A dermal inflammatory reaction produced under conditions of antibody excess, when a second injection of antigen produces intravascular antigen-antibody complexes which bind complement, causing cell clumping, endothelial damage, and vascular necrosis.
Disorder characterized by a vasculitic syndrome associated with exposure to an antigen such as a drug, infectious agent, or other foreign or endogenous substance. Its pathophysiology includes immune complex deposition and a wide range of skin lesions. Hypersensitivity or allergy is present in some but not all cases.
Group of diseases mediated by the deposition of large soluble complexes of antigen and antibody with resultant damage to tissue. Besides SERUM SICKNESS and the ARTHUS REACTION, evidence supports a pathogenic role for immune complexes in many other IMMUNE SYSTEM DISEASES including GLOMERULONEPHRITIS, systemic lupus erythematosus (LUPUS ERYTHEMATOSUS, SYSTEMIC) and POLYARTERITIS NODOSA.
Abnormal fluid accumulation in TISSUES or body cavities. Most cases of edema are present under the SKIN in SUBCUTANEOUS TISSUE.
A G-protein-coupled receptor that signals an increase in intracellular calcium in response to the potent ANAPHYLATOXIN peptide COMPLEMENT C5A.
An evanescent cutaneous reaction occurring when antibody is injected into a local area on the skin and antigen is subsequently injected intravenously along with a dye. The dye makes the rapidly occurring capillary dilatation and increased vascular permeability readily visible by leakage into the reaction site. PCA is a sensitive reaction for detecting very small quantities of antibodies and is also a method for studying the mechanisms of immediate hypersensitivity.
The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES.
Venoms from snakes of the genus Naja (family Elapidae). They contain many specific proteins that have cytotoxic, hemolytic, neurotoxic, and other properties. Like other elapid venoms, they are rich in enzymes. They include cobramines and cobralysins.
The minor fragment formed when C5 convertase cleaves C5 into C5a and COMPLEMENT C5B. C5a is a 74-amino-acid glycopeptide with a carboxy-terminal ARGININE that is crucial for its spasmogenic activity. Of all the complement-derived anaphylatoxins, C5a is the most potent in mediating immediate hypersensitivity (HYPERSENSITIVITY, IMMEDIATE), smooth MUSCLE CONTRACTION; HISTAMINE RELEASE; and migration of LEUKOCYTES to site of INFLAMMATION.
The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY).
Molecules on the surface of some B-lymphocytes and macrophages, that recognize and combine with the C3b, C3d, C1q, and C4b components of complement.
Specific molecular sites on the surface of various cells, including B-lymphocytes and macrophages, that combine with IMMUNOGLOBULIN Gs. Three subclasses exist: Fc gamma RI (the CD64 antigen, a low affinity receptor), Fc gamma RII (the CD32 antigen, a high affinity receptor), and Fc gamma RIII (the CD16 antigen, a low affinity receptor).
The diffusion or accumulation of neutrophils in tissues or cells in response to a wide variety of substances released at the sites of inflammatory reactions.
Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes.
An increased reactivity to specific antigens mediated not by antibodies but by cells.
Bleeding or escape of blood from a vessel.

Cutting edge: Fc receptor type I for IgG on macrophages and complement mediate the inflammatory response in immune complex peritonitis. (1/146)

The contributions of Fc receptors (FcRs) for IgG (FcgammaRs) and complement to immune complex (IC)-mediated peritonitis were evaluated in BALB/c-, C57BL/6-, FcRgamma chain-, and FcR type III for IgG (FcgammaRIII)-deficient mice, backcrossed to the C57BL/6 background. In BALB/c mice, but not in C57BL/6 mice, neutrophil migration was markedly attenuated after complement depletion. In mice lacking FcRgamma chain, neutrophil migration was abolished, whereas it was unaffected in FcgammaRIII-deficient mice. Huge amounts of TNF-alpha (TNF) were found in the peritoneal exudate of BALB/c and C57BL/6 mice but were absent in mice lacking FcRgamma chain or FcgammaRIII. Surprisingly, a functional inhibition of TNF in BALB/c and C57BL/6 mice had no effect on neutrophil infiltration. These data provide evidence that in IC peritonitis, the activation of FcR type I for IgG on peritoneal macrophages and the activation of the complement cascade, but not the interaction of ICs with FcgammaRIII and the subsequent release of TNF, initiate the inflammatory response in BALB/c and C57BL/6 mice.  (+info)

Selection of a C5a receptor antagonist from phage libraries attenuating the inflammatory response in immune complex disease and ischemia/reperfusion injury. (2/146)

A C5a-receptor antagonist was selected from human C5a phage display libraries in which the C terminus of des-Arg74-hC5a was mutated. The selected molecule is a competitive C5a receptor antagonist in vitro and in vivo. Signal transduction is interrupted at the level of G-protein activation. In addition, the antagonist does not cause any C5a receptor phosphorylation. Proinflammatory properties such as chemotaxis or lysosomal enzyme release of differentiated U937 cells, as well as C5a-induced changes in intracellular Ca2+ concentration of murine peritoneal macrophages, are inhibited. The in vivo efficacy was evaluated in three different animal models of immune complex diseases in mice, i.e., the reverse passive Arthus reaction in the peritoneum, skin, and lung. The i.v. application of the C5a receptor antagonist abrogated polymorphonuclear neutrophil accumulation in peritoneum and markedly attenuated polymorphonuclear neutrophil migration into the skin and the lung. In a model of intestinal ischemia/reperfusion injury, i.v. administration of the C5a receptor antagonist decreased local and remote tissue injury: bowel wall edema and hemorrhage as well as pulmonary microvascular dysfunction. These data give evidence that C5a is an important mediator triggering the inflammatory sequelae seen in immune complex diseases and ischemia/reperfusion injury. The selected C5a receptor antagonist may prove useful to attenuate the inflammatory response in these disorders.  (+info)

IL-1 and TNF receptor-deficient mice show decreased inflammation in an immune complex model of uveitis. (3/146)

PURPOSE: To determine the role of interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha) in the induction of uveitis by a reverse passive Arthus reaction (RPAR). METHODS: Human serum albumin (HSA) antiserum was injected into the vitreous of "knockout" or "double knockout" mice genetically deficient in IL-1 receptor type I (IL-1RI-/-), TNF receptors p55 and p75 (TNFR p55-/-/p75-/-), IL-1RI and TNFR p55 (IL-1RI-/-/TNFR p55-/-), and controls. Twenty-four hours later, animals were challenged with intravenous HSA. Eyes were enucleated 4 hours after antigen challenge, and inflammation was quantitated by counting cells on histologic sections. Interleukin-6 in aqueous humor was measured with a B9 cell bioassay. The distribution of immune complexes in eyes was observed by immunohistochemical staining for IgG and complement component C3. RESULTS: Four hours after antigen challenge, immune complexes were localized at the ciliary body and iris of receptor-deficient mice. A transient uveitis was most severe at this time. A significant reduction in the median number of infiltrating cells was found in TNFR p55-/-/p75-/- mice (4.8, n = 15), compared with controls (14.2, n = 20, P < 0.05). The median number of infiltrating cells was significantly reduced in IL-1RI-/- mice (knockout 2.6, n = 11; controls 7.4, n = 8, P < 0.005). Interleukin-1RI-/-/TNFR p55-/- mice had a strong reduction in infiltrating cells (knockout 1.6, n = 11; controls 27.3, n = 12, P = 0.002). Interleukin-6 activity in aqueous humor was reduced in IL-1RI-/-/TNFR p55-/- mice (P = 0.03) but not in TNFR p55-/-/p75-/- (P = 0.40) mice. Most IL-1RI-/-mice had no detectable aqueous humor IL-6, but this group was not statistically different from controls. CONCLUSIONS: In contrast to endotoxin-induced uveitis, both IL-1 and TNF appear to have critical roles in RPAR uveitis. When receptors for these cytokines were deleted, the severity of immune complex-induced uveitis was profoundly reduced.  (+info)

The Arthus reaction in rodents: species-specific requirement of complement. (4/146)

We induced reverse passive Arthus (RPA) reactions in the skin of rodents and found that the contribution of complement to immune complex-mediated inflammation is species specific. Complement was found to be necessary in rats and guinea pigs but not in C57BL/6J mice. In rats, within 4 h after initiation of an RPA reaction, serum alternative pathway hemolytic titers decreased significantly below basal levels, whereas classical pathway titers were unchanged. Thus the dermal reaction proceeds coincident with systemic activation of complement. The serine protease inhibitor BCX 1470, which blocks the esterolytic and hemolytic activities of the complement enzymes Cls and factor D in vitro, also blocked development of RPA-induced edema in the rat. These data support the proposal that complement-mediated processes are of major importance in the Arthus reaction in rats and guinea pigs, and suggest that BCX 1470 will be useful as an anti-inflammatory agent in diseases where complement activation is known to be detrimental.  (+info)

A codominant role of Fc gamma RI/III and C5aR in the reverse Arthus reaction. (5/146)

Recent attempts to specify the relative contribution of FcR and complement in various experimental systems of immune complex disease have led to opposing conclusions. As concluded in IgG FcRgamma-/- mice, manifestation of disease is almost exclusively determined by FcgammaR on effector cells, arguing for a minor role of complement. In contrast, data obtained with C5aR-/- mice suggested that, dependent on the tissue site, complement is more important than FcgammaR. In this paper, we demonstrate that, in response to IgG immune complex formation, FcgammaRI/III- and C5aR-mediated pathways are both necessary and only together are they sufficient to trigger the full expression of inflammation in skin and lung. Moreover, both effector systems are not entirely independent, suggesting an interaction between FcgammaR and C5aR. Therefore, FcgammaR-mediated responses can be integrated through C5aR activation, which may explain why these two receptor pathways have previously been considered to dominate each other.  (+info)

Contribution of B(2) receptors for bradykinin in arthus reaction-induced plasma extravasation in wild-type or B(2) transgenic knockout mice. (6/146)

The aim of the present study was to investigate the contribution of bradykinin (BK) B(1) and B(2) receptors in a model of type III hypersensitivity, the reverse passive Arthus reaction (RPA), in wild-type mice and transgenic B(2) knockout littermates. BK (10 microg mouse(-1)) or bovine serum albumin (0.5 mg mouse(-1)) induced a sustained Evans blue extravasation for more than 80 min in naive or rabbit anti-bovine serum albumin-treated mice (RPA model), respectively. The response to the two stimuli was prevented by the B(2) receptor antagonist, HOE-140, but not by [Leu(8)]desArg(9)-BK (B(1) receptor antagonist). In contrast to the wild-type littermates, RPA and bradykinin were unable to trigger an increase in plasma extravasation in B(2) knockout mice. Furthermore, endothelin-1 (5 microg mouse(-1)) and a selective NK-1 receptor agonist [Sar(9),Met (O(2))(11)]-SP (20 microg mouse(-1)), triggered a significant increase in peritoneal plasma extravasation in both wild-type and B(2) knockout animals. A pretreatment with indomethacin (200 microg mouse(-1)) significantly reduced the RPA-induced but not the BK-induced increase in Evans blue extravasation. Furthermore, RPA, but not BK, triggered a significant indomethacin-sensitive increase in peritoneal prostaglandin E(2) content. Our results suggest a pivotal role for B(2) receptors in the mechanism of plasma extravasation which occurs during the reverse passive Arthus reaction in the mouse. Moreover, our results suggest an important contribution of prostanoids in the plasma leakage mechanisms triggered by RPA but not by bradykinin.  (+info)

A new small molecule C5a receptor antagonist inhibits the reverse-passive Arthus reaction and endotoxic shock in rats. (7/146)

C5a is implicated as a pathogenic factor in a wide range of immunoinflammatory diseases, including sepsis and immune complex disease. Agents that antagonize the effects of C5a could be useful in these diseases. We have developed some novel C5a antagonists and have determined the acute anti-inflammatory properties of a new small molecule C5a receptor antagonist against C5a- and LPS-induced neutrophil adhesion and cytokine expression, as well as against some hallmarks of the reverse Arthus reaction in rats. We found that a single i.v. dose (1 mg/kg) of this antagonist inhibited both C5a- and LPS-induced neutropenia and elevated levels of circulating TNF-alpha, as well as polymorphonuclear leukocyte migration, increased TNF-alpha levels and vascular leakage at the site of immune complex deposition. These results indicate potent anti-inflammatory activities of a new C5a receptor antagonist and provide more evidence for a key early role for C5a in sepsis and the reverse Arthus reaction. The results support a role for antagonists of C5a receptors in the therapeutic intervention of immunoinflammatory disease states such as sepsis and immune complex disease.  (+info)

Lyn is essential for fcgamma receptor III-mediated systemic anaphylaxis but not for the Arthus reaction. (8/146)

The Src family kinase Lyn initiates intracellular signal transduction by associating with a variety of immune receptors such as antigen receptor on B cells and high-affinity Fc receptor (FcR) for immunoglobulin Ig(E) (FcepsilonRI) on mast cells. Involvement of Lyn in the IgE-mediated immediate-type hypersensitivity is well documented, but the physiological significance of Lyn in IgG-dependent, type III low-affinity FcR for IgG (FcgammaRIII)-mediated responses is largely unknown. In this study, we generated a double-mutant mouse strain deficient in both type II FcR for IgG (FcgammaRIIB) and Lyn to exclude any involvement of inhibitory signaling by FcgammaRIIB, which otherwise downregulates FcgammaRIII-mediated cellular responses. FcgammaRIIB-deficient but Lyn-sufficient mice served as controls. The Lyn deficiency attenuated IgG-mediated systemic anaphylaxis in vivo, and significantly reduced calcium mobilization and degranulation responses of bone marrow-derived mast cells (BMMCs) in vitro. However, we found that either interleukin 4 or tumor necrosis factor alpha release by BMMCs was comparable to that from Lyn-deficient and control mice, and the reverse-passive Arthus reaction was equally induced in both mutant mice, indicating that Lyn is not involved in the onset of the IgG-mediated, FcgammaRIII-dependent late phase responses of mast cells. These findings provide us with insight into distinct signaling mechanisms in mast cells underlying the development of diverse pathologies as well as a therapeutic potential for selective treatment of allergic disorders.  (+info)

The Arthus reaction is a type of localized immune complex-mediated hypersensitivity reaction (type III hypersensitivity). It is named after the French scientist Nicolas Maurice Arthus who first described it in 1903. The reaction occurs when an antigen is injected into the skin or tissues of a sensitized individual, leading to the formation of immune complexes composed of antigens and antibodies (usually IgG). These immune complexes deposit in the small blood vessels, causing complement activation, recruitment of inflammatory cells, and release of mediators that result in tissue damage.

Clinically, an Arthus reaction is characterized by localized signs of inflammation, such as redness, swelling, pain, and warmth at the site of antigen injection. In severe cases, it can lead to necrosis and sloughing of the skin. The Arthus reaction typically occurs within 2-8 hours after antigen exposure and is distinct from immediate hypersensitivity reactions (type I), which occur within minutes of antigen exposure.

The Arthus reaction is often seen in laboratory animals used for antibody production, where repeated injections of antigens can lead to sensitization and subsequent Arthus reactions. In humans, it can occur as a complication of immunizations or diagnostic tests that involve the injection of foreign proteins or drugs. To prevent Arthus reactions, healthcare providers may perform skin testing before administering certain medications or vaccines to assess for preexisting sensitization.

Leukocytoclastic vasculitis, cutaneous is a type of vasculitis that is limited to the skin. Vasculitis refers to inflammation of the blood vessels, which can cause damage to the vessel walls and impair blood flow to various tissues in the body. In leukocytoclastic vasculitis, the small blood vessels (capillaries and venules) in the skin become inflamed, leading to damage and destruction of the vessel walls.

The term "leukocytoclastic" refers to the presence of nuclear debris from white blood cells (leukocytes) that have been destroyed within the affected blood vessels. This type of vasculitis is often associated with the deposition of immune complexes (formed by the interaction between antibodies and antigens) in the walls of the blood vessels, which triggers an inflammatory response.

Cutaneous leukocytoclastic vasculitis typically presents as palpable purpura (small to large, raised, purple or red spots on the skin), usually located on the lower extremities, but can also affect other areas of the body. Other symptoms may include burning or itching sensations in the affected area, and in some cases, ulcers or necrosis (tissue death) may occur.

The diagnosis of cutaneous leukocytoclastic vasculitis is typically made based on clinical presentation, laboratory tests, and histopathological examination of a skin biopsy specimen. Treatment usually involves addressing any underlying causes or triggers, as well as managing symptoms with medications such as corticosteroids or immunosuppressive agents.

Immune complex diseases are medical conditions that occur when the immune system produces an abnormal response to certain antigens, leading to the formation and deposition of immune complexes in various tissues and organs. These immune complexes consist of antibodies bound to antigens, which can trigger an inflammatory reaction and damage the surrounding tissue.

Immune complex diseases can be classified into two categories: acute and chronic. Acute immune complex diseases include serum sickness and hypersensitivity vasculitis, while chronic immune complex diseases include systemic lupus erythematosus (SLE), rheumatoid arthritis, and membranoproliferative glomerulonephritis.

The symptoms of immune complex diseases depend on the location and extent of tissue damage. They can range from mild to severe and may include fever, joint pain, skin rashes, kidney dysfunction, and neurological problems. Treatment typically involves medications that suppress the immune system and reduce inflammation, such as corticosteroids, immunosuppressants, and anti-inflammatory drugs.

Edema is the medical term for swelling caused by excess fluid accumulation in the body tissues. It can affect any part of the body, but it's most commonly noticed in the hands, feet, ankles, and legs. Edema can be a symptom of various underlying medical conditions, such as heart failure, kidney disease, liver disease, or venous insufficiency.

The swelling occurs when the capillaries leak fluid into the surrounding tissues, causing them to become swollen and puffy. The excess fluid can also collect in the cavities of the body, leading to conditions such as pleural effusion (fluid around the lungs) or ascites (fluid in the abdominal cavity).

The severity of edema can vary from mild to severe, and it may be accompanied by other symptoms such as skin discoloration, stiffness, and pain. Treatment for edema depends on the underlying cause and may include medications, lifestyle changes, or medical procedures.

The term "Receptor, Anaphylatoxin C5a" refers to a specific type of receptor found on the surface of various cells in the human body, including immune cells and endothelial cells. This receptor binds to a molecule called C5a, which is a cleavage product of the complement component C5 and is one of the most potent anaphylatoxins.

Anaphylatoxins are inflammatory mediators that play a crucial role in the immune response, particularly in the activation of the complement system and the recruitment of immune cells to sites of infection or injury. C5a is generated during the activation of the complement system and has a wide range of biological activities, including chemotaxis (attracting immune cells to the site of inflammation), increased vascular permeability, and the activation of immune cells such as neutrophils, monocytes, and mast cells.

The C5a receptor, also known as CD88, is a G protein-coupled receptor that belongs to the superfamily of seven transmembrane domain receptors. When C5a binds to the receptor, it triggers a series of intracellular signaling events that lead to the activation of various cellular responses, such as the release of inflammatory mediators and the recruitment of immune cells to the site of inflammation.

Abnormal activation of the C5a/C5a receptor pathway has been implicated in a variety of inflammatory diseases, including sepsis, acute respiratory distress syndrome (ARDS), and autoimmune disorders. Therefore, targeting this pathway with therapeutic agents has emerged as a promising strategy for the treatment of these conditions.

Passive Cutaneous Anaphylaxis (PCA) is a type of localized or cutaneous hypersensitivity reaction that occurs when an individual who has been sensitized to a particular antigen is injected with the antigen along with a dye (usually Evans blue) and subsequently intravenously administered with a foreign protein, such as horse serum, that contains antibodies (IgG) against the antigen. The IgG antibodies passively transfer to the sensitized individual and bind to the antigen at the site of injection, forming immune complexes. These immune complexes then activate the complement system, leading to the release of mediators such as histamine, which causes localized vasodilation, increased vascular permeability, and extravasation of the dye into the surrounding tissues. As a result, a blue-colored wheal or skin blanching appears at the injection site, indicating a positive PCA reaction. This test is used to detect the presence of IgG antibodies in an individual's serum and to study the mechanisms of immune complex-mediated hypersensitivity reactions.

An antigen-antibody complex is a type of immune complex that forms when an antibody binds to a specific antigen. An antigen is any substance that triggers an immune response, while an antibody is a protein produced by the immune system to neutralize or destroy foreign substances like antigens.

When an antibody binds to an antigen, it forms a complex that can be either soluble or insoluble. Soluble complexes are formed when the antigen is small and can move freely through the bloodstream. Insoluble complexes, on the other hand, are formed when the antigen is too large to move freely, such as when it is part of a bacterium or virus.

The formation of antigen-antibody complexes plays an important role in the immune response. Once formed, these complexes can be recognized and cleared by other components of the immune system, such as phagocytes, which help to prevent further damage to the body. However, in some cases, the formation of large numbers of antigen-antibody complexes can lead to inflammation and tissue damage, contributing to the development of certain autoimmune diseases.

Cobra venoms are a type of snake venom that is produced by cobras, which are members of the genus Naja in the family Elapidae. These venoms are complex mixtures of proteins and other molecules that have evolved to help the snake immobilize and digest its prey.

Cobra venoms typically contain a variety of toxic components, including neurotoxins, hemotoxins, and cytotoxins. Neurotoxins target the nervous system and can cause paralysis and respiratory failure. Hemotoxins damage blood vessels and tissues, leading to internal bleeding and organ damage. Cytotoxins destroy cells and can cause tissue necrosis.

The specific composition of cobra venoms can vary widely between different species of cobras, as well as between individual snakes of the same species. Some cobras have venoms that are primarily neurotoxic, while others have venoms that are more hemotoxic or cytotoxic. The potency and effects of cobra venoms can also be influenced by factors such as the age and size of the snake, as well as the temperature and pH of the environment.

Cobra bites can be extremely dangerous and even fatal to humans, depending on the species of cobra, the amount of venom injected, and the location of the bite. Immediate medical attention is required in the event of a cobra bite, including the administration of antivenom therapy to neutralize the effects of the venom.

Complement C5a is a protein fragment that is generated during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body by tagging them for destruction and attracting immune cells to the site of infection or injury.

C5a is formed when the fifth component of the complement system (C5) is cleaved into two smaller fragments, C5a and C5b, during the complement activation cascade. C5a is a potent pro-inflammatory mediator that can attract and activate various immune cells, such as neutrophils, monocytes, and eosinophils, to the site of infection or injury. It can also increase vascular permeability, promote the release of histamine, and induce the production of reactive oxygen species, all of which contribute to the inflammatory response.

However, excessive or uncontrolled activation of the complement system and generation of C5a can lead to tissue damage and inflammation, contributing to the pathogenesis of various diseases, such as sepsis, acute respiratory distress syndrome (ARDS), and autoimmune disorders. Therefore, targeting C5a or its receptors has been explored as a potential therapeutic strategy for these conditions.

In medical terms, the skin is the largest organ of the human body. It consists of two main layers: the epidermis (outer layer) and dermis (inner layer), as well as accessory structures like hair follicles, sweat glands, and oil glands. The skin plays a crucial role in protecting us from external factors such as bacteria, viruses, and environmental hazards, while also regulating body temperature and enabling the sense of touch.

The complement system is a group of proteins found in the blood and on the surface of cells that when activated, work together to help eliminate pathogens such as bacteria, viruses, and fungi from the body. The proteins are normally inactive in the bloodstream. When they encounter an invading microorganism or foreign substance, a series of reactions take place leading to the activation of the complement system. Activation results in the production of effector molecules that can punch holes in the cell membranes of pathogens, recruit and activate immune cells, and help remove debris and dead cells from the body.

There are three main pathways that can lead to complement activation: the classical pathway, the lectin pathway, and the alternative pathway. Each pathway involves a series of proteins that work together in a cascade-like manner to amplify the response and generate effector molecules. The three main effector molecules produced by the complement system are C3b, C4b, and C5b. These molecules can bind to the surface of pathogens, marking them for destruction by other immune cells.

Complement proteins also play a role in the regulation of the immune response. They help to prevent excessive activation of the complement system, which could damage host tissues. Dysregulation of the complement system has been implicated in a number of diseases, including autoimmune disorders and inflammatory conditions.

In summary, Complement System Proteins are a group of proteins that play a crucial role in the immune response by helping to eliminate pathogens and regulate the immune response. They can be activated through three different pathways, leading to the production of effector molecules that mark pathogens for destruction. Dysregulation of the complement system has been linked to various diseases.

Complement receptors are proteins found on the surface of various cells in the human body, including immune cells and some non-immune cells. They play a crucial role in the complement system, which is a part of the innate immune response that helps to eliminate pathogens and damaged cells from the body. Complement receptors bind to complement proteins or fragments that are generated during the activation of the complement system. This binding triggers various intracellular signaling events that can lead to diverse cellular responses, such as phagocytosis, inflammation, and immune regulation.

There are several types of complement receptors, including:

1. CR1 (CD35): A receptor found on erythrocytes, B cells, neutrophils, monocytes, macrophages, and glomerular podocytes. It functions in the clearance of immune complexes and regulates complement activation.
2. CR2 (CD21): Expressed mainly on B cells and follicular dendritic cells. It facilitates antigen presentation, B-cell activation, and immune regulation.
3. CR3 (CD11b/CD18, Mac-1): Present on neutrophils, monocytes, macrophages, and some T cells. It mediates cell adhesion, phagocytosis, and intracellular signaling.
4. CR4 (CD11c/CD18, p150,95): Expressed on neutrophils, monocytes, macrophages, and dendritic cells. It is involved in cell adhesion, phagocytosis, and intracellular signaling.
5. C5aR (CD88): Found on various immune cells, including neutrophils, monocytes, macrophages, mast cells, eosinophils, and dendritic cells. It binds to the complement protein C5a and mediates chemotaxis, degranulation, and inflammation.
6. C5L2 (GPR77): Present on various cell types, including immune cells. Its function is not well understood but may involve regulating C5a-mediated responses or acting as a receptor for other ligands.

These receptors play crucial roles in the immune response and inflammation by mediating various functions such as chemotaxis, phagocytosis, cell adhesion, and intracellular signaling. Dysregulation of these receptors has been implicated in several diseases, including autoimmune disorders, infections, and cancer.

IgG receptors, also known as Fcγ receptors (Fc gamma receptors), are specialized protein molecules found on the surface of various immune cells, such as neutrophils, monocytes, macrophages, and some lymphocytes. These receptors recognize and bind to the Fc region of IgG antibodies, one of the five classes of immunoglobulins in the human body.

IgG receptors play a crucial role in immune responses by mediating different effector functions, including:

1. Antibody-dependent cellular cytotoxicity (ADCC): IgG receptors on natural killer (NK) cells and other immune cells bind to IgG antibodies coated on the surface of virus-infected or cancer cells, leading to their destruction.
2. Phagocytosis: When IgG antibodies tag pathogens or foreign particles, phagocytes like neutrophils and macrophages recognize and bind to these immune complexes via IgG receptors, facilitating the engulfment and removal of the targeted particles.
3. Antigen presentation: IgG receptors on antigen-presenting cells (APCs) can internalize immune complexes, process the antigens, and present them to T cells, thereby initiating adaptive immune responses.
4. Inflammatory response regulation: IgG receptors can modulate inflammation by activating or inhibiting downstream signaling pathways in immune cells, depending on the specific type of Fcγ receptor and its activation state.

There are several types of IgG receptors (FcγRI, FcγRII, FcγRIII, and FcγRIV) with varying affinities for different subclasses of IgG antibodies (IgG1, IgG2, IgG3, and IgG4). The distinct functions and expression patterns of these receptors contribute to the complexity and fine-tuning of immune responses in the human body.

Neutrophil infiltration is a pathological process characterized by the accumulation of neutrophils, a type of white blood cell, in tissue. It is a common feature of inflammation and occurs in response to infection, injury, or other stimuli that trigger an immune response. Neutrophils are attracted to the site of tissue damage by chemical signals called chemokines, which are released by damaged cells and activated immune cells. Once they reach the site of inflammation, neutrophils help to clear away damaged tissue and microorganisms through a process called phagocytosis. However, excessive or prolonged neutrophil infiltration can also contribute to tissue damage and may be associated with various disease states, including cancer, autoimmune disorders, and ischemia-reperfusion injury.

Neutrophils are a type of white blood cell that are part of the immune system's response to infection. They are produced in the bone marrow and released into the bloodstream where they circulate and are able to move quickly to sites of infection or inflammation in the body. Neutrophils are capable of engulfing and destroying bacteria, viruses, and other foreign substances through a process called phagocytosis. They are also involved in the release of inflammatory mediators, which can contribute to tissue damage in some cases. Neutrophils are characterized by the presence of granules in their cytoplasm, which contain enzymes and other proteins that help them carry out their immune functions.

Delayed hypersensitivity, also known as type IV hypersensitivity, is a type of immune response that takes place several hours to days after exposure to an antigen. It is characterized by the activation of T cells (a type of white blood cell) and the release of various chemical mediators, leading to inflammation and tissue damage. This reaction is typically associated with chronic inflammatory diseases, such as contact dermatitis, granulomatous disorders (e.g. tuberculosis), and certain autoimmune diseases.

The reaction process involves the following steps:

1. Sensitization: The first time an individual is exposed to an antigen, T cells are activated and become sensitized to it. This process can take several days.
2. Memory: Some of the activated T cells differentiate into memory T cells, which remain in the body and are ready to respond quickly if the same antigen is encountered again.
3. Effector phase: Upon subsequent exposure to the antigen, the memory T cells become activated and release cytokines, which recruit other immune cells (e.g. macrophages) to the site of inflammation. These cells cause tissue damage through various mechanisms, such as phagocytosis, degranulation, and the release of reactive oxygen species.
4. Chronic inflammation: The ongoing immune response can lead to chronic inflammation, which may result in tissue destruction and fibrosis (scarring).

Examples of conditions associated with delayed hypersensitivity include:

* Contact dermatitis (e.g. poison ivy, nickel allergy)
* Tuberculosis
* Leprosy
* Sarcoidosis
* Rheumatoid arthritis
* Type 1 diabetes mellitus
* Multiple sclerosis
* Inflammatory bowel disease (e.g. Crohn's disease, ulcerative colitis)

Hemorrhage is defined in the medical context as an excessive loss of blood from the circulatory system, which can occur due to various reasons such as injury, surgery, or underlying health conditions that affect blood clotting or the integrity of blood vessels. The bleeding may be internal, external, visible, or concealed, and it can vary in severity from minor to life-threatening, depending on the location and extent of the bleeding. Hemorrhage is a serious medical emergency that requires immediate attention and treatment to prevent further blood loss, organ damage, and potential death.

No FAQ available that match "arthus reaction"

No images available that match "arthus reaction"