Granular leukocytes characterized by a relatively pale-staining, lobate nucleus and cytoplasm containing coarse dark-staining granules of variable size and stainable by basic dyes.
An in vitro test used in the diagnosis of allergies including drug hypersensitivity. The allergen is added to the patient's white blood cells and the subsequent histamine release is measured.
The secretion of histamine from mast cell and basophil granules by exocytosis. This can be initiated by a number of factors, all of which involve binding of IgE, cross-linked by antigen, to the mast cell or basophil's Fc receptors. Once released, histamine binds to a number of different target cell receptors and exerts a wide variety of effects.
An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE).
Specific molecular sites on the surface of B- and T-lymphocytes which combine with IgEs. Two subclasses exist: low affinity receptors (Fc epsilon RII) and high affinity receptors (Fc epsilon RI).
Ubiquitously-expressed tetraspanin proteins that are found in late ENDOSOMES and LYSOSOMES and have been implicated in intracellular transport of proteins.
Altered reactivity to an antigen, which can result in pathologic reactions upon subsequent exposure to that particular antigen.
Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR.
A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells.
Antibodies which react with the individual structural determinants (idiotopes) on the variable region of other antibodies.
An acute hypersensitivity reaction due to exposure to a previously encountered ANTIGEN. The reaction may include rapidly progressing URTICARIA, respiratory distress, vascular collapse, systemic SHOCK, and death.
Granular leukocytes with a nucleus that usually has two lobes connected by a slender thread of chromatin, and cytoplasm containing coarse, round granules that are uniform in size and stainable by eosin.
Antigen-type substances that produce immediate hypersensitivity (HYPERSENSITIVITY, IMMEDIATE).
The conjugation product of LEUKOTRIENE A4 and glutathione. It is the major arachidonic acid metabolite in macrophages and human mast cells as well as in antigen-sensitized lung tissue. It stimulates mucus secretion in the lung, and produces contractions of nonvascular and some VASCULAR SMOOTH MUSCLE. (From Dictionary of Prostaglandins and Related Compounds, 1990)
An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter.
Infections with nematodes of the order STRONGYLIDA.
A soluble factor produced by activated T-LYMPHOCYTES that induces the expression of MHC CLASS II GENES and FC RECEPTORS on B-LYMPHOCYTES and causes their proliferation and differentiation. It also acts on T-lymphocytes, MAST CELLS, and several other hematopoietic lineage cells.
A genus of intestinal nematode parasites belonging to the superfamily HELIGMOSOMATOIDEA, which commonly occurs in rats but has been experimentally transmitted to other rodents and rabbits. Infection is usually through the skin.
Immunosuppression by the administration of increasing doses of antigen. Though the exact mechanism is not clear, the therapy results in an increase in serum levels of allergen-specific IMMUNOGLOBULIN G, suppression of specific IgE, and an increase in suppressor T-cell activity.
Allergic reaction to peanuts that is triggered by the immune system.
The process of losing secretory granules (SECRETORY VESICLES). This occurs, for example, in mast cells, basophils, neutrophils, eosinophils, and platelets when secretory products are released from the granules by EXOCYTOSIS.
A superfamily of nematodes of the suborder SPIRURINA. Its organisms possess a filiform body and a mouth surrounded by papillae.
Agents that are used to treat allergic reactions. Most of these drugs act by preventing the release of inflammatory mediators or inhibiting the actions of released mediators on their target cells. (From AMA Drug Evaluations Annual, 1994, p475)
A plant genus of the family BETULACEAE. The tree has smooth, resinous, varicolored or white bark, marked by horizontal pores (lenticels), which usually peels horizontally in thin sheets.
Epicutaneous or intradermal application of a sensitizer for demonstration of either delayed or immediate hypersensitivity. Used in diagnosis of hypersensitivity or as a test for cellular immunity.
Subset of helper-inducer T-lymphocytes which synthesize and secrete the interleukins IL-4, IL-5, IL-6, and IL-10. These cytokines influence B-cell development and antibody production as well as augmenting humoral responses.
A vascular reaction of the skin characterized by erythema and wheal formation due to localized increase of vascular permeability. The causative mechanism may be allergy, infection, or stress.
Hypersensitivity reactions which occur within minutes of exposure to challenging antigen due to the release of histamine which follows the antigen-antibody reaction and causes smooth muscle contraction and increased vascular permeability.
Substances found in PLANTS that have antigenic activity.
The minor fragment formed when C5 convertase cleaves C5 into C5a and COMPLEMENT C5B. C5a is a 74-amino-acid glycopeptide with a carboxy-terminal ARGININE that is crucial for its spasmogenic activity. Of all the complement-derived anaphylatoxins, C5a is the most potent in mediating immediate hypersensitivity (HYPERSENSITIVITY, IMMEDIATE), smooth MUSCLE CONTRACTION; HISTAMINE RELEASE; and migration of LEUKOCYTES to site of INFLAMMATION.
CCR receptors with specificity for CHEMOKINE CCL11 and a variety of other CC CHEMOKINES. They are expressed at high levels in T-LYMPHOCYTES; EOSINOPHILS; BASOPHILS; and MAST CELLS.
A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated.
A cytokine synthesized by T-LYMPHOCYTES that produces proliferation, immunoglobulin isotype switching, and immunoglobulin production by immature B-LYMPHOCYTES. It appears to play a role in regulating inflammatory and immune responses.
Gastrointestinal disturbances, skin eruptions, or shock due to allergic reactions to allergens in food.

Evidence for the involvement of IgE-basophil system in acute serum sickness. (1/982)

The role of the basophils in acute serum sickness of rabbits was examined by monitoring daily the absolute number of basophils before, during and after the disease period. After antigen (bovine serum albumin, BSA) elimination, levels of serum IgE and in vitro basophil degranulation in the presence of BSA were determined. The results showed that the onset of glomerular lesions depends upon the simultaneous occurrence of circulating immune complexes greater than 19 S and of an in vivo basophil depletion--probably equivalent to degranulation--reaching 70% of the pre-disease number. Post-disease antigen-dependent in vitro degranulation of the basophils and levels of serum IgE anti BSA did not prove to be good indexes of basophil sensitization. Our data suggest that basophils are instrumental at early stages of the deposition of immune complexes, most probably through their sensitization by membrane-bound IgE antibodies.  (+info)

Detection of allergen-induced basophil activation by expression of CD63 antigen using a tricolour flow cytometric method. (2/982)

In the field of allergy diagnosis, most in vitro functional tests are focused on basophils. Nevertheless, the very small number of circulating basophils limits these experiments and their clinical benefit remains controversial. As flow cytometry is a valuable tool for identifying cell populations, even at low concentrations, we developed a tricolour flow cytometric method for the study of allergen-induced basophil activation. Identification of cells was based both on CD45 expression and on the presence of IgE on the cell surface, since basophils express high-affinity receptors for IgE (Fc epsilon RI). Cell activation upon allergen challenge was assessed by the expression of CD63 antigen on the plasma membrane. Basophil isolation and activation (with the chemotactic peptide formyl-methionyl-leucyl-phenylalanine) were validated in 32 non-allergic patients. In 12 allergic patients, basophil stimulation by a relevant allergen was in most cases positive (10/12). Furthermore a concentration-dependent hook effect was observed. Of the allergic and non-allergic patients, none showed non-specific activation with an irrelevant allergen (specificity 100%). Overall, our preliminary results, even in a small population, suggest that this is a reliable and valuable method for the diagnosis of allergies complementing specific allergen IgE and skin test results. Obviously, additional clinical studies are needed to validate these first results.  (+info)

Extracellular signal-regulated kinases regulate leukotriene C4 generation, but not histamine release or IL-4 production from human basophils. (3/982)

Human basophils secrete histamine and leukotriene C4 (LTC4) in response to various stimuli, such as Ag and the bacterial product, FMLP. IgE-mediated stimulation also results in IL-4 secretion. However, the mechanisms of these three classes of secretion are unknown in human basophils. The activation of extracellular signal-regulated kinases (ERKs; ERK-1 and ERK-2) during IgE- and FMLP-mediated stimulation of human basophils was examined. Following FMLP stimulation, histamine release preceded phosphorylation of ERKs, whereas phosphorylation of cytosolic phospholipase A2 (cPLA2), and arachidonic acid (AA) and LTC4 release followed phosphorylation of ERKs. The phosphorylation of ERKs was transient, decreasing to baseline levels after 15 min. PD98059 (MEK inhibitor) inhibited the phosphorylation of ERKs and cPLA2 without inhibition of several other tyrosine phosphorylation events, including phosphorylation of p38 MAPK. PD98059 also inhibited LTC4 generation (IC50 = approximately 2 microM), but not histamine release. Stimulation with anti-IgE Ab resulted in the phosphorylation of ERKs, which was kinetically similar to both histamine and LTC4 release and decreased toward resting levels by 30 min. Similar to FMLP, PD98059 inhibited anti-IgE-mediated LTC4 release (IC50, approximately 2 microM), with only a modest effect on histamine release and IL-4 production at higher concentrations. Taken together, these results suggest that ERKs might selectively regulate the pathway leading to LTC4 generation by phosphorylating cPLA2, but not histamine release or IL-4 production, in human basophils.  (+info)

Down-regulation of human basophil IgE and FC epsilon RI alpha surface densities and mediator release by anti-IgE-infusions is reversible in vitro and in vivo. (4/982)

Previously, infusions of an anti-IgE mAb (rhumAb-E25) in subjects decreased serum IgE levels, basophil IgE and FcepsilonRIalpha surface density, and polyclonal anti-IgE and Ag-induced basophil histamine release responses. We hypothesized that these effects would be reversed in vivo by discontinuation of infusions and in vitro by exposing basophils to IgE. Subjects received rhumAb-E25 biweekly for 46 wk. Blood samples taken 0-52 wk after rhumAb-E25 were analyzed for serum IgE and basophil expression of IgE, FcepsilonRIalpha, and CD32. Basophil numbers were unaffected by infusions. Eight weeks after infusions, free IgE levels rose in vivo but did not reach baseline. Basophil IgE and FcepsilonRIalpha rose in parallel with free IgE while CD32 was stable. FcepsilonRI densities, measured by acid elution, returned to 80% of baseline, whereas histamine release responses returned to baseline. Basophils cultured with or without IgE or IgG were analyzed for expression of IgE, FcepsilonRIalpha, and CD32. By 7 days with IgE, expression of IgE and FcepsilonRIalpha rose significantly, whereas cultures without IgE declined. IgE culture did not effect CD32. IgG culture did not effect expression of any marker. The present results strongly suggest that free IgE levels regulate FcepsilonRIalpha expression on basophils.  (+info)

Adhesive explant culture of allergic nasal mucosa: effect of emedastine difumarate, an anti-allergic drug. (5/982)

Allergic reaction of the nose comprises of an immediate and a late reaction. To evaluate nasal allergic reactions, many experiments have been performed by investigators. In this study, we performed a new tissue culture technique (adhesive explant culture) to analyze the migration of cells into the culture medium from the cultured allergic nasal mucosa in response to an allergen. Basophilic cells (mast cells and basophils) and eosinophils, which were released into the culture medium after the allergen challenge, were evaluated by the analysis of histamine and eosinophil cationic protein (ECP) content in the culture medium. Histamine and basophilic cells in the culture medium were more abundant in the immediate phase (within 30 min) after challenge than in the late phase (from 30 min to 10 hr). On the other hand, ECP and eosinophils in the culture medium were more abundant in the late phase than in the immediate phase. The increase of histamine content in both phases were not inhibited by pre-treatment of emedastine difumarate (EME), an anti-allergic drug. However, the increase of ECP in the late phase was inhibited by pre-treatment with EME. Moreover, the number of EG2-positive cells was also decreased by pre-treatment with EME. These results suggest that EME might lower the activation of eosinophils in the late phase of the allergic reaction. The present study also indicates that this adhesive explant culture system is useful model for studying the cellular allergic responses to drugs ex vivo.  (+info)

The effect of processing on inflammatory markers in induced sputum. (6/982)

The effects of the mucolytic agent, dithioerythritol (DTE), and the temperature at which sputum processing is conducted on cellular and biochemical markers in induced sputum was assessed. Samples from healthy and atopic asthmatic subjects were treated with either DTE or phosphate-buffered saline (PBS) at 22 or 37 degrees C and compared for cell counts and concentrations of histamine, tryptase, eosinophil cationic protein (ECP), free interleukin (IL)-8, immunoglobulin (Ig)A, IL-8/IgA complexes and secretory component (SC). In addition, the influence of DTE on in vitro mediator release from blood eosinophils, basophils and bronchoalveolar lavage (BAL) mast cells was studied. Processing with DTE improved cytospin quality and increased the cell yield and measurable ECP, tryptase, IgA and SC, but reduced levels of histamine in PBS-treated samples and had no effect on IL-8. Cell counts or mediator levels were similar when sputum was processed at 22 or 37 degrees C, even though DTE induced blood basophils and BAL mast cells to release histamine at 37 degrees C. In spiking experiments, recovery of added ECP, tryptase, total IL-8 and histamine from sputum was similar in DTE- and PBS-processed sputum, but reduced for free IL-8 in PBS-treated samples. In conclusion, dithioerythritol improves cell and mediator recovery without causing cell activation when sputum processing is conducted at room temperature. The extent of recovery depends on the mediator studied.  (+info)

Granulocyte-macrophage colony-stimulating factor and interleukin-3 cause basophil histamine release by a common pathway: downregulation by sodium. (7/982)

Granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) are recognized as enhancers, but not as inducers, of histamine release from normal human basophils. However, when extracellular Na+ is removed IL-3 acquires the capacity to induce histamine release. The aim of this study was to evaluate whether GM-CSF can induce basophil histamine release using the same pathway of IL-3. Leucocyte suspensions from normal human subjects were stimulated with GM-CSF, IL-3 and anti-IgE, and histamine release was evaluated by an automated fluorometric method. In a physiological medium, GM-CSF (10 ng/ml) and IL-3 (10 ng/ml) did not provoke histamine release, in spite of an efficient response to anti-IgE (10 micrograms/ml). However, when extracellular Na+ was substituted iso-osmotically with N-methyl-d-glucamine+ or with choline+, GM-CSF and IL-3 were able to trigger histamine release from either mixed leucocyte suspensions or purified human basophils. The effect of GM-CSF on basophil histamine release was dose dependent, with optimal release at a dose of 1 ng/ml after incubation at 37 degrees for 60-120 min. The kinetics of IL-3-induced histamine release were similar, whereas anti-IgE-induced histamine release was more rapid, being almost maximal after incubation for 30 min. A good correlation was found between GM-CSF-induced and IL-3-induced histamine release; furthermore, the combined effects of the two cytokines were less than additive, suggesting that they share the same pathways leading to histamine release. When extracellular Na+ concentration was increased from 0 to 140 mm, histamine release induced by GM-CSF, IL-3 and anti-IgE was reduced progressively. In contrast, histamine release induced by these stimuli was upregulated when the concentration of extracellular Ca2+ was increased. These results provide indirect evidence that GM-CSF and IL-3 can induce basophil histamine release by a common pathway that is downregulated by Na+.  (+info)

Characterization of mast cell-committed progenitors present in human umbilical cord blood. (8/982)

Human mast cells are derived from CD34(+) hematopoietic cells present in cord blood, bone marrow, and peripheral blood. However, little is known about the properties of the CD34(+) cells. We demonstrated here that mast cell progenitors that have distinct phenotypes from other hematopoietic cell types are present in cord blood by culturing single, sorted CD34(+) cells in 96-well plates or unsorted cells in methylcellulose. The CD34(+) mast cell-committed progenitors often expressed CD38 and often lacked HLA-DR, whereas CD34(+) erythroid progenitors often expressed both CD38 and HLA-DR and CD34(+) granulocyte-macrophage progenitors often had CD33 and sometimes expressed CD38. We then cultured single cord blood-derived CD34(+)CD38(+) cells under conditions optimal for mast cells and three types of myeloid cells, ie, basophils, eosinophils, and macrophages. Of 1,200 CD34(+)CD38(+) cells, we were able to detect 13 pure mast cell colonies and 52 pure colonies consisting of either one of these three myeloid cell types. We found 17 colonies consisting of two of the three myeloid cell types, whereas only one colony consisted of mast cells and another cell type. These results indicate that human mast cells develop from progenitors that have unique phenotypes and that committed mast cell progenitors develop from multipotent hematopoietic cells through a pathway distinct from myeloid lineages including basophils, which have many similarities to mast cells.  (+info)

Basophils are a type of white blood cell that are part of the immune system. They are granulocytes, which means they contain granules filled with chemicals that can be released in response to an infection or inflammation. Basophils are relatively rare, making up less than 1% of all white blood cells.

When basophils become activated, they release histamine and other chemical mediators that can contribute to allergic reactions, such as itching, swelling, and redness. They also play a role in inflammation, helping to recruit other immune cells to the site of an infection or injury.

Basophils can be identified under a microscope based on their characteristic staining properties. They are typically smaller than other granulocytes, such as neutrophils and eosinophils, and have a multi-lobed nucleus with dark purple-staining granules in the cytoplasm.

While basophils play an important role in the immune response, abnormal levels of basophils can be associated with various medical conditions, such as allergies, infections, and certain types of leukemia.

The Basophil Degranulation Test is a medical test that measures the degree of degranulation (the release of granules and their contents) in basophils, a type of white blood cell, in response to a stimulus. This test is often used to diagnose allergies or hypersensitivity reactions, as basophils are known to degranulate when exposed to allergens or certain medications.

In this test, basophils are isolated from a patient's blood sample and then exposed to a suspected allergen or other stimuli. After incubation, the cells are stained with a dye that detects the presence of histamine or other mediators released during degranulation. The degree of staining is then measured and used as an indicator of basophil activation and degranulation.

It's important to note that this test is not commonly used in clinical practice due to its complexity, variability, and limited availability. Other tests, such as skin prick tests or blood tests for specific IgE antibodies, are more commonly used to diagnose allergies.

Histamine release is the process by which mast cells and basophils (types of white blood cells) release histamine, a type of chemical messenger or mediator, into the surrounding tissue fluid in response to an antigen-antibody reaction. This process is a key part of the body's immune response to foreign substances, such as allergens, and helps to initiate local inflammation, increase blood flow, and recruit other immune cells to the site of the reaction.

Histamine release can also occur in response to certain medications, physical trauma, or other stimuli. When histamine is released in large amounts, it can cause symptoms such as itching, sneezing, runny nose, watery eyes, and hives. In severe cases, it can lead to anaphylaxis, a life-threatening allergic reaction that requires immediate medical attention.

Immunoglobulin E (IgE) is a type of antibody that plays a key role in the immune response to parasitic infections and allergies. It is produced by B cells in response to stimulation by antigens, such as pollen, pet dander, or certain foods. Once produced, IgE binds to receptors on the surface of mast cells and basophils, which are immune cells found in tissues and blood respectively. When an individual with IgE antibodies encounters the allergen again, the cross-linking of IgE molecules bound to the FcεRI receptor triggers the release of mediators such as histamine, leukotrienes, prostaglandins, and various cytokines from these cells. These mediators cause the symptoms of an allergic reaction, such as itching, swelling, and redness. IgE also plays a role in protecting against certain parasitic infections by activating eosinophils, which can kill the parasites.

In summary, Immunoglobulin E (IgE) is a type of antibody that plays a crucial role in the immune response to allergens and parasitic infections, it binds to receptors on the surface of mast cells and basophils, when an individual with IgE antibodies encounters the allergen again, it triggers the release of mediators from these cells causing the symptoms of an allergic reaction.

IgE receptors, also known as Fc epsilon RI receptors, are membrane-bound proteins found on the surface of mast cells and basophils. They play a crucial role in the immune response to parasitic infections and allergies. IgE receptors bind to the Fc region of immunoglobulin E (IgE) antibodies, which are produced by B cells in response to certain antigens. When an allergen cross-links two adjacent IgE molecules bound to the same IgE receptor, it triggers a signaling cascade that leads to the release of mediators such as histamine, leukotrienes, and prostaglandins. These mediators cause the symptoms associated with allergic reactions, including inflammation, itching, and vasodilation. IgE receptors are also involved in the activation of the adaptive immune response by promoting the presentation of antigens to T cells.

CD63 is a type of protein found on the surface of certain cells, including platelets and some immune cells. It is also known as granulophysin and is a member of the tetraspanin family of proteins. CD63 is often used as a marker for activated immune cells, particularly those involved in the immune response to viruses and other pathogens.

In the context of antigens, CD63 may be referred to as a target antigen, which is a molecule on the surface of a cell that can be recognized by the immune system. In this case, CD63 may be targeted by antibodies produced by the immune system in response to an infection or other stimulus.

It's important to note that while CD63 is often used as a marker for activated immune cells, it is not itself an antigen in the sense of being a foreign molecule that can elicit an immune response. Rather, it is a protein that can be targeted by the immune system in certain contexts.

Hypersensitivity is an exaggerated or inappropriate immune response to a substance that is generally harmless to most people. It's also known as an allergic reaction. This abnormal response can be caused by various types of immunological mechanisms, including antibody-mediated reactions (types I, II, and III) and cell-mediated reactions (type IV). The severity of the hypersensitivity reaction can range from mild discomfort to life-threatening conditions. Common examples of hypersensitivity reactions include allergic rhinitis, asthma, atopic dermatitis, food allergies, and anaphylaxis.

Mast cells are a type of white blood cell that are found in connective tissues throughout the body, including the skin, respiratory tract, and gastrointestinal tract. They play an important role in the immune system and help to defend the body against pathogens by releasing chemicals such as histamine, heparin, and leukotrienes, which help to attract other immune cells to the site of infection or injury. Mast cells also play a role in allergic reactions, as they release histamine and other chemicals in response to exposure to an allergen, leading to symptoms such as itching, swelling, and redness. They are derived from hematopoietic stem cells in the bone marrow and mature in the tissues where they reside.

Interleukin-3 (IL-3) is a type of cytokine, which is a small signaling protein that modulates the immune response, cell growth, and differentiation. IL-3 is primarily produced by activated T cells and mast cells. It plays an essential role in the survival, proliferation, and differentiation of hematopoietic stem cells, which give rise to all blood cell types. Specifically, IL-3 supports the development of myeloid lineage cells, including basophils, eosinophils, mast cells, megakaryocytes, and erythroid progenitors.

IL-3 binds to its receptor, the interleukin-3 receptor (IL-3R), which consists of two subunits: CD123 (the alpha chain) and CD131 (the beta chain). The binding of IL-3 to its receptor triggers a signaling cascade within the cell that ultimately leads to changes in gene expression, promoting cell growth and differentiation. Dysregulation of IL-3 production or signaling has been implicated in several hematological disorders, such as leukemia and myelodysplastic syndromes.

Anti-idiotypic antibodies are a type of immune protein that recognizes and binds to the unique identifying region (idiotype) of another antibody. These antibodies are produced by the immune system as part of a regulatory feedback mechanism, where they can modulate or inhibit the activity of the original antibody. They have been studied for their potential use in immunotherapy and vaccine development.

Anaphylaxis is a severe, life-threatening systemic allergic reaction that occurs suddenly after exposure to an allergen (a substance that triggers an allergic reaction) to which the person has previously been sensitized. The symptoms of anaphylaxis include rapid onset of symptoms such as itching, hives, swelling of the throat and tongue, difficulty breathing, wheezing, cough, chest tightness, rapid heartbeat, hypotension (low blood pressure), shock, and in severe cases, loss of consciousness and death. Anaphylaxis is a medical emergency that requires immediate treatment with epinephrine (adrenaline) and other supportive measures to stabilize the patient's condition.

Eosinophils are a type of white blood cell that play an important role in the body's immune response. They are produced in the bone marrow and released into the bloodstream, where they can travel to different tissues and organs throughout the body. Eosinophils are characterized by their granules, which contain various proteins and enzymes that are toxic to parasites and can contribute to inflammation.

Eosinophils are typically associated with allergic reactions, asthma, and other inflammatory conditions. They can also be involved in the body's response to certain infections, particularly those caused by parasites such as worms. In some cases, elevated levels of eosinophils in the blood or tissues (a condition called eosinophilia) can indicate an underlying medical condition, such as a parasitic infection, autoimmune disorder, or cancer.

Eosinophils are named for their staining properties - they readily take up eosin dye, which is why they appear pink or red under the microscope. They make up only about 1-6% of circulating white blood cells in healthy individuals, but their numbers can increase significantly in response to certain triggers.

An allergen is a substance that can cause an allergic reaction in some people. These substances are typically harmless to most people, but for those with allergies, the immune system mistakenly identifies them as threats and overreacts, leading to the release of histamines and other chemicals that cause symptoms such as itching, sneezing, runny nose, rashes, hives, and difficulty breathing. Common allergens include pollen, dust mites, mold spores, pet dander, insect venom, and certain foods or medications. When a person comes into contact with an allergen, they may experience symptoms that range from mild to severe, depending on the individual's sensitivity to the substance and the amount of exposure.

Leukotriene C4 (LTC4) is a type of lipid mediator called a cysteinyl leukotriene, which is derived from arachidonic acid through the 5-lipoxygenase pathway. It is primarily produced by activated mast cells and basophils, and to a lesser extent by eosinophils, during an allergic response or inflammation.

LTC4 plays a crucial role in the pathogenesis of asthma and other allergic diseases by causing bronchoconstriction, increased vascular permeability, mucus secretion, and recruitment of inflammatory cells to the site of inflammation. It exerts its effects by binding to cysteinyl leukotriene receptors (CysLT1 and CysLT2) found on various cell types, including airway smooth muscle cells, bronchial epithelial cells, and immune cells.

LTC4 is rapidly metabolized to Leukotriene D4 (LTD4) and then to Leukotriene E4 (LTE4) by enzymes such as gamma-glutamyl transpeptidase and dipeptidases, which are present in the extracellular space. These metabolites also have biological activity and contribute to the inflammatory response.

Inhibitors of 5-lipoxygenase or leukotriene receptor antagonists are used as therapeutic agents for the treatment of asthma, allergies, and other inflammatory conditions.

Histamine is defined as a biogenic amine that is widely distributed throughout the body and is involved in various physiological functions. It is derived primarily from the amino acid histidine by the action of histidine decarboxylase. Histamine is stored in granules (along with heparin and proteases) within mast cells and basophils, and is released upon stimulation or degranulation of these cells.

Once released into the tissues and circulation, histamine exerts a wide range of pharmacological actions through its interaction with four types of G protein-coupled receptors (H1, H2, H3, and H4 receptors). Histamine's effects are diverse and include modulation of immune responses, contraction and relaxation of smooth muscle, increased vascular permeability, stimulation of gastric acid secretion, and regulation of neurotransmission.

Histamine is also a potent mediator of allergic reactions and inflammation, causing symptoms such as itching, sneezing, runny nose, and wheezing. Antihistamines are commonly used to block the actions of histamine at H1 receptors, providing relief from these symptoms.

Strongylida infections are a group of parasitic diseases caused by roundworms that belong to the order Strongylida. These nematodes infect various hosts, including humans, causing different clinical manifestations depending on the specific species involved. Here are some examples:

1. Strongyloidiasis: This is an infection caused by the nematode Strongyloides stercoralis. The parasite can penetrate the skin and migrate to the lungs and small intestine, causing respiratory and gastrointestinal symptoms such as cough, wheezing, abdominal pain, and diarrhea. In immunocompromised individuals, the infection can become severe and disseminated, leading to systemic illness and even death.
2. Hookworm infections: The hookworms Ancylostoma duodenale and Necator americanus infect humans through skin contact with contaminated soil. The larvae migrate to the lungs and then to the small intestine, where they attach to the intestinal wall and feed on blood. Heavy infections can cause anemia, protein loss, and developmental delays in children.
3. Trichostrongyliasis: This is a group of infections caused by various species of nematodes that infect the gastrointestinal tract of humans and animals. The parasites can cause symptoms such as abdominal pain, diarrhea, and anemia.
4. Toxocariasis: This is an infection caused by the roundworms Toxocara canis or Toxocara cati, which infect dogs and cats, respectively. Humans can become infected through accidental ingestion of contaminated soil or food. The larvae migrate to various organs such as the liver, lungs, and eyes, causing symptoms such as fever, cough, abdominal pain, and vision loss.

Preventive measures for Strongylida infections include personal hygiene, proper sanitation, and avoidance of contact with contaminated soil or water. Treatment usually involves antiparasitic drugs such as albendazole or ivermectin, depending on the specific infection and severity of symptoms.

Interleukin-4 (IL-4) is a type of cytokine, which is a cell signaling molecule that mediates communication between cells in the immune system. Specifically, IL-4 is produced by activated T cells and mast cells, among other cells, and plays an important role in the differentiation and activation of immune cells called Th2 cells.

Th2 cells are involved in the immune response to parasites, as well as in allergic reactions. IL-4 also promotes the growth and survival of B cells, which produce antibodies, and helps to regulate the production of certain types of antibodies. In addition, IL-4 has anti-inflammatory effects and can help to downregulate the immune response in some contexts.

Defects in IL-4 signaling have been implicated in a number of diseases, including asthma, allergies, and certain types of cancer.

Nippostrongylus is a genus of parasitic nematode (roundworm) that primarily infects the gastrointestinal tract of various mammalian hosts, including rodents and primates. The most common species that infects humans is Nippostrongylus brasiliensis, although it's not a common human parasite in normal circumstances. It is more frequently used in laboratory settings as a model organism to study immunology and host-parasite interactions.

The adult worms live in the alveoli of the lungs, where they mature and reproduce, releasing eggs that are coughed up, swallowed, and then hatch in the small intestine. The larvae then mature into adults and complete the life cycle. Infections can cause symptoms such as coughing, wheezing, abdominal pain, and diarrhea, but these are typically mild in immunocompetent individuals.

It's worth noting that human infections with Nippostrongylus are rare and usually occur in people who have close contact with infected animals or who consume contaminated food or water. Proper sanitation and hygiene practices can help prevent infection.

Desensitization, Immunologic is a medical procedure that aims to decrease the immune system's response to an allergen. This is achieved through the controlled exposure of the patient to gradually increasing amounts of the allergen, ultimately leading to a reduction in the severity of allergic reactions upon subsequent exposures. The process typically involves administering carefully measured and incrementally larger doses of the allergen, either orally, sublingually (under the tongue), or by injection, under medical supervision. Over time, this repeated exposure can help the immune system become less sensitive to the allergen, thereby alleviating allergic symptoms.

The specific desensitization protocol and administration method may vary depending on the type of allergen and individual patient factors. Immunologic desensitization is most commonly used for environmental allergens like pollen, dust mites, or pet dander, as well as insect venoms such as bee or wasp stings. It is important to note that this procedure should only be performed under the close supervision of a qualified healthcare professional, as there are potential risks involved, including anaphylaxis (a severe and life-threatening allergic reaction).

Peanut hypersensitivity, also known as peanut allergy, is an abnormal immune response to proteins found in peanuts. It is a type of IgE-mediated food hypersensitivity disorder. The body's immune system recognizes the peanut proteins as harmful and produces antibodies (IgE) against them. When the person comes into contact with peanuts again, these antibodies trigger the release of histamine and other chemicals, leading to a range of symptoms that can be mild or severe, including skin reactions, digestive problems, respiratory difficulties, and in some cases, anaphylaxis, which is a life-threatening emergency. It's important to note that peanut hypersensitivity should be diagnosed and managed by a medical professional.

Cell degranulation is the process by which cells, particularly immune cells like mast cells and basophils, release granules containing inflammatory mediators in response to various stimuli. These mediators include histamine, leukotrienes, prostaglandins, and other chemicals that play a role in allergic reactions, inflammation, and immune responses. The activation of cell surface receptors triggers a signaling cascade that leads to the exocytosis of these granules, resulting in degranulation. This process is important for the immune system's response to foreign invaders and for the development of allergic reactions.

Filarioidea is a superfamily of parasitic nematode (roundworm) worms, many of which are important pathogens in humans and animals. They are transmitted to their hosts through the bite of insect vectors, such as mosquitoes or flies. The filarioid worms can cause a range of diseases known as filariases. Some examples include Wuchereria bancrofti, Brugia malayi, and Onchocerca volvulus, which cause lymphatic filariasis (elephantiasis) and river blindness, respectively. The adult worms live in the lymphatic system or subcutaneous tissues of their hosts, where they produce microfilariae, the infective stage for the insect vector.

The medical definition of Filarioidea is: A superfamily of parasitic nematode worms that includes several important human pathogens and causes various filariases. The adult worms live in the lymphatic system or subcutaneous tissues, while the microfilariae are taken up by insect vectors during a blood meal and develop into infective larvae inside the vector. These larvae are then transmitted to a new host through the bite of the infected vector.

Anti-allergic agents, also known as antihistamines, are a class of medications used to treat allergies. They work by blocking the action of histamine, a substance in the body that is released during an allergic reaction and causes symptoms such as itching, sneezing, runny nose, and watery eyes.

There are two main types of antihistamines: first-generation and second-generation. First-generation antihistamines, such as diphenhydramine (Benadryl) and chlorpheniramine (Chlor-Trimeton), can cause drowsiness and other side effects, such as dry mouth and blurred vision. They are typically used for the treatment of short-term symptoms, such as those caused by seasonal allergies or a mild reaction to an insect bite.

Second-generation antihistamines, such as loratadine (Claritin) and cetirizine (Zyrtec), are less likely to cause drowsiness and other side effects. They are often used for the long-term treatment of chronic allergies, such as those caused by dust mites or pet dander.

In addition to their use in treating allergies, antihistamines may also be used to treat symptoms of motion sickness, insomnia, and anxiety. It is important to follow the instructions on the label when taking antihistamines and to talk to a healthcare provider if you have any questions or concerns about using these medications.

'Betula' is the genus name for a group of trees commonly known as birches. These trees belong to the family Betulaceae and are native to the cooler regions of the Northern Hemisphere. There are around 30-60 species in this genus, depending on the classification system used.

Birch trees are known for their distinctive bark, which is often white and peels away in thin layers. They also have simple, ovate leaves that are usually toothed or serrated along the edges. Many birches produce catkins, which are long, slender flowering structures that contain either male or female flowers.

Birch trees have a number of uses, both practical and cultural. The wood is lightweight and easy to work with, making it popular for uses such as furniture-making, paper production, and fuel. Birch bark has also been used historically for a variety of purposes, including canoe construction, writing surfaces, and medicinal remedies.

In addition to their practical uses, birch trees have cultural significance in many regions where they grow. For example, they are often associated with renewal and rebirth due to their ability to regrow from stumps or roots after being cut down. In some cultures, birch trees are also believed to have spiritual or mystical properties.

Skin tests are medical diagnostic procedures that involve the application of a small amount of a substance to the skin, usually through a scratch, prick, or injection, to determine if the body has an allergic reaction to it. The most common type of skin test is the patch test, which involves applying a patch containing a small amount of the suspected allergen to the skin and observing the area for signs of a reaction, such as redness, swelling, or itching, over a period of several days. Another type of skin test is the intradermal test, in which a small amount of the substance is injected just beneath the surface of the skin. Skin tests are used to help diagnose allergies, including those to pollen, mold, pets, and foods, as well as to identify sensitivities to medications, chemicals, and other substances.

Th2 cells, or T helper 2 cells, are a type of CD4+ T cell that plays a key role in the immune response to parasites and allergens. They produce cytokines such as IL-4, IL-5, IL-13 which promote the activation and proliferation of eosinophils, mast cells, and B cells, leading to the production of antibodies such as IgE. Th2 cells also play a role in the pathogenesis of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis.

It's important to note that an imbalance in Th1/Th2 response can lead to immune dysregulation and disease states. For example, an overactive Th2 response can lead to allergic reactions while an underactive Th2 response can lead to decreased ability to fight off parasitic infections.

It's also worth noting that there are other subsets of CD4+ T cells such as Th1, Th17, Treg and others, each with their own specific functions and cytokine production profiles.

Urticaria, also known as hives, is an allergic reaction that appears on the skin. It is characterized by the rapid appearance of swollen, pale red bumps or plaques (wheals) on the skin, which are often accompanied by itching, stinging, or burning sensations. These wheals can vary in size and shape, and they may change location and appear in different places over a period of hours or days. Urticaria is usually caused by an allergic reaction to food, medication, or other substances, but it can also be triggered by physical factors such as heat, cold, pressure, or exercise. The condition is generally harmless, but severe cases of urticaria may indicate a more serious underlying medical issue and should be evaluated by a healthcare professional.

Hypersensitivity, Immediate: Also known as Type I hypersensitivity, it is an exaggerated and abnormal immune response that occurs within minutes to a few hours after exposure to a second dose of an allergen (a substance that triggers an allergic reaction). This type of hypersensitivity is mediated by immunoglobulin E (IgE) antibodies, which are produced by the immune system in response to the first exposure to the allergen. Upon subsequent exposures, these IgE antibodies bind to mast cells and basophils, leading to their degranulation and the release of mediators such as histamine, leukotrienes, and prostaglandins. These mediators cause a variety of symptoms, including itching, swelling, redness, and pain at the site of exposure, as well as systemic symptoms such as difficulty breathing, wheezing, and hypotension (low blood pressure). Examples of immediate hypersensitivity reactions include allergic asthma, hay fever, anaphylaxis, and some forms of food allergy.

An antigen is any substance that can stimulate an immune response, leading to the production of antibodies or activation of immune cells. In plants, antigens are typically found on the surface of plant cells and may be derived from various sources such as:

1. Pathogens: Plant pathogens like bacteria, viruses, fungi, and oomycetes have unique molecules on their surfaces that can serve as antigens for the plant's immune system. These antigens are recognized by plant pattern recognition receptors (PRRs) and trigger an immune response.
2. Endogenous proteins: Some plant proteins, when expressed in abnormal locations or quantities, can be recognized as foreign by the plant's immune system and elicit an immune response. These proteins may serve as antigens and are involved in self/non-self recognition.
3. Glycoproteins: Plant cell surface glycoproteins, which contain carbohydrate moieties, can also act as antigens. They play a role in plant-microbe interactions and may be recognized by both the plant's immune system and pathogens.
4. Allergens: Certain plant proteins can cause allergic reactions in humans and animals when ingested or inhaled. These proteins, known as allergens, can also serve as antigens for the human immune system, leading to the production of IgE antibodies and triggering an allergic response.
5. Transgenic proteins: In genetically modified plants, new proteins introduced through genetic engineering may be recognized as foreign by the plant's immune system or even by the human immune system in some cases. These transgenic proteins can serve as antigens and have been a subject of concern in relation to food safety and potential allergies.

Understanding plant antigens is crucial for developing effective strategies for plant disease management, vaccine development, and improving food safety and allergy prevention.

Complement C5a is a protein fragment that is generated during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body by tagging them for destruction and attracting immune cells to the site of infection or injury.

C5a is formed when the fifth component of the complement system (C5) is cleaved into two smaller fragments, C5a and C5b, during the complement activation cascade. C5a is a potent pro-inflammatory mediator that can attract and activate various immune cells, such as neutrophils, monocytes, and eosinophils, to the site of infection or injury. It can also increase vascular permeability, promote the release of histamine, and induce the production of reactive oxygen species, all of which contribute to the inflammatory response.

However, excessive or uncontrolled activation of the complement system and generation of C5a can lead to tissue damage and inflammation, contributing to the pathogenesis of various diseases, such as sepsis, acute respiratory distress syndrome (ARDS), and autoimmune disorders. Therefore, targeting C5a or its receptors has been explored as a potential therapeutic strategy for these conditions.

CCR3 (C-C chemokine receptor type 3) is a type of cell surface receptor that binds to specific chemokines, which are a group of small signaling proteins involved in immune responses and inflammation. CCR3 is primarily expressed on the surface of certain types of immune cells, including eosinophils, basophils, and Th2 lymphocytes.

The binding of chemokines to CCR3 triggers a series of intracellular signaling events that regulate various cellular functions, such as chemotaxis (directed migration), activation, and degranulation. CCR3 plays an important role in the pathophysiology of several diseases, including asthma, allergies, and inflammatory bowel disease, where it contributes to the recruitment and activation of immune cells that mediate tissue damage and inflammation.

Therefore, CCR3 is a potential target for the development of therapies aimed at modulating immune responses and reducing inflammation in these conditions.

N-Formylmethionine Leucyl-Phenylalanine (fMLP) is not a medical condition, but rather a synthetic peptide that is often used in laboratory settings for research purposes. It is a formylated methionine residue linked to a leucine and phenylalanine tripeptide.

fMLP is a potent chemoattractant for certain types of white blood cells, including neutrophils and monocytes. When these cells encounter fMLP, they are stimulated to migrate towards the source of the peptide and release various inflammatory mediators. As such, fMLP is often used in studies of inflammation, immune cell function, and signal transduction pathways.

It's important to note that while fMLP has important research applications, it is not a substance that would be encountered or used in clinical medicine.

Interleukin-13 (IL-13) is a cytokine that plays a crucial role in the immune response, particularly in the development of allergic inflammation and hypersensitivity reactions. It is primarily produced by activated Th2 cells, mast cells, basophils, and eosinophils. IL-13 mediates its effects through binding to the IL-13 receptor complex, which consists of the IL-13Rα1 and IL-4Rα chains.

IL-13 has several functions in the body, including:

* Regulation of IgE production by B cells
* Induction of eosinophil differentiation and activation
* Inhibition of proinflammatory cytokine production by macrophages
* Promotion of mucus production and airway hyperresponsiveness in the lungs, contributing to the pathogenesis of asthma.

Dysregulation of IL-13 has been implicated in various diseases, such as allergic asthma, atopic dermatitis, and chronic rhinosinusitis. Therefore, targeting IL-13 with biologic therapies has emerged as a promising approach for the treatment of these conditions.

Food hypersensitivity is an umbrella term that encompasses both immunologic and non-immunologic adverse reactions to food. It is also known as "food allergy" or "food intolerance." Food hypersensitivity occurs when the body's immune system or digestive system reacts negatively to a particular food or food component.

Immunologic food hypersensitivity, commonly referred to as a food allergy, involves an immune response mediated by immunoglobulin E (IgE) antibodies. Upon ingestion of the offending food, IgE antibodies bind to the food antigens and trigger the release of histamine and other chemical mediators from mast cells and basophils, leading to symptoms such as hives, swelling, itching, difficulty breathing, or anaphylaxis.

Non-immunologic food hypersensitivity, on the other hand, does not involve the immune system. Instead, it is caused by various mechanisms, including enzyme deficiencies, pharmacological reactions, and metabolic disorders. Examples of non-immunologic food hypersensitivities include lactose intolerance, gluten sensitivity, and histamine intolerance.

It's important to note that the term "food hypersensitivity" is often used interchangeably with "food allergy," but it has a broader definition that includes both immunologic and non-immunologic reactions.

No FAQ available that match "basophils"

No images available that match "basophils"