, blood pressure, and alertness.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Estrogen Receptor alpha (ERα) is a type of nuclear receptor protein that is activated by the hormone estrogen. It is encoded by the gene ESR1 and is primarily expressed in the cells of the reproductive system, breast, bone, liver, heart, and brain tissue.

When estrogen binds to ERα, it causes a conformational change in the receptor, which allows it to dimerize and translocate to the nucleus. Once in the nucleus, ERα functions as a transcription factor, binding to specific DNA sequences called estrogen response elements (EREs) and regulating the expression of target genes.

ERα plays important roles in various physiological processes, including the development and maintenance of female reproductive organs, bone homeostasis, and lipid metabolism. It is also a critical factor in the growth and progression of certain types of breast cancer, making ERα status an important consideration in the diagnosis and treatment of this disease.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

"Nude mice" is a term used in the field of laboratory research to describe a strain of mice that have been genetically engineered to lack a functional immune system. Specifically, nude mice lack a thymus gland and have a mutation in the FOXN1 gene, which results in a failure to develop a mature T-cell population. This means that they are unable to mount an effective immune response against foreign substances or organisms.

The name "nude" refers to the fact that these mice also have a lack of functional hair follicles, resulting in a hairless or partially hairless phenotype. This feature is actually a secondary consequence of the same genetic mutation that causes their immune deficiency.

Nude mice are commonly used in research because their weakened immune system makes them an ideal host for transplanted tumors, tissues, and cells from other species, including humans. This allows researchers to study the behavior of these foreign substances in a living organism without the complication of an immune response. However, it's important to note that because nude mice lack a functional immune system, they must be kept in sterile conditions and are more susceptible to infection than normal mice.

Adrenarche is a phase of development in which the adrenal glands begin to produce androgens, specifically DHEA (dehydroepiandrosterone) and its sulfate form DHEAS. This process usually begins between the ages of 6-8 in children, although it can vary. The androgens produced during adrenarche contribute to the development of secondary sexual characteristics such as pubic and underarm hair, but do not play a significant role in the growth spurt or reproductive function. It is important to note that adrenarche is separate from puberty, which is initiated by the hypothalamus and pituitary gland and involves the release of gonadotropins that stimulate the gonads to produce sex steroids.

Pregnadienes are a class of steroid hormones that contain a unsaturated bond between the C4 and C5 positions in their steroid nucleus. They are important precursors in the biosynthesis of various sex steroids, such as progesterone and testosterone, in the human body. Pregnadienes are derived from pregnanes, which have a saturated bond at this position. The term "pregnadiene" refers to the chemical structure of these hormones, specifically their double bond at the C4-C5 position. They play a crucial role in the regulation of various physiological processes related to reproduction and sexual development.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

The urogenital system is a part of the human body that includes the urinary and genital systems. The urinary system consists of the kidneys, ureters, bladder, and urethra, which work together to produce, store, and eliminate urine. On the other hand, the genital system, also known as the reproductive system, is responsible for the production, development, and reproduction of offspring. In males, this includes the testes, epididymis, vas deferens, seminal vesicles, prostate gland, bulbourethral glands, and penis. In females, it includes the ovaries, fallopian tubes, uterus, vagina, mammary glands, and external genitalia.

The urogenital system is closely related anatomically and functionally. For example, in males, the urethra serves as a shared conduit for both urine and semen, while in females, the urethra and vagina are separate but adjacent structures. Additionally, some organs, such as the prostate gland in males and the Skene's glands in females, have functions that overlap between the urinary and genital systems.

Disorders of the urogenital system can affect both the urinary and reproductive functions, leading to a range of symptoms such as pain, discomfort, infection, and difficulty with urination or sexual activity. Proper care and maintenance of the urogenital system are essential for overall health and well-being.

Glucocorticoid receptors (GRs) are a type of nuclear receptor proteins found inside cells that bind to glucocorticoids, a class of steroid hormones. These receptors play an essential role in the regulation of various physiological processes, including metabolism, immune response, and stress response.

When a glucocorticoid hormone such as cortisol binds to the GR, it undergoes a conformational change that allows it to translocate into the nucleus of the cell. Once inside the nucleus, the GR acts as a transcription factor, binding to specific DNA sequences called glucocorticoid response elements (GREs) located in the promoter regions of target genes. The binding of the GR to the GRE can either activate or repress gene transcription, depending on the context and the presence of co-regulatory proteins.

Glucocorticoids have diverse effects on the body, including anti-inflammatory and immunosuppressive actions. They are commonly used in clinical settings to treat a variety of conditions such as asthma, rheumatoid arthritis, and inflammatory bowel disease. However, long-term use of glucocorticoids can lead to several side effects, including osteoporosis, weight gain, and increased risk of infections, due to the widespread effects of these hormones on multiple organ systems.

Estrone is a type of estrogen, which is a female sex hormone. It's one of the three major naturally occurring estrogens in women, along with estradiol and estriol. Estrone is weaker than estradiol but has a longer half-life, meaning it remains active in the body for a longer period of time.

Estrone is produced primarily in the ovaries, adrenal glands, and fat tissue. In postmenopausal women, when the ovaries stop producing estradiol, estrone becomes the dominant form of estrogen. It plays a role in maintaining bone density, regulating the menstrual cycle, and supporting the development and maintenance of female sexual characteristics.

Like other forms of estrogen, estrone can also have effects on various tissues throughout the body, including the brain, heart, and breast tissue. Abnormal levels of estrone, either too high or too low, can contribute to a variety of health issues, such as osteoporosis, menstrual irregularities, and increased risk of certain types of cancer.

"Response elements" is a term used in molecular biology, particularly in the study of gene regulation. Response elements are specific DNA sequences that can bind to transcription factors, which are proteins that regulate gene expression. When a transcription factor binds to a response element, it can either activate or repress the transcription of the nearby gene.

Response elements are often found in the promoter region of genes and are typically short, conserved sequences that can be recognized by specific transcription factors. The binding of a transcription factor to a response element can lead to changes in chromatin structure, recruitment of co-activators or co-repressors, and ultimately, the regulation of gene expression.

Response elements are important for many biological processes, including development, differentiation, and response to environmental stimuli such as hormones, growth factors, and stress. The specificity of transcription factor binding to response elements allows for precise control of gene expression in response to changing conditions within the cell or organism.

A drug implant is a medical device that is specially designed to provide controlled release of a medication into the body over an extended period of time. Drug implants can be placed under the skin or in various body cavities, depending on the specific medical condition being treated. They are often used when other methods of administering medication, such as oral pills or injections, are not effective or practical.

Drug implants come in various forms, including rods, pellets, and small capsules. The medication is contained within the device and is released slowly over time, either through diffusion or erosion of the implant material. This allows for a steady concentration of the drug to be maintained in the body, which can help to improve treatment outcomes and reduce side effects.

Some common examples of drug implants include:

1. Hormonal implants: These are small rods that are inserted under the skin of the upper arm and release hormones such as progestin or estrogen over a period of several years. They are often used for birth control or to treat conditions such as endometriosis or uterine fibroids.
2. Intraocular implants: These are small devices that are placed in the eye during surgery to release medication directly into the eye. They are often used to treat conditions such as age-related macular degeneration or diabetic retinopathy.
3. Bone cement implants: These are specially formulated cements that contain antibiotics and are used to fill bone defects or joint spaces during surgery. The antibiotics are released slowly over time, helping to prevent infection.
4. Implantable pumps: These are small devices that are placed under the skin and deliver medication directly into a specific body cavity, such as the spinal cord or the peritoneal cavity. They are often used to treat chronic pain or cancer.

Overall, drug implants offer several advantages over other methods of administering medication, including improved compliance, reduced side effects, and more consistent drug levels in the body. However, they may also have some disadvantages, such as the need for surgical placement and the potential for infection or other complications. As with any medical treatment, it is important to discuss the risks and benefits of drug implants with a healthcare provider.

Congenital Adrenal Hyperplasia (CAH) is a group of inherited genetic disorders that affect the adrenal glands, which are triangular-shaped glands located on top of the kidneys. The adrenal glands are responsible for producing several essential hormones, including cortisol, aldosterone, and androgens.

CAH is caused by mutations in genes that code for enzymes involved in the synthesis of these hormones. The most common form of CAH is 21-hydroxylase deficiency, which affects approximately 90% to 95% of all cases. Other less common forms of CAH include 11-beta-hydroxylase deficiency and 3-beta-hydroxysteroid dehydrogenase deficiency.

The severity of the disorder can vary widely, depending on the degree of enzyme deficiency. In severe cases, the lack of cortisol production can lead to life-threatening salt wasting and electrolyte imbalances in newborns. The excess androgens produced due to the enzyme deficiency can also cause virilization, or masculinization, of female fetuses, leading to ambiguous genitalia at birth.

In milder forms of CAH, symptoms may not appear until later in childhood or even adulthood. These may include early puberty, rapid growth followed by premature fusion of the growth plates and short stature, acne, excessive hair growth, irregular menstrual periods, and infertility.

Treatment for CAH typically involves replacing the missing hormones with medications such as hydrocortisone, fludrocortisone, and/or sex hormones. Regular monitoring of hormone levels and careful management of medication doses is essential to prevent complications such as adrenal crisis, growth suppression, and osteoporosis.

In severe cases of CAH, early diagnosis and treatment can help prevent or minimize the risk of serious health problems and improve quality of life. Genetic counseling may also be recommended for affected individuals and their families to discuss the risks of passing on the disorder to future generations.

Exogenous androgen supplements can be used as a male contraceptive. Elevated androgen levels caused by use of androgen ... Higher androgen levels lead to increased expression of androgen receptor. Circulating levels of androgens can influence human ... Andrology Endocrine system Exercise and androgen levels Androgen insensitivity syndrome Androgen insufficiency syndrome ... see the androgen replacement therapy and anabolic steroid articles. The main subset of androgens, known as adrenal androgens, ...
An androgen or anabolic steroid ester is an ester of an androgen/anabolic steroid (AAS) such as the natural testosterone or ... List of androgen esters List of androgens/anabolic steroids Steroid ester Estrogen ester Progestogen ester Richard Lawrence ... They are used in androgen replacement therapy (ART), among other indications. Examples of androgen esters include testosterone ... Articles with short description, Short description matches Wikidata, Androgen esters, Androgens and anabolic steroids, ...
... is employed in androgen deprivation therapy for prostate cancer and in feminizing hormone therapy in ... Androgen suppression, also known as testosterone suppression, is a medical treatment to suppress or block the production or ... transgender women, among other androgen-dependent indications. Castration Chemical castration This article incorporates public ...
In contrast to androgens, conjugates of androgens do not bind to the androgen receptor and are hormonally inactive. However, ... androgen conjugates can be converted back into active androgens through enzymes like steroid sulfatase. Examples of androgen ... An androgen conjugate is a conjugate of an androgen, such as testosterone. They occur naturally in the body as metabolites of ... Androgen conjugates are conjugated at the C3 and/or C17β positions, where hydroxyl groups are available. Androgen ester ...
Heinlein CA, Chang C (October 2002). "The roles of androgen receptors and androgen-binding proteins in nongenomic androgen ... and then stimulates transcription of androgen-responsive genes. The binding of an androgen to the androgen receptor results in ... Via the androgen receptor, androgens play a key role in the maintenance of male skeletal integrity. The regulation of this ... The androgen receptor dimer binds to a specific sequence of DNA known as a hormone response element. Androgen receptors ...
... most commonly affects women, and is also called Female androgen insufficiency syndrome (FAIS), although it ... Androgenic activity is mediated by androgens (a class of steroid hormones with varying affinities for the androgen receptor), ... "Serum androgen levels in healthy premenopausal women with and without sexual dysfunction: Part A. Serum androgen levels in ... and is dependent on various factors including androgen receptor abundance, sensitivity and function. Androgen deficiency is ...
... may refer to: Testosterone (medication) Androgen replacement therapy Anabolic steroid Androgen This ... disambiguation page lists medication articles associated with the title Androgen. If an internal link led you here, you may ...
Androgens and anabolic steroids, Androstanes, Estranes, Androgen esters). ... An androgen prohormone, or proandrogen, is a prohormone (or prodrug) of an anabolic-androgenic steroid (AAS). They can be ... This legislation places both AAS and some androgen prohormones on a list of controlled substances (a new type of "regulatory ...
This article pertains to steroidal androgens; nonsteroidal androgens like the selective androgen receptor modulators (SARMs) ... List of steroids List of designer drugs § Androgens List of androgens/anabolic steroids available in the United States ? = ... This is a list of androgens/anabolic steroids (AAS) or testosterone derivatives. Esters are mostly not included in this list; ... "Structure-activity relationships of synthetic progestins in a yeast-based in vitro androgen bioassay". J. Steroid Biochem. Mol ...
... (ADT), also called androgen ablation therapy or androgen suppression therapy, is an antihormone ... Prostate cancer cells usually require androgen hormones, such as testosterone, to grow. ADT reduces the levels of androgen ... The therapy can also eliminate cancer cells by inducing androgen deprivation-induced senescence. Lowering androgen levels or ... Prostate cells contain an Androgen Receptor (AR), that when stimulated by androgens like testosterone, promotes growth and ...
... which bind and are activated by testosterone and/or other androgens. Unlike the androgen receptor (AR), a nuclear receptor ... 3α-Androstanediol, an active metabolite of dihydrotestosterone (DHT) and a weak androgen as well as a neurosteroid via acting ... Membrane steroid receptor Bennett NC, Gardiner RA, Hooper JD, Johnson DW, Gobe GC (2010). "Molecular cell biology of androgen ... Membrane androgen receptors (mARs) are a group of G protein-coupled receptors (GPCRs) ...
... among other androgen-dependent conditions. Because androgens are the endogenous precursors of estrogens, androgen synthesis ... An androgen synthesis inhibitor is a type of drug which inhibits the enzymatic synthesis of androgens, such as testosterone and ... inactive androgen sulfates into active androgens like testosterone Inhibitors of cholesterol synthesis can also reduce androgen ... including androgens 17β-Hydroxysteroid dehydrogenase inhibitors (17β-HSD inhibitors): inhibit the interconversion of androgens ...
If there is an excess of androgens in a male fetus it will give rise to infant hercules syndrome. J Money Sin, Sickness, or ... Androgen-induced hermaphroditism is a syndrome resulting from a hermaphroditic birth defect of the genital organs. They are ...
... (FAI) is a ratio used to determine abnormal androgen status in humans. The ratio is the total testosterone ... The free androgen index is intended to give a guide to the free testosterone level, but it is not very accurate (especially in ... The Free Androgen Index is not valid for adult males [dead link] Robinson S, Rodin DA, Deacon A, Wheeler MJ, Clayton RN (March ... "Free Androgen Index". Online Medical Encyclopedia. University of Rochester Medical Center. Retrieved 11 July 2014. Morris PD, ...
The androgen response mechanism occurs through the binding of androgens to cytosolic androgen receptors, which are translocated ... 11-oxygenated androgens may play important roles in DSDs. 11-oxygenated androgen fetal biosynthesis may coincide with the key ... The androgen backdoor pathway is a collective name for all metabolic pathways where clinically relevant androgens are ... The androgen backdoor pathways are critical metabolic processes involved in the synthesis of clinically relevant androgens from ...
Maximum or maximal androgen blockade (MAB) or complete or combined androgen blockade (CAB) is a medical treatment involving the ... antagonism and inhibition or suppression of androgen production to attain maximal effectiveness in androgen deprivation therapy ... Triple androgen blockade (TrAB) is a method of ADT in which a 5α-reductase inhibitor such as finasteride or dutasteride is ... Hellerstedt, Beth A; Pienta, Kenneth J (2003). "The truth is out there: an overall perspective on androgen deprivation". ...
Other symptoms of androgen deficiency are similar in both sexes, such as muscle loss and physical fatigue. The androgens used ... The Androgen Study Group). "Letter to JAMA Asking for Retraction of Misleading Article on Testosterone Therapy". Androgen Study ... As with men, symptoms associated with androgen deficiency are most prevalent with age, and androgen replacement therapy has ... Androgen replacement is the classic treatment of hypogonadism. It is also used in men who have lost the ability to produce ...
Both androgens exert their influence through binding with the androgen receptor. Androgen binds with the androgen receptor. The ... but rather are the result of androgens bound to androgen receptors; the androgen receptor mediates the effects of androgens in ... the androgen receptor is bound to heat shock proteins. These heat shock proteins are released upon androgen binding. Androgen ... complete androgen insensitivity syndrome (CAIS), partial androgen insensitivity syndrome (PAIS), and mild androgen ...
Androgen deprivation therapy Androgen insensitivity syndrome Estrogen-dependent condition Spinal bulbar muscular atrophy Joseph ... An androgen-dependent condition, disease, disorder, or syndrome, is a medical condition that is, in part or full, dependent on ... 1994-. ISBN 978-0-08-058373-0. Shukla, G. C.; Plaga, A. R.; Shankar, E.; Gupta, S. (2016). "Androgen receptor-related diseases ... and androgen-secreting tumors (gonadal or adrenal tumor). Such conditions may be treated with drugs with antiandrogen actions, ...
... s (SARMs) were developed out of a desire to maintain the anabolic effects of androgens on ... Selective androgen receptor modulators (SARMs) are a class of androgen receptor ligands that were developed with the intention ... "Androgens and Selective Androgen Receptor Modulators to Treat Functional Limitations Associated With Aging and Chronic Disease ... Anti-androgens such as bicalutamide, flutamide, and nilutamide are non-steroidal AR antagonists that work by binding to the AR ...
Adrenal androgen stimulating hormone (AASH), also known as cortical androgen stimulating hormone (CASH), is a hypothetical ... Parker LN (June 1991). "Control of adrenal androgen secretion". Endocrinol Metab Clin North Am. 20 (2): 401-21. doi:10.1016/ ... Adrenocorticotrophic hormone (ACTH) Anderson DC (August 1980). "The adrenal androgen-stimulating hormone does not exist". ... hormone which has been proposed to stimulate the adrenal glands to produce adrenal androgens such as dehydroepiandrosterone ( ...
"Discordant measures of androgen-binding kinetics in two mutant androgen receptors causing mild or partial androgen ... MAIS is the mildest and least known form of androgen insensitivity syndrome. The existence of a variant of androgen ... Grino PB, Griffin JE, Cushard WG, Wilson JD (April 1988). "A mutation of the androgen receptor associated with partial androgen ... Tsukada T, Inoue M, Tachibana S, Nakai Y, Takebe H (October 1994). "An androgen receptor mutation causing androgen resistance ...
Skeletal muscle androgen receptor expression increases with acute exercise in correlation to free testosterone. When comparing ... Lupo C, Baldi L, Bonifazi M, Lodi L, Martelli G, Viti A, Carli G (1985). "Androgen levels following a football match". European ... Androgens increased in response to exercise, particularly resistance, while cortisol only increased with resistance. DHEA ... SHBG is protective against DHT as it binds free androgen. In acute assessment of hormone levels in soccer players before, ...
"The androgen control of sebum production. Studies of subjects with dihydrotestosterone deficiency and complete androgen ... mild androgen insensitivity syndrome (MAIS) when the external genitalia is that of a typical male, and partial androgen ... "A novel mutation c.118delA in exon 1 of the androgen receptor gene resulting in complete androgen insensitivity syndrome within ... "A frame shift mutation in the DNA-binding domain of the androgen receptor gene associated with complete androgen insensitivity ...
... (or ADIS) refers to the induction of cellular senescence as a result of androgen ... ADIS is observed in prostate cancer cells that are dependent on androgens for cell proliferation. Androgen withdrawal induces ... "Androgen Deprivation-Induced Senescence Promotes Outgrowth of Androgen-Refractory Prostate Cancer Cells". PLOS ONE. 8 (6): ... Ewald, JA; Desotelle, JA; Church, DR; Yang, B; Huang, W; Laurila, TA; Jarrard, DF (March 2013). "Androgen deprivation induces ...
This is a list of androgen esters, including esters (as well as ethers) of natural androgens like testosterone and ... CS1 Russian-language sources (ru), Articles with short description, Short description is different from Wikidata, Androgen ... 17β-tetrahydropyran ether of the 17α-demethylated analogue of stanozolol List of androgens/anabolic steroids List of estrogen ... and Clinical Applications of Androgens: Current Status and Future Prospects. John Wiley & Sons. pp. 471-. ISBN 978-0-471-13320- ...
"Discordant measures of androgen-binding kinetics in two mutant androgen receptors causing mild or partial androgen ... Partial androgen insensitivity syndrome is diagnosed when the degree of androgen insensitivity in an individual with a 46,XY ... March 2022). "Differences of adrenal-derived androgens in 5α-reductase deficiency versus androgen insensitivity syndrome". ... "Androgen insensitivity syndrome: somatic mosaicism of the androgen receptor in seven families and consequences for sex ...
A selective androgen receptor degrader or downregulator (SARD) is a type of drug which interacts with the androgen receptor (AR ... Androgen deprivation therapy Lai, AC; Crews, CM (25 November 2016). "Induced protein degradation: an emerging drug discovery ... They are under investigation for the treatment of prostate cancer and other androgen-dependent conditions. As of 2017, ...
... is a protein in humans that is encoded by the ADTRP gene. GRCh38: Ensembl release 89 ... "Entrez Gene: Androgen-dependent TFPI-regulating protein". Retrieved 2013-02-07. v t e (Articles with short description, Short ...
... is a cutaneous condition usually seen in young women between the ages of 16 and 20. ...
Androgens -- RDoC Element. Type of Element: Molecule. The following construct(s)/subconstruct(s) refer to this element.... * ... Home , Research , Research Funded by NIMH , Research Domain Criteria (RDoC) , Units of Analysis , Molecules , Androgens. ...
Exogenous androgen supplements can be used as a male contraceptive. Elevated androgen levels caused by use of androgen ... Higher androgen levels lead to increased expression of androgen receptor. Circulating levels of androgens can influence human ... Andrology Endocrine system Exercise and androgen levels Androgen insensitivity syndrome Androgen insufficiency syndrome ... see the androgen replacement therapy and anabolic steroid articles. The main subset of androgens, known as adrenal androgens, ...
Ovarian overproduction of androgens is a condition in which the ovaries make too much testosterone. This leads to the ... Ovarian overproduction of androgens is a condition in which the ovaries make too much testosterone. This leads to the ... Ovarian overproduction of androgens is a condition in which the ovaries make too much testosterone. This leads to the ... Androgen excess in women. In: Gershenson DM, Lentz GM, Valea FA, Lobo RA, eds. Comprehensive Gynecology. 8th ed. Philadelphia, ...
Derivative of the primary endogenous androgen testosterone. For IM administration. In active form, androgens have a 17-beta- ... Androgens. Class Summary. Responsible for normal growth and the development and maintenance of secondary sex characteristics in ... Androgens also have been reported to stimulate production of RBCs through the enhancement of erythropoietin production. Also ... In addition, androgens have exhibited metabolic activity and may cause retention of nitrogen, sodium, potassium, and phosphorus ...
Accessing Androgen Receptor (AR) Binding Dataset with link to EDKB Database or AR Binding Dataset SD File and contact ... Accessing AR Binding Dataset (Androgen Receptor). Accessing AR Binding Dataset with link to EDKB Database or AR Binding Dataset ... Fang (2003) published the EDKB androgen receptor (AR) binding dataset that was produced expressly as a training set designed ...
androgen suppression Clinical Research Trial Listings on CenterWatch ...
The purpose of the present investigation was to examine androgen receptor (AR) content in the vastus lateralis following two ... Androgen receptor content following heavy resistance exercise in men J Steroid Biochem Mol Biol. 2005 Jan;93(1):35-42. doi: ... Androgen receptor content did not change 1h following SS but significantly decreased by 46% following MS. These results ... The purpose of the present investigation was to examine androgen receptor (AR) content in the vastus lateralis following two ...
Androgens are the main physiologic anabolic steroid hormones and normal testosterone levels are necessary for a range of ... the pathophysiological mechanisms underlying this muscle syndrome and its relationship with plasma level of androgens are not ... the pathophysiological mechanisms underlying this muscle syndrome and its relationship with plasma level of androgens are not ... Androgens are the main physiologic anabolic steroid hormones and normal testosterone levels are necessary for a range of ...
We recommend against making a diagnosis of androgen deficiency in women at present because of the lack of a well-defined ... Androgen therapy in women: an Endocrine Society Clinical Practice guideline J Clin Endocrinol Metab. 2006 Oct;91(10):3697-710. ... Conclusions: We recommend against making a diagnosis of androgen deficiency in women at present because of the lack of a well- ... This includes defining conditions that, when not treated with androgens, have adverse health consequences to women; defining ...
Causes of Androgen Deficiency. The Diagnosis of Androgen Deficiency. Androgen Replacement Therapy. Sex Steroids and the Brain. ... Androgen Deficiency in The Adult Male Causes, Diagnosis and Treatment By Malcolm Carruthers Copyright 2004 ... So where can you find the information you need to understand, diagnose, and treat this condition? Androgen Deficiency in the ... He discusses the causes of androgen deficiency, the male menopause or andropause, and recent advances in its diagnosis. The ...
The authors ascertained the health care costs of androgen deprivation therapy and related skeletal events. ... At the time of androgen deprivation therapy initiation those on androgen deprivation therapy had more severe comorbidity (3.1 ... The control group consisted of patients with prostate cancer with no androgen deprivation therapy use, matched by age, ... RESULTS: Of the 8,577 eligible men with prostate cancer, 3,055 initiated androgen deprivation therapy and 5,522 did not. ...
Title: Androgens, estrogens, and bone loss in males. Principal Investigator: Stavros C. Manolagas Location: Little Rock, AR. ...
Tags: Androgens, Female Pattern Hair Loss, Hair Loss in Women, Hair Loss Research, Hair Loss Treatment, Hormones in Hair Loss, ... This is due to the seemingly adverse effect of androgens on hair follicles. This has held true for most men with patterned hair ... Traditionally, elevated levels of androgens, such as testosterone, are felt to be the primary cause for common hair loss in ... Improvement in scalp hair growth in androgen-deficient women treated with testosterone: a questionnaire study. Br J Dermatol. ...
Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate ... Relationship between Sexual Satiety and Brain Androgen Receptors Subject Area: Endocrinology , Neurology and Neuroscience ... Androgen receptor and mating-induced fos immunoreactivity are co-localized in limbic and midbrain neurons that project to the ... Recently we showed that 24 h after copulation to satiety, there is a reduction in androgen receptor density (ARd) in the medial ...
Learn more about androgens and how taking them may help with your menopausal symptoms ... Home › Menopause › Treatments For Menopause › Androgens. Will Androgens Help Menopausal Mood Symptoms?. Frederick R. Jelovsek ... Androgen Hormone in Women Observation. Implication. testosterone levels after removal of the ovaries are about 50% of the level ... androgens are naturally converted to estrogens by the body and the rate of conversion increases with age the body uses natural ...
Selective Androgen Receptor Modulators (A home study event) 2 Materials , 1 Required Tasks ... 2007-2014) where he oversaw the preclinical and clinical development of selective androgen receptor modulators. Dean Dalton has ... and anti-doping efforts related to selective androgen receptor modulators (SARMs), a new class of drug being developed for ...
TESTOSTERONE AND SEXUAL FUNCTION The prevalent dogma is that androgens regulate libido in women, although a womans sexual ... The effects of androgens in the brain are mediated directly through the androgen receptor and through aromatization of ... Androgen Supplementation in Older Women: Too Much Hype, Not Enough Data: Part 5. By Dr. Theodore Friedman Expert ... This Androgen Supplementation in Older Women: Too Much Hype, Not Enough Data: Part 5 page on EmpowHER Womens Health works best ...
VK5211, the companys lead program for muscle and bone disorders, is an orally available, non-steroidal selective androgen ... VK5211 is an orally available, non-steroidal selective androgen receptor modulator (SARM) entering Phase 2 development for the ... The companys clinical programs include VK5211, an orally available, non-steroidal selective androgen receptor modulator, or ... Viking Therapeutics Completes Safety, Tolerability and Pharmacokinetic Study of VK5211, a Selective Androgen Receptor Modulator ...
The androgen receptor (AR) is critical for the normal development of prostate and for its differentiated functions. The ... "Androgen receptor functions in prostate cancer development and progression." Asian Journal of Andrology 16 (4): 561-564. doi: ... consistent expression of AR in prostate cancer (PCa), and its continued activity in PCa that relapse after androgen deprivation ...
Men with history of fracture and comorbidities are at an increased risk of fracture after long-term use of androgen deprivation ... Men treated with androgen deprivation therapy had a 20 percent increase in the risk of a first fracture and a 57 percent ... Use of androgen deprivation therapy increases fracture risk among prostate cancer patients. Nov 10, 2010 09:37 AM. By ... Extended use of androgen deprivation therapy is common among older men.. Older men who have more comorbidities are usually ...
Androgen deprivation therapy and mets Johns Hopkins researcher finds relationship between androgen deprivation therapy (ADT) ...
Crystal structure of the androgen receptor ligand binding domain in complex with SARM C-23 ... Selective androgen receptor modulators (SARMs) are essentially prostate sparing androgens, which provide therapeutic potential ... Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators. Bohl, C.E., Wu, Z ... Herein we report crystal structures of the androgen receptor (AR) ligand-binding domain (LBD) complexed to a series of potent ...
p>Cloning the rabbit androgen receptor as a prelude to studying its expression in fetal urogenital tissues. ... Krongrad A, Wilson JD, McPhaul MJ: Cloning and partial sequence of the rabbit androgen receptor: expression in fetal urogenital ... Genetic studies indicate that the actions of testosterone and dihydrotestosterone are mediated by a single androgen receptor ( ...
radiotherapy with androgen suppression in patients with adenocarcinoma of the prostate.. OUTLINE: Patients undergo a baseline ... OBJECTIVES: I. Establish whether changes between baseline and 2-month post androgen. suppression endorectal coil MRI results ... chemotherapy for carcinoma of the prostate Endocrine therapy: No prior androgen. deprivation therapy (medical or surgical) ... PROGNOSTIC SIGNIFICANCE OF ENDORECTAL MRI IN PREDICTING OUTCOME AFTER COMBINED RADIATION AND ANDROGEN SUPPRESSION FOR PROSTATE ...
OBJECTIVE: To examine the possible beneficial effect of androgens in postmenopausal women with active rheumatoid arthritis. ...
A potent and selective PROTAC® Degrader that targets the androgen receptor. It inhibits cell proliferation. ... ARCC 4 is a potent and selective androgen receptor (AR) PROTAC® Degrader (DC50 = 5 nM). Comprises an androgen receptor ... Description: Potent and selective androgen receptor PROTAC® Chemical Name: (2S,4R)-1-((S)-2-(2-(4-((4-(3-(4-Cyano-3-( ... Salami et al (2018) Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in ...
This anti-androgen testosterone reduction cream is a simple yet effective male hormone blocker that helps your male to female ... Aid your male to female transition with our effective anti-androgen testosterone reduction cream. Anti-Androgen Testosterone ... Use this transgender hormone therapy, anti-androgen transdermal cream provides for male hormone retardant ideal for those ... This testosterone suppressant (anti-androgen) uses a hypoallergenic carrier cream base so should not irritate the sensitive ...
... ... Androgen deprivation therapy (ADT) has remained the main therapeutic option for patients with advanced prostate cancer (PCa) ... and the prostate with aggressive PCa can produce androgens from the adrenal precursors more autonomously than that with non- ... with ADT the pituitary-adrenal axis mediated by adrenocorticotropic hormone has a central role in the regulation of androgen ...
Crystal Structure Of The Androgen Receptor Ligand Binding Domain T877A Mutant In Complex With S-1 ... Structural Basis for Accommodation of Nonsteroidal Ligands in the Androgen Receptor. Bohl, C.E., Miller, D.D., Chen, J., Bell, ... The mechanism by which the androgen receptor (AR) distinguishes between agonist and antagonist ligands is poorly understood. AR ... The mechanism by which the androgen receptor (AR) distinguishes between agonist and antagonist ligands is poorly understood. AR ...
The pictures provide new clues about how the androgen receptor interacts with cancer-causing proteins. ... With CryoEM, MSK Researchers Obtain Exquisite View of the Androgen Receptor - A Key Protein in Prostate Cancer Share * ... The androgen receptor is simply more versatile in the sets of genes it can turn on compared with other nuclear receptors. In ... The androgen receptor is whats called a nuclear hormone receptor. It moves between the cell cytoplasm and the nucleus, where ...
  • PURPOSE: The authors ascertained the health care costs of androgen deprivation therapy and related skeletal events. (rand.org)
  • MATERIALS AND METHODS: Using data from the MarketScan Medicare Supplemental and Coordination of Benefits Database, the authors identified cases with International Classification of Disease, 9th Revision codes indicating a diagnosis of prostate cancer who initiated androgen deprivation therapy between 1999 and 2002. (rand.org)
  • The control group consisted of patients with prostate cancer with no androgen deprivation therapy use, matched by age, geographic region, insurance plan and index year. (rand.org)
  • RESULTS: Of the 8,577 eligible men with prostate cancer, 3,055 initiated androgen deprivation therapy and 5,522 did not. (rand.org)
  • The consistent expression of AR in prostate cancer (PCa), and its continued activity in PCa that relapse after androgen deprivation therapy (castration-resistant prostate cancer (CRPC)), indicate that at least a subset of these genes are also critical for PCa development and progression. (harvard.edu)
  • Men with history of fracture and comorbidities are at an increased risk of fracture after long-term use of androgen deprivation therapy, and initiating this therapy should be carefully considered in older men with localized prostate cancer. (medicaldaily.com)
  • Androgen deprivation therapy (ADT) has remained the main therapeutic option for patients with advanced prostate cancer (PCa) for about 70 years. (urotoday.com)
  • Androgen deprivation therapy (ADT) leads to tumor involution and reduction of tumor burden. (harvard.edu)
  • Unfortunately, androgen deprivation rarely results in cure, as not all prostate cancer cells are androgen-dependent. (oncolink.org)
  • Many studies have been conducted to determine if androgen deprivation (surgical castration, estrogen, cyproterone, luteinizing hormone-releasing hormone agonists (LHRH), anti-androgens or a combination thereof) combined with radiotherapy is more effective than radiotherapy alone. (oncolink.org)
  • A MEDLINE search was used to identify all English language articles published between January 1990 and September 1998 in which prostate cancer patients were treated with a combination of radiotherapy and androgen deprivation. (oncolink.org)
  • Of these, only two found a significant improvement in survival with the addition of androgen deprivation. (oncolink.org)
  • In addition, of the four retrospective reviews that analyzed cancer-specific survival, none found that the addition of androgen deprivation to radiotherapy improved this endpoint. (oncolink.org)
  • Based on these trials the authors conclude that combined modality therapy may improve disease free survival compared to radiotherapy alone, but the impact of androgen deprivation combined with radiotherapy on overall survival remains unclear. (oncolink.org)
  • The study aimed to compare the efficacy and safety of androgen deprivation therapy (ADT) with abiraterone or docetaxel versus ADT alone as neoadjuvant therapy in patients with very-high-risk localized prostate cancer. (frontiersin.org)
  • The purpose of this research is to determine whether a 16-week culturally tailored, technology-based, aerobic and resistance exercise intervention improves cardiovascular risk factors in Black men diagnosed with prostate cancer and are undergoing androgen deprivation therapy (ADT), and whether it will also improve physical fitness and function, body composition, and outcomes such as quality of life, cancer symptoms, and self-esteem. (dana-farber.org)
  • The addition of abiraterone acetate to androgen deprivation therapy improves overall survival but probably not quality of life. (cochrane.org)
  • It probably also extends disease-specific survival, and delays disease progression compared to androgen deprivation therapy alone. (cochrane.org)
  • Systemic androgen deprivation therapy (ADT), also referred to as hormone therapy, has long been the primary treatment for metastatic prostate cancer. (cochrane.org)
  • Additionally, we imaged one patient with castration-sensitive prostate cancer before and 4 wk after treatment with androgen deprivation therapy (ADT). (snmjournals.org)
  • The major androgen in males is testosterone. (wikipedia.org)
  • Besides testosterone, other androgens include: Dehydroepiandrosterone (DHEA) is a steroid hormone produced in the adrenal cortex from cholesterol. (wikipedia.org)
  • While androstenedione is converted metabolically to testosterone and other androgens, it is also the parent structure of estrone. (wikipedia.org)
  • Androsterone is a chemical byproduct created during the breakdown of androgens, or derived from progesterone, that also exerts minor masculinising effects, but with one-seventh the intensity of testosterone. (wikipedia.org)
  • Dihydrotestosterone (DHT) is a metabolite of testosterone, and a more potent androgen than testosterone in that it binds more strongly to androgen receptors. (wikipedia.org)
  • Ovarian overproduction of androgens is a condition in which the ovaries make too much testosterone . (medlineplus.gov)
  • Synthetic testosterone derivative with significant androgen activity. (medscape.com)
  • Derivative of the primary endogenous androgen testosterone. (medscape.com)
  • Androgens are the main physiologic anabolic steroid hormones and normal testosterone levels are necessary for a range of developmental and biological processes, including maintenance of muscle mass. (frontiersin.org)
  • We recommend against making a diagnosis of androgen deficiency in women at present because of the lack of a well-defined clinical syndrome and normative data on total or free testosterone levels across the lifespan that can be used to define the disorder. (nih.gov)
  • Improvement in scalp hair growth in androgen-deficient women treated with testosterone: a questionnaire study. (bernsteinmedical.com)
  • Traditionally, elevated levels of androgens, such as testosterone, are felt to be the primary cause for common hair loss in both men and women . (bernsteinmedical.com)
  • The effects of androgens in the brain are mediated directly through the androgen receptor and through aromatization of testosterone to estradiol. (empowher.com)
  • Thus, it appears likely that supraphysiologic doses of testosterone that increase serum testosterone levels above the physiologic range for healthy, young women may improve some aspects of sexual function in a subset of women with low androgen levels. (empowher.com)
  • Genetic studies indicate that the actions of testosterone and dihydrotestosterone are mediated by a single androgen receptor (AR). (laprp.com)
  • Aid your male to female transition with our effective anti-androgen testosterone reduction cream. (transformation.co.uk)
  • Anti-Androgen Testosterone Male Hormone Reduction Cream for Application to Testicles. (transformation.co.uk)
  • This testosterone suppressant (anti-androgen) uses a hypoallergenic carrier cream base so should not irritate the sensitive skin of your testes but if you suffer any adverse effect, discontinue use and return for an alterative product. (transformation.co.uk)
  • Low DHT levels in the prostate with aggressive PCa are probably sufficient to propagate the growth of the tumor, and the prostate with aggressive PCa can produce androgens from the adrenal precursors more autonomously than that with non-aggressive PCa does under the low testosterone environment with testicular suppression. (urotoday.com)
  • Scientists at Memorial Sloan Kettering Cancer Center (MSK) have glimpsed never-before-seen details of the human androgen receptor - the protein inside of cells that responds to male-typical hormones like testosterone. (mskcc.org)
  • Prostate cancer cells require androgens, such as testosterone, to survive. (oncolink.org)
  • Fat percentage and the length of the gene for the androgen receptor determine how risky testosterone is for men. (ergo-log.com)
  • This is the protein that testosterone or other androgen steroid hormones have to attach themselves to in order have an effect. (ergo-log.com)
  • The figure below shows the relationship between the concentration of testosterone reached in the blood, the number of CAG sequences, for the androgen receptor and the thickness of the blood. (ergo-log.com)
  • Objective It is recognized that total testosterone (TT) does not sufficiently describe androgen status when sex hormone-binding globulin (SHBG) is altered. (medscape.com)
  • The first-line assessment for the evaluation of gonadal status in men with features of androgen deficiency is total testosterone (TT), as indicated by all current guidelines and recommendations. (medscape.com)
  • The androgen testosterone (17 -hydroxyandrostenone) has a molecular weight of 288 daltons. (cdc.gov)
  • An androgen (from Greek andr-, the stem of the word meaning "man") is any natural or synthetic steroid hormone that regulates the development and maintenance of male characteristics in vertebrates by binding to androgen receptors. (wikipedia.org)
  • Their research, published April 20, 2022, in the journal Molecular Cell , identifies unique features of the receptor that distinguish it from other hormone receptors and provide clues to how androgen signaling goes awry in prostate cancer . (mskcc.org)
  • Androgen receptor (AR) is one of the predominant nuclear hormone receptors in invasive breast cancer and can be explored as a biomarker of response for targeted anti-androgen therapy, especially in the setting of triple negative breast cancer (TNBC). (ecancer.org)
  • Androgen receptor (AR) also konwn as Dihydrotestosterone receptor (DHTR), Nuclear receptor subfamily 3 group C member 4 (NR3C4).It is one of steriod hormoen receptors, which are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. (ptglab.com)
  • To categorise the immunostaining heterogeneity of androgen receptors in metastatic carcinoma of the prostate using a pattern oriented approach and to correlate the results with response to hormonal treatment. (bmj.com)
  • Studies in the past have shown that mere positivity and negativity for androgen receptors of tumour cells may or may not predict response to hormonal treatment. (bmj.com)
  • 4 On immunostaining, prostate carcinoma specimens show heterogeneity of androgen receptors in contrast to homogeneous staining of androgen receptors in normal prostate epithelium. (bmj.com)
  • Use this transgender hormone therapy, anti-androgen transdermal cream provides for male hormone retardant ideal for those seeking a holistic male to female transformation and can be used in conjunction with any feminising hormone treatment 3 months supply. (transformation.co.uk)
  • The use of anti-androgen drugs, like 5-alpha reductase inhibitors (5ARIs), could protect from severe pulmonary disease. (medrxiv.org)
  • Anti-androgen flutamide suppresses hepatocellular carcinoma cell proliferation via the aryl hydrocarbon receptor mediated induction of transforming growth factor-β1. (oregonstate.edu)
  • This webinar will discuss the discovery, pharmacology, clinical development, regulatory considerations, and anti-doping efforts related to selective androgen receptor modulators (SARMs), a new class of drug being developed for acute and chronic muscle wasting conditions. (drugfreesport.com)
  • He began an entrepreneurial leave of absence from Ohio State in 2005 and left OSU in 2007 to devote his full-time effort as Chief Scientific Officer at GTx, Inc. (2007-2014) where he oversaw the preclinical and clinical development of selective androgen receptor modulators. (drugfreesport.com)
  • VK5211, the company's lead program for muscle and bone disorders, is an orally available, non-steroidal selective androgen receptor modulator (SARM) being developed for the treatment of patients recovering from non-elective hip fracture surgery. (prnewswire.com)
  • VK5211 is an orally available, non-steroidal selective androgen receptor modulator (SARM) entering Phase 2 development for the treatment of patients recovering from non-elective hip fracture surgery. (prnewswire.com)
  • Selective androgen receptor modulators (SARMs) are essentially prostate sparing androgens, which provide therapeutic potential in osteoporosis, male hormone replacement, and muscle wasting. (rcsb.org)
  • ARCC 4 is a potent and selective androgen receptor (AR) PROTAC ® Degrader (DC 50 = 5 nM). (tocris.com)
  • Recently, our laboratory discovered selective androgen receptor modulators, which structurally resemble the nonsteroidal AR antagonists bicalutamide and hydroxyflutamide but act as agonists for the androgen receptor in a tissue-selective manner. (rcsb.org)
  • Also, androgens are the precursors to estrogens in both men and women. (wikipedia.org)
  • Nine structurally different polycyclic aromatic hydrocarbons (PAHs) were tested for their ability to either agonize or antagonize the human androgen receptor (hAR) in a sensitive reporter gene assay based on CHO cells transiently cotransfected with a hAR vector and an MMTV-LUC vector. (dtu.dk)
  • and assessing the efficacy and long-term safety of androgen administration on outcomes that are important to women diagnosed with these conditions. (nih.gov)
  • for information on androgens as medications, see the androgen replacement therapy and anabolic steroid articles. (wikipedia.org)
  • Androgen Replacement Therapy. (routledge.com)
  • A recent set of symposium papers on the emerging role of estrogen and androgen therapy in the postmenopausal women was published in the Journal of Reproductive Medicine. (wdxcyber.com)
  • This warrants further exploration of the predictive and prognostic significance of its expression amongst TNBC and the potential for targeted therapy, specifically androgen antagonists to improve the outcome of this disease with limited therapeutic options. (ecancer.org)
  • Invasive Ductal Carcinoma in a 46,XY Partial Androgen Insensitivity Syndrome Patient on Hormone Therapy. (bvsalud.org)
  • Androgen Deficiency in the Adult Male: Causes, Diagnosis and Treatment distills the knowledge acquired by author Dr. Malcolm Carruthers in his 25 years of research and clinical experience in diagnosing and treating the andropause into a comprehensive, detailed clinical resource. (routledge.com)
  • He discusses the causes of androgen deficiency, the male menopause or andropause, and recent advances in its diagnosis. (routledge.com)
  • This combination of features makes Androgen Deficiency in the Adult Male: Causes, Diagnosis and Treatment an invaluable and practical clinical guide, a complete and detailed reference volume, and a cohesive and readable textbook. (routledge.com)
  • Causes of Androgen Deficiency. (routledge.com)
  • The Diagnosis of Androgen Deficiency. (routledge.com)
  • This retrospective analysis examined patients who had androgen deficiency. (bernsteinmedical.com)
  • Conclusions Higher SHBG, independently of TT, is associated with either subjective or objective androgen deficiency features. (medscape.com)
  • Hence, increased SHBG could remarkably affect androgen status, possibly leading to features of androgen deficiency, despite apparently normal or borderline TT. (medscape.com)
  • In humans, the role of SHBG as a marker of androgen deficiency has been scarcely investigated. (medscape.com)
  • Determined by consideration of all biological assay methods (c. 1970): The ovaries and adrenal glands also produce androgens, but at much lower levels than the testes. (wikipedia.org)
  • Soon after they differentiate, Leydig cells begin to produce androgens. (wikipedia.org)
  • Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3.Defects in AR are the cause of androgen insensitivity syndrome (AIS).Affected males have female external genitalia, female breast development, blind vagina, absent uterus and female adnexa, and abdominal or inguinal testes, despite a normal 46,XY karyotype.Defects in AR are the cause of spinal and bulbar muscular atrophy X-linked type 1 (SMAX1). (ptglab.com)
  • This treatment can reduce primary and metastatic lesions probably by inducing apoptosis of tumor cells when they express the wild-type receptor.Defects in AR are the cause of androgen insensitivity syndrome partial (PAIS). (ptglab.com)
  • This is a case report of complete androgen insensitivity syndrome and literature review of preoperative diagnostic methods. (bvsalud.org)
  • We present a 3 years and 6 months old child with female phenotype, born in São Paulo, Brazil which was diagnosed intraoperatively with complete androgen insensitivity syndrome, during inguinal hernia repair and present potential diagnostic alternatives that we consider viable options in order to avoid this kind of surprise during surgery. (bvsalud.org)
  • One approach that has drawn recent attention is supplementation with androgens, hormones with anabolic properties whose levels naturally decline with age ( 9 - 12 ). (frontiersin.org)
  • Clinical studies of androgen supplementation in age-related diseases and muscle wasting are a focus of emerging interest ( 11 ). (frontiersin.org)
  • However, tumors eventually reemerge that have overcome the absence of gonadal androgens, termed castration resistant PCa (CRPC). (harvard.edu)
  • The introduction of the 240mg tablet provides the first-and-only option for a once-daily, single-tablet Androgen Receptor Inhibitor (ARI) approved for the treatment of patients with non-metastatic castration-resistant prostate cancer (nmCRPC) and for the treatment of patients with metastatic castration-sensitive prostate cancer (mCSPC). (jnj.com)
  • ERLEADA ® (apalutamide) is an androgen receptor inhibitor indicated for the treatment of patients with non-metastatic castration-resistant prostate cancer (nmCRPC) and for the treatment of patients with metastatic castration-sensitive prostate cancer (mCSPC). (jnj.com)
  • The prevalent dogma is that androgens regulate libido in women, although a woman's sexual behavior is greatly affected by environmental, emotional, cultural and hormonal factors. (empowher.com)
  • The adrenal glands develop abnormally and produce excess androgens which results in hormonal problems. (checkorphan.org)
  • Seventeen of the 19 patients who did not respond to hormonal treatment had either type 2 or type 4 receptograms, which are characterised by skewed or bimodal androgen receptor distribution. (bmj.com)
  • The hormonal management of patients with androgen insensitivity can be challenging. (bvsalud.org)
  • Identification of novel androgen receptor (AR) antagonists may lead to urgently needed new treatments for patients with prostate cancer resistant to current AR antagonists. (aacrjournals.org)
  • Paraffin wax embedded tumour sections from 85 patients with metastatic carcinoma of the prostate were processed for immunocytochemistry and stained for the androgen receptor using antiandrogen receptor antibodies. (bmj.com)
  • Image analysis of androgen receptor immunostaining with a receptogram oriented approach provides important prognostic information that can be used to predict response to hormone treatment in patients with metastatic carcinoma of the prostate. (bmj.com)
  • Androgens are synthesized in the testes, the ovaries, and the adrenal glands. (wikipedia.org)
  • Regarding the relative contributions of ovaries and adrenal glands to female androgen levels, in a study with six menstruating women the following observations have been made: Adrenal contribution to peripheral T, DHT, A, DHEA and DHEA-S is relatively constant throughout the menstrual cycle. (wikipedia.org)
  • Tumors of the ovaries and polycystic ovary syndrome (PCOS) can both cause too much androgen production. (medlineplus.gov)
  • Studies targeted at establishing such effects at cellular level and their correlations with in vivo models, will broaden our understanding of the roles played by androgens on skeletal muscle function in elderly. (frontiersin.org)
  • The main subset of androgens, known as adrenal androgens, is composed of 19-carbon steroids synthesized in the zona reticularis, the innermost layer of the adrenal cortex. (wikipedia.org)
  • Adrenal androgens function as weak steroids (though some are precursors), and the subset includes dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEA-S), androstenedione (A4), and androstenediol (A5). (wikipedia.org)
  • Here, we analyze the perturbations to the AR cistrome caused by a minor groove binding molecule that is designed to target a sequence found in a subset of androgen response elements (ARE). (caltech.edu)
  • Although androgens are commonly thought of only as male sex hormones, females also have them, but at lower levels: they function in libido and sexual arousal. (wikipedia.org)
  • Theories underlying the development of CRPC include androgen receptor (AR) mutation allowing for promiscuous activation by non-androgens, AR amplification and overexpression leading to hypersensitivity to low androgen levels, and/or tumoral uptake and conversion of adrenally derived androgens. (harvard.edu)
  • We demonstrate tumoral expression of cholesterol uptake genes as well as the spectrum of steroidogenic enzymes necessary for androgen biosynthesis from cholesterol. (harvard.edu)
  • The purpose of this work was to evaluate the effect of androgen receptor (AR) inhibition on prostate-specific membrane antigen (PSMA) uptake imaged using 68 Ga-PSMA-11 PET in a mouse xenograft model and in a patient with castration-sensitive prostate cancer. (snmjournals.org)
  • Nuclear uptake and retention of androgen by the pituitary gland of the hamster and the rat. (oregonstate.edu)
  • OBJECTIVES: I. Establish whether changes between baseline and 2-month post androgen suppression endorectal coil MRI results predict for biochemical control following radiotherapy with androgen suppression in patients with adenocarcinoma of the prostate. (knowcancer.com)
  • OUTLINE: Patients undergo a baseline endorectal coil MRI, followed by total androgen suppression (TAS) with either leuprolide IM or subcutaneous goserelin once a month plus oral flutamide 3 times a day for 2 months. (knowcancer.com)
  • Herein we report crystal structures of the androgen receptor (AR) ligand-binding domain (LBD) complexed to a series of potent synthetic nonsteroidal SARMs with a substituted pendant arene referred to as the B-ring. (rcsb.org)
  • Androgen receptor expression in Breast cancer: An emerging marker of possible prognostic/predictive value? (who.int)
  • OBJECTIVE: To examine the possible beneficial effect of androgens in postmenopausal women with active rheumatoid arthritis. (bmj.com)
  • In patients treated with ADT the pituitary-adrenal axis mediated by adrenocorticotropic hormone has a central role in the regulation of androgen synthesis. (urotoday.com)
  • More recently it has been proposed that prostate tumor cells synthesize their own androgens through de novo steroidogenesis, which involves the step-wise synthesis of androgens from cholesterol. (harvard.edu)
  • Moreover, we show that circulating cholesterol levels are directly correlated with tumoral expression of CYP17A, the critical enzyme required for de novo synthesis of androgens from cholesterol (R = 0.4073, p = 0.025) Since hypercholesterolemia does not raise circulating androgen levels and the adrenal gland of the mouse synthesizes minimal androgens, this study provides evidence that hypercholesterolemia increases intratumoral de novo steroidogenesis. (harvard.edu)
  • Our results are consistent with the hypothesis that cholesterol-fueled intratumoral androgen synthesis may accelerate the growth of prostate tumors, and suggest that treatment of CRPC may be optimized by inclusion of cholesterol reduction therapies in conjunction with therapies targeting androgen synthesis and the AR. (harvard.edu)
  • Androgens as adjuvant treatment in postmenopausal female patients with rheumatoid arthritis. (bmj.com)
  • Targeting the androgen receptor (AR) pathway prolongs survival in patients with prostate cancer, but resistance rapidly develops. (lu.se)
  • 2, 3 Moreover, most patients eventually relapse to an androgen independent state and die. (bmj.com)
  • The ability of this microRNA to inhibit the androgen receptor offers potential for further research on the possibilities of using miR-145 for treatment of patients with prostate cancer so that they do not develop aggressive tumours", says Olivia Larne. (lu.se)
  • Prins GS, Birch L, Greene GL: Androgen receptor localization in different cell types of the adult rat prostate. (karger.com)
  • Localization of the androgen was found in 10-15% of the cells of the pars distalis in both species. (oregonstate.edu)
  • The objective was to provide guidelines for the therapeutic use of androgens in women. (nih.gov)
  • Here, we show that (+)-JJ-74-138 is more potent than JJ-450 in the inhibition of androgen-independent AR activity in enzalutamide-resistant LN95 cells. (aacrjournals.org)
  • If you experience sparse menstrual periods, periods that are prolonged, or your body produces excessive male hormone (androgen) levels, then you. (idahofertility.com)
  • Although the number of cells that concentrated the androgen in the pars intermedia and pars nervosa was small, this finding may be related to recent physiologic data that suggest that the gonadal steroids may play a role in regulating water retention and natriuresis. (oregonstate.edu)
  • The crucial role of androgen receptor (AR) in prostate cancer development is well documented, and its inhibition is a mainstay of prostate cancer treatment. (caltech.edu)
  • Androgens increase in both males and females during puberty. (wikipedia.org)
  • The immunogen of 22576-1-AP is androgen receptor Fusion Protein expressed in E. coli. (ptglab.com)
  • The androgen receptor is a protein that has an important role in the male reproductive system. (lu.se)
  • This necessary clinical research cannot occur until the biological, physiological, and psychological underpinnings of the role of androgens in women and candidate disorders are further elucidated. (nih.gov)
  • Also, this analogue noncompetitively inhibited androgen-stimulated AR activity in C4-2, LN95, and 22Rv1 CRPC cells. (aacrjournals.org)
  • In experiments, this molecule was able to regulate the androgen receptor, which is important to the growth of both cancerous and normal prostate cells. (lu.se)
  • The aim of the study was to assess whether changes in SHBG levels, independently of TT, are associated with subjective and objective androgen-dependent parameters. (medscape.com)
  • It is the primary precursor of both the androgen and estrogen sex hormones. (wikipedia.org)
  • The androgens function as paracrine hormones required by the Sertoli cells to support sperm production. (wikipedia.org)
  • ERLEADA® (apalutamide), First-and-Only Next-Generation Androgen Receptor Inhibitor with Once-Daily, Single-Tablet Option, Now Available in the U.S. (jnj.com)
  • It is a rare recessive genetic disorder linked to the X chromosome that results in different mutations in the androgen receptor. (bvsalud.org)
  • Treatment depends on the problem that is causing the increased androgen production. (medlineplus.gov)
  • We know a lot about the androgen receptor from studies conducted at the level of about 10,000 feet," says Charles Sawyers , Chair of the Human Oncology and Pathogenesis Program at MSK who researches the biology and treatment of prostate cancer. (mskcc.org)
  • The role of medications that suppress androgen production is controversial in the treatment of prostate cancer. (oncolink.org)
  • Flutamide is an androgen receptor (AR) antagonist approved by the United States Food and Drug Administration for the treatment of prostate cancer. (oregonstate.edu)
  • However, the pathophysiological mechanisms underlying this muscle syndrome and its relationship with plasma level of androgens are not completely understood. (frontiersin.org)