Inborn errors of carbohydrate metabolism are genetic disorders that result from enzyme deficiencies or transport defects in the metabolic pathways responsible for breaking down and processing carbohydrates, leading to accumulation of toxic intermediates or energy deficits, and typically presenting with multisystem clinical manifestations.
An inborn error of metabolism marked by a defect in the lysosomal isoform of ALPHA-MANNOSIDASE activity that results in lysosomal accumulation of mannose-rich intermediate metabolites. Virtually all patients have psychomotor retardation, facial coarsening, and some degree of dysostosis multiplex. It is thought to be an autosomal recessive disorder.
Glycoside hydrolases that catalyze the hydrolysis of alpha or beta linked MANNOSE.
Disaccharidases are a group of enzymes, including maltase, sucrase, lactase, and trehalase, found primarily in the brush border of the small intestine, responsible for breaking down complex disaccharides into simpler monosaccharides for absorption.
A hexose or fermentable monosaccharide and isomer of glucose from manna, the ash Fraxinus ornus and related plants. (From Grant & Hackh's Chemical Dictionary, 5th ed & Random House Unabridged Dictionary, 2d ed)
An enzyme that catalyzes the HYDROLYSIS of terminal, non-reducing alpha-D-mannose residues in alpha-D-mannosides. The enzyme plays a role in the processing of newly formed N-glycans and in degradation of mature GLYCOPROTEINS. There are multiple isoforms of alpha-mannosidase, each having its own specific cellular location and pH optimum. Defects in the lysosomal form of the enzyme results in a buildup of mannoside intermediate metabolites and the disease ALPHA-MANNOSIDOSIS.
An indolizidine alkaloid from the plant Swainsona canescens that is a potent alpha-mannosidase inhibitor. Swainsonine also exhibits antimetastatic, antiproliferative, and immunomodulatory activity.
Diseases of the domestic cat (Felis catus or F. domesticus). This term does not include diseases of the so-called big cats such as CHEETAHS; LIONS; tigers, cougars, panthers, leopards, and other Felidae for which the heading CARNIVORA is used.
Diseases of domestic cattle of the genus Bos. It includes diseases of cows, yaks, and zebus.
Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form.
A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured. Such rupture is supposed to be under metabolic (hormonal) control. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis.
Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive.
Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
An interleukin-1 subtype that is synthesized as an inactive membrane-bound pro-protein. Proteolytic processing of the precursor form by CASPASE 1 results in release of the active form of interleukin-1beta from the membrane.
An 11-kDa protein associated with the outer membrane of many cells including lymphocytes. It is the small subunit of the MHC class I molecule. Association with beta 2-microglobulin is generally required for the transport of class I heavy chains from the endoplasmic reticulum to the cell surface. Beta 2-microglobulin is present in small amounts in serum, csf, and urine of normal people, and to a much greater degree in the urine and plasma of patients with tubular proteinemia, renal failure, or kidney transplants.
One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS.
An integrin beta subunit of approximately 85-kDa in size which has been found in INTEGRIN ALPHAIIB-containing and INTEGRIN ALPHAV-containing heterodimers. Integrin beta3 occurs as three alternatively spliced isoforms, designated beta3A-C.
A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins.
An integrin found in FIBROBLASTS; PLATELETS; MONOCYTES, and LYMPHOCYTES. Integrin alpha5beta1 is the classical receptor for FIBRONECTIN, but it also functions as a receptor for LAMININ and several other EXTRACELLULAR MATRIX PROTEINS.
Also known as CD104 antigen, this protein is distinguished from other beta integrins by its relatively long cytoplasmic domain (approximately 1000 amino acids vs. approximately 50). Five alternatively spliced isoforms have been described.
This intrgrin is a key component of HEMIDESMOSOMES and is required for their formation and maintenance in epithelial cells. Integrin alpha6beta4 is also found on thymocytes, fibroblasts, and Schwann cells, where it functions as a laminin receptor (RECEPTORS, LAMININ) and is involved in wound healing, cell migration, and tumor invasiveness.
Integrin beta chains combine with integrin alpha chains to form heterodimeric cell surface receptors. Integrins have traditionally been classified into functional groups based on the identity of one of three beta chains present in the heterodimer. The beta chain is necessary and sufficient for integrin-dependent signaling. Its short cytoplasmic tail contains sequences critical for inside-out signaling.
A 44-kDa highly glycosylated plasma protein that binds phospholipids including CARDIOLIPIN; APOLIPOPROTEIN E RECEPTOR; membrane phospholipids, and other anionic phospholipid-containing moieties. It plays a role in coagulation and apoptotic processes. Formerly known as apolipoprotein H, it is an autoantigen in patients with ANTIPHOSPHOLIPID ANTIBODIES.
Integrin alpha4beta1 is a FIBRONECTIN and VCAM-1 receptor present on LYMPHOCYTES; MONOCYTES; EOSINOPHILS; NK CELLS and thymocytes. It is involved in both cell-cell and cell- EXTRACELLULAR MATRIX adhesion and plays a role in INFLAMMATION, hematopoietic cell homing and immune function, and has been implicated in skeletal MYOGENESIS; NEURAL CREST migration and proliferation, lymphocyte maturation and morphogenesis of the PLACENTA and HEART.
An integrin found on fibroblasts, platelets, endothelial and epithelial cells, and lymphocytes where it functions as a receptor for COLLAGEN and LAMININ. Although originally referred to as the collagen receptor, it is one of several receptors for collagen. Ligand binding to integrin alpha2beta1 triggers a cascade of intracellular signaling, including activation of p38 MAP kinase.
A subclass of beta-adrenergic receptors (RECEPTORS, ADRENERGIC, BETA). The adrenergic beta-2 receptors are more sensitive to EPINEPHRINE than to NOREPINEPHRINE and have a high affinity for the agonist TERBUTALINE. They are widespread, with clinically important roles in SKELETAL MUSCLE; LIVER; and vascular, bronchial, gastrointestinal, and genitourinary SMOOTH MUSCLE.
A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors(RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation.
A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation.
Integrin beta-1 chains which are expressed as heterodimers that are noncovalently associated with specific alpha-chains of the CD49 family (CD49a-f). CD29 is expressed on resting and activated leukocytes and is a marker for all of the very late activation antigens on cells. (from: Barclay et al., The Leukocyte Antigen FactsBook, 1993, p164)
A cell surface receptor mediating cell adhesion to the EXTRACELLULAR MATRIX and to other cells via binding to LAMININ. It is involved in cell migration, embryonic development, leukocyte activation and tumor cell invasiveness. Integrin alpha6beta1 is the major laminin receptor on PLATELETS; LEUKOCYTES; and many EPITHELIAL CELLS, and ligand binding may activate a number of signal transduction pathways. Alternative splicing of the cytoplasmic domain of the alpha6 subunit (INTEGRIN ALPHA6) results in the formation of A and B isoforms of the heterodimer, which are expressed in a tissue-specific manner.
A subclass of beta-adrenergic receptors (RECEPTORS, ADRENERGIC, BETA). The adrenergic beta-1 receptors are equally sensitive to EPINEPHRINE and NOREPINEPHRINE and bind the agonist DOBUTAMINE and the antagonist METOPROLOL with high affinity. They are found in the HEART, juxtaglomerular cells, and in the central and peripheral nervous systems.
Integrin alpha1beta1 functions as a receptor for LAMININ and COLLAGEN. It is widely expressed during development, but in the adult is the predominant laminin receptor (RECEPTORS, LAMININ) in mature SMOOTH MUSCLE CELLS, where it is important for maintenance of the differentiated phenotype of these cells. Integrin alpha1beta1 is also found in LYMPHOCYTES and microvascular endothelial cells, and may play a role in angiogenesis. In SCHWANN CELLS and neural crest cells, it is involved in cell migration. Integrin alpha1beta1 is also known as VLA-1 and CD49a-CD29.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Established cell cultures that have the potential to propagate indefinitely.
A glycogen synthase kinase that was originally described as a key enzyme involved in glycogen metabolism. It regulates a diverse array of functions such as CELL DIVISION, microtubule function and APOPTOSIS.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
One of the ESTROGEN RECEPTORS that has greater affinity for ISOFLAVONES than ESTROGEN RECEPTOR ALPHA does. There is great sequence homology with ER alpha in the DNA-binding domain but not in the ligand binding and hinge domains.
A subtype of transforming growth factor beta that is synthesized by a wide variety of cells. It is synthesized as a precursor molecule that is cleaved to form mature TGF-beta 1 and TGF-beta1 latency-associated peptide. The association of the cleavage products results in the formation a latent protein which must be activated to bind its receptor. Defects in the gene that encodes TGF-beta1 are the cause of CAMURATI-ENGELMANN SYNDROME.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.

The relationship between beta-mannosidase and endo-beta-mannanase activities in tomato seeds during and following germination: a comparison of seed populations and individual seeds. (1/3)

beta-Mannosidase and endo-beta-mannanase are involved in the mobilization of the mannan-containing cell walls of the tomato seed endosperm. The activities of both enzymes increase in a similar temporal manner in the micropylar and lateral endosperm during and following germination. This increase in enzyme activities in the micropylar endosperm is not markedly reduced in seeds imbibed in abscisic acid although, in the lateral endosperm, endo-beta-mannanase activity is more suppressed by this inhibitor than is the activity of beta-mannosidase. Gibberellin-deficient (gib-1) mutants of tomato do not germinate unless imbibed in gibberellin; low beta-mannosidase activity, and no endo-beta-mannanase activity is present in seeds imbibed in water, but both enzymes increase strongly in activity in the seeds imbibed in the growth regulator. For production of full activity of both beta-mannosidase and endo-beta-mannanase in the endosperm, this tissue must be in contact with the embryo for at least the first 6 h of imbibition, which is indicative of a stimulus diffusing from the embryo to the endosperm during this time. These results suggest some correlation between the activities of beta-mannosidase and endo-beta-mannanase, particularly in the micropylar endosperm, in populations of tomato seeds imbibed in water, abscisic acid and gibberellin. However, when individual micropylar endosperm parts are used to examine the effect of the growth regulators and of imbibition in water on the production of the two enzymes, it is apparent that within these individual seed parts there may be large differences in the amount of enzyme activity present. Micropylar endosperms with high endo-beta-mannanase activity do not necessarily have high beta-mannosidase activity, and vice versa, which is indicative of a lack of co-ordination of the activities of these two enzymes within individuals of a population.  (+info)

Beta-mannosidosis mice: a model for the human lysosomal storage disease. (2/3)

Beta-mannosidase, a lysosomal enzyme which acts exclusively at the last step of oligosaccharide catabolism in glycoprotein degradation, functions to cleave the unique beta-linked mannose sugar found in all N-linked oligosaccharides of glycoproteins. Deficiency of this enzyme results in beta-mannosidosis, a lysosomal storage disease characterized by the cellular accumulation of small oligosaccharides. In human beta-mannosidosis, the clinical presentation is variable and can be mild, even when caused by functionally null mutations. In contrast, two existing ruminant animal models have disease that is consistent and severe. To further explore the molecular pathology of this disease and to investigate potential treatment strategies, we produced a beta-mannosidase knockout mouse. Homozygous mutant mice have undetectable beta-mannosidase activity. General appearance and growth of the knockout mice are similar to the wild-type littermates. At >1 year of age, these mice exhibit no dysmorphology or overt neurological problems. The mutant animals have consistent cytoplasmic vacuolation in the central nervous system and minimal vacuolation in most visceral organs. Thin-layer chromatography demonstrated an accumulation of disaccharide in epididymis and brain. This mouse model closely resembles human beta-mannosidosis and provides a useful tool for studying the phenotypic variation in different species and will facilitate the study of potential therapies for lysosomal storage diseases.  (+info)

A MANBA mutation resulting in residual beta-mannosidase activity associated with severe leukoencephalopathy: a possible pseudodeficiency variant. (3/3)

 (+info)

Inborn errors of carbohydrate metabolism refer to genetic disorders that affect the body's ability to break down and process carbohydrates, which are sugars and starches that provide energy for the body. These disorders are caused by defects in enzymes or transport proteins that play a critical role in the metabolic pathways involved in carbohydrate metabolism.

There are several types of inborn errors of carbohydrate metabolism, including:

1. Galactosemia: This disorder affects the body's ability to metabolize the sugar galactose, which is found in milk and other dairy products. It is caused by a deficiency of the enzyme galactose-1-phosphate uridylyltransferase.
2. Glycogen storage diseases: These disorders affect the body's ability to store and break down glycogen, which is a complex carbohydrate that serves as a source of energy for the body. There are several types of glycogen storage diseases, each caused by a deficiency in a different enzyme involved in glycogen metabolism.
3. Hereditary fructose intolerance: This disorder affects the body's ability to metabolize the sugar fructose, which is found in fruits and sweeteners. It is caused by a deficiency of the enzyme aldolase B.
4. Pentose phosphate pathway disorders: These disorders affect the body's ability to metabolize certain sugars and generate energy through the pentose phosphate pathway. They are caused by defects in enzymes involved in this pathway.

Symptoms of inborn errors of carbohydrate metabolism can vary widely depending on the specific disorder and its severity. Treatment typically involves dietary restrictions, supplementation with necessary enzymes or cofactors, and management of complications. In some cases, enzyme replacement therapy or even organ transplantation may be considered.

Alpha-mannosidosis is a rare inherited metabolic disorder caused by the deficiency of the enzyme alpha-mannosidase. This enzyme is responsible for breaking down complex sugar molecules called mannose-rich oligosaccharides, which are found on the surface of many different types of cells in the body.

When the alpha-mannosidase enzyme is deficient or not working properly, these sugar molecules accumulate inside the lysosomes (the recycling centers of the cell) and cause damage to various tissues and organs, leading to a range of symptoms.

The severity of the disease can vary widely, depending on the amount of functional alpha-mannosidase enzyme activity present in an individual's cells. Three main types of alpha-mannosidosis have been described: mild, moderate, and severe. The severe form is usually diagnosed in infancy or early childhood and is characterized by developmental delay, intellectual disability, coarse facial features, skeletal abnormalities, hearing loss, and recurrent respiratory infections.

The moderate form of the disease may not be diagnosed until later in childhood or even adulthood, and it is generally milder than the severe form. Symptoms can include mild to moderate intellectual disability, skeletal abnormalities, hearing loss, and speech difficulties. The mild form of alpha-mannosidosis may not cause any noticeable symptoms until much later in life, and some individuals with this form of the disease may never experience any significant health problems.

Currently, there is no cure for alpha-mannosidosis, and treatment is focused on managing the symptoms of the disease. Enzyme replacement therapy (ERT) has shown promise in treating some forms of the disorder, but it is not yet widely available. Bone marrow transplantation has also been used to treat alpha-mannosidosis, with varying degrees of success.

Mannosidases are a group of enzymes that catalyze the hydrolysis of mannose residues from glycoproteins, oligosaccharides, and glycolipids. These enzymes play a crucial role in the processing and degradation of N-linked glycans, which are carbohydrate structures attached to proteins in eukaryotic cells.

There are several types of mannosidases, including alpha-mannosidase and beta-mannosidase, which differ in their specificity for the type of linkage they cleave. Alpha-mannosidases hydrolyze alpha-1,2-, alpha-1,3-, alpha-1,6-mannosidic bonds, while beta-mannosidases hydrolyze beta-1,4-mannosidic bonds.

Deficiencies in mannosidase activity can lead to various genetic disorders, such as alpha-mannosidosis and beta-mannosidosis, which are characterized by the accumulation of unprocessed glycoproteins and subsequent cellular dysfunction.

Disaccharidases are a group of enzymes found in the brush border of the small intestine. They play an essential role in digesting complex carbohydrates into simpler sugars, which can then be absorbed into the bloodstream. The three main disaccharidases are:

1. Maltase-glucoamylase: This enzyme breaks down maltose (a disaccharide formed from two glucose molecules) and maltotriose (a trisaccharide formed from three glucose molecules) into individual glucose units.
2. Sucrase: This enzyme is responsible for breaking down sucrose (table sugar, a disaccharide composed of one glucose and one fructose molecule) into its component monosaccharides, glucose and fructose.
3. Lactase: This enzyme breaks down lactose (a disaccharide formed from one glucose and one galactose molecule) into its component monosaccharides, glucose and galactose.

Deficiencies in these disaccharidases can lead to various digestive disorders, such as lactose intolerance (due to lactase deficiency), sucrase-isomaltase deficiency, or congenital sucrase-isomaltase deficiency (CSID). These conditions can cause symptoms like bloating, diarrhea, and abdominal cramps after consuming foods containing the specific disaccharide.

Mannose is a simple sugar (monosaccharide) that is similar in structure to glucose. It is a hexose, meaning it contains six carbon atoms. Mannose is a stereoisomer of glucose, meaning it has the same chemical formula but a different structural arrangement of its atoms.

Mannose is not as commonly found in foods as other simple sugars, but it can be found in some fruits, such as cranberries, blueberries, and peaches, as well as in certain vegetables, like sweet potatoes and turnips. It is also found in some dietary fibers, such as those found in beans and whole grains.

In the body, mannose can be metabolized and used for energy, but it is also an important component of various glycoproteins and glycolipids, which are molecules that play critical roles in many biological processes, including cell recognition, signaling, and adhesion.

Mannose has been studied as a potential therapeutic agent for various medical conditions, including urinary tract infections (UTIs), because it can inhibit the attachment of certain bacteria to the cells lining the urinary tract. Additionally, mannose-binding lectins have been investigated for their potential role in the immune response to viral and bacterial infections.

Alpha-Mannosidase is an enzyme that belongs to the glycoside hydrolase family 47. It is responsible for cleaving alpha-1,3-, alpha-1,6-mannosidic linkages in N-linked oligosaccharides during the process of glycoprotein degradation. A deficiency or malfunction of this enzyme can lead to a lysosomal storage disorder known as alpha-Mannosidosis.

Swainsonine is not a medical condition or disease, but rather a toxin that can cause a medical condition known as "locoism" in animals. Swainsonine is produced by certain plants, including some species of the genera Swainsona and Astragalus, which are commonly known as locoweeds.

Swainsonine inhibits an enzyme called alpha-mannosidase, leading to abnormal accumulation of mannose-rich oligosaccharides in various tissues and organs. This can result in a range of clinical signs, including neurological symptoms such as tremors, ataxia (loss of coordination), and behavioral changes; gastrointestinal symptoms such as diarrhea, weight loss, and decreased appetite; and reproductive problems.

Locoism is most commonly seen in grazing animals such as cattle, sheep, and horses that consume large quantities of locoweeds over an extended period. It can be difficult to diagnose and treat, and prevention through management practices such as rotational grazing and avoiding the introduction of toxic plants into pastures is often the best approach.

There are many diseases that can affect cats, and the specific medical definitions for these conditions can be quite detailed and complex. However, here are some common categories of feline diseases and examples of each:

1. Infectious diseases: These are caused by viruses, bacteria, fungi, or parasites. Examples include:
* Feline panleukopenia virus (FPV), also known as feline parvovirus, which can cause severe gastrointestinal symptoms and death in kittens.
* Feline calicivirus (FCV), which can cause upper respiratory symptoms such as sneezing and nasal discharge.
* Feline leukemia virus (FeLV), which can suppress the immune system and lead to a variety of secondary infections and diseases.
* Bacterial infections, such as those caused by Pasteurella multocida or Bartonella henselae, which can cause abscesses or other symptoms.
2. Neoplastic diseases: These are cancerous conditions that can affect various organs and tissues in cats. Examples include:
* Lymphoma, which is a common type of cancer in cats that can affect the lymph nodes, spleen, liver, and other organs.
* Fibrosarcoma, which is a type of soft tissue cancer that can arise from fibrous connective tissue.
* Squamous cell carcinoma, which is a type of skin cancer that can be caused by exposure to sunlight or tobacco smoke.
3. Degenerative diseases: These are conditions that result from the normal wear and tear of aging or other factors. Examples include:
* Osteoarthritis, which is a degenerative joint disease that can cause pain and stiffness in older cats.
* Dental disease, which is a common condition in cats that can lead to tooth loss, gum inflammation, and other problems.
* Heart disease, such as hypertrophic cardiomyopathy (HCM), which is a thickening of the heart muscle that can lead to congestive heart failure.
4. Hereditary diseases: These are conditions that are inherited from a cat's parents and are present at birth or develop early in life. Examples include:
* Polycystic kidney disease (PKD), which is a genetic disorder that causes cysts to form in the kidneys and can lead to kidney failure.
* Hypertrophic cardiomyopathy (HCM), which can be inherited as an autosomal dominant trait in some cats.
* Progressive retinal atrophy (PRA), which is a group of genetic disorders that cause degeneration of the retina and can lead to blindness.

Cattle diseases are a range of health conditions that affect cattle, which include but are not limited to:

1. Bovine Respiratory Disease (BRD): Also known as "shipping fever," BRD is a common respiratory illness in feedlot cattle that can be caused by several viruses and bacteria.
2. Bovine Viral Diarrhea (BVD): A viral disease that can cause a variety of symptoms, including diarrhea, fever, and reproductive issues.
3. Johne's Disease: A chronic wasting disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis. It primarily affects the intestines and can cause severe diarrhea and weight loss.
4. Digital Dermatitis: Also known as "hairy heel warts," this is a highly contagious skin disease that affects the feet of cattle, causing lameness and decreased productivity.
5. Infectious Bovine Keratoconjunctivitis (IBK): Also known as "pinkeye," IBK is a common and contagious eye infection in cattle that can cause blindness if left untreated.
6. Salmonella: A group of bacteria that can cause severe gastrointestinal illness in cattle, including diarrhea, dehydration, and septicemia.
7. Leptospirosis: A bacterial disease that can cause a wide range of symptoms in cattle, including abortion, stillbirths, and kidney damage.
8. Blackleg: A highly fatal bacterial disease that causes rapid death in young cattle. It is caused by Clostridium chauvoei and vaccination is recommended for prevention.
9. Anthrax: A serious infectious disease caused by the bacterium Bacillus anthracis. Cattle can become infected by ingesting spores found in contaminated soil, feed or water.
10. Foot-and-Mouth Disease (FMD): A highly contagious viral disease that affects cloven-hooved animals, including cattle. It is characterized by fever and blisters on the feet, mouth, and teats. FMD is not a threat to human health but can have serious economic consequences for the livestock industry.

It's important to note that many of these diseases can be prevented or controlled through good management practices, such as vaccination, biosecurity measures, and proper nutrition. Regular veterinary care and monitoring are also crucial for early detection and treatment of any potential health issues in your herd.

Oligosaccharides are complex carbohydrates composed of relatively small numbers (3-10) of monosaccharide units joined together by glycosidic linkages. They occur naturally in foods such as milk, fruits, vegetables, and legumes. In the body, oligosaccharides play important roles in various biological processes, including cell recognition, signaling, and protection against pathogens.

There are several types of oligosaccharides, classified based on their structures and functions. Some common examples include:

1. Disaccharides: These consist of two monosaccharide units, such as sucrose (glucose + fructose), lactose (glucose + galactose), and maltose (glucose + glucose).
2. Trisaccharides: These contain three monosaccharide units, like maltotriose (glucose + glucose + glucose) and raffinose (galactose + glucose + fructose).
3. Oligosaccharides found in human milk: Human milk contains unique oligosaccharides that serve as prebiotics, promoting the growth of beneficial bacteria in the gut. These oligosaccharides also help protect infants from pathogens by acting as decoy receptors and inhibiting bacterial adhesion to intestinal cells.
4. N-linked and O-linked glycans: These are oligosaccharides attached to proteins in the body, playing crucial roles in protein folding, stability, and function.
5. Plant-derived oligosaccharides: Fructooligosaccharides (FOS) and galactooligosaccharides (GOS) are examples of plant-derived oligosaccharides that serve as prebiotics, promoting the growth of beneficial gut bacteria.

Overall, oligosaccharides have significant impacts on human health and disease, particularly in relation to gastrointestinal function, immunity, and inflammation.

Lysosomes are membrane-bound organelles found in the cytoplasm of eukaryotic cells. They are responsible for breaking down and recycling various materials, such as waste products, foreign substances, and damaged cellular components, through a process called autophagy or phagocytosis. Lysosomes contain hydrolytic enzymes that can break down biomolecules like proteins, nucleic acids, lipids, and carbohydrates into their basic building blocks, which can then be reused by the cell. They play a crucial role in maintaining cellular homeostasis and are often referred to as the "garbage disposal system" of the cell.

Cobalt is a chemical element with the symbol Co and atomic number 27. It is a hard, silver-white, lustrous, and brittle metal that is found naturally only in chemically combined form, except for small amounts found in meteorites. Cobalt is used primarily in the production of magnetic, wear-resistant, and high-strength alloys, as well as in the manufacture of batteries, magnets, and pigments.

In a medical context, cobalt is sometimes used in the form of cobalt-60, a radioactive isotope, for cancer treatment through radiation therapy. Cobalt-60 emits gamma rays that can be directed at tumors to destroy cancer cells. Additionally, small amounts of cobalt are present in some vitamin B12 supplements and fortified foods, as cobalt is an essential component of vitamin B12. However, exposure to high levels of cobalt can be harmful and may cause health effects such as allergic reactions, lung damage, heart problems, and neurological issues.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

Edetic acid, also known as ethylenediaminetetraacetic acid (EDTA), is not a medical term per se, but a chemical compound with various applications in medicine. EDTA is a synthetic amino acid that acts as a chelating agent, which means it can bind to metallic ions and form stable complexes.

In medicine, EDTA is primarily used in the treatment of heavy metal poisoning, such as lead or mercury toxicity. It works by binding to the toxic metal ions in the body, forming a stable compound that can be excreted through urine. This helps reduce the levels of harmful metals in the body and alleviate their toxic effects.

EDTA is also used in some diagnostic tests, such as the determination of calcium levels in blood. Additionally, it has been explored as a potential therapy for conditions like atherosclerosis and Alzheimer's disease, although its efficacy in these areas remains controversial and unproven.

It is important to note that EDTA should only be administered under medical supervision due to its potential side effects and the need for careful monitoring of its use.

Isoelectric focusing (IEF) is a technique used in electrophoresis, which is a method for separating proteins or other molecules based on their electrical charges. In IEF, a mixture of ampholytes (molecules that can carry both positive and negative charges) is used to create a pH gradient within a gel matrix. When an electric field is applied, the proteins or molecules migrate through the gel until they reach the point in the gradient where their net charge is zero, known as their isoelectric point (pI). At this point, they focus into a sharp band and stop moving, resulting in a highly resolved separation of the different components based on their pI. This technique is widely used in protein research for applications such as protein identification, characterization, and purification.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Interleukin-1 beta (IL-1β) is a member of the interleukin-1 cytokine family and is primarily produced by activated macrophages in response to inflammatory stimuli. It is a crucial mediator of the innate immune response and plays a key role in the regulation of various biological processes, including cell proliferation, differentiation, and apoptosis. IL-1β is involved in the pathogenesis of several inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, and atherosclerosis. It exerts its effects by binding to the interleukin-1 receptor, which triggers a signaling cascade that leads to the activation of various transcription factors and the expression of target genes.

Beta-2 microglobulin (β2M) is a small protein that is a component of the major histocompatibility complex class I molecule, which plays a crucial role in the immune system. It is found on the surface of almost all nucleated cells in the body and is involved in presenting intracellular peptides to T-cells for immune surveillance.

β2M is produced at a relatively constant rate by cells throughout the body and is freely filtered by the glomeruli in the kidneys. Under normal circumstances, most of the filtrated β2M is reabsorbed and catabolized in the proximal tubules of the nephrons. However, when the glomerular filtration rate (GFR) is decreased, as in chronic kidney disease (CKD), the reabsorption capacity of the proximal tubules becomes overwhelmed, leading to increased levels of β2M in the blood and its subsequent appearance in the urine.

Elevated serum and urinary β2M levels have been associated with various clinical conditions, such as CKD, multiple myeloma, autoimmune disorders, and certain infectious diseases. Measuring β2M concentrations can provide valuable information for diagnostic, prognostic, and monitoring purposes in these contexts.

Adrenergic receptors are a type of G protein-coupled receptor that binds and responds to catecholamines, such as epinephrine (adrenaline) and norepinephrine (noradrenaline). Beta adrenergic receptors (β-adrenergic receptors) are a subtype of adrenergic receptors that include three distinct subclasses: β1, β2, and β3. These receptors are widely distributed throughout the body and play important roles in various physiological functions, including cardiovascular regulation, bronchodilation, lipolysis, and glucose metabolism.

β1-adrenergic receptors are primarily located in the heart and regulate cardiac contractility, chronotropy (heart rate), and relaxation. β2-adrenergic receptors are found in various tissues, including the lungs, vascular smooth muscle, liver, and skeletal muscle. They mediate bronchodilation, vasodilation, glycogenolysis, and lipolysis. β3-adrenergic receptors are mainly expressed in adipose tissue, where they stimulate lipolysis and thermogenesis.

Agonists of β-adrenergic receptors include catecholamines like epinephrine and norepinephrine, as well as synthetic drugs such as dobutamine (a β1-selective agonist) and albuterol (a non-selective β2-agonist). Antagonists of β-adrenergic receptors are commonly used in the treatment of various conditions, including hypertension, angina pectoris, heart failure, and asthma. Examples of β-blockers include metoprolol (a β1-selective antagonist) and carvedilol (a non-selective β-blocker with additional α1-adrenergic receptor blocking activity).

Integrin β3 is a subunit of certain integrin heterodimers, which are transmembrane receptors that mediate cell-cell and cell-extracellular matrix (ECM) adhesion. Integrin β3 combines with either integrin αv (to form the integrin αvβ3) or integrin αIIb (to form the integrin αIIbβ3). These integrins are involved in various cellular processes, including platelet aggregation, angiogenesis, and tumor metastasis.

Integrin αIIbβ3 is primarily expressed on platelets and mediates platelet aggregation by binding to fibrinogen, von Willebrand factor, and other adhesive proteins in the ECM. Integrin αvβ3 is widely expressed in various cell types and participates in diverse functions such as cell migration, proliferation, differentiation, and survival. It binds to a variety of ECM proteins, including fibronectin, vitronectin, and osteopontin, as well as to soluble ligands like vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β).

Dysregulation of integrin β3 has been implicated in several pathological conditions, such as thrombosis, atherosclerosis, tumor metastasis, and inflammatory diseases.

Transforming Growth Factor-beta (TGF-β) is a type of cytokine, which is a cell signaling protein involved in the regulation of various cellular processes, including cell growth, differentiation, and apoptosis (programmed cell death). TGF-β plays a critical role in embryonic development, tissue homeostasis, and wound healing. It also has been implicated in several pathological conditions such as fibrosis, cancer, and autoimmune diseases.

TGF-β exists in multiple isoforms (TGF-β1, TGF-β2, and TGF-β3) that are produced by many different cell types, including immune cells, epithelial cells, and fibroblasts. The protein is synthesized as a precursor molecule, which is cleaved to release the active TGF-β peptide. Once activated, TGF-β binds to its receptors on the cell surface, leading to the activation of intracellular signaling pathways that regulate gene expression and cell behavior.

In summary, Transforming Growth Factor-beta (TGF-β) is a multifunctional cytokine involved in various cellular processes, including cell growth, differentiation, apoptosis, embryonic development, tissue homeostasis, and wound healing. It has been implicated in several pathological conditions such as fibrosis, cancer, and autoimmune diseases.

Integrin α5β1, also known as very late antigen-5 (VLA-5) or fibronectin receptor, is a heterodimeric transmembrane receptor protein composed of two subunits: α5 and β1. This integrin is widely expressed in various cell types, including endothelial cells, smooth muscle cells, and fibroblasts.

Integrin α5β1 plays a crucial role in mediating cell-matrix adhesion by binding to the arginine-glycine-aspartic acid (RGD) sequence present in the extracellular matrix protein fibronectin. The interaction between integrin α5β1 and fibronectin is essential for various biological processes, such as cell migration, proliferation, differentiation, and survival. Additionally, this integrin has been implicated in several pathological conditions, including tumor progression, angiogenesis, and fibrosis.

Integrin beta4, also known as ITGB4 or CD104, is a type of integrin subunit that forms part of the integrin receptor along with an alpha subunit. Integrins are transmembrane proteins involved in cell-cell and cell-extracellular matrix (ECM) adhesion, signal transduction, and regulation of various cellular processes such as proliferation, differentiation, and migration.

Integrin beta4 is unique among the integrin subunits because it has a large cytoplasmic domain that can interact with several intracellular signaling molecules, making it an important regulator of cell behavior. Integrin beta4 is widely expressed in various tissues, including epithelial cells, endothelial cells, and hematopoietic cells.

Integrin beta4 forms heterodimers with integrin alpha6 to form the receptor for laminins, which are major components of the basement membrane. This receptor is involved in maintaining the integrity of epithelial tissues and regulating cell migration during development, tissue repair, and cancer progression. Mutations in ITGB4 have been associated with several human diseases, including epidermolysis bullosa, a group of inherited skin disorders characterized by fragile skin and blistering.

Integrin α6β4 is a type of cell surface receptor that is composed of two subunits, α6 and β4. It is also known as CD49f/CD104. This integrin is primarily expressed in epithelial cells and plays important roles in cell adhesion, migration, and signal transduction.

Integrin α6β4 specifically binds to laminin-332 (also known as laminin-5), a component of the basement membrane, and forms a stable anchorage complex that links the cytoskeleton to the extracellular matrix. This interaction is critical for maintaining the integrity of epithelial tissues and regulating cell behavior during processes such as wound healing and tissue regeneration.

Mutations in the genes encoding integrin α6β4 have been associated with various human diseases, including epidermolysis bullosa, a group of inherited skin disorders characterized by fragile skin and blistering. Additionally, integrin α6β4 has been implicated in cancer progression and metastasis, as its expression is often upregulated in tumor cells and contributes to their invasive behavior.

Integrin beta chains are a type of subunit that make up integrin receptors, which are heterodimeric transmembrane proteins involved in cell-cell and cell-extracellular matrix (ECM) adhesion. These receptors play crucial roles in various biological processes such as cell signaling, migration, proliferation, and differentiation.

Integrin beta chains combine with integrin alpha chains to form functional heterodimeric receptors. In humans, there are 18 different alpha subunits and 8 different beta subunits that can combine to form at least 24 distinct integrin receptors. The beta chain contributes to the cytoplasmic domain of the integrin receptor, which is involved in intracellular signaling and cytoskeletal interactions.

The beta chains are characterized by a conserved cytoplasmic region called the beta-tail domain, which interacts with various adaptor proteins to mediate downstream signaling events. Additionally, some integrin beta chains have a large inserted (I) domain in their extracellular regions that is responsible for ligand binding specificity.

Examples of integrin beta chains include β1, β2, β3, β4, β5, β6, β7, and β8, each with distinct functions and roles in various tissues and cell types. Mutations or dysregulation of integrin beta chains have been implicated in several human diseases, including cancer, inflammation, fibrosis, and developmental disorders.

Beta 2-glycoprotein I, also known as apolipoprotein H, is a plasma protein that belongs to the family of proteins called immunoglobulin-binding proteins. It has a molecular weight of approximately 44 kDa and is composed of five domains with similar structures.

Beta 2-glycoprotein I is primarily produced in the liver and circulates in the bloodstream, where it plays a role in several physiological processes, including coagulation, complement activation, and lipid metabolism. It has been identified as an autoantigen in certain autoimmune disorders, such as antiphospholipid syndrome (APS), where autoantibodies against beta 2-glycoprotein I can cause blood clots, miscarriages, and other complications.

In medical terminology, the definition of "beta 2-glycoprotein I" is as follows:

A plasma protein that belongs to the family of immunoglobulin-binding proteins and has a molecular weight of approximately 44 kDa. It is primarily produced in the liver and circulates in the bloodstream, where it plays a role in several physiological processes, including coagulation, complement activation, and lipid metabolism. Autoantibodies against beta 2-glycoprotein I are associated with certain autoimmune disorders, such as antiphospholipid syndrome (APS), where they can cause blood clots, miscarriages, and other complications.

Integrin α4β1, also known as Very Late Antigen-4 (VLA-4), is a heterodimeric transmembrane receptor protein composed of two subunits, α4 and β1. It is involved in various cellular activities such as adhesion, migration, and signaling. This integrin plays a crucial role in the immune system by mediating the interaction between leukocytes (white blood cells) and the endothelial cells that line blood vessels. The activation of Integrin α4β1 allows leukocytes to roll along and then firmly adhere to the endothelium, followed by their migration into surrounding tissues, particularly during inflammation and immune responses. Additionally, Integrin α4β1 also interacts with extracellular matrix proteins such as fibronectin and helps regulate cell survival, proliferation, and differentiation in various cell types.

Integrin α2β1, also known as very late antigen-2 (VLA-2) or laminin receptor, is a heterodimeric transmembrane receptor protein composed of α2 and β1 subunits. It belongs to the integrin family of adhesion molecules that play crucial roles in cell-cell and cell-extracellular matrix (ECM) interactions.

Integrin α2β1 is widely expressed on various cell types, including fibroblasts, endothelial cells, smooth muscle cells, and some hematopoietic cells. It functions as a receptor for several ECM proteins, such as collagens (type I, II, III, and V), laminin, and fibronectin. The binding of integrin α2β1 to these ECM components mediates cell adhesion, migration, proliferation, differentiation, and survival, thereby regulating various physiological and pathological processes, such as tissue repair, angiogenesis, inflammation, and tumor progression.

In addition, integrin α2β1 has been implicated in several diseases, including fibrosis, atherosclerosis, and cancer. Therefore, targeting this integrin with therapeutic strategies may provide potential benefits for treating these conditions.

Adrenergic receptors are a type of G protein-coupled receptor that bind and respond to catecholamines, such as epinephrine (adrenaline) and norepinephrine (noradrenaline). Beta-2 adrenergic receptors (β2-ARs) are a subtype of adrenergic receptors that are widely distributed throughout the body, particularly in the lungs, heart, blood vessels, gastrointestinal tract, and skeletal muscle.

When β2-ARs are activated by catecholamines, they trigger a range of physiological responses, including relaxation of smooth muscle, increased heart rate and contractility, bronchodilation, and inhibition of insulin secretion. These effects are mediated through the activation of intracellular signaling pathways involving G proteins and second messengers such as cyclic AMP (cAMP).

β2-ARs have been a major focus of drug development for various medical conditions, including asthma, chronic obstructive pulmonary disease (COPD), heart failure, hypertension, and anxiety disorders. Agonists of β2-ARs, such as albuterol and salmeterol, are commonly used to treat asthma and COPD by relaxing bronchial smooth muscle and reducing airway obstruction. Antagonists of β2-ARs, such as propranolol, are used to treat hypertension, angina, and heart failure by blocking the effects of catecholamines on the heart and blood vessels.

Integrins are a type of cell-adhesion molecule that play a crucial role in cell-cell and cell-extracellular matrix (ECM) interactions. They are heterodimeric transmembrane receptors composed of non-covalently associated α and β subunits, which form more than 24 distinct integrin heterodimers in humans.

Integrins bind to specific ligands, such as ECM proteins (e.g., collagen, fibronectin, laminin), cell surface molecules, and soluble factors, through their extracellular domains. The intracellular domains of integrins interact with the cytoskeleton and various signaling proteins, allowing them to transduce signals from the ECM into the cell (outside-in signaling) and vice versa (inside-out signaling).

These molecular interactions are essential for numerous biological processes, including cell adhesion, migration, proliferation, differentiation, survival, and angiogenesis. Dysregulation of integrin function has been implicated in various pathological conditions, such as cancer, fibrosis, inflammation, and autoimmune diseases.

Interleukin-1 (IL-1) is a type of cytokine, which are proteins that play a crucial role in cell signaling. Specifically, IL-1 is a pro-inflammatory cytokine that is involved in the regulation of immune and inflammatory responses in the body. It is produced by various cells, including monocytes, macrophages, and dendritic cells, in response to infection or injury.

IL-1 exists in two forms, IL-1α and IL-1β, which have similar biological activities but are encoded by different genes. Both forms of IL-1 bind to the same receptor, IL-1R, and activate intracellular signaling pathways that lead to the production of other cytokines, chemokines, and inflammatory mediators.

IL-1 has a wide range of biological effects, including fever induction, activation of immune cells, regulation of hematopoiesis (the formation of blood cells), and modulation of bone metabolism. Dysregulation of IL-1 production or activity has been implicated in various inflammatory diseases, such as rheumatoid arthritis, gout, and inflammatory bowel disease. Therefore, IL-1 is an important target for the development of therapies aimed at modulating the immune response and reducing inflammation.

CD29, also known as integrin β1, is a type of cell surface protein called an integrin that forms heterodimers with various α subunits to form different integrin receptors. These integrin receptors play important roles in various biological processes such as cell adhesion, migration, and signaling.

CD29/integrin β1 is widely expressed on many types of cells including leukocytes, endothelial cells, epithelial cells, and fibroblasts. It can bind to several extracellular matrix proteins such as collagen, laminin, and fibronectin, and mediate cell-matrix interactions. CD29/integrin β1 also participates in intracellular signaling pathways that regulate cell survival, proliferation, differentiation, and migration.

CD29/integrin β1 can function as an antigen, which is a molecule capable of inducing an immune response. Antibodies against CD29/integrin β1 have been found in some autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus (SLE). These antibodies can contribute to the pathogenesis of these diseases by activating complement, inducing inflammation, and damaging tissues.

Therefore, CD29/integrin β1 is an important molecule in both physiological and pathological processes, and its functions as an antigen have been implicated in some autoimmune disorders.

Integrin α6β1, also known as CD49f/CD29, is a heterodimeric transmembrane receptor protein composed of α6 and β1 subunits. It is widely expressed in various tissues, including epithelial cells, endothelial cells, fibroblasts, and hematopoietic cells. Integrin α6β1 plays a crucial role in cell-matrix adhesion, particularly to the laminin component of the extracellular matrix (ECM). This receptor is involved in various biological processes such as cell migration, proliferation, differentiation, and survival. Additionally, integrin α6β1 has been implicated in tumor progression, metastasis, and drug resistance in certain cancers.

Beta-1 adrenergic receptors (also known as β1-adrenergic receptors) are a type of G protein-coupled receptor found in the cell membrane. They are activated by the catecholamines, particularly noradrenaline (norepinephrine) and adrenaline (epinephrine), which are released by the sympathetic nervous system as part of the "fight or flight" response.

When a catecholamine binds to a β1-adrenergic receptor, it triggers a series of intracellular signaling events that ultimately lead to an increase in the rate and force of heart contractions, as well as an increase in renin secretion from the kidneys. These effects help to prepare the body for physical activity by increasing blood flow to the muscles and improving the efficiency of the cardiovascular system.

In addition to their role in the regulation of cardiovascular function, β1-adrenergic receptors have been implicated in a variety of physiological processes, including lipolysis (the breakdown of fat), glucose metabolism, and the regulation of mood and cognition.

Dysregulation of β1-adrenergic receptor signaling has been linked to several pathological conditions, including heart failure, hypertension, and anxiety disorders. As a result, β1-adrenergic receptors are an important target for the development of therapeutics used in the treatment of these conditions.

Integrin α1β1, also known as Very Late Antigen-1 (VLA-1) or CD49a/CD29, is a heterodimeric transmembrane receptor protein composed of α1 and β1 subunits. It belongs to the integrin family of adhesion molecules that play crucial roles in cell-cell and cell-extracellular matrix (ECM) interactions.

Integrin α1β1 is primarily expressed on various cell types, including fibroblasts, endothelial cells, smooth muscle cells, and some immune cells. This integrin binds to several ECM proteins, such as collagens (type I, II, III, IV), laminin, and fibronectin, mediating cell adhesion, migration, proliferation, differentiation, and survival. Additionally, α1β1 integrin has been implicated in various physiological and pathological processes, such as tissue repair, fibrosis, and tumor progression.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Glycogen Synthase Kinase 3 (GSK-3) is a serine/threonine protein kinase that plays a crucial role in the regulation of several cellular processes, including glycogen metabolism, cell signaling, gene transcription, and apoptosis. It was initially discovered as a key enzyme involved in glycogen metabolism due to its ability to phosphorylate and inhibit glycogen synthase, an enzyme responsible for the synthesis of glycogen from glucose.

GSK-3 exists in two isoforms, GSK-3α and GSK-3β, which share a high degree of sequence similarity and are widely expressed in various tissues. Both isoforms are constitutively active under normal conditions and are regulated through inhibitory phosphorylation by several upstream signaling pathways, such as insulin, Wnt, and Hedgehog signaling.

Dysregulation of GSK-3 has been implicated in the pathogenesis of various diseases, including diabetes, neurodegenerative disorders, and cancer. In recent years, GSK-3 has emerged as an attractive therapeutic target for the development of novel drugs to treat these conditions.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Estrogen Receptor beta (ER-β) is a protein that is encoded by the gene ESR2 in humans. It belongs to the family of nuclear receptors, which are transcription factors that regulate gene expression in response to hormonal signals. ER-β is one of two main estrogen receptors, the other being Estrogen Receptor alpha (ER-α), and it plays an important role in mediating the effects of estrogens in various tissues, including the breast, uterus, bone, brain, and cardiovascular system.

Estrogens are steroid hormones that play a critical role in the development and maintenance of female reproductive and sexual function. They also have important functions in other tissues, such as maintaining bone density and promoting cognitive function. ER-β is widely expressed in many tissues, including those outside of the reproductive system, suggesting that it may have diverse physiological roles beyond estrogen-mediated reproduction.

ER-β has been shown to have both overlapping and distinct functions from ER-α, and its expression patterns differ between tissues. For example, in the breast, ER-β is expressed at higher levels in normal tissue compared to cancerous tissue, suggesting that it may play a protective role against breast cancer development. In contrast, in the uterus, ER-β has been shown to have anti-proliferative effects and may protect against endometrial cancer.

Overall, ER-β is an important mediator of estrogen signaling and has diverse physiological roles in various tissues. Understanding its functions and regulation may provide insights into the development of novel therapies for a range of diseases, including cancer, osteoporosis, and cardiovascular disease.

Transforming Growth Factor-beta 1 (TGF-β1) is a cytokine that belongs to the TGF-β superfamily. It is a multifunctional protein involved in various cellular processes, including cell growth, differentiation, apoptosis, and extracellular matrix production. TGF-β1 plays crucial roles in embryonic development, tissue homeostasis, and repair, as well as in pathological conditions such as fibrosis and cancer. It signals through a heteromeric complex of type I and type II serine/threonine kinase receptors, leading to the activation of intracellular signaling pathways, primarily the Smad-dependent pathway. TGF-β1 has context-dependent functions, acting as a tumor suppressor in normal and early-stage cancer cells but promoting tumor progression and metastasis in advanced cancers.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

... , also called lysosomal beta-mannosidase deficiency, is a disorder of oligosaccharide metabolism caused by ... Beta-mannosidase "Mannosidosis, beta A, lysosomal , Genetic and Rare Diseases Information Center (GARD) - an NCATS Program". ... to distinguish between alpha-mannosidosis and beta-mannosidosis. There is currently no treatment available; individuals ... Beta-mannosidosis is inherited in an autosomal recessive manner. Affected individuals appear normal at birth, and can have a ...
... is a deficiency in mannosidase, an enzyme. There are two types: Alpha-mannosidosis and Beta-mannosidosis. ... Swainsonine Mannosidosis at the U.S. National Library of Medicine Medical Subject Headings (MeSH) v t e (All stub articles, ...
LMNA Mannosidosis, alpha-, types I and II; 248500; MAN2B1 Mannosidosis, beta; 248510; MANBA Maple syrup urine disease, type Ia ... Hispanic gamma-delta-beta; 604131; LCRB Thalassemia-beta, dominant inclusion-body; 603902; HBB Thalassemias, alpha-; 604131; ... NLRP3 Mucolipidosis II alpha/beta; 252500; GNPTAB Mucolipidosis III alpha/beta; 252600; GNPTAB Mucolipidosis III gamma; 252605 ... Isolated 17,20-lyase deficiency; 202110; CYP17A1 17-alpha-hydroxylase/17,20-lyase deficiency; 202110; CYP17A1 17-beta- ...
There are two types: alpha-Mannosidase beta-Mannosidase A deficiency is associated with mannosidosis. A family of mannosidases ...
"Human beta-mannosidase cDNA characterization and first identification of a mutation associated with human beta-mannosidosis". ... Overview of all the structural information available in the PDB for UniProt: Q8K2I4 (Mouse Beta-mannosidase) at the PDBe-KB. ... Mutations in this gene are associated with β-mannosidosis, a lysosomal storage disease that has a wide spectrum of neurological ... 2009). "A MANBA mutation resulting in residual beta-mannosidase activity associated with severe leukoencephalopathy: a possible ...
Wolman disease Oligosaccharide Alpha-mannosidosis Beta-mannosidosis Aspartylglucosaminuria Fucosidosis Lysosomal transport ... Mannosidosis Molecular chaperone therapy Platt, Frances M.; d'Azzo, Alessandra; Davidson, Beverly L.; Neufeld, Elizabeth F.; ... Beta-galactosidase / GM1 gangliosidosis Infantile Juvenile Adult / chronic GM2 gangliosidosis AB variant Activator deficiency ...
... alpha-mannosidosis MeSH C18.452.648.202.607.750 - beta-mannosidosis MeSH C18.452.648.202.670 - mucolipidoses MeSH C18.452. ... alpha-mannosidosis MeSH C18.452.648.595.577.750 - beta-mannosidosis MeSH C18.452.648.595.600 - mucopolysaccharidoses MeSH ...
... alpha-mannosidosis MeSH C16.320.565.202.607.750 - beta-mannosidosis MeSH C16.320.565.202.670 - mucolipidoses MeSH C16.320. ... alpha-mannosidosis MeSH C16.320.565.580.577.750 - beta-mannosidosis MeSH C16.320.565.580.600 - mucopolysaccharidoses MeSH ... beta-thalassemia MeSH C16.320.077.090 - anemia, Diamond-Blackfan MeSH C16.320.077.280 - fanconi anemia MeSH C16.320.099.037 - ... beta-thalassemia MeSH C16.320.400.024 - Alexander disease MeSH C16.320.400.050 - amyloid neuropathies, familial MeSH C16.320. ...
Berylliosis Beta ketothiolase deficiency Beta-galactosidase-1 deficiency Beta-mannosidosis Beta-sarcoglycanopathy Beta- ... psychotic disorder Bright's disease Brittle bone disease Brittle bone syndrome lethal type Brittle cornea syndrome Broad beta ...
... genetic types Mannosidosis Manouvrier syndrome Mansonelliasis Mantle cell lymphoma Marashi-Gorlin syndrome Marburg fever ... Myoshi type Muscular dystrophy limb-girdle with beta-sarcoglycan deficiency Muscular dystrophy limb-girdle with delta- ... wasting renal Major depressive disorder Mal de debarquement Malakoplakia Malaria Male pseudohermaphroditism due to 17-beta- ...
Beta-mannosidosis, also called lysosomal beta-mannosidase deficiency, is a disorder of oligosaccharide metabolism caused by ... Beta-mannosidase "Mannosidosis, beta A, lysosomal , Genetic and Rare Diseases Information Center (GARD) - an NCATS Program". ... to distinguish between alpha-mannosidosis and beta-mannosidosis. There is currently no treatment available; individuals ... Beta-mannosidosis is inherited in an autosomal recessive manner. Affected individuals appear normal at birth, and can have a ...
Beta-mannosidosis is a rare inherited disorder affecting the way certain sugar molecules are processed in the body. Explore ... People with beta-mannosidosis are often extremely introverted.. People with beta-mannosidosis may experience an increased risk ... medlineplus.gov/genetics/condition/beta-mannosidosis/ Beta-mannosidosis. ... Beta-mannosidosis is believed to be a very rare disorder. It is difficult to determine the specific incidence of beta- ...
2023 Genetic Support Network of ...
Alpha-mannosidosis: MedlinePlus Genetics (National Library of Medicine) * Beta-mannosidosis: MedlinePlus Genetics (National ...
Beta-ketothiolase deficiency: MedlinePlus Genetics (National Library of Medicine) * Beta-mannosidosis: MedlinePlus Genetics ( ... Alpha-mannosidosis: MedlinePlus Genetics (National Library of Medicine) * Alpha-methylacyl-CoA racemase deficiency: MedlinePlus ...
alpha-mannosidosis. *aspartylglucosaminuria. *cholesteryl ester storage disease. *chronic hexosaminidase A deficiency. * ...
alpha-mannosidosis. *aspartylglucosaminuria. *cholesteryl ester storage disease. *chronic hexosaminidase A deficiency. * ...
Angiokeratoma corporis diffusum in human beta-mannosidosis: Report of a new case and a novel mutation. J Am Acad Dermatol. 2007 ... 7] in 2007, reported a 36-year-old Arab woman with beta-mannosidosis who presented with mental retardation and multiple ... beta-mannosidosis, Kanzaki disease, and aspartylglucosaminuria. [2] Additionally, angiokeratoma corporis diffusum has been ... Clinical observations on enzyme replacement therapy in patients with Fabry disease and the switch from agalsidase beta to ...
Beta-mannosidosis (a disorder resulting from decreased activity of the enzyme beta-mannosidase) ...
Disorders of glycoprotein degradation: alpha-mannosidosis, beta-mannosidosis, fucosidosis, and sialidosis. The Metabolic & ... been described with a clinical phenotype consistent with type II sialidosis and a combined deficiency of neuraminidase and beta ...
Human beta-mannosidase cDNA characterization and first identification of a mutation associated with human beta-mannosidosis. ...
Beta-mannosidosis. 166. *Bardet-Biedl syndrome 2 NEW. 297. *Dilated cardiomyopathy PLN-related NEW. 126 ...
Mannosidosis, alpha. Capra hircus. goat. 2023-02-03. OMIA:000626-9925 Mannosidosis, beta. Capra hircus. goat. MANBA 1996 2012- ... Casein, beta. Capra hircus. goat. 2023-07-26. OMIA:001424-9925 Casein, beta, absence of. Capra hircus. goat. CSN2 1999 2012-09- ...
Mannosidosis, alpha. Capra hircus. goat. 2023-02-03. OMIA:000626-9925 Mannosidosis, beta. Capra hircus. goat. MANBA 1996 2012- ... Casein, beta. Capra hircus. goat. 2023-07-26. OMIA:001424-9925 Casein, beta, absence of. Capra hircus. goat. CSN2 1999 2012-09- ...
Alpha-mannosidosis. Alpha-mannosidase. *Schindler/Kanzaki disease. Alpha-N-acetylgalactosaminidase. *Gaucher disease. Beta- ...
Mannosidosis, beta A, lysosomal From NCATS Genetic and Rare Diseases Information Center ...
beta Thalassemia1 test. *Beta-D-mannosidosis1 test. *Bethlem myopathy 11 test ...
lysosomal beta-mannosidase deficiency, see beta-mannosidosis. *lysosomal glycoaminoacid storage disease-angiokeratoma corporis ... lysosomal beta A mannosidosis, see beta-mannosidosis. * ... lysosomal alpha B mannosidosis, see alpha-mannosidosis. * ... lysosomal alpha-D-mannosidase deficiency, see alpha-mannosidosis. * ...
Disorders of glycoprotein degradation: alpha-mannosidosis, beta-mannosidosis, fucosidosis, and sialidosis. The Metabolic & ... been described with a clinical phenotype consistent with type II sialidosis and a combined deficiency of neuraminidase and beta ...
Disorders of glycoprotein degradation: alpha-mannosidosis, beta-mannosidosis, fucosidosis, and sialidosis. The Metabolic & ...
His laboratory is involved in the diagnosis of alpha-mannosidosis, beta-mannosidosis, mucolipidosis type II and III. Part of ...
Her oldest son was diagnosed with Beta Mannosidosis in 2014 at the age of 4 and received an experimental bone marrow transplant ... She is active in disability advocacy and hopes to raise awareness for ultra-orphan diseases, especially Beta Mannosidosis. ... Sarah was born with Alpha Mannosidosis and diagnosed at 3.5 years old. She received a bone marrow transplant, a year later in ... Danielle and her husband Jeff are parents of Sarah, who was born with Alpha-Mannosidosis in 1999 and received a bone marrow ...
There is another form of mannosidosis known as beta A (248510) caused by mutations in MANBA but ocular features have not been ... Ocular findings in mannosidosis. Arbisser AI, Murphree AL, Garcia CA, Howell RR. Ocular findings in mannosidosis. Am J ... Mannosidosis, Alpha B. Clinical Characteristics. Ocular Features: Many (probably most) patients have lens opacities and some ... Clinical manifestations of mannosidosis--a longitudinal study. Yunis JJ, Lewandowski RC Jr, Sanfilippo SJ, Tsai MY, Foni I, ...
Beta-Mannosidosis, Fucosidosis, Galactosialidosis, Sialidosis (Mucolipidosis I), Mucolipidosis II, II/III, III alpha/beta, ... Beta-Mannosidosis, Fucosidosis, Galactosialidosis, Sialidosis (Mucolipidosis I), Mucolipidosis II, II/III, III alpha/beta, ... International Society for Mannosidosis and Related Diseases. ISMRD is an internationally focused not-for-profit organization ... International Society for Mannosidosis and Related Diseases. ISMRD is an internationally focused not-for-profit organization ...
", "Alpha-Mannosidosis", "Alpha-Mannosidase Deficiency", "Beta-Mannosidosis", "Beta-Mannosidase Deficiency", "Fucosidosis", " ... ", "Peroxisomal beta-oxidation enzyme deficiency", "Acyl-CoA oxidase deficiency", "AOX deficiency", "D-Bifunctional protein ... ", "Beta-enolase deficiency", "Glycogen storage diseass type XIV", "GSDXIV", "Phosphoglucomutase deficiency", "Glycogen storage ... ", "Cystathionine beta-synthase deficiency", "CBS deficiency", "Homocystinuria type II", "Homocystinuria cblC type", "Cobalamin ...
Clearly, the goat kid did not have the previously undisclosed LSD (beta-mannosidosis) identified in my laboratory, but several ... human beta defensins) role in the development of head and neck cancer. ... ...
... beta-Lactam Resistance beta-Lactamases beta-Lactams beta-Lipotropin beta-Mannosidase beta-Mannosidosis beta-MSH beta-N-Acetyl ... beta-Lactamases beta-Lactams beta-Lipotropin beta-Mannosidase beta-Mannosidosis beta-MSH beta-N-Acetyl-Galactosaminidase beta-N ... beta-Crystallin B-Crystallin, beta Crystallins, beta B Chain beta B Crystallin beta B-Crystallin beta Crystallin B Chain beta ... beta-Globins Beta-Globulins beta-Glucans beta-Glucosidase beta-Hexosaminidase alpha Chain beta-Hexosaminidase beta Chain beta ...
  • Beta-mannosidosis, also called lysosomal beta-mannosidase deficiency, is a disorder of oligosaccharide metabolism caused by decreased activity of the enzyme beta-mannosidase. (wikipedia.org)
  • Some patients have been described with a clinical phenotype consistent with type II sialidosis and a combined deficiency of neuraminidase and beta-galactosidase. (medscape.com)
  • Alpha mannosidosis is a lysosomal storage disorder which results in the deficiency of the production of the enzyme alpha-D-mannosidase. (basepaws.com)
  • Alpha mannosidosis is a lysosomal storage disorder which results in the decreased efficiency of the production of an enzyme called alpha-D-mannosidase. (basepaws.com)
  • In terms of causation, several mutations in the MANBA gene are the cause of beta-mannosidosis. (wikipedia.org)
  • Variants (also known as mutations) in the MANBA gene cause beta-mannosidosis. (medlineplus.gov)
  • The MANBA gene provides instructions for making the enzyme beta-mannosidase. (medlineplus.gov)
  • Variants in the MANBA gene interfere with the ability of the beta-mannosidase enzyme to perform its role in breaking down mannose-containing disaccharides. (medlineplus.gov)
  • Angiokeratoma corporis diffusum is not unique to Fabry disease and has also been documented in several other rare lysosomal storage disorders such as fucosidosis, sialidosis, GM1 gangliosidosis, galactosialidosis, beta-mannosidosis, Kanzaki disease, and aspartylglucosaminuria. (medscape.com)
  • Since long-term effective treatments for alpha-mannosidosis in cats have not been designed yet, it is not recommended to breed from mutation carriers in order to prevent the succession of the genetic anomaly to kittens. (basepaws.com)
  • The pathophysiology of this condition is better comprehended if one first looks at the normal function of beta-mannosidase, such as its function of breaking down disaccharides. (wikipedia.org)
  • medical citation needed] Beta-mannosidase function is consistent with it being a lysosomal enzyme catalyzing and thus involved in degradation route for N-linked oligosaccharide moieties (glycoproteins). (wikipedia.org)
  • Beta-mannosidase is involved in the last step of this process, helping to break down complexes of two sugar molecules (disaccharides) containing a sugar molecule called mannose. (medlineplus.gov)
  • Human beta-mannosidase cDNA characterization and first identification of a mutation associated with human beta-mannosidosis. (medlineplus.gov)
  • Uchino Y, Fukushige T, Yotsumoto S, Hashiguchi T, Taguchi H, Suzuki N, Konohana I, Kanzaki T. Morphological and biochemical studies of human beta-mannosidosis: identification of a novel beta-mannosidase gene mutation. (medlineplus.gov)
  • Alkhayat AH, Kraemer SA, Leipprandt JR, Macek M, Kleijer WJ, Friderici KH , Human beta-mannosidase cDNA characterization and first identification of a mutation associated with human beta-mannosidosis. (coriell.org)
  • Mannosidosis is a group term for deficiencies in the enzyme mannosidase. (basepaws.com)
  • Diagnosis of alpha-mannosidosis involves the detection of alpha-mannosidase enzyme activity in peripheral blood leukocytes, or white blood cells. (basepaws.com)
  • A diagnosis of beta-mannosidosis is suspected based on the person's clinical presentation. (wikipedia.org)
  • Diagnostic techniques for this condition can be done to offer a differential diagnosis, via lectin histochemistry, to distinguish between alpha-mannosidosis and beta-mannosidosis. (wikipedia.org)
  • His laboratory is involved in the diagnosis of alpha-mannosidosis, beta-mannosidosis, mucolipidosis type II and III. (ebtna.eu)
  • Her oldest son was diagnosed with Beta Mannosidosis in 2014 at the age of 4 and received an experimental bone marrow transplant shortly after his diagnosis. (ismrd.org)
  • Sarah currently serves as a board member of ISMRD and is an advocate for the Alpha-Mannosidosis community. (ismrd.org)
  • Variable clinical presentation of lysosomal beta-mannosidosis in patients with null mutations. (medlineplus.gov)
  • Danielle and her husband Jeff are parents of Sarah, who was born with Alpha-Mannosidosis in 1999 and received a bone marrow transplant in 2003. (ismrd.org)
  • Because of its rarity, and non-specific clinical findings, beta-mannosidosis can go undiagnosed until adulthood, where it can present with intellectual disability and behavioral problems, including aggression. (wikipedia.org)
  • Signs and symptoms of beta-mannosidosis vary widely in severity, and the age of onset ranges from infancy to adulthood. (medlineplus.gov)
  • The initial affected individual described in 1986 had a complex phenotype, and was later found to have both beta-mannosidosis and Sanfilippo syndrome. (wikipedia.org)
  • It is difficult to determine the specific incidence of beta-mannosidosis, because people with mild or non-specific symptoms may never be diagnosed. (medlineplus.gov)
  • These disaccharides gradually accumulate in the lysosomes and cause cells to malfunction, resulting in the signs and symptoms of beta-mannosidosis. (medlineplus.gov)
  • Although there is high clinical and pathologic heterogeneity among the disease groups, the feline disorder has been linked to human α-mannosidosis (Cummings et al, 1988). (basepaws.com)
  • Gort L, Duque J, Fabeiro JM, Zulaica A, Coll MJ, Chabas A. Molecular analysis in two beta-mannosidosis patients: description of a new adult case. (medlineplus.gov)
  • Molho-Pessach V, Bargal R, Abramowitz Y, Doviner V, Ingber A, Raas-Rothschild A, Ne'eman Z, Zeigler M, Zlotogorski A. Angiokeratoma corporis diffusum in human beta-mannosidosis: Report of a new case and a novel mutation. (medlineplus.gov)
  • Beta-mannosidosis is a rare inherited disorder affecting the way certain sugar molecules are processed in the body. (medlineplus.gov)
  • Beta-mannosidosis is believed to be a very rare disorder. (medlineplus.gov)
  • We were the first to show essentially complete correction of CNS disease in the lysosomal disorder known as alpha-mannosidosis through the use of bone marrow transplantation and this treatment approach is now the standard of care for children diagnosed with this rare disorder. (einsteinmed.edu)
  • Almost all individuals with beta-mannosidosis experience intellectual disability, and some have delayed motor development and seizures. (medlineplus.gov)
  • Depending on which of these enzymes is deficient, human mannosidosis is classified as α-mannosidosis or β-mannosidosis (U.S. National Library of Medicine, 2018). (basepaws.com)
  • More recently his laboratory has participated to the development of a therapy for the lysosomal storage disease, alpha-mannosidosis. (ebtna.eu)
  • More recently we discovered that the FDA-approved excipient known as hydroxypropyl beta-cyclodextrin is efficacious in limiting intraneuronal accumulation of both unesterified cholesterol and glycosphingolipids, and dramatically extends the lifespan in animal models of NPC disease. (einsteinmed.edu)
  • Defects in the lysosomal form of the enzyme results in a buildup of mannoside intermediate metabolites and the disease ALPHA-MANNOSIDOSIS. (harvard.edu)
  • This series includes laboratory books, grant accounts, human and caprine MPS IIID research, and bovine and caprine beta mannosidosis research. (msu.edu)
  • Alpha, beta, and delta crystallins occur in avian and reptilian lenses, while alpha, beta, and gamma crystallins occur in all other lenses. (lookformedical.com)
  • Gamma-crystallins are similar in structure to BETA-CRYSTALLINS in that they both form into a Greek key-like structure. (lookformedical.com)
  • Association with beta 2-microglobulin is generally required for the transport of class I heavy chains from the endoplasmic reticulum to the cell surface. (lookformedical.com)
  • Beta 2-microglobulin is present in small amounts in serum, csf, and urine of normal people, and to a much greater degree in the urine and plasma of patients with tubular proteinemia, renal failure, or kidney transplants. (lookformedical.com)
  • People with beta-mannosidosis are often extremely introverted. (medlineplus.gov)
  • People with beta-mannosidosis may experience an increased risk of respiratory and ear infections, hearing loss, speech impairment, swallowing difficulties, poor muscle tone (hypotonia), and reduced sensation or other nervous system abnormalities in the extremities (peripheral neuropathy). (medlineplus.gov)
  • It is not recommended to breed carriers of Mannosidosis in order to prevent the progression of the condition to the offspring. (basepaws.com)
  • Sarah was born with Alpha Mannosidosis and diagnosed at 3.5 years old. (ismrd.org)
  • This enzyme is involved in the hydrolysis of the sugar mannose and can be found in two forms: α (alpha) and β (beta). (basepaws.com)
  • Long-term effective treatments for alpha-mannosidosis in cats have not been discovered yet. (basepaws.com)
  • The three dimensional structure contains 5 domains, the alpha/beta barrel, 3alpha-bundle and three beta-domains beta1-beta3. (jupiter.no)