A form of CARDIAC MUSCLE disease that is characterized by ventricular dilation, VENTRICULAR DYSFUNCTION, and HEART FAILURE. Risk factors include SMOKING; ALCOHOL DRINKING; HYPERTENSION; INFECTION; PREGNANCY; and mutations in the LMNA gene encoding LAMIN TYPE A, a NUCLEAR LAMINA protein.
A form of CARDIAC MUSCLE disease, characterized by left and/or right ventricular hypertrophy (HYPERTROPHY, LEFT VENTRICULAR; HYPERTROPHY, RIGHT VENTRICULAR), frequent asymmetrical involvement of the HEART SEPTUM, and normal or reduced left ventricular volume. Risk factors include HYPERTENSION; AORTIC STENOSIS; and gene MUTATION; (FAMILIAL HYPERTROPHIC CARDIOMYOPATHY).
A group of diseases in which the dominant feature is the involvement of the CARDIAC MUSCLE itself. Cardiomyopathies are classified according to their predominant pathophysiological features (DILATED CARDIOMYOPATHY; HYPERTROPHIC CARDIOMYOPATHY; RESTRICTIVE CARDIOMYOPATHY) or their etiological/pathological factors (CARDIOMYOPATHY, ALCOHOLIC; ENDOCARDIAL FIBROELASTOSIS).
A form of CARDIAC MUSCLE disease in which the ventricular walls are excessively rigid, impeding ventricular filling. It is marked by reduced diastolic volume of either or both ventricles but normal or nearly normal systolic function. It may be idiopathic or associated with other diseases (ENDOMYOCARDIAL FIBROSIS or AMYLOIDOSIS) causing interstitial fibrosis.
A transient left ventricular apical dysfunction or ballooning accompanied by electrocardiographic (ECG) T wave inversions. This abnormality is associated with high levels of CATECHOLAMINES, either administered or endogenously secreted from a tumor or during extreme stress.
An autosomal dominant inherited form of HYPERTROPHIC CARDIOMYOPATHY. It results from any of more than 50 mutations involving genes encoding contractile proteins such as VENTRICULAR MYOSINS; cardiac TROPONIN T; ALPHA-TROPOMYOSIN.
A disease of the CARDIAC MUSCLE developed subsequent to the initial protozoan infection by TRYPANOSOMA CRUZI. After infection, less than 10% develop acute illness such as MYOCARDITIS (mostly in children). The disease then enters a latent phase without clinical symptoms until about 20 years later. Myocardial symptoms of advanced CHAGAS DISEASE include conduction defects (HEART BLOCK) and CARDIOMEGALY.
The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow.
Disease of CARDIAC MUSCLE resulting from chronic excessive alcohol consumption. Myocardial damage can be caused by: (1) a toxic effect of alcohol; (2) malnutrition in alcoholics such as THIAMINE DEFICIENCY; or (3) toxic effect of additives in alcoholic beverages such as COBALT. This disease is usually manifested by DYSPNEA and palpitations with CARDIOMEGALY and congestive heart failure (HEART FAILURE).
Ultrasonic recording of the size, motion, and composition of the heart and surrounding tissues. The standard approach is transthoracic.
A congenital cardiomyopathy that is characterized by infiltration of adipose and fibrous tissue into the RIGHT VENTRICLE wall and loss of myocardial cells. Primary injuries usually are at the free wall of right ventricular and right atria resulting in ventricular and supraventricular arrhythmias.
Diabetes complications in which VENTRICULAR REMODELING in the absence of CORONARY ATHEROSCLEROSIS and hypertension results in cardiac dysfunctions, typically LEFT VENTRICULAR DYSFUNCTION. The changes also result in myocardial hypertrophy, myocardial necrosis and fibrosis, and collagen deposition due to impaired glucose tolerance.
Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY.
The hemodynamic and electrophysiological action of the left HEART VENTRICLE. Its measurement is an important aspect of the clinical evaluation of patients with heart disease to determine the effects of the disease on cardiac performance.
Inflammatory processes of the muscular walls of the heart (MYOCARDIUM) which result in injury to the cardiac muscle cells (MYOCYTES, CARDIAC). Manifestations range from subclinical to sudden death (DEATH, SUDDEN). Myocarditis in association with cardiac dysfunction is classified as inflammatory CARDIOMYOPATHY usually caused by INFECTION, autoimmune diseases, or responses to toxic substances. Myocarditis is also a common cause of DILATED CARDIOMYOPATHY and other cardiomyopathies.
A condition in which the LEFT VENTRICLE of the heart was functionally impaired. This condition usually leads to HEART FAILURE; MYOCARDIAL INFARCTION; and other cardiovascular complications. Diagnosis is made by measuring the diminished ejection fraction and a depressed level of motility of the left ventricular wall.
The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation.
This structure includes the thin muscular atrial septum between the two HEART ATRIA, and the thick muscular ventricular septum between the two HEART VENTRICLES.
A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION.
Occlusion of the outflow tract in either the LEFT VENTRICLE or the RIGHT VENTRICLE of the heart. This may result from CONGENITAL HEART DEFECTS, predisposing heart diseases, complications of surgery, or HEART NEOPLASMS.
Contractile activity of the MYOCARDIUM.
Striated muscle cells found in the heart. They are derived from cardiac myoblasts (MYOBLASTS, CARDIAC).
The hollow, muscular organ that maintains the circulation of the blood.
The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume.
Unexpected rapid natural death due to cardiovascular collapse within one hour of initial symptoms. It is usually caused by the worsening of existing heart diseases. The sudden onset of symptoms, such as CHEST PAIN and CARDIAC ARRHYTHMIAS, particularly VENTRICULAR TACHYCARDIA, can lead to the loss of consciousness and cardiac arrest followed by biological death. (from Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, 7th ed., 2005)
Myosin type II isoforms found in cardiac muscle.
The period shortly before, during, and immediately after giving birth.
Measurement of intracardiac blood flow using an M-mode and/or two-dimensional (2-D) echocardiogram while simultaneously recording the spectrum of the audible Doppler signal (e.g., velocity, direction, amplitude, intensity, timing) reflected from the moving column of red blood cells.
Isoforms of MYOSIN TYPE II, specifically found in the ventricular muscle of the HEART. Defects in the genes encoding ventricular myosins result in FAMILIAL HYPERTROPHIC CARDIOMYOPATHY.
Any pathological condition where fibrous connective tissue invades any organ, usually as a consequence of inflammation or other injury.
An abnormally rapid ventricular rhythm usually in excess of 150 beats per minute. It is generated within the ventricle below the BUNDLE OF HIS, either as autonomic impulse formation or reentrant impulse conduction. Depending on the etiology, onset of ventricular tachycardia can be paroxysmal (sudden) or nonparoxysmal, its wide QRS complexes can be uniform or polymorphic, and the ventricular beating may be independent of the atrial beating (AV dissociation).
The repeating contractile units of the MYOFIBRIL, delimited by Z bands along its length.
A condition characterized by the thickening of the ventricular ENDOCARDIUM and subendocardium (MYOCARDIUM), seen mostly in children and young adults in the TROPICAL CLIMATE. The fibrous tissue extends from the apex toward and often involves the HEART VALVES causing restrictive blood flow into the respective ventricles (CARDIOMYOPATHY, RESTRICTIVE).
The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.
A disorder of cardiac function caused by insufficient blood flow to the muscle tissue of the heart. The decreased blood flow may be due to narrowing of the coronary arteries (CORONARY ARTERY DISEASE), to obstruction by a thrombus (CORONARY THROMBOSIS), or less commonly, to diffuse narrowing of arterioles and other small vessels within the heart. Severe interruption of the blood supply to the myocardial tissue may result in necrosis of cardiac muscle (MYOCARDIAL INFARCTION).
The larger subunits of MYOSINS. The heavy chains have a molecular weight of about 230 kDa and each heavy chain is usually associated with a dissimilar pair of MYOSIN LIGHT CHAINS. The heavy chains possess actin-binding and ATPase activity.
Enlargement of the LEFT VENTRICLE of the heart. This increase in ventricular mass is attributed to sustained abnormal pressure or volume loads and is a contributor to cardiovascular morbidity and mortality.
Any disturbances of the normal rhythmic beating of the heart or MYOCARDIAL CONTRACTION. Cardiac arrhythmias can be classified by the abnormalities in HEART RATE, disorders of electrical impulse generation, or impulse conduction.
The innermost layer of the heart, comprised of endothelial cells.
Members of the armadillo family of proteins that are found in DESMOSOMES and interact with various proteins including desmocadherins; DESMOPLAKIN; ACTIN FILAMENTS; and KERATINS.
The transference of a heart from one human or animal to another.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A subclass of developmentally regulated lamins having a neutral isoelectric point. They are found to disassociate from nuclear membranes during mitosis.
The geometric and structural changes that the HEART VENTRICLES undergo, usually following MYOCARDIAL INFARCTION. It comprises expansion of the infarct and dilatation of the healthy ventricle segments. While most prevalent in the left ventricle, it can also occur in the right ventricle.
One of the three polypeptide chains that make up the TROPONIN complex. It is a cardiac-specific protein that binds to TROPOMYOSIN. It is released from damaged or injured heart muscle cells (MYOCYTES, CARDIAC). Defects in the gene encoding troponin T result in FAMILIAL HYPERTROPHIC CARDIOMYOPATHY.
The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM.
Regulation of the rate of contraction of the heart muscles by an artificial pacemaker.
Post-systolic relaxation of the HEART, especially the HEART VENTRICLES.
Pathological conditions involving the HEART including its structural and functional abnormalities.
Disorders or diseases associated with PUERPERIUM, the six-to-eight-week period immediately after PARTURITION in humans.
A family of transmembrane dystrophin-associated proteins that play a role in the membrane association of the DYSTROPHIN-ASSOCIATED PROTEIN COMPLEX.
Enlargement of the HEART, usually indicated by a cardiothoracic ratio above 0.50. Heart enlargement may involve the right, the left, or both HEART VENTRICLES or HEART ATRIA. Cardiomegaly is a nonspecific symptom seen in patients with chronic systolic heart failure (HEART FAILURE) or several forms of CARDIOMYOPATHIES.
Implantable devices which continuously monitor the electrical activity of the heart and automatically detect and terminate ventricular tachycardia (TACHYCARDIA, VENTRICULAR) and VENTRICULAR FIBRILLATION. They consist of an impulse generator, batteries, and electrodes.
The abrupt cessation of all vital bodily functions, manifested by the permanent loss of total cerebral, respiratory, and cardiovascular functions.
A type of imaging technique used primarily in the field of cardiology. By coordinating the fast gradient-echo MRI sequence with retrospective ECG-gating, numerous short time frames evenly spaced in the cardiac cycle are produced. These images are laced together in a cinematic display so that wall motion of the ventricles, valve motion, and blood flow patterns in the heart and great vessels can be visualized.
A CALCIUM-dependent adhesion molecule of DESMOSOMES that also plays a role in embryonic STEM CELL proliferation.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
Period of contraction of the HEART, especially of the HEART VENTRICLES.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Procedures in which placement of CARDIAC CATHETERS is performed for therapeutic or diagnostic procedures.
An X-linked dominant multisystem disorder resulting in cardiomyopathy, myopathy and INTELLECTUAL DISABILITY. It is caused by mutation in the gene encoding LYSOSOMAL-ASSOCIATED MEMBRANE PROTEIN 2.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed)
Rare congenital cardiomyopathies characterized by the lack of left ventricular myocardium compaction. The noncompaction results in numerous prominent trabeculations and a loose myocardial meshwork (spongy myocardium) in the LEFT VENTRICLE. Heterogeneous clinical features include diminished systolic function sometimes associated with left ventricular dilation, that presents either neonatally or progressively. Often, the RIGHT VENTRICLE is also affected. CONGESTIVE HEART FAILURE; PULMONARY EMBOLISM; and ventricular ARRHYTHMIA are commonly seen.
The co-occurrence of pregnancy and a cardiovascular disease. The disease may precede or follow FERTILIZATION and it may or may not have a deleterious effect on the pregnant woman or FETUS.
An intermediate filament protein found predominantly in smooth, skeletal, and cardiac muscle cells. Localized at the Z line. MW 50,000 to 55,000 is species dependent.
A muscle protein localized in surface membranes which is the product of the Duchenne/Becker muscular dystrophy gene. Individuals with Duchenne muscular dystrophy usually lack dystrophin completely while those with Becker muscular dystrophy have dystrophin of an altered size. It shares features with other cytoskeletal proteins such as SPECTRIN and alpha-actinin but the precise function of dystrophin is not clear. One possible role might be to preserve the integrity and alignment of the plasma membrane to the myofibrils during muscle contraction and relaxation. MW 400 kDa.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A condition in which HEART VENTRICLES exhibit impaired function.
Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety.
The valve between the left atrium and left ventricle of the heart.
Examinations used to diagnose and treat heart conditions.
Backflow of blood from the LEFT VENTRICLE into the LEFT ATRIUM due to imperfect closure of the MITRAL VALVE. This can lead to mitral valve regurgitation.
Removal of tissue by vaporization, abrasion, or destruction. Methods used include heating tissue by hot liquids or microwave thermal heating, freezing (CRYOABLATION), chemical ablation, and photoablation with LASERS.
A guanidine analog with specific affinity for tissues of the sympathetic nervous system and related tumors. The radiolabeled forms are used as antineoplastic agents and radioactive imaging agents. (Merck Index, 12th ed) MIBG serves as a neuron-blocking agent which has a strong affinity for, and retention in, the adrenal medulla and also inhibits ADP-ribosyltransferase.
A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations.
Agents that have a strengthening effect on the heart or that can increase cardiac output. They may be CARDIAC GLYCOSIDES; SYMPATHOMIMETICS; or other drugs. They are used after MYOCARDIAL INFARCT; CARDIAC SURGICAL PROCEDURES; in SHOCK; or in congestive heart failure (HEART FAILURE).
Removal of tissue with electrical current delivered via electrodes positioned at the distal end of a catheter. Energy sources are commonly direct current (DC-shock) or alternating current at radiofrequencies (usually 750 kHz). The technique is used most often to ablate the AV junction and/or accessory pathways in order to interrupt AV conduction and produce AV block in the treatment of various tachyarrhythmias.
Elements of limited time intervals, contributing to particular results or situations.
Impaired conduction of cardiac impulse that can occur anywhere along the conduction pathway, such as between the SINOATRIAL NODE and the right atrium (SA block) or between atria and ventricles (AV block). Heart blocks can be classified by the duration, frequency, or completeness of conduction block. Reversibility depends on the degree of structural or functional defects.
In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.
Removal and pathologic examination of specimens in the form of small pieces of tissue from the living body.
An X-linked recessive muscle disease caused by an inability to synthesize DYSTROPHIN, which is involved with maintaining the integrity of the sarcolemma. Muscle fibers undergo a process that features degeneration and regeneration. Clinical manifestations include proximal weakness in the first few years of life, pseudohypertrophy, cardiomyopathy (see MYOCARDIAL DISEASES), and an increased incidence of impaired mentation. Becker muscular dystrophy is a closely related condition featuring a later onset of disease (usually adolescence) and a slowly progressive course. (Adams et al., Principles of Neurology, 6th ed, p1415)
A transient loss of consciousness and postural tone caused by diminished blood flow to the brain (i.e., BRAIN ISCHEMIA). Presyncope refers to the sensation of lightheadedness and loss of strength that precedes a syncopal event or accompanies an incomplete syncope. (From Adams et al., Principles of Neurology, 6th ed, pp367-9)
Recording the locations and measurements of electrical activity in the EPICARDIUM by placing electrodes on the surface of the heart to analyze the patterns of activation and to locate arrhythmogenic sites.
A protein found in the thin filaments of muscle fibers. It inhibits contraction of the muscle unless its position is modified by TROPONIN.
Method in which prolonged electrocardiographic recordings are made on a portable tape recorder (Holter-type system) or solid-state device ("real-time" system), while the patient undergoes normal daily activities. It is useful in the diagnosis and management of intermittent cardiac arrhythmias and transient myocardial ischemia.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
A condition in which the RIGHT VENTRICLE of the heart was functionally impaired. This condition usually leads to HEART FAILURE or MYOCARDIAL INFARCTION, and other cardiovascular complications. Diagnosis is made by measuring the diminished ejection fraction and a depressed level of motility of the right ventricular wall.
A giant elastic protein of molecular mass ranging from 2,993 kDa (cardiac), 3,300 kDa (psoas), to 3,700 kDa (soleus) having a kinase domain. The amino- terminal is involved in a Z line binding, and the carboxy-terminal region is bound to the myosin filament with an overlap between the counter-connectin filaments at the M line.
The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES .
The mitochondria of the myocardium.
A form of heart block in which the electrical stimulation of HEART VENTRICLES is interrupted at either one of the branches of BUNDLE OF HIS thus preventing the simultaneous depolarization of the two ventricles.
Methods to induce and measure electrical activities at specific sites in the heart to diagnose and treat problems with the heart's electrical system.
One of the three polypeptide chains that make up the TROPONIN complex. It inhibits F-actin-myosin interactions.
A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain.
Echocardiography applying the Doppler effect, with the superposition of flow information as colors on a gray scale in a real-time image.
Abnormally rapid heartbeat, usually with a HEART RATE above 100 beats per minute for adults. Tachycardia accompanied by disturbance in the cardiac depolarization (cardiac arrhythmia) is called tachyarrhythmia.
A heterogeneous group of infections produced by coxsackieviruses, including HERPANGINA, aseptic meningitis (MENINGITIS, ASEPTIC), a common-cold-like syndrome, a non-paralytic poliomyelitis-like syndrome, epidemic pleurodynia (PLEURODYNIA, EPIDEMIC) and a serious MYOCARDITIS.
Inflammation of the PERICARDIUM that is characterized by the fibrous scarring and adhesion of both serous layers, the VISCERAL PERICARDIUM and the PARIETAL PERICARDIUM leading to the loss of pericardial cavity. The thickened pericardium severely restricts cardiac filling. Clinical signs include FATIGUE, muscle wasting, and WEIGHT LOSS.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
The circulation of blood through the CORONARY VESSELS of the HEART.
AMINO ALCOHOLS containing the propanolamine (NH2CH2CHOHCH2) group and its derivatives.
Small pumps, often implantable, designed for temporarily assisting the heart, usually the LEFT VENTRICLE, to pump blood. They consist of a pumping chamber and a power source, which may be partially or totally external to the body and activated by electromagnetic motors.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
A device designed to stimulate, by electric impulses, contraction of the heart muscles. It may be temporary (external) or permanent (internal or internal-external).
A PEPTIDE that is secreted by the BRAIN and the HEART ATRIA, stored mainly in cardiac ventricular MYOCARDIUM. It can cause NATRIURESIS; DIURESIS; VASODILATION; and inhibits secretion of RENIN and ALDOSTERONE. It improves heart function. It contains 32 AMINO ACIDS.
Detection of a MUTATION; GENOTYPE; KARYOTYPE; or specific ALLELES associated with genetic traits, heritable diseases, or predisposition to a disease, or that may lead to the disease in descendants. It includes prenatal genetic testing.
Echocardiography applying the Doppler effect, with velocity detection combined with range discrimination. Short bursts of ultrasound are transmitted at regular intervals and the echoes are demodulated as they return.
'Iodobenzenes' are aromatic organic compounds consisting of a benzene ring substituted with an iodine atom (I), typically represented by the chemical formula C6H5I.
A group of desmosomal cadherins with cytoplasmic tails that are divergent from those of classical CADHERINS. Their intracytoplasmic domains bind PLAKOGLOBIN; PLAKOPHILINS; and DESMOPLAKINS.
Biochemical identification of mutational changes in a nucleotide sequence.
A large class of structurally-related proteins that contain one or more LIM zinc finger domains. Many of the proteins in this class are involved in intracellular signaling processes and mediate their effects via LIM domain protein-protein interactions. The name LIM is derived from the first three proteins in which the motif was found: LIN-11, Isl1 and Mec-3.
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
A selective adrenergic beta-1 blocking agent that is commonly used to treat ANGINA PECTORIS; HYPERTENSION; and CARDIAC ARRHYTHMIAS.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
Desmoplakins are cytoskeletal linker proteins that anchor INTERMEDIATE FILAMENTS to the PLASMA MEMBRANE at DESMOSOMES.
An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart.
A genetically heterogeneous, multifaceted disorder characterized by short stature, webbed neck, ptosis, skeletal malformations, hypertelorism, hormonal imbalance, CRYPTORCHIDISM, multiple cardiac abnormalities (most commonly including PULMONARY VALVE STENOSIS), and some degree of INTELLECTUAL DISABILITY. The phenotype bears similarities to that of TURNER SYNDROME that occurs only in females and has its basis in a 45, X karyotype abnormality. Noonan syndrome occurs in both males and females with a normal karyotype (46,XX and 46,XY). Mutations in a several genes (PTPN11, KRAS, SOS1, NF1 and RAF1) have been associated the the NS phenotype. Mutations in PTPN11 are the most common. LEOPARD SYNDROME, a disorder that has clinical features overlapping those of Noonan Syndrome, is also due to mutations in PTPN11. In addition, there is overlap with the syndrome called neurofibromatosis-Noonan syndrome due to mutations in NF1.
A subclass of beta-adrenergic receptors (RECEPTORS, ADRENERGIC, BETA). The adrenergic beta-1 receptors are equally sensitive to EPINEPHRINE and NOREPINEPHRINE and bind the agonist DOBUTAMINE and the antagonist METOPROLOL with high affinity. They are found in the HEART, juxtaglomerular cells, and in the central and peripheral nervous systems.
A type of junction that attaches one cell to its neighbor. One of a number of differentiated regions which occur, for example, where the cytoplasmic membranes of adjacent epithelial cells are closely apposed. It consists of a circular region of each membrane together with associated intracellular microfilaments and an intercellular material which may include, for example, mucopolysaccharides. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990; Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
The pressure within a CARDIAC VENTRICLE. Ventricular pressure waveforms can be measured in the beating heart by catheterization or estimated using imaging techniques (e.g., DOPPLER ECHOCARDIOGRAPHY). The information is useful in evaluating the function of the MYOCARDIUM; CARDIAC VALVES; and PERICARDIUM, particularly with simultaneous measurement of other (e.g., aortic or atrial) pressures.
The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN.
Benzo-indoles similar to CARBOLINES which are pyrido-indoles. In plants, carbazoles are derived from indole and form some of the INDOLE ALKALOIDS.
Controlled physical activity which is performed in order to allow assessment of physiological functions, particularly cardiovascular and pulmonary, but also aerobic capacity. Maximal (most intense) exercise is usually required but submaximal exercise is also used.
A catecholamine derivative with specificity for BETA-1 ADRENERGIC RECEPTORS. It is commonly used as a cardiotonic agent after CARDIAC SURGERY and during DOBUTAMINE STRESS ECHOCARDIOGRAPHY.
A type of cardiac arrhythmia with premature contractions of the HEART VENTRICLES. It is characterized by the premature QRS complex on ECG that is of abnormal shape and great duration (generally >129 msec). It is the most common form of all cardiac arrhythmias. Premature ventricular complexes have no clinical significance except in concurrence with heart diseases.
A state of subnormal or depressed cardiac output at rest or during stress. It is a characteristic of CARDIOVASCULAR DISEASES, including congenital, valvular, rheumatic, hypertensive, coronary, and cardiomyopathic. The serious form of low cardiac output is characterized by marked reduction in STROKE VOLUME, and systemic vasoconstriction resulting in cold, pale, and sometimes cyanotic extremities.
Death resulting from the presence of a disease in an individual, as shown by a single case report or a limited number of patients. This should be differentiated from DEATH, the physiological cessation of life and from MORTALITY, an epidemiological or statistical concept.
The number of times the HEART VENTRICLES contract per unit of time, usually per minute.
An individual having different alleles at one or more loci regarding a specific character.
Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN.
Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY.
An autosomal recessive disease, usually of childhood onset, characterized pathologically by degeneration of the spinocerebellar tracts, posterior columns, and to a lesser extent the corticospinal tracts. Clinical manifestations include GAIT ATAXIA, pes cavus, speech impairment, lateral curvature of spine, rhythmic head tremor, kyphoscoliosis, congestive heart failure (secondary to a cardiomyopathy), and lower extremity weakness. Most forms of this condition are associated with a mutation in a gene on chromosome 9, at band q13, which codes for the mitochondrial protein frataxin. (From Adams et al., Principles of Neurology, 6th ed, p1081; N Engl J Med 1996 Oct 17;335(16):1169-75) The severity of Friedreich ataxia associated with expansion of GAA repeats in the first intron of the frataxin gene correlates with the number of trinucleotide repeats. (From Durr et al, N Engl J Med 1996 Oct 17;335(16):1169-75)
A heterogeneous group of inherited MYOPATHIES, characterized by wasting and weakness of the SKELETAL MUSCLE. They are categorized by the sites of MUSCLE WEAKNESS; AGE OF ONSET; and INHERITANCE PATTERNS.
Agents that affect the rate or intensity of cardiac contraction, blood vessel diameter, or blood volume.
The muscular structure separating the right and the left lower chambers (HEART VENTRICLES) of the heart. The ventricular septum consists of a very small membranous portion just beneath the AORTIC VALVE, and a large thick muscular portion consisting of three sections including the inlet septum, the trabecular septum, and the outlet septum.
The percent frequency with which a dominant or homozygous recessive gene or gene combination manifests itself in the phenotype of the carriers. (From Glossary of Genetics, 5th ed)
Imaging of a ventricle of the heart after the injection of a radioactive contrast medium. The technique is less invasive than cardiac catheterization and is used to assess ventricular function.
A group of sporadic, familial and/or inherited, degenerative, and infectious disease processes, linked by the common theme of abnormal protein folding and deposition of AMYLOID. As the amyloid deposits enlarge they displace normal tissue structures, causing disruption of function. Various signs and symptoms depend on the location and size of the deposits.
A group of muscle diseases associated with abnormal mitochondria function.
Calcium-transporting ATPases that catalyze the active transport of CALCIUM into the SARCOPLASMIC RETICULUM vesicles from the CYTOPLASM. They are primarily found in MUSCLE CELLS and play a role in the relaxation of MUSCLES.
Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms.
The worsening of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis.
A potentially lethal cardiac arrhythmia that is characterized by uncoordinated extremely rapid firing of electrical impulses (400-600/min) in HEART VENTRICLES. Such asynchronous ventricular quivering or fibrillation prevents any effective cardiac output and results in unconsciousness (SYNCOPE). It is one of the major electrocardiographic patterns seen with CARDIAC ARREST.
A localized bulging or dilatation in the muscle wall of a heart (MYOCARDIUM), usually in the LEFT VENTRICLE. Blood-filled aneurysms are dangerous because they may burst. Fibrous aneurysms interfere with the heart function through the loss of contractility. True aneurysm is bound by the vessel wall or cardiac wall. False aneurysms are HEMATOMA caused by myocardial rupture.
A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS.
Activities or games, usually involving physical effort or skill. Reasons for engagement in sports include pleasure, competition, and/or financial reward.
Agents used for the treatment or prevention of cardiac arrhythmias. They may affect the polarization-repolarization phase of the action potential, its excitability or refractoriness, or impulse conduction or membrane responsiveness within cardiac fibers. Anti-arrhythmia agents are often classed into four main groups according to their mechanism of action: sodium channel blockade, beta-adrenergic blockade, repolarization prolongation, or calcium channel blockade.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
The agent of South American trypanosomiasis or CHAGAS DISEASE. Its vertebrate hosts are man and various domestic and wild animals. Insects of several species are vectors.
A species of ENTEROVIRUS infecting humans and containing 36 serotypes. It is comprised of all the echoviruses and a few coxsackieviruses, including all of those previously named coxsackievirus B.
A complex of gadolinium with a chelating agent, diethylenetriamine penta-acetic acid (DTPA see PENTETIC ACID), that is given to enhance the image in cranial and spinal MRIs. (From Martindale, The Extra Pharmacopoeia, 30th ed, p706)
Rare congenital X-linked disorder of lipid metabolism. Barth syndrome is transmitted in an X-linked recessive pattern. The syndrome is characterized by muscular weakness, growth retardation, DILATED CARDIOMYOPATHY, variable NEUTROPENIA, 3-methylglutaconic aciduria (type II) and decreases in mitochondrial CARDIOLIPIN level. Other biochemical and morphological mitochondrial abnormalities also exist.
Impaired impulse conduction from HEART ATRIA to HEART VENTRICLES. AV block can mean delayed or completely blocked impulse conduction.
A genus of the family PICORNAVIRIDAE whose members preferentially inhabit the intestinal tract of a variety of hosts. The genus contains many species. Newly described members of human enteroviruses are assigned continuous numbers with the species designated "human enterovirus".
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
Substances used to allow enhanced visualization of tissues.
Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae.
Radiography of the vascular system of the heart muscle after injection of a contrast medium.
Recording of regional electrophysiological information by analysis of surface potentials to give a complete picture of the effects of the currents from the heart on the body surface. It has been applied to the diagnosis of old inferior myocardial infarction, localization of the bypass pathway in Wolff-Parkinson-White syndrome, recognition of ventricular hypertrophy, estimation of the size of a myocardial infarct, and the effects of different interventions designed to reduce infarct size. The limiting factor at present is the complexity of the recording and analysis, which requires 100 or more electrodes, sophisticated instrumentation, and dedicated personnel. (Braunwald, Heart Disease, 4th ed)
A class of statistical procedures for estimating the survival function (function of time, starting with a population 100% well at a given time and providing the percentage of the population still well at later times). The survival analysis is then used for making inferences about the effects of treatments, prognostic factors, exposures, and other covariates on the function.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Graphic registration of the heart sounds picked up as vibrations and transformed by a piezoelectric crystal microphone into a varying electrical output according to the stresses imposed by the sound waves. The electrical output is amplified by a stethograph amplifier and recorded by a device incorporated into the electrocardiograph or by a multichannel recording machine.
Transport proteins that carry specific substances in the blood or across cell membranes.
Acquired, familial, and congenital disorders of SKELETAL MUSCLE and SMOOTH MUSCLE.
Radionuclide ventriculography where scintigraphic data is acquired during repeated cardiac cycles at specific times in the cycle, using an electrocardiographic synchronizer or gating device. Analysis of right ventricular function is difficult with this technique; that is best evaluated by first-pass ventriculography (VENTRICULOGRAPHY, FIRST-PASS).
Radiography of the heart and great vessels after injection of a contrast medium.
A multi-functional catenin that is highly homologous to BETA CATENIN. Gamma catenin binds CADHERINS and helps link their cytoplasmic tails to ACTIN in the CYTOSKELETON via ALPHA CATENIN. It is also found in DESMOSOMES where it mediates the link between DESMOSOMAL CADHERINS and DESMOPLAKIN.
A strain of mice arising from a spontaneous MUTATION (mdx) in inbred C57BL mice. This mutation is X chromosome-linked and produces viable homozygous animals that lack the muscle protein DYSTROPHIN, have high serum levels of muscle ENZYMES, and possess histological lesions similar to human MUSCULAR DYSTROPHY. The histological features, linkage, and map position of mdx make these mice a worthy animal model of DUCHENNE MUSCULAR DYSTROPHY.
Gadolinium. An element of the rare earth family of metals. It has the atomic symbol Gd, atomic number 64, and atomic weight 157.25. Its oxide is used in the control rods of some nuclear reactors.
The hemodynamic and electrophysiological action of the right HEART VENTRICLE.
The chambers of the heart, to which the BLOOD returns from the circulation.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A characteristic symptom complex.
An X-linked inherited metabolic disease caused by a deficiency of lysosomal ALPHA-GALACTOSIDASE A. It is characterized by intralysosomal accumulation of globotriaosylceramide and other GLYCOSPHINGOLIPIDS in blood vessels throughout the body leading to multi-system complications including renal, cardiac, cerebrovascular, and skin disorders.
The proportion of survivors in a group, e.g., of patients, studied and followed over a period, or the proportion of persons in a specified group alive at the beginning of a time interval who survive to the end of the interval. It is often studied using life table methods.
An autosomal dominant disorder with an acronym of its seven features (LENTIGO; ELECTROCARDIOGRAM abnormalities; ocular HYPERTELORISM; PULMONARY STENOSIS; abnormal genitalia; retardation of growth; and DEAFNESS or SENSORINEURAL HEARING LOSS). This syndrome is caused by mutations of PTPN11 gene encoding the non-receptor PROTEIN TYROSINE PHOSPHATASE, type 11, and is an allelic to NOONAN SYNDROME. Features of LEOPARD syndrome overlap with those of NEUROFIBROMATOSIS 1 which is caused by mutations in the NEUROFIBROMATOSIS 1 GENES.
Diseases which have one or more of the following characteristics: they are permanent, leave residual disability, are caused by nonreversible pathological alteration, require special training of the patient for rehabilitation, or may be expected to require a long period of supervision, observation, or care. (Dictionary of Health Services Management, 2d ed)
An antianginal and class III antiarrhythmic drug. It increases the duration of ventricular and atrial muscle action by inhibiting POTASSIUM CHANNELS and VOLTAGE-GATED SODIUM CHANNELS. There is a resulting decrease in heart rate and in vascular resistance.
A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES.
A method of recording heart motion and internal structures by combining ultrasonic imaging with exercise testing (EXERCISE TEST) or pharmacologic stress.
A condition characterized by the thickening of ENDOCARDIUM due to proliferation of fibrous and elastic tissue, usually in the left ventricle leading to impaired cardiac function (CARDIOMYOPATHY, RESTRICTIVE). It is most commonly seen in young children and rarely in adults. It is often associated with congenital heart anomalies (HEART DEFECTS CONGENITAL;) INFECTION; or gene mutation. Defects in the tafazzin protein, encoded by TAZ gene, result in a form of autosomal dominant familial endocardial fibroelastosis.
One of the alpha crystallin subunits. In addition to being expressed in the lens (LENS, CRYSTALLINE), alpha-crystallin B chain has been found in a variety of tissues such as HEART; BRAIN; MUSCLE; and KIDNEY. Accumulation of the protein in the brain is associated with NEURODEGENERATIVE DISEASES such as CREUTZFELDT-JAKOB SYNDROME and ALEXANDER DISEASE.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
A conical fibro-serous sac surrounding the HEART and the roots of the great vessels (AORTA; VENAE CAVAE; PULMONARY ARTERY). Pericardium consists of two sacs: the outer fibrous pericardium and the inner serous pericardium. The latter consists of an outer parietal layer facing the fibrous pericardium, and an inner visceral layer (epicardium) resting next to the heart, and a pericardial cavity between these two layers.
The exercise capacity of an individual as measured by endurance (maximal exercise duration and/or maximal attained work load) during an EXERCISE TEST.
A family of RNA viruses that infect fungi and protozoa. There are three genera: TOTIVIRUS; GIARDIAVIRUS; and LEISHMANIAVIRUS.
A group of cardiac arrhythmias in which the cardiac contractions are not initiated at the SINOATRIAL NODE. They include both atrial and ventricular premature beats, and are also known as extra or ectopic heartbeats. Their frequency is increased in heart diseases.
Prolonged dysfunction of the myocardium after a brief episode of severe ischemia, with gradual return of contractile activity.
The measurement of an organ in volume, mass, or heaviness.
The qualitative or quantitative estimation of the likelihood of adverse effects that may result from exposure to specified health hazards or from the absence of beneficial influences. (Last, Dictionary of Epidemiology, 1988)
General increase in bulk of a part or organ due to CELL ENLARGEMENT and accumulation of FLUIDS AND SECRETIONS, not due to tumor formation, nor to an increase in the number of cells (HYPERPLASIA).
One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS.
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
The restoration of the sequential order of contraction and relaxation of the HEART ATRIA and HEART VENTRICLES by atrio-biventricular pacing.
A single-pass transmembrane glycoproteins that mediate CALCIUM-dependent CELL ADHESION and are core components of DESMOSOMES.
Agents that have a damaging effect on the HEART. Such damage can occur from ALKYLATING AGENTS; FREE RADICALS; or metabolites from OXIDATIVE STRESS and in some cases is countered by CARDIOTONIC AGENTS. Induction of LONG QT SYNDROME or TORSADES DE POINTES has been the reason for viewing some drugs as cardiotoxins.
The hemodynamic and electrophysiological action of the HEART VENTRICLES.
Diseases caused by abnormal function of the MITOCHONDRIA. They may be caused by mutations, acquired or inherited, in mitochondrial DNA or in nuclear genes that code for mitochondrial components. They may also be the result of acquired mitochondria dysfunction due to adverse effects of drugs, infections, or other environmental causes.

Clinical profile and outcome of idiopathic restrictive cardiomyopathy. (1/98)

BACKGROUND: Idiopathic restrictive cardiomyopathy is a poorly recognized entity of unknown cause characterized by nondilated, nonhypertrophied ventricles with diastolic dysfunction resulting in dilated atria and variable systolic function. METHODS AND RESULTS: Between 1979 and 1996, 94 patients (61% women) 10 to 90 years old (mean, 64 years) met strict morphological echocardiographic criteria for idiopathic restrictive cardiomyopathy, mainly dilated atria with nonhypertrophied, nondilated ventricles. None had known infiltrative disease, hypertension of >5 years' duration, or cardiac or systemic conditions associated with restrictive filling. Nineteen percent were in NYHA class I, 53% in class II, and 28% in class III or IV. Atrial fibrillation was noted in 74% of patients and systolic dysfunction in 16%. Follow-up (mean, 68 months) was complete for 93 patients (99%). At follow-up, 47 patients (50%) had died, 32 (68%) of cardiovascular causes. Four had heart transplantation. The death rate compared with actuarial statistics was significantly higher than expected (P<0.0001). Kaplan-Meier 5-year survival was 64%, compared with expected survival of 85%. Multivariate analysis using proportional hazards showed that the risk of death approximately doubles with male sex (hazard ratio [HR] = 2.1), left atrial dimension >60 mm (HR = 2.3), age >70 years (HR = 2.0), and each increment of NYHA class (HR = 2.0). CONCLUSIONS: Idiopathic restrictive cardiomyopathy or nondilated, nonhypertrophic ventricles with marked biatrial dilatation, as defined morphologically by echocardiography, affects predominantly elderly patients but can occur in any age group. Patients present with systemic and pulmonary venous congestion and atrial fibrillation and have a poor prognosis, particularly men >70 years old with higher NYHA class and left atrial dimension >60 mm.  (+info)

Differentiation between restrictive cardiomyopathy and constrictive pericarditis by early diastolic doppler myocardial velocity gradient at the posterior wall. (2/98)

BACKGROUND: The differential diagnosis between restrictive cardiomyopathy (RCM) and constrictive pericarditis (CP) is challenging and, despite combined information from different diagnostic tests, surgical exploration is often necessary. METHODS AND RESULTS: A group of 55 subjects (mean age, 63+/-11 years; 36 men and 19 women) were enrolled in the study; 15 had RCM, 10 had CP, and 30 were age-matched, normal controls. The diagnosis of RCM was supported by a biopsy; in the CP group, the diagnosis was confirmed either surgically or at autopsy. All patients underwent a transthoracic echocardiogram that included the assessment of Doppler myocardial velocity gradient (MVG), as measured from the left ventricular posterior wall during the predetermined phases of the cardiac cycle. MVG was lower (P<0.01) in RCM patients compared with both CP patients and normal controls during ventricular ejection (2. 8+/-1.2 versus 4.4+/-1.0 and 4.7+/-0.8 s(-1), respectively) and rapid ventricular filling (1.9+/-0.8 versus 8.7+/-1.7 and 3.7+/-1.4 s(-1), respectively). Additionally, during isovolumic relaxation, MVG was positive in RCM patients and negative in both CP patients and normal controls (0.7+/-0.4 versus -1.0+/-0.6 and -0.4+/-0.3 s(-1), respectively; P<0.01). During atrial contraction, MVG was similarly low (P<0.01) in both RCM and CP patients compared with normal controls (1.6+/-1.7 and 1.7+/-1.8 versus 3.8+/-0.9 s(-1), respectively). CONCLUSIONS: Doppler myocardial imaging-derived MVG, as measured from the left ventricular posterior wall in early diastole during both isovolumic relaxation and rapid ventricular filling, allows for the discrimination of RCM from CP.  (+info)

Sudden death and cardiovascular collapse in children with restrictive cardiomyopathy. (3/98)

BACKGROUND: Restrictive cardiomyopathy (RCM) is rare in children, and the prognosis is poor. In the present study, we evaluated all pediatric patients with RCM who were at our institution during a 31-year period to determine the clinical outcome and cause of death. Those who sustained sudden, unanticipated cardiac arrests were evaluated for risk factors that are predictive of sudden death. METHODS AND RESULTS: Eighteen consecutive patients were reviewed. Presentation, clinical course, laboratory data, and histopathological evidence of ischemia were compared between patients with and without sudden death events. The results demonstrated that patients who were at risk for sudden death were girls with chest pain, syncope, or both at presentation and without congestive heart failure. Although not statistically significant for sudden death, Holter monitor evidence of ischemia predicted death within months. Histopathological evidence of acute or chronic ischemia was found in the majority of patients, with acute ischemia more common among those who sustained sudden death events. CONCLUSIONS: All children with RCM are at risk for ischemia-related complications and death, and some are at risk of sudden death. In the present study, patients at risk of sudden death appeared well and had no evidence of ongoing heart failure but often had signs or symptoms of ischemia characterized by chest pain, syncope, or both. ECGs and Holter monitors may be useful screening tools. The use of beta-blockade, the placement of an implantable cardioverter-defibrillator, and preferential status 1A or B listing for cardiac transplantation are proposed for pediatric patients with RCM and evidence of ongoing ischemia.  (+info)

Heart transplantation and the Batista operation for children with refractory heart failure. (4/98)

Medically refractory heart failure may be present in children with cardiomyopathy (CMP) or complex congenital heart disease (CHD). In adults, the surgical management of this condition is either heart transplantation or the Batista operation. From March 1995 to January 2000, a total of 6 children, aged from 1 to 16 years, with medically refractory heart failure associated with CMP or complex CHD underwent cardiac transplantation and one of them also had the Batista operation as a bridge to transplantation. One of the 6 patients died of intractable sepsis 17 days after the operation, but the other 5 were discharged with satisfactory hemodynamics. Immunosuppressive agents, including azathioprine, cyclosporin or FK-506, were given. One patient experienced moderate acute rejection, but it was controlled by FK-506, OKT-3 and solumedrol. However, another suffered from lymphoproliferative disease 8 months after transplant, but it was controlled by intravenous immunoglubulin, alpha-interferon and acyclovir. Cardiac function during serial follow-up (range, 1 month to 5 years) revealed normal systolic and diastolic function and none received any anticongestive medications. Almost all patients received an oversized donor heart. The left ventricle (LV) mass was remodeled, initially as an decrease and later as an increase. The patient who underwent the Batista operation was discharged 1 month after the operation with an increased LV ejection fraction (from 10% to 22%). She was successfully bridged to heart transplantation 7 months after the Batista operation. The results of cardiac transplantation in growing children are satisfactory and remain the mainstay of surgical treatment for medically refractory heart failure in these patients. However, with a shortage of donor hearts, the Batista operation may be adopted as a bridge to heart transplant with a fair response.  (+info)

The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. (5/98)

Stress-induced mitogen-activated protein kinase (MAP) p38 is activated in various forms of heart failure, yet its effects on the intact heart remain to be established. Targeted activation of p38 MAP kinase in ventricular myocytes was achieved in vivo by using a gene-switch transgenic strategy with activated mutants of upstream kinases MKK3bE and MKK6bE. Transgene expression resulted in significant induction of p38 kinase activity and premature death at 7-9 weeks. Both groups of transgenic hearts exhibited marked interstitial fibrosis and expression of fetal marker genes characteristic of cardiac failure, but no significant hypertrophy at the organ level. Echocardiographic and pressure-volume analyses revealed a similar extent of systolic contractile depression and restrictive diastolic abnormalities related to markedly increased passive chamber stiffness. However, MKK3bE-expressing hearts had increased end-systolic chamber volumes and a thinned ventricular wall, associated with heterogeneous myocyte atrophy, whereas MKK6bE hearts had reduced end-diastolic ventricular cavity size, a modest increase in myocyte size, and no significant myocyte atrophy. These data provide in vivo evidence for a negative inotropic and restrictive diastolic effect from p38 MAP kinase activation in ventricular myocytes and reveal specific roles of p38 pathway in the development of ventricular end-systolic remodeling.  (+info)

Epidemiology of idiopathic cardiomyopathy in Japan: results from a nationwide survey. (6/98)

OBJECTIVE: To estimate the total number of patients with idiopathic cardiomyopathy in Japan and the prevalence of the disorder. DESIGN: A nationwide epidemiological survey. SETTING: Hospitals selected randomly from among all hospitals in Japan. PATIENTS: Patients presenting with any of the three types of idiopathic cardiomyopathy: dilated cardiomyopathy, hypertrophic cardiomyopathy, and restrictive cardiomyopathy. MAIN OUTCOME MEASURES: The total number of patients in Japan was estimated using the sampling and response rates in each stratum with respect to hospital size. The second survey was conducted for patients reported in the first survey in order to obtain detailed information, including age, sex, and specific clinical data. RESULTS: Estimated patient totals and 95% confidence intervals (CI) were 17 700 (95% CI 16 500 to 18 800) for dilated cardiomyopathy, 21 900 (95% CI 20 600 to 23 200) for hypertrophic cardiomyopathy, and 300 (95% CI 250 to 350) for restrictive cardiomyopathy. Crude prevalence per 100 000 population was estimated as 14.0 for dilated cardiomyopathy, 17.3 for hypertrophic cardiomyopathy, and 0.2 for restrictive cardiomyopathy; crude incidence per 100 000 person-years was estimated as 3.58, 4.14, and 0.06, respectively. CONCLUSIONS: The total number and prevalence of patients with idiopathic cardiomyopathy in Japan are estimated for the first time in a nationwide survey. The prevalence of dilated cardiomyopathy in Japan appears to be about half that of Western populations, while that of hypertrophic cardiomyopathy is about the same.  (+info)

Molecular mechanisms of inherited cardiomyopathies. (7/98)

Cardiomyopathies are diseases of heart muscle that may result from a diverse array of conditions that damage the heart and other organs and impair myocardial function, including infection, ischemia, and toxins. However, they may also occur as primary diseases restricted to striated muscle. Over the past decade, the importance of inherited gene defects in the pathogenesis of primary cardiomyopathies has been recognized, with mutations in some 18 genes having been identified as causing hypertrophic cardiomyopathy (HCM) and/or dilated cardiomyopathy (DCM). Defining the role of these genes in cardiac function and the mechanisms by which mutations in these genes lead to hypertrophy, dilation, and contractile failure are major goals of ongoing research. Pathophysiological mechanisms that have been implicated in HCM and DCM include the following: defective force generation, due to mutations in sarcomeric protein genes; defective force transmission, due to mutations in cytoskeletal protein genes; myocardial energy deficits, due to mutations in ATP regulatory protein genes; and abnormal Ca2+ homeostasis, due to altered availability of Ca2+ and altered myofibrillar Ca2+ sensitivity. Improved understanding that will result from these studies should ultimately lead to new approaches for the diagnosis, prognostic stratification, and treatment of patients with heart failure.  (+info)

Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. (8/98)

Restrictive cardiomyopathy (RCM) is an uncommon heart muscle disorder characterized by impaired filling of the ventricles with reduced volume in the presence of normal or near normal wall thickness and systolic function. The disease may be associated with systemic disease but is most often idiopathic. We recognized a large family in which individuals were affected by either idiopathic RCM or hypertrophic cardiomyopathy (HCM). Linkage analysis to selected sarcomeric contractile protein genes identified cardiac troponin I (TNNI3) as the likely disease gene. Subsequent mutation analysis revealed a novel missense mutation, which cosegregated with the disease in the family (lod score: 4.8). To determine if idiopathic RCM is part of the clinical expression of TNNI3 mutations, genetic investigations of the gene were performed in an additional nine unrelated RCM patients with restrictive filling patterns, bi-atrial dilatation, normal systolic function, and normal wall thickness. TNNI3 mutations were identified in six of these nine RCM patients. Two of the mutations identified in young individuals were de novo mutations. All mutations appeared in conserved and functionally important domains of the gene. This article was published online in advance of the print edition. The date of publication is available from the JCI website, http://www.jci.org.  (+info)

Dilated cardiomyopathy (DCM) is a type of cardiomyopathy characterized by the enlargement and weakened contraction of the heart's main pumping chamber (the left ventricle). This enlargement and weakness can lead to symptoms such as shortness of breath, fatigue, and fluid retention. DCM can be caused by various factors including genetics, viral infections, alcohol and drug abuse, and other medical conditions like high blood pressure and diabetes. It is important to note that this condition can lead to heart failure if left untreated.

Hypertrophic cardiomyopathy (HCM) is a genetic disorder characterized by the thickening of the heart muscle, specifically the ventricles (the lower chambers of the heart that pump blood out to the body). This thickening can make it harder for the heart to pump blood effectively, which can lead to symptoms such as shortness of breath, chest pain, and fatigue. In some cases, HCM can also cause abnormal heart rhythms (arrhythmias) and may increase the risk of sudden cardiac death.

The thickening of the heart muscle in HCM is caused by an overgrowth of the cells that make up the heart muscle, known as cardiomyocytes. This overgrowth can be caused by mutations in any one of several genes that encode proteins involved in the structure and function of the heart muscle. These genetic mutations are usually inherited from a parent, but they can also occur spontaneously in an individual with no family history of the disorder.

HCM is typically diagnosed using echocardiography (a type of ultrasound that uses sound waves to create images of the heart) and other diagnostic tests such as electrocardiogram (ECG) and cardiac magnetic resonance imaging (MRI). Treatment for HCM may include medications to help manage symptoms, lifestyle modifications, and in some cases, surgical procedures or implantable devices to help prevent or treat arrhythmias.

Cardiomyopathies are a group of diseases that affect the heart muscle, leading to mechanical and/or electrical dysfunction. The American Heart Association (AHA) defines cardiomyopathies as "a heterogeneous group of diseases of the myocardium associated with mechanical and/or electrical dysfunction that usually (but not always) exhibit inappropriate ventricular hypertrophy or dilatation and frequently lead to heart failure."

There are several types of cardiomyopathies, including:

1. Dilated cardiomyopathy (DCM): This is the most common type of cardiomyopathy, characterized by an enlarged left ventricle and impaired systolic function, leading to heart failure.
2. Hypertrophic cardiomyopathy (HCM): In this type, there is abnormal thickening of the heart muscle, particularly in the septum between the two ventricles, which can obstruct blood flow and increase the risk of arrhythmias.
3. Restrictive cardiomyopathy (RCM): This is a rare form of cardiomyopathy characterized by stiffness of the heart muscle, impaired relaxation, and diastolic dysfunction, leading to reduced filling of the ventricles and heart failure.
4. Arrhythmogenic right ventricular cardiomyopathy (ARVC): In this type, there is replacement of the normal heart muscle with fatty or fibrous tissue, primarily affecting the right ventricle, which can lead to arrhythmias and sudden cardiac death.
5. Unclassified cardiomyopathies: These are conditions that do not fit into any of the above categories but still significantly affect the heart muscle and function.

Cardiomyopathies can be caused by genetic factors, acquired conditions (e.g., infections, toxins, or autoimmune disorders), or a combination of both. The diagnosis typically involves a comprehensive evaluation, including medical history, physical examination, electrocardiogram (ECG), echocardiography, cardiac magnetic resonance imaging (MRI), and sometimes genetic testing. Treatment depends on the type and severity of the condition but may include medications, lifestyle modifications, implantable devices, or even heart transplantation in severe cases.

Restrictive cardiomyopathy (RCM) is a type of heart muscle disorder characterized by impaired relaxation and filling of the lower chambers of the heart (the ventricles), leading to reduced pump function. This is caused by stiffening or rigidity of the heart muscle, often due to fibrosis or scarring. The stiffness prevents the ventricles from filling properly with blood during the diastolic phase, which can result in symptoms such as shortness of breath, fatigue, and fluid retention.

RCM is a less common form of cardiomyopathy compared to dilated or hypertrophic cardiomyopathies. It can be idiopathic (no known cause) or secondary to other conditions like amyloidosis, sarcoidosis, or storage diseases. Diagnosis typically involves a combination of medical history, physical examination, echocardiography, and sometimes cardiac MRI or biopsy. Treatment is focused on managing symptoms and addressing underlying causes when possible.

Takotsubo cardiomyopathy, also known as Takotsubo syndrome or stress-induced cardiomyopathy, is a temporary heart condition usually triggered by emotional or physical stress. It's named after the Japanese word for "octopus pot" because of the shape of the left ventricle during the contraction phase, which resembles this pot.

In Takotsubo cardiomyopathy, a part of the heart muscle becomes weakened and doesn't pump well, often following a surge of stress hormones. The condition can be misdiagnosed as a heart attack because it has similar symptoms and test results. However, unlike a heart attack, there's no evidence of blocked heart arteries in Takotsubo cardiomyopathy.

The symptoms of Takotsubo cardiomyopathy include chest pain, shortness of breath, irregular heartbeat, and sometimes fluid retention. Treatment typically includes medication to manage symptoms and support the heart while it recovers. Most people with Takotsubo cardiomyopathy make a full recovery within a few weeks. However, in rare cases, complications such as heart failure or arrhythmias can occur.

Hypertrophic Cardiomyopathy, Familial is a genetic disorder characterized by thickening of the heart muscle (myocardium), specifically the ventricles. This thickening, or hypertrophy, can make it harder for the heart to pump blood effectively, potentially leading to symptoms such as shortness of breath, chest pain, and arrhythmias.

In familial hypertrophic cardiomyopathy, the disorder is inherited and passed down through families in an autosomal dominant pattern, meaning that a child has a 50% chance of inheriting the gene mutation from an affected parent. The condition can vary in severity even within the same family, and some individuals with the genetic mutation may not develop symptoms at all.

It is important to note that while hypertrophic cardiomyopathy can have serious consequences, many people with the condition lead normal lives with appropriate medical management and monitoring.

Chagas cardiomyopathy is a specific type of heart disease that is caused by infection with the parasite Trypanosoma cruzi, which is spread through the feces of infected triatomine bugs (also known as "kissing bugs"). The disease is named after Carlos Chagas, who discovered the parasite in 1909.

In Chagas cardiomyopathy, the infection can lead to inflammation of the heart muscle (myocarditis), which can cause damage to the heart over time. This damage can lead to a range of complications, including:

* Dilated cardiomyopathy: This is a condition in which the heart muscle becomes weakened and stretched, leading to an enlarged heart chamber and reduced pumping ability.
* Arrhythmias: These are abnormal heart rhythms that can cause symptoms such as palpitations, dizziness, and fainting.
* Heart failure: This is a condition in which the heart is unable to pump blood effectively, leading to symptoms such as shortness of breath, fatigue, and fluid buildup in the body.
* Cardiac arrest: In severe cases, Chagas cardiomyopathy can lead to sudden cardiac arrest, which is a medical emergency that requires immediate treatment.

Chagas cardiomyopathy is most commonly found in Latin America, where the parasite that causes the disease is endemic. However, due to increased travel and migration, cases of Chagas cardiomyopathy have been reported in other parts of the world, including the United States. Treatment for Chagas cardiomyopathy typically involves medications to manage symptoms and prevent further complications, as well as lifestyle changes such as diet and exercise modifications. In some cases, more invasive treatments such as surgery or implantable devices may be necessary to treat severe complications of the disease.

The myocardium is the middle layer of the heart wall, composed of specialized cardiac muscle cells that are responsible for pumping blood throughout the body. It forms the thickest part of the heart wall and is divided into two sections: the left ventricle, which pumps oxygenated blood to the rest of the body, and the right ventricle, which pumps deoxygenated blood to the lungs.

The myocardium contains several types of cells, including cardiac muscle fibers, connective tissue, nerves, and blood vessels. The muscle fibers are arranged in a highly organized pattern that allows them to contract in a coordinated manner, generating the force necessary to pump blood through the heart and circulatory system.

Damage to the myocardium can occur due to various factors such as ischemia (reduced blood flow), infection, inflammation, or genetic disorders. This damage can lead to several cardiac conditions, including heart failure, arrhythmias, and cardiomyopathy.

Alcoholic cardiomyopathy is a type of cardiomyopathy (a disease of the heart muscle) that is caused by excessive alcohol consumption. The condition is characterized by the progressive weakening and enlargement of the heart muscle, which can lead to heart failure. Over time, alcoholic cardiomyopathy can cause the heart to become weakened and unable to pump blood efficiently throughout the body. This can result in symptoms such as shortness of breath, fatigue, irregular heartbeat, and fluid retention.

The exact mechanism by which alcohol causes cardiomyopathy is not fully understood, but it is thought to involve a combination of factors, including direct toxic effects of alcohol on the heart muscle, nutritional deficiencies, and genetic predisposition. Treatment for alcoholic cardiomyopathy typically involves lifestyle changes such as abstaining from alcohol, as well as medications to manage symptoms and improve heart function. In severe cases, hospitalization or surgery may be necessary.

Echocardiography is a medical procedure that uses sound waves to produce detailed images of the heart's structure, function, and motion. It is a non-invasive test that can help diagnose various heart conditions, such as valve problems, heart muscle damage, blood clots, and congenital heart defects.

During an echocardiogram, a transducer (a device that sends and receives sound waves) is placed on the chest or passed through the esophagus to obtain images of the heart. The sound waves produced by the transducer bounce off the heart structures and return to the transducer, which then converts them into electrical signals that are processed to create images of the heart.

There are several types of echocardiograms, including:

* Transthoracic echocardiography (TTE): This is the most common type of echocardiogram and involves placing the transducer on the chest.
* Transesophageal echocardiography (TEE): This type of echocardiogram involves passing a specialized transducer through the esophagus to obtain images of the heart from a closer proximity.
* Stress echocardiography: This type of echocardiogram is performed during exercise or medication-induced stress to assess how the heart functions under stress.
* Doppler echocardiography: This type of echocardiogram uses sound waves to measure blood flow and velocity in the heart and blood vessels.

Echocardiography is a valuable tool for diagnosing and managing various heart conditions, as it provides detailed information about the structure and function of the heart. It is generally safe, non-invasive, and painless, making it a popular choice for doctors and patients alike.

Arrhythmogenic Right Ventricular Dysplasia (ARVD) is a rare cardiac condition characterized by the replacement of the normal heart muscle tissue in the right ventricle with fatty and fibrous tissues. This can lead to abnormal heart rhythms (arrhythmias), particularly during exercise or emotional stress.

The condition can be inherited and is often associated with genetic mutations that affect the desmosomes, which are protein structures that help connect heart muscle cells together. These mutations can weaken the heart muscle and make it more prone to arrhythmias and heart failure over time.

Symptoms of ARVD may include palpitations, chest pain, shortness of breath, dizziness, or fainting, especially during exercise. In some cases, the condition may not cause any symptoms and may only be discovered during a routine medical exam or evaluation for another condition.

Diagnosis of ARVD typically involves a combination of clinical evaluation, imaging tests such as echocardiography or magnetic resonance imaging (MRI), and electrophysiological testing to assess heart rhythm abnormalities. Treatment may include medications to control arrhythmias, implantable devices such as pacemakers or defibrillators, and lifestyle modifications such as avoiding strenuous exercise. In severe cases, a heart transplant may be necessary.

Diabetic cardiomyopathy is a specific type of heart disease that occurs in people with diabetes. It is characterized by structural and functional changes in the heart muscle (myocardium), which can lead to impaired heart function and, ultimately, heart failure.

The exact mechanisms underlying diabetic cardiomyopathy are not fully understood, but it is believed to be related to a combination of metabolic abnormalities, inflammation, oxidative stress, and microvascular dysfunction that occur in diabetes. These factors can lead to changes in the heart muscle cells, including increased stiffness, altered contractility, and cell death, as well as interstitial fibrosis and remodeling of the extracellular matrix.

Diabetic cardiomyopathy is often asymptomatic in its early stages but can lead to symptoms such as shortness of breath, fatigue, fluid retention, and irregular heart rhythms as it progresses. Diagnosis typically involves a combination of medical history, physical examination, electrocardiogram (ECG), echocardiography, and other imaging tests, as well as laboratory tests to assess cardiac function and metabolic status.

Treatment of diabetic cardiomyopathy typically involves managing underlying diabetes and associated risk factors such as hypertension, dyslipidemia, and obesity. Medications such as angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), beta-blockers, and diuretics may also be used to improve heart function and reduce symptoms. Lifestyle modifications such as regular exercise, smoking cessation, and a healthy diet are also important components of management.

Electrocardiography (ECG or EKG) is a medical procedure that records the electrical activity of the heart. It provides a graphic representation of the electrical changes that occur during each heartbeat. The resulting tracing, called an electrocardiogram, can reveal information about the heart's rate and rhythm, as well as any damage to its cells or abnormalities in its conduction system.

During an ECG, small electrodes are placed on the skin of the chest, arms, and legs. These electrodes detect the electrical signals produced by the heart and transmit them to a machine that amplifies and records them. The procedure is non-invasive, painless, and quick, usually taking only a few minutes.

ECGs are commonly used to diagnose and monitor various heart conditions, including arrhythmias, coronary artery disease, heart attacks, and electrolyte imbalances. They can also be used to evaluate the effectiveness of certain medications or treatments.

Left ventricular function refers to the ability of the left ventricle (the heart's lower-left chamber) to contract and relax, thereby filling with and ejecting blood. The left ventricle is responsible for pumping oxygenated blood to the rest of the body. Its function is evaluated by measuring several parameters, including:

1. Ejection fraction (EF): This is the percentage of blood that is pumped out of the left ventricle with each heartbeat. A normal ejection fraction ranges from 55% to 70%.
2. Stroke volume (SV): The amount of blood pumped by the left ventricle in one contraction. A typical SV is about 70 mL/beat.
3. Cardiac output (CO): The total volume of blood that the left ventricle pumps per minute, calculated as the product of stroke volume and heart rate. Normal CO ranges from 4 to 8 L/minute.

Assessment of left ventricular function is crucial in diagnosing and monitoring various cardiovascular conditions such as heart failure, coronary artery disease, valvular heart diseases, and cardiomyopathies.

Myocarditis is an inflammation of the myocardium, which is the middle layer of the heart wall. The myocardium is composed of cardiac muscle cells and is responsible for the heart's pumping function. Myocarditis can be caused by various infectious and non-infectious agents, including viruses, bacteria, fungi, parasites, autoimmune diseases, toxins, and drugs.

In myocarditis, the inflammation can damage the cardiac muscle cells, leading to decreased heart function, arrhythmias (irregular heart rhythms), and in severe cases, heart failure or even sudden death. Symptoms of myocarditis may include chest pain, shortness of breath, fatigue, palpitations, and swelling in the legs, ankles, or abdomen.

The diagnosis of myocarditis is often based on a combination of clinical presentation, laboratory tests, electrocardiogram (ECG), echocardiography, cardiac magnetic resonance imaging (MRI), and endomyocardial biopsy. Treatment depends on the underlying cause and severity of the disease and may include medications to support heart function, reduce inflammation, control arrhythmias, and prevent further damage to the heart muscle. In some cases, hospitalization and intensive care may be necessary.

Left ventricular dysfunction (LVD) is a condition characterized by the impaired ability of the left ventricle of the heart to pump blood efficiently during contraction. The left ventricle is one of the four chambers of the heart and is responsible for pumping oxygenated blood to the rest of the body.

LVD can be caused by various underlying conditions, such as coronary artery disease, cardiomyopathy, valvular heart disease, or hypertension. These conditions can lead to structural changes in the left ventricle, including remodeling, hypertrophy, and dilation, which ultimately impair its contractile function.

The severity of LVD is often assessed by measuring the ejection fraction (EF), which is the percentage of blood that is pumped out of the left ventricle during each contraction. A normal EF ranges from 55% to 70%, while an EF below 40% is indicative of LVD.

LVD can lead to various symptoms, such as shortness of breath, fatigue, fluid retention, and decreased exercise tolerance. It can also increase the risk of complications, such as heart failure, arrhythmias, and cardiac arrest. Treatment for LVD typically involves managing the underlying cause, along with medications to improve contractility, reduce fluid buildup, and control heart rate. In severe cases, devices such as implantable cardioverter-defibrillators (ICDs) or left ventricular assist devices (LVADs) may be required.

The heart ventricles are the two lower chambers of the heart that receive blood from the atria and pump it to the lungs or the rest of the body. The right ventricle pumps deoxygenated blood to the lungs, while the left ventricle pumps oxygenated blood to the rest of the body. Both ventricles have thick, muscular walls to generate the pressure necessary to pump blood through the circulatory system.

The heart septum is the thick, muscular wall that divides the right and left sides of the heart. It consists of two main parts: the atrial septum, which separates the right and left atria (the upper chambers of the heart), and the ventricular septum, which separates the right and left ventricles (the lower chambers of the heart). A normal heart septum ensures that oxygen-rich blood from the lungs does not mix with oxygen-poor blood from the body. Any defect or abnormality in the heart septum is called a septal defect, which can lead to various congenital heart diseases.

Heart failure is a pathophysiological state in which the heart is unable to pump sufficient blood to meet the metabolic demands of the body or do so only at the expense of elevated filling pressures. It can be caused by various cardiac disorders, including coronary artery disease, hypertension, valvular heart disease, cardiomyopathy, and arrhythmias. Symptoms may include shortness of breath, fatigue, and fluid retention. Heart failure is often classified based on the ejection fraction (EF), which is the percentage of blood that is pumped out of the left ventricle during each contraction. A reduced EF (less than 40%) is indicative of heart failure with reduced ejection fraction (HFrEF), while a preserved EF (greater than or equal to 50%) is indicative of heart failure with preserved ejection fraction (HFpEF). There is also a category of heart failure with mid-range ejection fraction (HFmrEF) for those with an EF between 40-49%.

Ventricular outflow obstruction is a term used in cardiology to describe a condition where there is an obstruction or narrowing in the flow of blood as it exits the heart's ventricles (the lower chambers of the heart). This obstruction can occur due to various reasons such as congenital heart defects, hypertrophic cardiomyopathy, or calcification of the aortic valve.

In a normal heart, the left ventricle pumps oxygenated blood into the aorta through the aortic valve, and the right ventricle pumps deoxygenated blood into the pulmonary artery through the pulmonic valve. Any obstruction in these outflow tracts can lead to increased pressure within the ventricles, which can result in various symptoms such as shortness of breath, chest pain, dizziness, or fatigue.

The severity of the obstruction and the resulting symptoms can vary depending on the location and extent of the narrowing. Treatment options may include medications, surgical procedures, or catheter-based interventions to alleviate the obstruction and improve blood flow.

Myocardial contraction refers to the rhythmic and forceful shortening of heart muscle cells (myocytes) in the myocardium, which is the muscular wall of the heart. This process is initiated by electrical signals generated by the sinoatrial node, causing a wave of depolarization that spreads throughout the heart.

During myocardial contraction, calcium ions flow into the myocytes, triggering the interaction between actin and myosin filaments, which are the contractile proteins in the muscle cells. This interaction causes the myofilaments to slide past each other, resulting in the shortening of the sarcomeres (the functional units of muscle contraction) and ultimately leading to the contraction of the heart muscle.

Myocardial contraction is essential for pumping blood throughout the body and maintaining adequate circulation to vital organs. Any impairment in myocardial contractility can lead to various cardiac disorders, such as heart failure, cardiomyopathy, and arrhythmias.

Cardiac myocytes are the muscle cells that make up the heart muscle, also known as the myocardium. These specialized cells are responsible for contracting and relaxing in a coordinated manner to pump blood throughout the body. They differ from skeletal muscle cells in several ways, including their ability to generate their own electrical impulses, which allows the heart to function as an independent rhythmical pump. Cardiac myocytes contain sarcomeres, the contractile units of the muscle, and are connected to each other by intercalated discs that help coordinate contraction and ensure the synchronous beating of the heart.

In medical terms, the heart is a muscular organ located in the thoracic cavity that functions as a pump to circulate blood throughout the body. It's responsible for delivering oxygen and nutrients to the tissues and removing carbon dioxide and other wastes. The human heart is divided into four chambers: two atria on the top and two ventricles on the bottom. The right side of the heart receives deoxygenated blood from the body and pumps it to the lungs, while the left side receives oxygenated blood from the lungs and pumps it out to the rest of the body. The heart's rhythmic contractions and relaxations are regulated by a complex electrical conduction system.

Stroke volume is a term used in cardiovascular physiology and medicine. It refers to the amount of blood that is pumped out of the left ventricle of the heart during each contraction (systole). Specifically, it is the difference between the volume of blood in the left ventricle at the end of diastole (when the ventricle is filled with blood) and the volume at the end of systole (when the ventricle has contracted and ejected its contents into the aorta).

Stroke volume is an important measure of heart function, as it reflects the ability of the heart to pump blood effectively to the rest of the body. A low stroke volume may indicate that the heart is not pumping efficiently, while a high stroke volume may suggest that the heart is working too hard. Stroke volume can be affected by various factors, including heart disease, high blood pressure, and physical fitness level.

The formula for calculating stroke volume is:

Stroke Volume = End-Diastolic Volume - End-Systolic Volume

Where end-diastolic volume (EDV) is the volume of blood in the left ventricle at the end of diastole, and end-systolic volume (ESV) is the volume of blood in the left ventricle at the end of systole.

Sudden cardiac death (SCD) is a sudden, unexpected natural death caused by the cessation of cardiac activity. It is often caused by cardiac arrhythmias, particularly ventricular fibrillation, and is often associated with underlying heart disease, although it can occur in people with no known heart condition. SCD is typically defined as a natural death due to cardiac causes that occurs within one hour of the onset of symptoms, or if the individual was last seen alive in a normal state of health, it can be defined as occurring within 24 hours.

It's important to note that sudden cardiac arrest (SCA) is different from SCD, although they are related. SCA refers to the sudden cessation of cardiac activity, which if not treated immediately can lead to SCD.

Cardiac myosins are a type of myosin protein that are specifically expressed in the cardiac muscle cells (or cardiomyocytes) of the heart. These proteins play a crucial role in the contraction and relaxation of heart muscles, which is essential for proper heart function and blood circulation.

Myosins are molecular motors that use chemical energy from ATP to generate force and movement. In the context of cardiac muscle cells, cardiac myosins interact with another protein called actin to form sarcomeres, which are the basic contractile units of muscle fibers. During contraction, the heads of cardiac myosin molecules bind to actin filaments and pull them together, causing the muscle fiber to shorten and generate force.

There are different isoforms of cardiac myosins that can vary in their structure and function. Mutations in the genes encoding these proteins have been linked to various forms of cardiomyopathy, which are diseases of the heart muscle that can lead to heart failure and other complications. Therefore, understanding the structure and function of cardiac myosins is an important area of research for developing therapies and treatments for heart disease.

The peripartum period is a term used to describe the time frame surrounding childbirth, specifically it refers to the weeks starting from the 20th week of pregnancy up to 4-6 weeks after giving birth. It is a critical period for both the mother and the baby, as many physical and emotional changes occur during this time. The peripartum period includes the late stages of pregnancy (intrapartum) and the postpartum phase. This is the time when medical professionals pay close attention to the health of the mother and the newborn, monitoring for any potential complications or issues that may arise.

Doppler echocardiography is a type of ultrasound test that uses high-frequency sound waves to produce detailed images of the heart and its blood vessels. It measures the direction and speed of blood flow in the heart and major blood vessels leading to and from the heart. This helps to evaluate various conditions such as valve problems, congenital heart defects, and heart muscle diseases.

In Doppler echocardiography, a small handheld device called a transducer is placed on the chest, which emits sound waves that bounce off the heart and blood vessels. The transducer then picks up the returning echoes, which are processed by a computer to create moving images of the heart.

The Doppler effect is used to measure the speed and direction of blood flow. This occurs when the frequency of the sound waves changes as they bounce off moving objects, such as red blood cells. By analyzing these changes, the ultrasound machine can calculate the velocity and direction of blood flow in different parts of the heart.

Doppler echocardiography is a non-invasive test that does not require any needles or dyes. It is generally safe and painless, although patients may experience some discomfort from the pressure applied by the transducer on the chest. The test usually takes about 30 to 60 minutes to complete.

Ventricular myosins are the type of myosin proteins that are primarily found in the cardiac muscle cells (cardiomyocytes) of the heart ventricles. These myosin filaments are responsible for generating the mechanical force needed for cardiac muscle contraction and relaxation, which is essential for pumping blood throughout the body.

More specifically, ventricular myosins are part of the sarcomere structure in cardiomyocytes, where they interact with actin filaments to form cross-bridges during muscle contraction. The formation and breaking of these cross-bridges result in the sliding of actin and myosin filaments relative to each other, leading to muscle shortening and force generation.

Mutations or dysfunction in ventricular myosins can lead to various cardiac diseases, including hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and heart failure. Therefore, understanding the structure and function of ventricular myosins is crucial for developing new therapeutic strategies to treat these conditions.

Fibrosis is a pathological process characterized by the excessive accumulation and/or altered deposition of extracellular matrix components, particularly collagen, in various tissues and organs. This results in the formation of fibrous scar tissue that can impair organ function and structure. Fibrosis can occur as a result of chronic inflammation, tissue injury, or abnormal repair mechanisms, and it is a common feature of many diseases, including liver cirrhosis, lung fibrosis, heart failure, and kidney disease.

In medical terms, fibrosis is defined as:

"The process of producing scar tissue (consisting of collagen) in response to injury or chronic inflammation in normal connective tissue. This can lead to the thickening and stiffening of affected tissues and organs, impairing their function."

Ventricular Tachycardia (VT) is a rapid heart rhythm that originates from the ventricles, the lower chambers of the heart. It is defined as three or more consecutive ventricular beats at a rate of 120 beats per minute or greater in a resting adult. This abnormal heart rhythm can cause the heart to pump less effectively, leading to inadequate blood flow to the body and potentially life-threatening conditions such as hypotension, shock, or cardiac arrest.

VT can be classified into three types based on its duration, hemodynamic stability, and response to treatment:

1. Non-sustained VT (NSVT): It lasts for less than 30 seconds and is usually well tolerated without causing significant symptoms or hemodynamic instability.
2. Sustained VT (SVT): It lasts for more than 30 seconds, causes symptoms such as palpitations, dizziness, shortness of breath, or chest pain, and may lead to hemodynamic instability.
3. Pulseless VT: It is a type of sustained VT that does not produce a pulse, blood pressure, or adequate cardiac output, requiring immediate electrical cardioversion or defibrillation to restore a normal heart rhythm.

VT can occur in people with various underlying heart conditions such as coronary artery disease, cardiomyopathy, valvular heart disease, congenital heart defects, and electrolyte imbalances. It can also be triggered by certain medications, substance abuse, or electrical abnormalities in the heart. Prompt diagnosis and treatment of VT are crucial to prevent complications and improve outcomes.

A sarcomere is the basic contractile unit in a muscle fiber, and it's responsible for generating the force necessary for muscle contraction. It is composed of several proteins, including actin and myosin, which slide past each other to shorten the sarcomere during contraction. The sarcomere extends from one Z-line to the next in a muscle fiber, and it is delimited by the Z-discs where actin filaments are anchored. Sarcomeres play a crucial role in the functioning of skeletal, cardiac, and smooth muscles.

Endomyocardial fibrosis is a rare heart condition characterized by the thickening and scarring (fibrosis) of the inner layer of the heart muscle (endocardium) and the muscular walls of the lower chambers of the heart (ventricles). This process can restrict the heart's ability to fill properly with blood, leading to symptoms such as shortness of breath, fatigue, and fluid retention. The exact cause of endomyocardial fibrosis is not fully understood, but it is believed to involve an abnormal immune response or inflammation. It is more commonly found in tropical regions of Africa and Asia. Treatment typically involves medications to manage symptoms and improve heart function, as well as potentially surgical interventions to remove the scar tissue and restore normal heart function.

I must clarify that the term "pedigree" is not typically used in medical definitions. Instead, it is often employed in genetics and breeding, where it refers to the recorded ancestry of an individual or a family, tracing the inheritance of specific traits or diseases. In human genetics, a pedigree can help illustrate the pattern of genetic inheritance in families over multiple generations. However, it is not a medical term with a specific clinical definition.

Myocardial ischemia is a condition in which the blood supply to the heart muscle (myocardium) is reduced or blocked, leading to insufficient oxygen delivery and potential damage to the heart tissue. This reduction in blood flow typically results from the buildup of fatty deposits, called plaques, in the coronary arteries that supply the heart with oxygen-rich blood. The plaques can rupture or become unstable, causing the formation of blood clots that obstruct the artery and limit blood flow.

Myocardial ischemia may manifest as chest pain (angina pectoris), shortness of breath, fatigue, or irregular heartbeats (arrhythmias). In severe cases, it can lead to myocardial infarction (heart attack) if the oxygen supply is significantly reduced or cut off completely, causing permanent damage or death of the heart muscle. Early diagnosis and treatment of myocardial ischemia are crucial for preventing further complications and improving patient outcomes.

Myosin Heavy Chains are the large, essential components of myosin molecules, which are responsible for the molecular motility in muscle cells. These heavy chains have a molecular weight of approximately 200 kDa and form the motor domain of myosin, which binds to actin filaments and hydrolyzes ATP to generate force and movement during muscle contraction. There are several different types of myosin heavy chains, each with specific roles in various tissues and cellular functions. In skeletal and cardiac muscles, for example, myosin heavy chains have distinct isoforms that contribute to the contractile properties of these tissues.

Left ventricular hypertrophy (LVH) is a medical condition in which the left ventricle of the heart undergoes an enlargement or thickening of its muscle wall. The left ventricle is the main pumping chamber of the heart that supplies oxygenated blood to the rest of the body.

In response to increased workload, such as hypertension (high blood pressure), aortic valve stenosis, or athletic training, the left ventricular muscle may thicken and enlarge. This process is called "hypertrophy." While some degree of hypertrophy can be adaptive in athletes, significant or excessive hypertrophy can lead to impaired relaxation and filling of the left ventricle during diastole, reduced pumping capacity, and decreased compliance of the chamber.

Left ventricular hypertrophy is often asymptomatic initially but can increase the risk of various cardiovascular complications such as heart failure, arrhythmias, myocardial infarction (heart attack), and sudden cardiac death over time. It is typically diagnosed through imaging techniques like echocardiography or cardiac MRI and confirmed by measuring the thickness of the left ventricular wall.

Cardiac arrhythmias are abnormal heart rhythms that result from disturbances in the electrical conduction system of the heart. The heart's normal rhythm is controlled by an electrical signal that originates in the sinoatrial (SA) node, located in the right atrium. This signal travels through the atrioventricular (AV) node and into the ventricles, causing them to contract and pump blood throughout the body.

An arrhythmia occurs when there is a disruption in this electrical pathway or when the heart's natural pacemaker produces an abnormal rhythm. This can cause the heart to beat too fast (tachycardia), too slow (bradycardia), or irregularly.

There are several types of cardiac arrhythmias, including:

1. Atrial fibrillation: A rapid and irregular heartbeat that starts in the atria (the upper chambers of the heart).
2. Atrial flutter: A rapid but regular heartbeat that starts in the atria.
3. Supraventricular tachycardia (SVT): A rapid heartbeat that starts above the ventricles, usually in the atria or AV node.
4. Ventricular tachycardia: A rapid and potentially life-threatening heart rhythm that originates in the ventricles.
5. Ventricular fibrillation: A chaotic and disorganized electrical activity in the ventricles, which can be fatal if not treated immediately.
6. Heart block: A delay or interruption in the conduction of electrical signals from the atria to the ventricles.

Cardiac arrhythmias can cause various symptoms, such as palpitations, dizziness, shortness of breath, chest pain, and fatigue. In some cases, they may not cause any symptoms and go unnoticed. However, if left untreated, certain types of arrhythmias can lead to serious complications, including stroke, heart failure, or even sudden cardiac death.

Treatment for cardiac arrhythmias depends on the type, severity, and underlying causes. Options may include lifestyle changes, medications, cardioversion (electrical shock therapy), catheter ablation, implantable devices such as pacemakers or defibrillators, and surgery. It is essential to consult a healthcare professional for proper evaluation and management of cardiac arrhythmias.

The endocardium is the innermost layer of tissue that lines the chambers of the heart and the valves between them. It is a thin, smooth membrane that is in contact with the blood within the heart. This layer helps to maintain the heart's internal environment, facilitates the smooth movement of blood through the heart, and provides a protective barrier against infection and other harmful substances. The endocardium is composed of simple squamous epithelial cells called endothelial cells, which are supported by a thin layer of connective tissue.

Plakophilins are a group of proteins that play a crucial role in the structure and function of desmosomes, which are specialized cell-cell junctions found in epithelial and cardiac muscle cells. Desmosomes help to maintain the integrity and stability of tissues by providing strong adhesive connections between adjacent cells.

Plakophilins are members of the armadillo protein family and have several important functions within desmosomes:

1. Scaffolding: Plakophilins act as scaffolding proteins, helping to organize and link various components of the desmosome together. They bind to desmocollin and desmoglein adhesion molecules, as well as to other structural proteins such as plakoglobin and intermediate filaments.
2. Signal transduction: Plakophilins also play a role in signal transduction pathways related to cell growth, differentiation, and survival. They can interact with various signaling molecules, including kinases, phosphatases, and transcription factors, thereby modulating their activity.
3. Regulation of desmosome assembly and disassembly: Plakophilins are involved in the regulation of desmosome formation and breakdown. They can bind to proteins that promote desmosome assembly or disassembly, depending on cellular conditions and requirements.

There are four main isoforms of plakophilin (PKP1-4) in humans, each with distinct expression patterns and functions. Mutations in the genes encoding plakophilins have been associated with various genetic disorders, including arrhythmogenic right ventricular cardiomyopathy (ARVC), ectodermal dysplasia-syndactyly syndrome (EDSS), and skin fragility-woolly hair syndrome (SFWHS).

Heart transplantation is a surgical procedure where a diseased, damaged, or failing heart is removed and replaced with a healthy donor heart. This procedure is usually considered as a last resort for patients with end-stage heart failure or severe coronary artery disease who have not responded to other treatments. The donor heart typically comes from a brain-dead individual whose family has agreed to donate their loved one's organs for transplantation. Heart transplantation is a complex and highly specialized procedure that requires a multidisciplinary team of healthcare professionals, including cardiologists, cardiac surgeons, anesthesiologists, perfusionists, nurses, and other support staff. The success rates for heart transplantation have improved significantly over the past few decades, with many patients experiencing improved quality of life and increased survival rates. However, recipients of heart transplants require lifelong immunosuppressive therapy to prevent rejection of the donor heart, which can increase the risk of infections and other complications.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Lamin Type A, also known as LMNA, is a gene that provides instructions for making proteins called lamins. These proteins are part of the nuclear lamina, a network of fibers that lies just inside the nuclear envelope, which is the membrane that surrounds the cell's nucleus. The nuclear lamina helps maintain the shape and stability of the nucleus and plays a role in regulating gene expression and DNA replication.

Mutations in the LMNA gene can lead to various diseases collectively known as laminopathies, which affect different tissues and organs in the body. These conditions include Emery-Dreifuss muscular dystrophy, limb-girdle muscular dystrophy, dilated cardiomyopathy with conduction system disease, and a type of premature aging disorder called Hutchinson-Gilford progeria syndrome. The specific symptoms and severity of these disorders depend on the particular LMNA mutation and the tissues affected.

Ventricular remodeling is a structural adaptation process of the heart in response to stress or injury, such as myocardial infarction (heart attack) or pressure overload. This process involves changes in size, shape, and function of the ventricles (the lower chambers of the heart).

In ventricular remodeling, the heart muscle may thicken, enlarge, or become more stiff, leading to alterations in the pumping ability of the heart. These changes can ultimately result in cardiac dysfunction, heart failure, and an increased risk of arrhythmias (irregular heart rhythms).

Ventricular remodeling is often classified into two types:

1. Concentric remodeling: This occurs when the ventricular wall thickens (hypertrophy) without a significant increase in chamber size, leading to a decrease in the cavity volume and an increase in the thickness of the ventricular wall.
2. Eccentric remodeling: This involves an increase in both the ventricular chamber size and wall thickness due to the addition of new muscle cells (hyperplasia) or enlargement of existing muscle cells (hypertrophy). As a result, the overall shape of the ventricle becomes more spherical and less elliptical.

Both types of remodeling can negatively impact heart function and contribute to the development of heart failure. Close monitoring and appropriate treatment are essential for managing ventricular remodeling and preventing further complications.

Troponin T is a subunit of the troponin complex, which is a protein complex that plays a crucial role in muscle contraction. In particular, Troponin T is responsible for binding the troponin complex to tropomyosin, another protein that helps regulate muscle contraction.

In the context of medical diagnostics, Troponin T is often measured as a biomarker for heart damage. When heart muscle cells are damaged or die, such as in a myocardial infarction (heart attack), troponin T is released into the bloodstream. Therefore, measuring the levels of Troponin T in the blood can help diagnose and assess the severity of heart damage.

It's important to note that Troponin T is specific to cardiac muscle cells, which makes it a more reliable biomarker for heart damage than other markers that may also be found in skeletal muscle cells. However, it's worth noting that Troponin T levels can also be elevated in conditions other than heart attacks, such as heart failure, myocarditis, and pulmonary embolism, so clinical context is important when interpreting test results.

Hemodynamics is the study of how blood flows through the cardiovascular system, including the heart and the vascular network. It examines various factors that affect blood flow, such as blood volume, viscosity, vessel length and diameter, and pressure differences between different parts of the circulatory system. Hemodynamics also considers the impact of various physiological and pathological conditions on these variables, and how they in turn influence the function of vital organs and systems in the body. It is a critical area of study in fields such as cardiology, anesthesiology, and critical care medicine.

Artificial cardiac pacing is a medical procedure that involves the use of an artificial device to regulate and stimulate the contraction of the heart muscle. This is often necessary when the heart's natural pacemaker, the sinoatrial node, is not functioning properly and the heart is beating too slowly or irregularly.

The artificial pacemaker consists of a small generator that produces electrical impulses and leads that are positioned in the heart to transmit the impulses. The generator is typically implanted just under the skin in the chest, while the leads are inserted into the heart through a vein.

There are different types of artificial cardiac pacing systems, including single-chamber pacemakers, which stimulate either the right atrium or right ventricle, and dual-chamber pacemakers, which stimulate both chambers of the heart. Some pacemakers also have additional features that allow them to respond to changes in the body's needs, such as during exercise or sleep.

Artificial cardiac pacing is a safe and effective treatment for many people with abnormal heart rhythms, and it can significantly improve their quality of life and longevity.

Diastole is the phase of the cardiac cycle during which the heart muscle relaxes and the chambers of the heart fill with blood. It follows systole, the phase in which the heart muscle contracts and pumps blood out to the body. In a normal resting adult, diastole lasts for approximately 0.4-0.5 seconds during each heartbeat. The period of diastole is divided into two phases: early diastole and late diastole. During early diastole, the ventricles fill with blood due to the pressure difference between the atria and ventricles. During late diastole, the atrioventricular valves close, and the ventricles continue to fill with blood due to the relaxation of the ventricular muscle and the compliance of the ventricular walls. The duration and pressure changes during diastole are important for maintaining adequate cardiac output and blood flow to the body.

Heart disease is a broad term for a class of diseases that involve the heart or blood vessels. It's often used to refer to conditions that include:

1. Coronary artery disease (CAD): This is the most common type of heart disease. It occurs when the arteries that supply blood to the heart become hardened and narrowed due to the buildup of cholesterol and other substances, which can lead to chest pain (angina), shortness of breath, or a heart attack.

2. Heart failure: This condition occurs when the heart is unable to pump blood efficiently to meet the body's needs. It can be caused by various conditions, including coronary artery disease, high blood pressure, and cardiomyopathy.

3. Arrhythmias: These are abnormal heart rhythms, which can be too fast, too slow, or irregular. They can lead to symptoms such as palpitations, dizziness, and fainting.

4. Valvular heart disease: This involves damage to one or more of the heart's four valves, which control blood flow through the heart. Damage can be caused by various conditions, including infection, rheumatic fever, and aging.

5. Cardiomyopathy: This is a disease of the heart muscle that makes it harder for the heart to pump blood efficiently. It can be caused by various factors, including genetics, viral infections, and drug abuse.

6. Pericardial disease: This involves inflammation or other problems with the sac surrounding the heart (pericardium). It can cause chest pain and other symptoms.

7. Congenital heart defects: These are heart conditions that are present at birth, such as a hole in the heart or abnormal blood vessels. They can range from mild to severe and may require medical intervention.

8. Heart infections: The heart can become infected by bacteria, viruses, or parasites, leading to various symptoms and complications.

It's important to note that many factors can contribute to the development of heart disease, including genetics, lifestyle choices, and certain medical conditions. Regular check-ups and a healthy lifestyle can help reduce the risk of developing heart disease.

Puerperal disorders are a group of medical conditions that can affect women during the period following childbirth, also known as the puerperium. The puerperium typically lasts for six to eight weeks after delivery. These disorders can be complications of childbirth or postpartum infections and include:

1. Puerperal fever: This is a febrile illness that occurs during the puerperium, usually caused by a bacterial infection. The most common causative organisms are group A streptococcus, Staphylococcus aureus, and Escherichia coli.

2. Puerperal sepsis: This is a severe form of puerperal fever characterized by the presence of bacteria in the blood (bacteremia) and widespread inflammation throughout the body. It can lead to organ failure and even death if not treated promptly with antibiotics.

3. Puerperal endometritis: This is an infection of the lining of the uterus (endometrium) that occurs during the puerperium. Symptoms may include fever, abdominal pain, and foul-smelling vaginal discharge.

4. Puerperal mastitis: This is an inflammation of the breast tissue that can occur during lactation, often caused by a bacterial infection. It is more common in women who are breastfeeding but can also occur in non-lactating women.

5. Puerperal psychosis: This is a rare but serious mental health disorder that can occur after childbirth. It is characterized by symptoms such as delusions, hallucinations, and disorganized thinking.

6. Puerperal thromboembolism: This is a blood clot that forms during the puerperium, usually in the deep veins of the legs (deep vein thrombosis) or in the lungs (pulmonary embolism). It can be a serious complication of childbirth and requires prompt medical attention.

Overall, puerperal disorders are a significant cause of maternal morbidity and mortality worldwide, particularly in low-income countries where access to healthcare is limited. Prompt diagnosis and treatment are essential for improving outcomes and reducing the risk of long-term complications.

Sarcoglycans are a group of proteins that are part of the dystrophin-glycoprotein complex in muscle cells. This complex helps to maintain the structural integrity of the muscle fiber by forming a link between the cytoskeleton and the extracellular matrix. Sarcoglycans are located on the surface of the muscle fiber and play a critical role in protecting the muscle from damage during contraction.

There are four main sarcoglycans, known as alpha, beta, gamma, and delta-sarcoglycan. Mutations in any one of these proteins can lead to a group of genetic disorders known as the sarcoglycanopathies, which are characterized by progressive muscle weakness and wasting. The most severe form of this disorder is called limb-girdle muscular dystrophy type 2C (LGMD2C), which is caused by mutations in the gamma-sarcoglycan gene.

In addition to their role in muscle cells, sarcoglycans have also been found to be expressed in other tissues, including the brain and the lungs, suggesting that they may have additional functions beyond their structural role in muscle.

Cardiomegaly is a medical term that refers to an enlarged heart. It can be caused by various conditions such as high blood pressure, heart valve problems, cardiomyopathy, or fluid accumulation around the heart (pericardial effusion). Cardiomegaly can be detected through imaging tests like chest X-rays or echocardiograms. Depending on the underlying cause, treatment options may include medications, lifestyle changes, or in some cases, surgery. It is important to consult with a healthcare professional for proper diagnosis and treatment.

An implantable defibrillator is a medical device that is surgically placed inside the chest to continuously monitor the heart's rhythm and deliver electrical shocks to restore a normal heartbeat when it detects a life-threatening arrhythmia, such as ventricular fibrillation or ventricular tachycardia.

The device consists of a small generator that is implanted in the upper chest, along with one or more electrode leads that are threaded through veins and positioned in the heart's chambers. The generator contains a battery and a microcomputer that constantly monitors the heart's electrical activity and detects any abnormal rhythms.

When an arrhythmia is detected, the defibrillator delivers an electrical shock to the heart to restore a normal rhythm. This can be done automatically by the device or manually by a healthcare provider using an external programmer.

Implantable defibrillators are typically recommended for people who have a high risk of sudden cardiac death due to a history of heart attacks, heart failure, or inherited heart conditions that affect the heart's electrical system. They can significantly reduce the risk of sudden cardiac death and improve quality of life for those at risk.

Sudden death is a term used to describe a situation where a person dies abruptly and unexpectedly, often within minutes to hours of the onset of symptoms. It is typically caused by cardiac or respiratory arrest, which can be brought on by various medical conditions such as heart disease, stroke, severe infections, drug overdose, or trauma. In some cases, the exact cause of sudden death may remain unknown even after a thorough post-mortem examination.

It is important to note that sudden death should not be confused with "sudden cardiac death," which specifically refers to deaths caused by the abrupt loss of heart function (cardiac arrest). Sudden cardiac death is often related to underlying heart conditions such as coronary artery disease, cardiomyopathy, or electrical abnormalities in the heart.

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic technique that uses a strong magnetic field and radio waves to create detailed cross-sectional images of the body's internal structures. In MRI, Cine is a specific mode of imaging that allows for the evaluation of moving structures, such as the heart, by acquiring and displaying a series of images in rapid succession. This technique is particularly useful in cardiac imaging, where it can help assess heart function, valve function, and blood flow. The term "Cine" refers to the continuous playback of these images, similar to watching a movie, allowing doctors to evaluate motion and timing within the heart.

Desmoglein 2 is a type of desmoglein protein that is primarily found in the desmosomes of epithelial cells. Desmosomes are specialized structures that help to anchor intermediate filaments to the cell membrane and provide strength and stability to tissues that undergo mechanical stress, such as the skin and heart.

Desmoglein 2 plays a critical role in maintaining cell-cell adhesion by forming intercellular junctions called desmosomal cadherins. These junctions help to hold adjacent cells together and contribute to the integrity of epithelial tissues. Mutations in the gene that encodes Desmoglein 2 have been associated with several skin disorders, including pemphigus vulgaris, a blistering autoimmune disease that affects mucous membranes and the skin. In this condition, antibodies target Desmoglein 2, leading to loss of cell-cell adhesion and formation of blisters.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

Systole is the phase of the cardiac cycle during which the heart muscle contracts to pump blood out of the heart. Specifically, it refers to the contraction of the ventricles, the lower chambers of the heart. This is driven by the action of the electrical conduction system of the heart, starting with the sinoatrial node and passing through the atrioventricular node and bundle branches to the Purkinje fibers.

During systole, the pressure within the ventricles increases as they contract, causing the aortic and pulmonary valves to open and allowing blood to be ejected into the systemic and pulmonary circulations, respectively. The duration of systole is typically shorter than that of diastole, the phase during which the heart muscle relaxes and the chambers fill with blood.

In clinical settings, the terms "systolic" and "diastolic" are often used to describe blood pressure measurements, with the former referring to the pressure exerted on the artery walls when the ventricles contract and eject blood, and the latter referring to the pressure when the ventricles are relaxed and filling with blood.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Cardiac catheterization is a medical procedure used to diagnose and treat cardiovascular conditions. In this procedure, a thin, flexible tube called a catheter is inserted into a blood vessel in the arm or leg and threaded up to the heart. The catheter can be used to perform various diagnostic tests, such as measuring the pressure inside the heart chambers and assessing the function of the heart valves.

Cardiac catheterization can also be used to treat certain cardiovascular conditions, such as narrowed or blocked arteries. In these cases, a balloon or stent may be inserted through the catheter to open up the blood vessel and improve blood flow. This procedure is known as angioplasty or percutaneous coronary intervention (PCI).

Cardiac catheterization is typically performed in a hospital cardiac catheterization laboratory by a team of healthcare professionals, including cardiologists, radiologists, and nurses. The procedure may be done under local anesthesia with sedation or general anesthesia, depending on the individual patient's needs and preferences.

Overall, cardiac catheterization is a valuable tool in the diagnosis and treatment of various heart conditions, and it can help improve symptoms, reduce complications, and prolong life for many patients.

Glycogen Storage Disease Type IIb, also known as Pompe Disease, is a genetic disorder caused by a deficiency of the enzyme acid alpha-glucosidase (GAA). This enzyme is responsible for breaking down glycogen, a complex carbohydrate, into glucose within lysosomes. When GAA activity is lacking, glycogen accumulates in various tissues, including muscle and nerve cells, leading to cellular dysfunction and damage.

Type IIb Pompe Disease is characterized by progressive muscle weakness and hypertrophy (enlargement) of the heart muscle (cardiomyopathy). This form of the disease typically presents in infancy or early childhood and can progress rapidly, often resulting in severe cardiac complications and respiratory failure if left untreated.

Early diagnosis and treatment with enzyme replacement therapy (ERT) can significantly improve outcomes for individuals with Type IIb Pompe Disease. ERT involves administering recombinant human GAA to replace the deficient enzyme, helping to reduce glycogen accumulation in tissues and alleviate symptoms.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

A missense mutation is a type of point mutation in which a single nucleotide change results in the substitution of a different amino acid in the protein that is encoded by the affected gene. This occurs when the altered codon (a sequence of three nucleotides that corresponds to a specific amino acid) specifies a different amino acid than the original one. The function and/or stability of the resulting protein may be affected, depending on the type and location of the missense mutation. Missense mutations can have various effects, ranging from benign to severe, depending on the importance of the changed amino acid for the protein's structure or function.

Isolated Noncompaction of the Ventricular Myocardium (INVM) is a rare genetic cardiomyopathy characterized by a thickened, spongy appearance of the left ventricular myocardium. This condition results from the failure of myocardial fibers to compact during fetal development, leading to prominent trabeculations and deep recesses in the ventricular wall. INVM can be asymptomatic or present with various symptoms such as heart failure, arrhythmias, and thromboembolic events. It is often diagnosed using echocardiography, cardiac MRI, or cardiac catheterization. INVM can be associated with other genetic disorders, but when it occurs in isolation, it is referred to as "isolated" noncompaction.

Cardiovascular complications in pregnancy refer to conditions that affect the heart and blood vessels, which can arise during pregnancy, childbirth, or after delivery. These complications can be pre-existing or new-onset and can range from mild to severe, potentially threatening the life of both the mother and the fetus. Some examples of cardiovascular complications in pregnancy include:

1. Hypertension disorders: This includes chronic hypertension (high blood pressure before pregnancy), gestational hypertension (high blood pressure that develops after 20 weeks of pregnancy), and preeclampsia/eclampsia (a pregnancy-specific disorder characterized by high blood pressure, proteinuria, and potential organ damage).

2. Cardiomyopathy: A condition in which the heart muscle becomes weakened, leading to an enlarged heart and reduced pumping efficiency. Peripartum cardiomyopathy is a specific type that occurs during pregnancy or in the months following delivery.

3. Arrhythmias: Irregularities in the heart's rhythm, such as tachycardia (rapid heartbeat) or bradycardia (slow heartbeat), can occur during pregnancy and may require medical intervention.

4. Valvular heart disease: Pre-existing valve disorders, like mitral stenosis or aortic insufficiency, can worsen during pregnancy due to increased blood volume and cardiac output. Additionally, new valve issues might develop during pregnancy.

5. Venous thromboembolism (VTE): Pregnancy increases the risk of developing blood clots in the veins, particularly deep vein thrombosis (DVT) or pulmonary embolism (PE).

6. Ischemic heart disease: Although rare, coronary artery disease and acute coronary syndrome can occur during pregnancy, especially in women with risk factors such as obesity, diabetes, or smoking history.

7. Heart failure: Severe cardiac dysfunction leading to fluid accumulation, shortness of breath, and reduced exercise tolerance may develop due to any of the above conditions or other underlying heart diseases.

Early recognition, monitoring, and appropriate management of these cardiovascular complications in pregnancy are crucial for maternal and fetal well-being.

Desmin is a type of intermediate filament protein that is primarily found in the cardiac and skeletal muscle cells, as well as in some types of smooth muscle cells. It is an important component of the cytoskeleton, which provides structural support to the cell and helps maintain its shape. Desmin plays a crucial role in maintaining the integrity of the sarcomere, which is the basic contractile unit of the muscle fiber. Mutations in the desmin gene can lead to various forms of muscular dystrophy and other inherited muscle disorders.

Dystrophin is a protein that provides structural stability to muscle fibers. It is an essential component of the dystrophin-glycoprotein complex, which helps maintain the integrity of the sarcolemma (the membrane surrounding muscle cells) during muscle contraction and relaxation. Dystrophin plays a crucial role in connecting the cytoskeleton of the muscle fiber to the extracellular matrix, allowing for force transmission and protecting the muscle cell from damage.

Mutations in the DMD gene, which encodes dystrophin, can lead to various forms of muscular dystrophy, including Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). In DMD, a severe form of the disease, genetic alterations typically result in little or no production of functional dystrophin, causing progressive muscle weakness, wasting, and degeneration. In BMD, a milder form of the disorder, partially functional dystrophin is produced, leading to less severe symptoms and later onset of the disease.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Ventricular dysfunction is a term that refers to the impaired ability of the ventricles, which are the lower chambers of the heart, to fill with blood or pump it efficiently to the rest of the body. This condition can lead to reduced cardiac output and may cause symptoms such as shortness of breath, fatigue, and fluid retention.

There are two types of ventricular dysfunction:

1. Systolic dysfunction: This occurs when the ventricles cannot contract forcefully enough to eject an adequate amount of blood out of the heart during each beat. This is often due to damage to the heart muscle, such as that caused by a heart attack or cardiomyopathy.
2. Diastolic dysfunction: This happens when the ventricles are unable to relax and fill properly with blood between beats. This can be caused by stiffening of the heart muscle, often due to aging, high blood pressure, or diabetes.

Both types of ventricular dysfunction can lead to heart failure, a serious condition in which the heart is unable to pump blood effectively to meet the body's needs. Treatment for ventricular dysfunction may include medications, lifestyle changes, and in some cases, medical procedures or surgery.

Adrenergic beta-antagonists, also known as beta blockers, are a class of medications that block the effects of adrenaline and noradrenaline (also known as epinephrine and norepinephrine) on beta-adrenergic receptors. These receptors are found in various tissues throughout the body, including the heart, lungs, and blood vessels.

Beta blockers work by binding to these receptors and preventing the activation of certain signaling pathways that lead to increased heart rate, force of heart contractions, and relaxation of blood vessels. As a result, beta blockers can lower blood pressure, reduce heart rate, and decrease the workload on the heart.

Beta blockers are used to treat a variety of medical conditions, including hypertension (high blood pressure), angina (chest pain), heart failure, irregular heart rhythms, migraines, and certain anxiety disorders. Some common examples of beta blockers include metoprolol, atenolol, propranolol, and bisoprolol.

It is important to note that while beta blockers can have many benefits, they can also cause side effects such as fatigue, dizziness, and shortness of breath. Additionally, sudden discontinuation of beta blocker therapy can lead to rebound hypertension or worsening chest pain. Therefore, it is important to follow the dosing instructions provided by a healthcare provider carefully when taking these medications.

The mitral valve, also known as the bicuspid valve, is a two-leaflet valve located between the left atrium and left ventricle in the heart. Its function is to ensure unidirectional flow of blood from the left atrium into the left ventricle during the cardiac cycle. The mitral valve consists of two leaflets (anterior and posterior), the chordae tendineae, papillary muscles, and the left atrial and ventricular myocardium. Dysfunction of the mitral valve can lead to various heart conditions such as mitral regurgitation or mitral stenosis.

Heart function tests are a group of diagnostic exams that are used to evaluate the structure and functioning of the heart. These tests help doctors assess the pumping efficiency of the heart, the flow of blood through the heart, the presence of any heart damage, and the overall effectiveness of the heart in delivering oxygenated blood to the rest of the body.

Some common heart function tests include:

1. Echocardiogram (Echo): This test uses sound waves to create detailed images of the heart's structure and functioning. It can help detect any damage to the heart muscle, valves, or sac surrounding the heart.
2. Nuclear Stress Test: This test involves injecting a small amount of radioactive substance into the patient's bloodstream and taking images of the heart while it is at rest and during exercise. The test helps evaluate blood flow to the heart and detect any areas of reduced blood flow, which could indicate coronary artery disease.
3. Cardiac Magnetic Resonance Imaging (MRI): This test uses magnetic fields and radio waves to create detailed images of the heart's structure and function. It can help detect any damage to the heart muscle, valves, or other structures of the heart.
4. Electrocardiogram (ECG): This test measures the electrical activity of the heart and helps detect any abnormalities in the heart's rhythm or conduction system.
5. Exercise Stress Test: This test involves walking on a treadmill or riding a stationary bike while being monitored for changes in heart rate, blood pressure, and ECG readings. It helps evaluate exercise capacity and detect any signs of coronary artery disease.
6. Cardiac Catheterization: This is an invasive procedure that involves inserting a catheter into the heart to measure pressures and take samples of blood from different parts of the heart. It can help diagnose various heart conditions, including heart valve problems, congenital heart defects, and coronary artery disease.

Overall, heart function tests play an essential role in diagnosing and managing various heart conditions, helping doctors provide appropriate treatment and improve patient outcomes.

Mitral valve insufficiency, also known as mitral regurgitation, is a cardiac condition in which the mitral valve located between the left atrium and left ventricle of the heart does not close properly, causing blood to flow backward into the atrium during contraction of the ventricle. This leads to an increased volume load on the left heart chamber and can result in symptoms such as shortness of breath, fatigue, and fluid retention. The condition can be caused by various factors including valve damage due to degenerative changes, infective endocarditis, rheumatic heart disease, or trauma. Treatment options include medication, mitral valve repair, or replacement surgery depending on the severity and underlying cause of the insufficiency.

Ablation techniques are medical procedures that involve the removal or destruction of body tissue or cells. This can be done through various methods, including:

1. Radiofrequency ablation (RFA): This technique uses heat generated by radio waves to destroy targeted tissue. A thin probe is inserted into the body, and the tip of the probe emits high-frequency electrical currents that heat up and destroy the surrounding tissue.
2. Cryoablation: Also known as cryosurgery, this technique uses extreme cold to destroy abnormal tissue. A probe is inserted into the body, and a gas is passed through it to create a ball of ice that freezes and destroys the targeted tissue.
3. Microwave ablation: This technique uses microwaves to heat up and destroy targeted tissue. A probe is inserted into the body, and microwaves are emitted from the tip of the probe to heat up and destroy the surrounding tissue.
4. Laser ablation: This technique uses laser energy to vaporize and destroy targeted tissue. A laser fiber is inserted into the body, and the laser energy is directed at the targeted tissue to destroy it.
5. High-intensity focused ultrasound (HIFU): This technique uses high-frequency sound waves to heat up and destroy targeted tissue. The sound waves are focused on a specific area of the body, and the heat generated by the sound waves destroys the targeted tissue.

Ablation techniques are used in various medical fields, including cardiology, oncology, and neurology, to treat a range of conditions such as arrhythmias, cancer, and chronic pain.

3-Iodobenzylguanidine (3-IBG) is a radioactive tracer drug that is used in nuclear medicine to help diagnose and evaluate pheochromocytomas and paragangliomas, which are rare tumors of the adrenal glands or nearby nerve tissue. It works by accumulating in the cells of these tumors, allowing them to be detected through imaging techniques such as single-photon emission computed tomography (SPECT) scans.

The drug contains a radioactive isotope of iodine (I-123 or I-131) that emits gamma rays, which can be detected by a gamma camera during the imaging procedure. The 3-IBG molecule also includes a guanidine group, which selectively binds to the norepinephrine transporter (NET) on the surface of the tumor cells, allowing the drug to accumulate within the tumor tissue.

It is important to note that the use of 3-IBG should be under the supervision of a qualified healthcare professional, as it involves exposure to radiation and may have potential side effects.

Prognosis is a medical term that refers to the prediction of the likely outcome or course of a disease, including the chances of recovery or recurrence, based on the patient's symptoms, medical history, physical examination, and diagnostic tests. It is an important aspect of clinical decision-making and patient communication, as it helps doctors and patients make informed decisions about treatment options, set realistic expectations, and plan for future care.

Prognosis can be expressed in various ways, such as percentages, categories (e.g., good, fair, poor), or survival rates, depending on the nature of the disease and the available evidence. However, it is important to note that prognosis is not an exact science and may vary depending on individual factors, such as age, overall health status, and response to treatment. Therefore, it should be used as a guide rather than a definitive forecast.

Cardiotonic agents are a type of medication that have a positive inotropic effect on the heart, meaning they help to improve the contractility and strength of heart muscle contractions. These medications are often used to treat heart failure, as they can help to improve the efficiency of the heart's pumping ability and increase cardiac output.

Cardiotonic agents work by increasing the levels of calcium ions inside heart muscle cells during each heartbeat, which in turn enhances the force of contraction. Some common examples of cardiotonic agents include digitalis glycosides (such as digoxin), which are derived from the foxglove plant, and synthetic medications such as dobutamine and milrinone.

While cardiotonic agents can be effective in improving heart function, they can also have potentially serious side effects, including arrhythmias, electrolyte imbalances, and digestive symptoms. As a result, they are typically used under close medical supervision and their dosages may need to be carefully monitored to minimize the risk of adverse effects.

Catheter ablation is a medical procedure in which specific areas of heart tissue that are causing arrhythmias (irregular heartbeats) are destroyed or ablated using heat energy (radiofrequency ablation), cold energy (cryoablation), or other methods. The procedure involves threading one or more catheters through the blood vessels to the heart, where the tip of the catheter can be used to selectively destroy the problematic tissue. Catheter ablation is often used to treat atrial fibrillation, atrial flutter, and other types of arrhythmias that originate in the heart's upper chambers (atria). It may also be used to treat certain types of arrhythmias that originate in the heart's lower chambers (ventricles), such as ventricular tachycardia.

The goal of catheter ablation is to eliminate or reduce the frequency and severity of arrhythmias, thereby improving symptoms and quality of life. In some cases, it may also help to reduce the risk of stroke and other complications associated with arrhythmias. Catheter ablation is typically performed by a specialist in heart rhythm disorders (electrophysiologist) in a hospital or outpatient setting under local anesthesia and sedation. The procedure can take several hours to complete, depending on the complexity of the arrhythmia being treated.

It's important to note that while catheter ablation is generally safe and effective, it does carry some risks, such as bleeding, infection, damage to nearby structures, and the possibility of recurrent arrhythmias. Patients should discuss the potential benefits and risks of the procedure with their healthcare provider before making a decision about treatment.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Heart block is a cardiac condition characterized by the interruption of electrical impulse transmission from the atria (the upper chambers of the heart) to the ventricles (the lower chambers of the heart). This disruption can lead to abnormal heart rhythms, including bradycardia (a slower-than-normal heart rate), and in severe cases, can cause the heart to stop beating altogether. Heart block is typically caused by damage to the heart's electrical conduction system due to various factors such as aging, heart disease, or certain medications.

There are three types of heart block: first-degree, second-degree, and third-degree (also known as complete heart block). Each type has distinct electrocardiogram (ECG) findings and symptoms. Treatment for heart block depends on the severity of the condition and may include monitoring, medication, or implantation of a pacemaker to regulate the heart's electrical activity.

The Predictive Value of Tests, specifically the Positive Predictive Value (PPV) and Negative Predictive Value (NPV), are measures used in diagnostic tests to determine the probability that a positive or negative test result is correct.

Positive Predictive Value (PPV) is the proportion of patients with a positive test result who actually have the disease. It is calculated as the number of true positives divided by the total number of positive results (true positives + false positives). A higher PPV indicates that a positive test result is more likely to be a true positive, and therefore the disease is more likely to be present.

Negative Predictive Value (NPV) is the proportion of patients with a negative test result who do not have the disease. It is calculated as the number of true negatives divided by the total number of negative results (true negatives + false negatives). A higher NPV indicates that a negative test result is more likely to be a true negative, and therefore the disease is less likely to be present.

The predictive value of tests depends on the prevalence of the disease in the population being tested, as well as the sensitivity and specificity of the test. A test with high sensitivity and specificity will generally have higher predictive values than a test with low sensitivity and specificity. However, even a highly sensitive and specific test can have low predictive values if the prevalence of the disease is low in the population being tested.

A biopsy is a medical procedure in which a small sample of tissue is taken from the body to be examined under a microscope for the presence of disease. This can help doctors diagnose and monitor various medical conditions, such as cancer, infections, or autoimmune disorders. The type of biopsy performed will depend on the location and nature of the suspected condition. Some common types of biopsies include:

1. Incisional biopsy: In this procedure, a surgeon removes a piece of tissue from an abnormal area using a scalpel or other surgical instrument. This type of biopsy is often used when the lesion is too large to be removed entirely during the initial biopsy.

2. Excisional biopsy: An excisional biopsy involves removing the entire abnormal area, along with a margin of healthy tissue surrounding it. This technique is typically employed for smaller lesions or when cancer is suspected.

3. Needle biopsy: A needle biopsy uses a thin, hollow needle to extract cells or fluid from the body. There are two main types of needle biopsies: fine-needle aspiration (FNA) and core needle biopsy. FNA extracts loose cells, while a core needle biopsy removes a small piece of tissue.

4. Punch biopsy: In a punch biopsy, a round, sharp tool is used to remove a small cylindrical sample of skin tissue. This type of biopsy is often used for evaluating rashes or other skin abnormalities.

5. Shave biopsy: During a shave biopsy, a thin slice of tissue is removed from the surface of the skin using a sharp razor-like instrument. This technique is typically used for superficial lesions or growths on the skin.

After the biopsy sample has been collected, it is sent to a laboratory where a pathologist will examine the tissue under a microscope and provide a diagnosis based on their findings. The results of the biopsy can help guide further treatment decisions and determine the best course of action for managing the patient's condition.

Duchenne Muscular Dystrophy (DMD) is a genetic disorder characterized by progressive muscle weakness and degeneration. It is caused by the absence of dystrophin, a protein that helps keep muscle cells intact. Without dystrophin, the muscle cells break down and are replaced with scar tissue, leading to loss of muscle function over time.

DMD primarily affects boys, as it is inherited in an X-linked recessive pattern, meaning that females who carry one affected X chromosome typically do not show symptoms but can pass the gene on to their offspring. Symptoms usually begin in early childhood and include difficulty with motor skills such as walking, running, and climbing stairs. Over time, the muscle weakness progresses and can lead to loss of ambulation, respiratory and cardiac complications, and ultimately, premature death.

Currently, there is no cure for DMD, but various treatments such as corticosteroids, physical therapy, and assisted ventilation can help manage symptoms and improve quality of life. Gene therapy approaches are also being investigated as potential treatments for this disorder.

Syncope is a medical term defined as a transient, temporary loss of consciousness and postural tone due to reduced blood flow to the brain. It's often caused by a drop in blood pressure, which can be brought on by various factors such as dehydration, emotional stress, prolonged standing, or certain medical conditions like heart diseases, arrhythmias, or neurological disorders.

During a syncope episode, an individual may experience warning signs such as lightheadedness, dizziness, blurred vision, or nausea before losing consciousness. These episodes usually last only a few minutes and are followed by a rapid, full recovery. However, if left untreated or undiagnosed, recurrent syncope can lead to severe injuries from falls or even life-threatening conditions related to the underlying cause.

Epicardial mapping is a medical procedure used to create a detailed map of the electrical activity on the surface of the heart (epicardium). This technique is often used during electrophysiology studies to help diagnose and locate the source of abnormal heart rhythms, such as ventricular tachycardia or atrial fibrillation.

During epicardial mapping, a specialist (usually an electrophysiologist) will introduce a catheter through a vein or artery, which is then guided to the heart. Once in position, electrodes on the tip of the catheter record electrical signals from the heart's surface. These signals are used to create a detailed map of the heart's electrical activity, allowing the specialist to identify areas with abnormal electrical patterns.

This information can be crucial for determining the best course of treatment, such as targeted ablation therapy to eliminate the source of the arrhythmia. Epicardial mapping is typically performed in an electrophysiology lab or cardiac catheterization laboratory under fluoroscopy guidance, and it requires expertise in both cardiovascular medicine and interventional techniques.

Tropomyosin is a protein that plays a crucial role in muscle contraction. It is a long, thin filamentous protein that runs along the length of actin filaments in muscle cells, forming part of the troponin-tropomyosin complex. This complex regulates the interaction between actin and myosin, which are the other two key proteins involved in muscle contraction.

In a relaxed muscle, tropomyosin blocks the myosin-binding sites on actin, preventing muscle contraction from occurring. When a signal is received to contract, calcium ions are released into the muscle cell, which binds to troponin and causes a conformational change that moves tropomyosin out of the way, exposing the myosin-binding sites on actin. This allows myosin to bind to actin and generate force, leading to muscle contraction.

Tropomyosin is composed of two alpha-helical chains that wind around each other in a coiled-coil structure. There are several isoforms of tropomyosin found in different types of muscle cells, including skeletal, cardiac, and smooth muscle. Mutations in the genes encoding tropomyosin have been associated with various inherited muscle disorders, such as hypertrophic cardiomyopathy and distal arthrogryposis.

Ambulatory electrocardiography, also known as ambulatory ECG or Holter monitoring, is a non-invasive method of recording the electrical activity of the heart over an extended period of time (typically 24 hours or more) while the patient goes about their daily activities. The device used to record the ECG is called a Holter monitor, which consists of a small, portable recorder that is attached to the patient's chest with electrodes.

The recorded data provides information on any abnormalities in the heart's rhythm or electrical activity during different stages of activity and rest, allowing healthcare providers to diagnose and evaluate various cardiac conditions such as arrhythmias, ischemia, and infarction. The ability to monitor the heart's activity over an extended period while the patient performs their normal activities provides valuable information that may not be captured during a standard ECG, which only records the heart's electrical activity for a few seconds.

In summary, ambulatory electrocardiography is a diagnostic tool used to evaluate the electrical activity of the heart over an extended period, allowing healthcare providers to diagnose and manage various cardiac conditions.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

Right ventricular dysfunction is a condition characterized by the impaired ability of the right ventricle (one of the two pumping chambers in the heart) to fill with blood during the diastolic phase or eject blood during the systolic phase. This results in reduced cardiac output from the right ventricle, which can lead to various complications such as fluid accumulation in the body, particularly in the abdomen and lower extremities, and ultimately congestive heart failure if left untreated.

Right ventricular dysfunction can be caused by various factors, including damage to the heart muscle due to a heart attack, high blood pressure in the lungs (pulmonary hypertension), chronic lung diseases, congenital heart defects, viral infections, and certain medications. Symptoms of right ventricular dysfunction may include shortness of breath, fatigue, swelling in the legs, ankles, or abdomen, and a decreased tolerance for physical activity.

Diagnosis of right ventricular dysfunction typically involves a combination of medical history, physical examination, imaging tests such as echocardiography, cardiac MRI, or CT scan, and other diagnostic procedures such as electrocardiogram (ECG) or cardiac catheterization. Treatment options depend on the underlying cause but may include medications to reduce fluid buildup, improve heart function, and manage symptoms, as well as lifestyle modifications such as reducing salt intake and increasing physical activity levels. In severe cases, more invasive treatments such as surgery or implantable devices like pacemakers or ventricular assist devices may be necessary.

Connectin is also known as titin, which is a giant protein that plays a crucial role in the elasticity and stiffness of muscle fibers. It is the largest protein in humans, spanning half the length of a muscle cell's sarcomere, the basic unit of muscle contraction. Connectin/titin has several domains with different functions, including binding to other proteins, regulating muscle contraction, and signaling within the muscle cell. Mutations in the connectin/titin gene have been associated with various forms of muscular dystrophy and cardiomyopathy.

Myofibrils are the basic contractile units of muscle fibers, composed of highly organized arrays of thick and thin filaments. They are responsible for generating the force necessary for muscle contraction. The thick filaments are primarily made up of the protein myosin, while the thin filaments are mainly composed of actin. Myofibrils are surrounded by a membrane called the sarcolemma and are organized into repeating sections called sarcomeres, which are the functional units of muscle contraction.

I'm happy to help! However, it seems like there are two terms combined into one request: "Mitochondria" and "Heart." I will provide separate definitions for each.

Mitochondrion (singular) or Mitochondria (plural): These are specialized structures found in the cytoplasm of most eukaryotic cells (cells with a true nucleus), including human cells. They are often referred to as the "powerhouse" of the cell because they generate energy in the form of ATP (adenosine triphosphate) through a process called oxidative phosphorylation. Mitochondria contain their own DNA, which is distinct from the nuclear DNA, and are believed to have originated from ancient bacteria that established a symbiotic relationship with primitive eukaryotic cells.

Heart: In human anatomy, the heart is a muscular organ responsible for pumping blood throughout the body. It is located in the thoracic cavity, slightly left of the center, and is enclosed by the pericardium, a double-walled sac that provides protection and lubrication for the heart's movement. The human heart is divided into four chambers: two atria on the top and two ventricles on the bottom. The right side of the heart receives deoxygenated blood from the body and pumps it to the lungs, while the left side receives oxygenated blood from the lungs and pumps it to the rest of the body. The heart's pumping action is regulated by electrical signals that originate in a group of specialized cardiac muscle cells called the sinoatrial node (SA node).

Bundle-branch block (BBB) is a type of conduction delay or block in the heart's electrical system that affects the way electrical impulses travel through the ventricles (the lower chambers of the heart). In BBB, one of the two main bundle branches that conduct electrical impulses to the ventricles is partially or completely blocked, causing a delay in the contraction of one of the ventricles.

There are two types of bundle-branch block: right bundle-branch block (RBBB) and left bundle-branch block (LBBB). In RBBB, the right bundle branch is affected, while in LBBB, the left bundle branch is affected. The symptoms and severity of BBB can vary depending on the underlying cause and the presence of other heart conditions.

In some cases, BBB may not cause any noticeable symptoms and may only be detected during a routine electrocardiogram (ECG). However, if BBB occurs along with other heart conditions such as coronary artery disease, heart failure, or cardiomyopathy, it can increase the risk of serious complications such as arrhythmias, syncope, and even sudden cardiac death.

Treatment for bundle-branch block depends on the underlying cause and the severity of the condition. In some cases, no treatment may be necessary, while in others, medications, pacemakers, or other treatments may be recommended to manage symptoms and prevent complications.

Electrophysiologic techniques, cardiac, refer to medical procedures used to study the electrical activities and conduction systems of the heart. These techniques involve the insertion of electrode catheters into the heart through blood vessels under fluoroscopic guidance to record and stimulate electrical signals. The information obtained from these studies can help diagnose and evaluate various cardiac arrhythmias, determine the optimal treatment strategy, and assess the effectiveness of therapies such as ablation or implantable devices.

The electrophysiologic study (EPS) is a type of cardiac electrophysiologic technique that involves the measurement of electrical signals from different regions of the heart to evaluate its conduction system's function. The procedure can help identify the location of abnormal electrical pathways responsible for arrhythmias and determine the optimal treatment strategy, such as catheter ablation or medication therapy.

Cardiac electrophysiologic techniques are also used in device implantation procedures, such as pacemaker or defibrillator implantation, to ensure proper placement and function of the devices. These techniques can help program and test the devices to optimize their settings for each patient's needs.

In summary, cardiac electrophysiologic techniques are medical procedures used to study and manipulate the electrical activities of the heart, helping diagnose and treat various arrhythmias and other cardiac conditions.

Troponin I is a protein that is found in the cardiac muscle cells (myocytes) of the heart. It is a component of the troponin complex, which also includes troponin C and troponin T, that regulates the calcium-mediated interaction between actin and myosin filaments during muscle contraction.

Troponin I is specific to the cardiac muscle tissue, making it a useful biomarker for detecting damage to the heart muscle. When there is injury or damage to the heart muscle cells, such as during a heart attack (myocardial infarction), troponin I is released into the bloodstream.

Measurement of cardiac troponin I levels in the blood is used in the diagnosis and management of acute coronary syndrome (ACS) and other conditions that cause damage to the heart muscle. Elevated levels of troponin I in the blood are indicative of myocardial injury, and the degree of elevation can help determine the severity of the injury.

Myosins are a large family of motor proteins that play a crucial role in various cellular processes, including muscle contraction and intracellular transport. They consist of heavy chains, which contain the motor domain responsible for generating force and motion, and light chains, which regulate the activity of the myosin. Based on their structural and functional differences, myosins are classified into over 35 classes, with classes II, V, and VI being the most well-studied.

Class II myosins, also known as conventional myosins, are responsible for muscle contraction in skeletal, cardiac, and smooth muscles. They form filaments called thick filaments, which interact with actin filaments to generate force and movement during muscle contraction.

Class V myosins, also known as unconventional myosins, are involved in intracellular transport and organelle positioning. They have a long tail that can bind to various cargoes, such as vesicles, mitochondria, and nuclei, and a motor domain that moves along actin filaments to transport the cargoes to their destinations.

Class VI myosins are also unconventional myosins involved in intracellular transport and organelle positioning. They have two heads connected by a coiled-coil tail, which can bind to various cargoes. Class VI myosins move along actin filaments in a unique hand-over-hand motion, allowing them to transport their cargoes efficiently.

Overall, myosins are essential for many cellular functions and have been implicated in various diseases, including cardiovascular diseases, neurological disorders, and cancer.

Echocardiography, Doppler, color is a type of ultrasound test that uses sound waves to create detailed moving images of the heart and its blood vessels. In this technique, color Doppler is used to visualize the direction and speed of blood flow through the heart and great vessels. The movement of the red blood cells causes a change in frequency of the reflected sound waves (Doppler shift), which can be used to calculate the velocity and direction of the blood flow. By adding color to the Doppler image, it becomes easier for the interpreting physician to understand the complex three-dimensional motion of blood through the heart. This test is often used to diagnose and monitor various heart conditions, including valve disorders, congenital heart defects, and cardiac muscle diseases.

Tachycardia is a medical term that refers to an abnormally rapid heart rate, often defined as a heart rate greater than 100 beats per minute in adults. It can occur in either the atria (upper chambers) or ventricles (lower chambers) of the heart. Different types of tachycardia include supraventricular tachycardia (SVT), atrial fibrillation, atrial flutter, and ventricular tachycardia.

Tachycardia can cause various symptoms such as palpitations, shortness of breath, dizziness, lightheadedness, chest discomfort, or syncope (fainting). In some cases, tachycardia may not cause any symptoms and may only be detected during a routine physical examination or medical test.

The underlying causes of tachycardia can vary widely, including heart disease, electrolyte imbalances, medications, illicit drug use, alcohol abuse, smoking, stress, anxiety, and other medical conditions. In some cases, the cause may be unknown. Treatment for tachycardia depends on the underlying cause, type, severity, and duration of the arrhythmia.

Coxsackievirus infections are a type of viral illness caused by Coxsackie A and B viruses, which belong to the family Picornaviridae. These viruses can cause a wide range of symptoms, depending on the specific strain and the age and overall health of the infected individual.

The most common types of Coxsackievirus infections are hand, foot, and mouth disease (HFMD) and herpangina. HFMD is characterized by fever, sore throat, and a rash that typically appears on the hands, feet, and mouth. Herpangina is similar but is usually marked by painful sores in the back of the mouth or throat.

Other possible symptoms of Coxsackievirus infections include:

* Fever
* Headache
* Muscle aches
* Fatigue
* Nausea and vomiting
* Abdominal pain

In some cases, Coxsackievirus infections can lead to more serious complications, such as meningitis (inflammation of the membranes surrounding the brain and spinal cord), myocarditis (inflammation of the heart muscle), or pleurodynia (also known as "devil's grip," a painful inflammation of the chest and abdominal muscles).

Coxsackievirus infections are typically spread through close contact with an infected person, such as through respiratory droplets or by touching contaminated surfaces. The viruses can also be spread through fecal-oral transmission.

There is no specific treatment for Coxsackievirus infections, and most people recover on their own within a week or two. However, severe cases may require hospitalization and supportive care, such as fluids and pain relief. Prevention measures include good hygiene practices, such as washing hands frequently and avoiding close contact with sick individuals.

Constrictive pericarditis is a medical condition characterized by the inflammation and thickening of the pericardium, which is the sac-like membrane that surrounds the heart. This inflammation leads to scarring and thickening of the pericardium, causing it to become stiff and inflexible. As a result, the heart's ability to fill with blood between beats is restricted, leading to symptoms such as shortness of breath, fatigue, and fluid retention.

In contrastive pericarditis, the thickened and scarred pericardium restricts the normal movement of the heart within the chest cavity, leading to a characteristic pattern of hemodynamic abnormalities. These include equalization of diastolic pressures in all cardiac chambers, increased systemic venous pressure, and decreased cardiac output.

The most common causes of constrictive pericarditis include prior infection, radiation therapy, autoimmune disorders, and previous heart surgery. Diagnosis typically involves a combination of medical history, physical examination, imaging studies such as echocardiography or MRI, and sometimes invasive testing such as cardiac catheterization. Treatment may involve medications to manage symptoms and reduce inflammation, as well as surgical removal of the pericardium (pericardiectomy) in severe cases.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Coronary circulation refers to the circulation of blood in the coronary vessels, which supply oxygenated blood to the heart muscle (myocardium) and drain deoxygenated blood from it. The coronary circulation system includes two main coronary arteries - the left main coronary artery and the right coronary artery - that branch off from the aorta just above the aortic valve. These arteries further divide into smaller branches, which supply blood to different regions of the heart muscle.

The left main coronary artery divides into two branches: the left anterior descending (LAD) artery and the left circumflex (LCx) artery. The LAD supplies blood to the front and sides of the heart, while the LCx supplies blood to the back and sides of the heart. The right coronary artery supplies blood to the lower part of the heart, including the right ventricle and the bottom portion of the left ventricle.

The veins that drain the heart muscle include the great cardiac vein, the middle cardiac vein, and the small cardiac vein, which merge to form the coronary sinus. The coronary sinus empties into the right atrium, allowing deoxygenated blood to enter the right side of the heart and be pumped to the lungs for oxygenation.

Coronary circulation is essential for maintaining the health and function of the heart muscle, as it provides the necessary oxygen and nutrients required for proper contraction and relaxation of the myocardium. Any disruption or blockage in the coronary circulation system can lead to serious consequences, such as angina, heart attack, or even death.

Propanolamines are a class of pharmaceutical compounds that contain a propan-2-olamine functional group, which is a secondary amine formed by the replacement of one hydrogen atom in an ammonia molecule with a propan-2-ol group. They are commonly used as decongestants and bronchodilators in medical treatments.

Examples of propanolamines include:

* Phenylephrine: a decongestant used to relieve nasal congestion.
* Pseudoephedrine: a decongestant and stimulant used to treat nasal congestion and sinus pressure.
* Ephedrine: a bronchodilator, decongestant, and stimulant used to treat asthma, nasal congestion, and low blood pressure.

It is important to note that propanolamines can have side effects such as increased heart rate, elevated blood pressure, and insomnia, so they should be used with caution and under the supervision of a healthcare professional.

Heart-assist devices, also known as mechanical circulatory support devices, are medical equipment designed to help the heart function more efficiently. These devices can be used in patients with advanced heart failure who are not responding to medication or other treatments. They work by taking over some or all of the heart's pumping functions, reducing the workload on the heart and improving blood flow to the rest of the body.

There are several types of heart-assist devices, including:

1. Intra-aortic balloon pumps (IABPs): These devices are inserted into the aorta, the large artery that carries blood from the heart to the rest of the body. The IABP inflates and deflates in time with the heartbeat, helping to improve blood flow to the coronary arteries and reduce the workload on the heart.
2. Ventricular assist devices (VADs): These devices are more invasive than IABPs and are used to support the function of one or both ventricles, the lower chambers of the heart. VADs can be used to support the heart temporarily while a patient recovers from surgery or heart failure, or they can be used as a long-term solution for patients who are not candidates for a heart transplant.
3. Total artificial hearts (TAHs): These devices replace both ventricles and all four valves of the heart. TAHs are used in patients who are not candidates for a heart transplant and have severe biventricular failure, meaning that both ventricles are no longer functioning properly.

Heart-assist devices can be life-saving for some patients with advanced heart failure, but they also carry risks, such as infection, bleeding, and device malfunction. As with any medical treatment, the benefits and risks of using a heart-assist device must be carefully weighed for each individual patient.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

An artificial pacemaker is a medical device that uses electrical impulses to regulate the beating of the heart. It is typically used when the heart's natural pacemaker, the sinoatrial node, is not functioning properly and the heart rate is too slow or irregular. The pacemaker consists of a small generator that contains a battery and electronic circuits, which are connected to one or more electrodes that are placed in the heart.

The generator sends electrical signals through the electrodes to stimulate the heart muscle and cause it to contract, thereby maintaining a regular heart rhythm. Artificial pacemakers can be programmed to deliver electrical impulses at a specific rate or in response to the body's needs. They are typically implanted in the chest during a surgical procedure and can last for many years before needing to be replaced.

Artificial pacemakers are an effective treatment for various types of bradycardia, which is a heart rhythm disorder characterized by a slow heart rate. Pacemakers can significantly improve symptoms associated with bradycardia, such as fatigue, dizziness, shortness of breath, and fainting spells.

Brain Natriuretic Peptide (BNP) is a type of natriuretic peptide that is primarily produced in the heart, particularly in the ventricles. Although it was initially identified in the brain, hence its name, it is now known that the cardiac ventricles are the main source of BNP in the body.

BNP is released into the bloodstream in response to increased stretching or distension of the heart muscle cells due to conditions such as heart failure, hypertension, and myocardial infarction (heart attack). Once released, BNP binds to specific receptors in the kidneys, causing an increase in urine production and excretion of sodium, which helps reduce fluid volume and decrease the workload on the heart.

BNP also acts as a hormone that regulates various physiological functions, including blood pressure, cardiac remodeling, and inflammation. Measuring BNP levels in the blood is a useful diagnostic tool for detecting and monitoring heart failure, as higher levels of BNP are associated with more severe heart dysfunction.

Genetic testing is a type of medical test that identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Genetic tests are performed on a sample of blood, hair, skin, amniotic fluid (the fluid that surrounds a fetus during pregnancy), or other tissue. For example, a physician may recommend genetic testing to help diagnose a genetic condition, confirm the presence of a gene mutation known to increase the risk of developing certain cancers, or determine the chance for a couple to have a child with a genetic disorder.

There are several types of genetic tests, including:

* Diagnostic testing: This type of test is used to identify or confirm a suspected genetic condition in an individual. It may be performed before birth (prenatal testing) or at any time during a person's life.
* Predictive testing: This type of test is used to determine the likelihood that a person will develop a genetic disorder. It is typically offered to individuals who have a family history of a genetic condition but do not show any symptoms themselves.
* Carrier testing: This type of test is used to determine whether a person carries a gene mutation for a genetic disorder. It is often offered to couples who are planning to have children and have a family history of a genetic condition or belong to a population that has an increased risk of certain genetic disorders.
* Preimplantation genetic testing: This type of test is used in conjunction with in vitro fertilization (IVF) to identify genetic changes in embryos before they are implanted in the uterus. It can help couples who have a family history of a genetic disorder or who are at risk of having a child with a genetic condition to conceive a child who is free of the genetic change in question.
* Pharmacogenetic testing: This type of test is used to determine how an individual's genes may affect their response to certain medications. It can help healthcare providers choose the most effective medication and dosage for a patient, reducing the risk of adverse drug reactions.

It is important to note that genetic testing should be performed under the guidance of a qualified healthcare professional who can interpret the results and provide appropriate counseling and support.

Echocardiography, Doppler, pulsed is a type of diagnostic medical test that uses ultrasound to create detailed images of the heart's structures and assess their function. In this technique, high-frequency sound waves are directed at the heart using a handheld device called a transducer, which is placed on the chest wall. The sound waves bounce off the heart structures and return to the transducer, which then sends the information to a computer that converts it into images.

Pulsed Doppler echocardiography is a specific type of Doppler ultrasound that allows for the measurement of blood flow velocities in the heart and great vessels. In this technique, the transducer emits short bursts or "pulses" of sound waves and then measures the time it takes for the echoes to return. By analyzing the frequency shifts of the returning echoes, the velocity and direction of blood flow can be determined. This information is particularly useful in evaluating valvular function, assessing the severity of valvular lesions, and identifying areas of turbulent or abnormal blood flow.

Overall, echocardiography, Doppler, pulsed is a valuable tool for diagnosing and managing a wide range of cardiovascular conditions, including heart valve disorders, congenital heart defects, cardiomyopathies, and pericardial diseases.

Iodobenzenes are organic compounds that contain a iodine atom (I) attached to a benzene ring. The general formula for iodobenzenes is C6H5I. They can be considered as aryl halides and can undergo various chemical reactions such as nucleophilic substitution, electrophilic aromatic substitution, and reduction. Iodobenzenes are less reactive than other aryl halides due to the larger size and lower electronegativity of iodine compared to other halogens. They are used in organic synthesis as building blocks or reagents for various chemical transformations.

Desmocollins are a type of cadherin, which is a transmembrane protein involved in cell-cell adhesion. Specifically, desmocollins are found in the desmosomes, which are specialized structures that help to mechanically connect adjacent epithelial cells. There are three main isoforms of desmocollin (Desmocollin-1, -2, and -3) that are encoded by different genes. Mutations in the genes encoding desmocollins have been associated with several skin blistering disorders, including certain forms of epidermolysis bullosa.

DNA Mutational Analysis is a laboratory test used to identify genetic variations or changes (mutations) in the DNA sequence of a gene. This type of analysis can be used to diagnose genetic disorders, predict the risk of developing certain diseases, determine the most effective treatment for cancer, or assess the likelihood of passing on an inherited condition to offspring.

The test involves extracting DNA from a patient's sample (such as blood, saliva, or tissue), amplifying specific regions of interest using polymerase chain reaction (PCR), and then sequencing those regions to determine the precise order of nucleotide bases in the DNA molecule. The resulting sequence is then compared to reference sequences to identify any variations or mutations that may be present.

DNA Mutational Analysis can detect a wide range of genetic changes, including single-nucleotide polymorphisms (SNPs), insertions, deletions, duplications, and rearrangements. The test is often used in conjunction with other diagnostic tests and clinical evaluations to provide a comprehensive assessment of a patient's genetic profile.

It is important to note that not all mutations are pathogenic or associated with disease, and the interpretation of DNA Mutational Analysis results requires careful consideration of the patient's medical history, family history, and other relevant factors.

LIM domain proteins are a group of transcription factors that contain LIM domains, which are cysteine-rich zinc-binding motifs. These proteins play crucial roles in various cellular processes such as gene regulation, cell proliferation, differentiation, and migration. They are involved in the development and functioning of several organ systems including the nervous system, cardiovascular system, and musculoskeletal system. LIM domain proteins can interact with other proteins and DNA to regulate gene expression and have been implicated in various diseases such as cancer and neurological disorders.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Metoprolol is a type of medication known as a beta blocker. According to the US National Library of Medicine's MedlinePlus, metoprolol is used to treat high blood pressure, angina (chest pain), and heart conditions that may occur after a heart attack. It works by blocking the action of certain natural chemicals in your body, such as epinephrine, on the heart and blood vessels. This helps to reduce the heart's workload, lower its blood pressure, and regulate its rhythm.

Metoprolol is available under various brand names, including Lopressor and Toprol-XL. It can be taken orally as a tablet or an extended-release capsule. As with any medication, metoprolol should be used under the supervision of a healthcare provider, who can monitor its effectiveness and potential side effects.

It is important to note that this definition is intended to provide a general overview of the medical use of metoprolol and should not be considered a substitute for professional medical advice.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Desmoplakins are important proteins that play a crucial role in the structural integrity and function of certain types of cell-to-cell junctions called desmosomes. Desmosomes are specialized structures that connect adjacent cells in tissues that undergo significant mechanical stress, such as the skin, heart, and gut.

Desmoplakins are large proteins that are composed of several domains, including a plakin domain, which interacts with other desmosomal components, and a spectrin-like repeat domain, which binds to intermediate filaments. By linking desmosomes to the intermediate filament network, desmoplakins help to provide mechanical strength and stability to tissues.

Mutations in the genes that encode desmoplakins have been associated with several human genetic disorders, including arrhythmogenic right ventricular cardiomyopathy (ARVC), a heart condition characterized by abnormal heart rhythms and structural changes in the heart muscle, and epidermolysis bullosa simplex (EBS), a skin disorder characterized by blistering and fragility of the skin.

The heart conduction system is a group of specialized cardiac muscle cells that generate and conduct electrical impulses to coordinate the contraction of the heart chambers. The main components of the heart conduction system include:

1. Sinoatrial (SA) node: Also known as the sinus node, it is located in the right atrium near the entrance of the superior vena cava and functions as the primary pacemaker of the heart. It sets the heart rate by generating electrical impulses at regular intervals.
2. Atrioventricular (AV) node: Located in the interatrial septum, near the opening of the coronary sinus, it serves as a relay station for electrical signals between the atria and ventricles. The AV node delays the transmission of impulses to allow the atria to contract before the ventricles.
3. Bundle of His: A bundle of specialized cardiac muscle fibers that conducts electrical impulses from the AV node to the ventricles. It divides into two main branches, the right and left bundle branches, which further divide into smaller Purkinje fibers.
4. Right and left bundle branches: These are extensions of the Bundle of His that transmit electrical impulses to the respective right and left ventricular myocardium. They consist of specialized conducting tissue with large diameters and minimal resistance, allowing for rapid conduction of electrical signals.
5. Purkinje fibers: Fine, branching fibers that arise from the bundle branches and spread throughout the ventricular myocardium. They are responsible for transmitting electrical impulses to the working cardiac muscle cells, triggering coordinated ventricular contraction.

In summary, the heart conduction system is a complex network of specialized muscle cells responsible for generating and conducting electrical signals that coordinate the contraction of the atria and ventricles, ensuring efficient blood flow throughout the body.

Noonan Syndrome is a genetic disorder that affects various parts of the body and is characterized by distinctive facial features, short stature, heart defects, and developmental delays. It is caused by mutations in genes responsible for regulating cell growth and division. The syndrome is often identified at birth or in early childhood due to its physical manifestations, which may include widely spaced eyes, low-set ears, a short neck, a broad or webbed neck, chest deformities, and pulmonary valve stenosis. Noonan Syndrome affects both sexes and all races equally, with an estimated prevalence of 1 in 1,000 to 1 in 2,500 live births.

Beta-1 adrenergic receptors (also known as β1-adrenergic receptors) are a type of G protein-coupled receptor found in the cell membrane. They are activated by the catecholamines, particularly noradrenaline (norepinephrine) and adrenaline (epinephrine), which are released by the sympathetic nervous system as part of the "fight or flight" response.

When a catecholamine binds to a β1-adrenergic receptor, it triggers a series of intracellular signaling events that ultimately lead to an increase in the rate and force of heart contractions, as well as an increase in renin secretion from the kidneys. These effects help to prepare the body for physical activity by increasing blood flow to the muscles and improving the efficiency of the cardiovascular system.

In addition to their role in the regulation of cardiovascular function, β1-adrenergic receptors have been implicated in a variety of physiological processes, including lipolysis (the breakdown of fat), glucose metabolism, and the regulation of mood and cognition.

Dysregulation of β1-adrenergic receptor signaling has been linked to several pathological conditions, including heart failure, hypertension, and anxiety disorders. As a result, β1-adrenergic receptors are an important target for the development of therapeutics used in the treatment of these conditions.

Desmosomes are specialized intercellular junctions that provide strong adhesion between adjacent epithelial cells and help maintain the structural integrity and stability of tissues. They are composed of several proteins, including desmoplakin, plakoglobin, and cadherins, which form complex structures that anchor intermediate filaments (such as keratin) to the cell membrane. This creates a network of interconnected cells that can withstand mechanical stresses. Desmosomes are particularly abundant in tissues subjected to high levels of tension, such as the skin and heart.

Ventricular pressure refers to the pressure within the ventricles, which are the lower chambers of the heart. In the left ventricle, the pressure measures the force that the blood exerts on the walls as it is pumped out to the rest of the body. In the right ventricle, the pressure measures the force of the blood being pumped into the pulmonary artery and ultimately to the lungs for oxygenation.

Normally, the left ventricular pressure ranges from 8-12 mmHg at rest when the heart is relaxed (diastolic pressure) and can increase up to 120-140 mmHg during contraction (systolic pressure). The right ventricular pressure is lower than the left, with a normal diastolic pressure of 0-6 mmHg and a systolic pressure ranging from 15-30 mmHg.

Abnormal ventricular pressures can indicate various heart conditions, such as heart failure, hypertension, or valvular heart disease. Regular monitoring of ventricular pressure is essential in managing these conditions and ensuring proper heart function.

Muscle proteins are a type of protein that are found in muscle tissue and are responsible for providing structure, strength, and functionality to muscles. The two major types of muscle proteins are:

1. Contractile proteins: These include actin and myosin, which are responsible for the contraction and relaxation of muscles. They work together to cause muscle movement by sliding along each other and shortening the muscle fibers.
2. Structural proteins: These include titin, nebulin, and desmin, which provide structural support and stability to muscle fibers. Titin is the largest protein in the human body and acts as a molecular spring that helps maintain the integrity of the sarcomere (the basic unit of muscle contraction). Nebulin helps regulate the length of the sarcomere, while desmin forms a network of filaments that connects adjacent muscle fibers together.

Overall, muscle proteins play a critical role in maintaining muscle health and function, and their dysregulation can lead to various muscle-related disorders such as muscular dystrophy, myopathies, and sarcopenia.

Carbazoles are aromatic organic compounds that consist of a tricyclic structure with two benzene rings fused to a five-membered ring containing two nitrogen atoms. The chemical formula for carbazole is C12H9N. Carbazoles are found in various natural sources, including coal tar and certain plants. They also have various industrial applications, such as in the production of dyes, pigments, and pharmaceuticals. In a medical context, carbazoles are not typically referred to as a single entity but rather as a class of compounds with potential therapeutic activity. Some carbazole derivatives have been studied for their anti-cancer, anti-inflammatory, and anti-microbial properties.

An exercise test, also known as a stress test or an exercise stress test, is a medical procedure used to evaluate the heart's function and response to physical exertion. It typically involves walking on a treadmill or pedaling a stationary bike while being monitored for changes in heart rate, blood pressure, electrocardiogram (ECG), and sometimes other variables such as oxygen consumption or gas exchange.

During the test, the patient's symptoms, such as chest pain or shortness of breath, are also closely monitored. The exercise test can help diagnose coronary artery disease, assess the severity of heart-related symptoms, and evaluate the effectiveness of treatments for heart conditions. It may also be used to determine a person's safe level of physical activity and fitness.

There are different types of exercise tests, including treadmill stress testing, stationary bike stress testing, nuclear stress testing, and stress echocardiography. The specific type of test used depends on the patient's medical history, symptoms, and overall health status.

Dobutamine is a synthetic catecholamine used in medical treatment, specifically as a positive inotrope and vasodilator. It works by stimulating the beta-1 adrenergic receptors of the heart, thereby increasing its contractility and stroke volume. This results in an improved cardiac output, making dobutamine beneficial in treating heart failure, cardiogenic shock, and other conditions where heart function is compromised.

It's important to note that dobutamine should be administered under strict medical supervision due to its potential to cause adverse effects such as arrhythmias, hypotension, or hypertension. The dosage, frequency, and duration of administration are determined by the patient's specific condition and response to treatment.

Ventricular Premature Complexes (VPCs), also known as Ventricular Extrasystoles or Premature Ventricular Contractions (PVCs), are extra heartbeats that originate in the ventricles, the lower chambers of the heart. These premature beats disrupt the normal sequence of electrical impulses in the heart and cause the ventricles to contract earlier than they should.

VPCs can result in a noticeable "skipped" or "extra" beat sensation, often followed by a stronger beat as the heart returns to its regular rhythm. They may occur occasionally in healthy individuals with no underlying heart condition, but frequent VPCs could indicate an underlying issue such as heart disease, electrolyte imbalance, or digitalis toxicity. In some cases, VPCs can be harmless and require no treatment; however, if they are frequent or associated with structural heart problems, further evaluation and management may be necessary to prevent potential complications like reduced cardiac output or heart failure.

Cardiac output is a measure of the amount of blood that the heart pumps in one minute. It is calculated by multiplying the stroke volume (the amount of blood pumped by the left ventricle during each contraction) by the heart rate (the number of times the heart beats per minute). Low cardiac output refers to a condition in which the heart is not able to pump enough blood to meet the body's needs. This can occur due to various reasons such as heart failure, heart attack, or any other conditions that weaken the heart muscle. Symptoms of low cardiac output may include fatigue, shortness of breath, and decreased mental status. Treatment for low cardiac output depends on the underlying cause and may include medications, surgery, or medical devices to help support heart function.

A fatal outcome is a term used in medical context to describe a situation where a disease, injury, or illness results in the death of an individual. It is the most severe and unfortunate possible outcome of any medical condition, and is often used as a measure of the severity and prognosis of various diseases and injuries. In clinical trials and research, fatal outcome may be used as an endpoint to evaluate the effectiveness and safety of different treatments or interventions.

Heart rate is the number of heartbeats per unit of time, often expressed as beats per minute (bpm). It can vary significantly depending on factors such as age, physical fitness, emotions, and overall health status. A resting heart rate between 60-100 bpm is generally considered normal for adults, but athletes and individuals with high levels of physical fitness may have a resting heart rate below 60 bpm due to their enhanced cardiovascular efficiency. Monitoring heart rate can provide valuable insights into an individual's health status, exercise intensity, and response to various treatments or interventions.

A heterozygote is an individual who has inherited two different alleles (versions) of a particular gene, one from each parent. This means that the individual's genotype for that gene contains both a dominant and a recessive allele. The dominant allele will be expressed phenotypically (outwardly visible), while the recessive allele may or may not have any effect on the individual's observable traits, depending on the specific gene and its function. Heterozygotes are often represented as 'Aa', where 'A' is the dominant allele and 'a' is the recessive allele.

Doxorubicin is a type of chemotherapy medication known as an anthracycline. It works by interfering with the DNA in cancer cells, which prevents them from growing and multiplying. Doxorubicin is used to treat a wide variety of cancers, including leukemia, lymphoma, breast cancer, lung cancer, ovarian cancer, and many others. It may be given alone or in combination with other chemotherapy drugs.

Doxorubicin is usually administered through a vein (intravenously) and can cause side effects such as nausea, vomiting, hair loss, mouth sores, and increased risk of infection. It can also cause damage to the heart muscle, which can lead to heart failure in some cases. For this reason, doctors may monitor patients' heart function closely while they are receiving doxorubicin treatment.

It is important for patients to discuss the potential risks and benefits of doxorubicin therapy with their healthcare provider before starting treatment.

I couldn't find a medical definition specifically for "Diabetes Mellitus, Experimental." However, I can provide you with information about experimental diabetes research and its relevance to understanding the disease.

Experimental diabetes models are used in biomedical research to study the pathophysiology of diabetes mellitus and to test potential therapies or treatments. These models can be broadly categorized into two types: chemically-induced and genetically modified.

1. Chemically-induced diabetes models: These involve administering chemicals, such as alloxan or streptozotocin, to animals (commonly mice or rats) to destroy their pancreatic β-cells, which produce insulin. This results in hyperglycemia and symptoms similar to those seen in type 1 diabetes in humans.
2. Genetically modified diabetes models: These involve altering the genes of animals (commonly mice) to create a diabetes phenotype. Examples include non-obese diabetic (NOD) mice, which develop an autoimmune form of diabetes similar to human type 1 diabetes, and various strains of obese mice with insulin resistance, such as ob/ob or db/db mice, which model aspects of type 2 diabetes.

These experimental models help researchers better understand the mechanisms behind diabetes development and progression, identify new therapeutic targets, and test potential treatments before moving on to human clinical trials. However, it's essential to recognize that these models may not fully replicate all aspects of human diabetes, so findings from animal studies should be interpreted with caution.

Friedreich Ataxia is a genetic disorder that affects the nervous system and causes issues with movement. It is characterized by progressive damage to the nerves (neurons) in the spinal cord and peripheral nerves, which can lead to problems with muscle coordination, gait, speech, and hearing. The condition is also associated with heart disorders, diabetes, and vision impairment.

Friedreich Ataxia is caused by a mutation in the FXN gene, which provides instructions for making a protein called frataxin. This protein plays a role in the production of energy within cells, particularly in the mitochondria. The mutation in the FXN gene leads to reduced levels of frataxin, which can cause nerve damage and other symptoms associated with Friedreich Ataxia.

The condition typically begins in childhood or early adulthood and progresses over time, often leading to significant disability. There is currently no cure for Friedreich Ataxia, but treatments are available to help manage the symptoms and improve quality of life.

Muscular dystrophies are a group of genetic disorders that primarily affect skeletal muscles, causing progressive weakness and degeneration. They are characterized by the lack or deficiency of a protein called dystrophin, which is essential for maintaining the integrity of muscle fibers. The most common form is Duchenne muscular dystrophy (DMD), but there are many other types with varying symptoms and severity. Over time, muscle wasting and weakness can lead to disability and shortened lifespan, depending on the type and progression of the disease. Treatment typically focuses on managing symptoms, maintaining mobility, and supporting quality of life.

Cardiovascular agents are a class of medications that are used to treat various conditions related to the cardiovascular system, which includes the heart and blood vessels. These agents can be further divided into several subcategories based on their specific mechanisms of action and therapeutic effects. Here are some examples:

1. Antiarrhythmics: These drugs are used to treat abnormal heart rhythms or arrhythmias. They work by stabilizing the electrical activity of the heart and preventing irregular impulses from spreading through the heart muscle.
2. Antihypertensives: These medications are used to lower high blood pressure, also known as hypertension. There are several classes of antihypertensive drugs, including diuretics, beta-blockers, calcium channel blockers, and angiotensin-converting enzyme (ACE) inhibitors.
3. Anticoagulants: These drugs are used to prevent blood clots from forming or growing larger. They work by interfering with the coagulation cascade, which is a series of chemical reactions that lead to the formation of a blood clot.
4. Antiplatelet agents: These medications are used to prevent platelets in the blood from sticking together and forming clots. They work by inhibiting the aggregation of platelets, which are small cells in the blood that help form clots.
5. Lipid-lowering agents: These drugs are used to lower cholesterol and other fats in the blood. They work by reducing the production or absorption of cholesterol in the body or increasing the removal of cholesterol from the bloodstream. Examples include statins, bile acid sequestrants, and PCSK9 inhibitors.
6. Vasodilators: These medications are used to widen blood vessels and improve blood flow. They work by relaxing the smooth muscle in the walls of blood vessels, causing them to dilate or widen. Examples include nitrates, calcium channel blockers, and ACE inhibitors.
7. Inotropes: These drugs are used to increase the force of heart contractions. They work by increasing the sensitivity of heart muscle cells to calcium ions, which are necessary for muscle contraction.

These are just a few examples of cardiovascular medications that are used to treat various conditions related to the heart and blood vessels. It is important to note that these medications can have side effects and should be taken under the guidance of a healthcare provider.

The ventricular septum is the thick, muscular wall that separates the left and right ventricles, which are the lower chambers of the heart. Its main function is to prevent the oxygen-rich blood in the left ventricle from mixing with the oxygen-poor blood in the right ventricle.

A congenital heart defect called a ventricular septal defect (VSD) can occur when there is an abnormal opening or hole in the ventricular septum, allowing blood to flow between the two ventricles. This can result in various symptoms and complications, depending on the size of the defect and the amount of blood that passes through it. VSDs are typically diagnosed and treated by pediatric cardiologists or cardiac surgeons.

Penetrance, in medical genetics, refers to the proportion of individuals with a particular genetic variant or mutation who exhibit clinical features or symptoms of a resulting disease. It is often expressed as a percentage, with complete penetrance indicating that all individuals with the genetic change will develop the disease, and reduced or incomplete penetrance suggesting that not all individuals with the genetic change will necessarily develop the disease, even if they express some of its characteristics.

Penetrance can vary depending on various factors such as age, sex, environmental influences, and interactions with other genes. Incomplete penetrance is common in many genetic disorders, making it challenging to predict who will develop symptoms based solely on their genotype.

Radionuclide ventriculography (RVG), also known as multiple-gated acquisition scan (MUGA) or nuclear ventriculography, is a non-invasive diagnostic test used to evaluate the function and pumping efficiency of the heart's lower chambers (ventricles). The test involves the use of radioactive tracers (radionuclides) that are injected into the patient's bloodstream. A specialized camera then captures images of the distribution of the radionuclide within the heart, which allows for the measurement of ventricular volumes and ejection fraction (EF), an important indicator of cardiac function.

During the test, the patient lies on a table while the camera takes pictures of their heart as it beats. The images are captured in "gates" or intervals, corresponding to different phases of the cardiac cycle. This allows for the calculation of ventricular volumes and EF at each phase of the cycle, providing detailed information about the heart's pumping ability.

RVG is commonly used to assess patients with known or suspected heart disease, including those who have had a heart attack, heart failure, valvular heart disease, or cardiomyopathy. It can also be used to monitor the effectiveness of treatment and to evaluate changes in cardiac function over time.

Amyloidosis is a medical condition characterized by the abnormal accumulation of insoluble proteins called amyloid in various tissues and organs throughout the body. These misfolded protein deposits can disrupt the normal function of affected organs, leading to a range of symptoms depending on the location and extent of the amyloid deposition.

There are different types of amyloidosis, classified based on the specific proteins involved:

1. Primary (AL) Amyloidosis: This is the most common form, accounting for around 80% of cases. It results from the overproduction and misfolding of immunoglobulin light chains, typically by clonal plasma cells in the bone marrow. The amyloid deposits can affect various organs, including the heart, kidneys, liver, and nervous system.
2. Secondary (AA) Amyloidosis: This form is associated with chronic inflammatory diseases, such as rheumatoid arthritis, tuberculosis, or familial Mediterranean fever. The amyloid fibrils are composed of serum amyloid A protein (SAA), an acute-phase reactant produced during the inflammatory response. The kidneys are commonly affected in this type of amyloidosis.
3. Hereditary or Familial Amyloidosis: These forms are caused by genetic mutations that result in the production of abnormal proteins prone to misfolding and amyloid formation. Examples include transthyretin (TTR) amyloidosis, fibrinogen amyloidosis, and apolipoprotein AI amyloidosis. These forms can affect various organs, including the heart, nerves, and kidneys.
4. Dialysis-Related Amyloidosis: This form is seen in patients undergoing long-term dialysis for chronic kidney disease. The amyloid fibrils are composed of beta-2 microglobulin, a protein that accumulates due to impaired clearance during dialysis. The joints and bones are commonly affected in this type of amyloidosis.

The diagnosis of amyloidosis typically involves a combination of clinical evaluation, imaging studies, and tissue biopsy with the demonstration of amyloid deposition using special stains (e.g., Congo red). Treatment depends on the specific type and extent of organ involvement and may include supportive care, medications to target the underlying cause (e.g., chemotherapy, immunomodulatory agents), and organ transplantation in some cases.

Mitochondrial myopathies are a group of genetic disorders caused by mutations in the mitochondrial DNA or nuclear DNA that affect the function of the mitochondria, which are the energy-producing structures in cells. These mutations can result in impaired muscle function and other symptoms, depending on the specific type and severity of the disorder.

Mitochondrial myopathies can present at any age and can cause a range of symptoms, including muscle weakness, exercise intolerance, fatigue, muscle pain, and difficulty with coordination and balance. Some people with mitochondrial myopathies may also experience neurological symptoms such as seizures, developmental delays, and hearing or vision loss.

The diagnosis of mitochondrial myopathies typically involves a combination of clinical evaluation, muscle biopsy, genetic testing, and other diagnostic tests to assess mitochondrial function. Treatment is generally supportive and may include physical therapy, medications to manage symptoms, and nutritional support. In some cases, specific therapies such as vitamin or coenzyme Q10 supplementation may be recommended based on the underlying genetic defect.

Sarcoplasmic Reticulum Calcium-Transporting ATPases (SERCA) are a type of calcium pumps that are located in the sarcoplasmic reticulum (SR) of muscle cells. They play a crucial role in excitation-contraction coupling, which is the process by which muscles contract and relax.

During muscle contraction, calcium ions (Ca2+) are released from the SR into the cytosol, triggering muscle fiber contraction. After the muscle fiber has contracted, Ca2+ must be actively transported back into the SR to allow the muscle fiber to relax. This is where SERCA comes in.

SERCA uses energy from ATP hydrolysis to transport Ca2+ against its concentration gradient from the cytosol back into the lumen of the SR. By doing so, it helps maintain low cytosolic Ca2+ concentrations and high SR Ca2+ concentrations, which are necessary for muscle relaxation and subsequent contraction.

There are several isoforms of SERCA, each with slightly different properties and tissue distributions. For example, SERCA1 is primarily found in fast-twitch skeletal muscle fibers, while SERCA2a is found in both slow-twitch and fast-twitch skeletal muscle fibers as well as cardiac muscle. Mutations in the genes encoding these pumps can lead to various muscle disorders, including certain forms of muscular dystrophy and heart failure.

Antibiotics are a type of medication used to treat infections caused by bacteria. They work by either killing the bacteria or inhibiting their growth.

Antineoplastics, also known as chemotherapeutic agents, are a class of drugs used to treat cancer. These medications target and destroy rapidly dividing cells, such as cancer cells, although they can also affect other quickly dividing cells in the body, such as those in the hair follicles or digestive tract, which can lead to side effects.

Antibiotics and antineoplastics are two different classes of drugs with distinct mechanisms of action and uses. It is important to use them appropriately and under the guidance of a healthcare professional.

Disease progression is the worsening or advancement of a medical condition over time. It refers to the natural course of a disease, including its development, the severity of symptoms and complications, and the impact on the patient's overall health and quality of life. Understanding disease progression is important for developing appropriate treatment plans, monitoring response to therapy, and predicting outcomes.

The rate of disease progression can vary widely depending on the type of medical condition, individual patient factors, and the effectiveness of treatment. Some diseases may progress rapidly over a short period of time, while others may progress more slowly over many years. In some cases, disease progression may be slowed or even halted with appropriate medical interventions, while in other cases, the progression may be inevitable and irreversible.

In clinical practice, healthcare providers closely monitor disease progression through regular assessments, imaging studies, and laboratory tests. This information is used to guide treatment decisions and adjust care plans as needed to optimize patient outcomes and improve quality of life.

Ventricular Fibrillation (VF) is a type of cardiac arrhythmia, which is an abnormal heart rhythm. In VF, the ventricles, which are the lower chambers of the heart, beat in a rapid and unorganized manner. This results in the heart being unable to pump blood effectively to the rest of the body, leading to immediate circulatory collapse and cardiac arrest if not treated promptly. It is often caused by underlying heart conditions such as coronary artery disease, structural heart problems, or electrolyte imbalances. VF is a medical emergency that requires immediate defibrillation to restore a normal heart rhythm.

A heart aneurysm, also known as a ventricular aneurysm, is a localized bulging or ballooning of the heart muscle in the left ventricle, which is the main pumping chamber of the heart. This condition typically occurs following a myocardial infarction (heart attack), where blood flow to a portion of the heart muscle is blocked, leading to tissue death and weakness in the heart wall. As a result, the weakened area may stretch and form a sac-like bulge or aneurysm.

Heart aneurysms can vary in size and may cause complications such as blood clots, arrhythmias (irregular heartbeats), or heart failure. In some cases, they may be asymptomatic and discovered during routine imaging tests. The diagnosis of a heart aneurysm is typically made through echocardiography, cardiac MRI, or cardiac CT scans. Treatment options depend on the size, location, and symptoms of the aneurysm and may include medications, surgical repair, or implantation of a device to support heart function.

Atrial natriuretic factor (ANF), also known as atrial natriuretic peptide (ANP), is a hormone that is primarily produced and secreted by the atria of the heart in response to stretching of the cardiac muscle cells due to increased blood volume. ANF plays a crucial role in regulating body fluid homeostasis, blood pressure, and cardiovascular function.

The main physiological action of ANF is to promote sodium and water excretion by the kidneys, which helps lower blood volume and reduce blood pressure. ANF also relaxes vascular smooth muscle, dilates blood vessels, and inhibits the renin-angiotensin-aldosterone system (RAAS), further contributing to its blood pressure-lowering effects.

Defects in ANF production or action have been implicated in several cardiovascular disorders, including heart failure, hypertension, and kidney disease. Therefore, ANF and its analogs are being investigated as potential therapeutic agents for the treatment of these conditions.

I'm sorry for any confusion, but "Sports" is not a medical term. It refers to physical activities that are governed by a set of rules and often engaged in competitively. However, there are fields such as Sports Medicine and Exercise Science that deal with various aspects of physical activity, fitness, and sports-related injuries or conditions. If you have any questions related to these areas, I'd be happy to try to help!

Anti-arrhythmia agents are a class of medications used to treat abnormal heart rhythms or arrhythmias. These drugs work by modifying the electrical activity of the heart to restore and maintain a normal heart rhythm. There are several types of anti-arrhythmia agents, including:

1. Sodium channel blockers: These drugs slow down the conduction of electrical signals in the heart, which helps to reduce rapid or irregular heartbeats. Examples include flecainide, propafenone, and quinidine.
2. Beta-blockers: These medications work by blocking the effects of adrenaline on the heart, which helps to slow down the heart rate and reduce the force of heart contractions. Examples include metoprolol, atenolol, and esmolol.
3. Calcium channel blockers: These drugs block the entry of calcium into heart muscle cells, which helps to slow down the heart rate and reduce the force of heart contractions. Examples include verapamil and diltiazem.
4. Potassium channel blockers: These medications work by prolonging the duration of the heart's electrical cycle, which helps to prevent abnormal rhythms. Examples include amiodarone and sotalol.
5. Digoxin: This drug increases the force of heart contractions and slows down the heart rate, which can help to restore a normal rhythm in certain types of arrhythmias.

It's important to note that anti-arrhythmia agents can have significant side effects and should only be prescribed by a healthcare professional who has experience in managing arrhythmias. Close monitoring is necessary to ensure the medication is working effectively and not causing any adverse effects.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Trypanosoma cruzi is a protozoan parasite that causes Chagas disease, also known as American trypanosomiasis. It's transmitted to humans and other mammals through the feces of triatomine bugs, often called "kissing bugs." The parasite can also be spread through contaminated food, drink, or from mother to baby during pregnancy or birth.

The life cycle of Trypanosoma cruzi involves two main forms: the infective metacyclic trypomastigote that is found in the bug's feces and the replicative intracellular amastigote that resides within host cells. The metacyclic trypomastigotes enter the host through mucous membranes or skin lesions, where they invade various types of cells and differentiate into amastigotes. These amastigotes multiply by binary fission and then differentiate back into trypomastigotes, which are released into the bloodstream when the host cell ruptures. The circulating trypomastigotes can then infect other cells or be taken up by another triatomine bug during a blood meal, continuing the life cycle.

Clinical manifestations of Chagas disease range from an acute phase with non-specific symptoms like fever, swelling, and fatigue to a chronic phase characterized by cardiac and gastrointestinal complications, which can develop decades after the initial infection. Early detection and treatment of Chagas disease are crucial for preventing long-term health consequences.

Enterovirus B, Human (HEVB) is a type of enterovirus that infects humans. Enteroviruses are small viruses that belong to the Picornaviridae family and are named after the Greek word "pico" meaning small. They are further classified into several species, including Human Enterovirus B (HEV-B).

HEVB includes several serotypes, such as Coxsackievirus A9, A16, and B types, and Echoviruses. These viruses are typically transmitted through the fecal-oral route or respiratory droplets and can cause a range of illnesses, from mild symptoms like fever, rash, and sore throat to more severe diseases such as meningitis, myocarditis, and paralysis.

HEVB infections are common worldwide, and people of all ages can be affected. However, young children and individuals with weakened immune systems are at higher risk for severe illness. Prevention measures include good hygiene practices, such as washing hands frequently and avoiding close contact with sick individuals. There is no specific treatment for HEVB infections, and most cases resolve on their own within a few days to a week. However, hospitalization may be necessary for severe cases.

Gadolinium DTPA (Diethylenetriaminepentaacetic acid) is a type of gadolinium-based contrast agent (GBCA) used in medical imaging, particularly magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA). It functions as a paramagnetic substance that enhances the visibility of internal body structures during these imaging techniques.

The compound Gadolinium DTPA is formed when gadolinium ions are bound to diethylenetriaminepentaacetic acid, a chelating agent. This binding helps to make the gadolinium ion safer for use in medical imaging by reducing its toxicity and improving its stability in the body.

Gadolinium DTPA is eliminated from the body primarily through the kidneys, making it important to monitor renal function before administering this contrast agent. In some cases, Gadolinium DTPA may cause adverse reactions, including allergic-like responses and nephrogenic systemic fibrosis (NSF) in patients with impaired kidney function.

Barth syndrome is a rare X-linked genetic disorder that primarily affects boys. It is caused by mutations in the TAFazzin (TAZ) gene, which provides instructions for making a protein involved in the formation of energy-producing structures called mitochondria within cells.

The main features of Barth syndrome include:
1. Cardiomyopathy: Weakened heart muscle (cardiomyopathy) that can lead to heart failure and life-threatening arrhythmias.
2. Neutropenia: Low levels of white blood cells called neutrophils, which increases the risk of recurrent infections.
3. Skeletal muscle weakness: Weakness and wasting of skeletal muscles, leading to decreased exercise tolerance and mobility issues.
4. Growth delay: Slowed growth and development during childhood.
5. Fatigue: Persistent fatigue and reduced endurance.
6. Arrhythmias: Irregular heart rhythms.
7. Low levels of carnitine, a nutrient that helps transport fatty acids into mitochondria for energy production.

Treatment for Barth syndrome is primarily supportive and focuses on addressing the specific symptoms and complications present in each individual case. This may include medications to manage heart function, antibiotics to treat infections, physical therapy to improve muscle strength and mobility, and dietary supplements like carnitine. Regular monitoring by a multidisciplinary team of healthcare professionals is essential for managing the condition effectively.

Atrioventricular (AV) block is a disorder of the electrical conduction system of the heart that causes a delay or interruption in the transmission of electrical signals from the atria (the upper chambers of the heart) to the ventricles (the lower chambers of the heart). This results in an abnormal heart rhythm, also known as an arrhythmia.

There are three degrees of AV block:

1. First-degree AV block: In this type of AV block, there is a delay in the conduction of electrical signals from the atria to the ventricles, but all signals are eventually conducted. This condition may not cause any symptoms and is often discovered during a routine electrocardiogram (ECG).
2. Second-degree AV block: In this type of AV block, some electrical signals from the atria are not conducted to the ventricles. There are two types of second-degree AV block: Mobitz type I and Mobitz type II. Mobitz type I is characterized by a progressive prolongation of the PR interval (the time between the electrical activation of the atria and ventricles) until a QRS complex (which represents the electrical activation of the ventricles) is dropped. Mobitz type II is characterized by a constant PR interval with occasional non-conducted P waves.
3. Third-degree AV block: In this type of AV block, no electrical signals are conducted from the atria to the ventricles. The atria and ventricles beat independently of each other, resulting in a slow heart rate (bradycardia) and an irregular rhythm. This condition can be life-threatening if not treated promptly.

The causes of AV block include aging, heart disease, medications, and certain medical conditions such as hypothyroidism and Lyme disease. Treatment depends on the severity of the condition and may include medication, a pacemaker, or surgery.

An enterovirus is a type of virus that primarily infects the gastrointestinal tract. There are over 100 different types of enteroviruses, including polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses such as EV-D68 and EV-A71. These viruses are typically spread through close contact with an infected person, or by consuming food or water contaminated with the virus.

While many people infected with enteroviruses may not experience any symptoms, some may develop mild to severe illnesses such as hand, foot and mouth disease, herpangina, meningitis, encephalitis, myocarditis, and paralysis (in case of poliovirus). Infection can occur in people of all ages, but young children are more susceptible to infection and severe illness.

Prevention measures include practicing good hygiene, such as washing hands frequently with soap and water, avoiding close contact with sick individuals, and not sharing food or drinks with someone who is ill. There are also vaccines available to prevent poliovirus infection.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Contrast media are substances that are administered to a patient in order to improve the visibility of internal body structures or processes in medical imaging techniques such as X-rays, CT scans, MRI scans, and ultrasounds. These media can be introduced into the body through various routes, including oral, rectal, or intravenous administration.

Contrast media work by altering the appearance of bodily structures in imaging studies. For example, when a patient undergoes an X-ray examination, contrast media can be used to highlight specific organs, tissues, or blood vessels, making them more visible on the resulting images. In CT and MRI scans, contrast media can help to enhance the differences between normal and abnormal tissues, allowing for more accurate diagnosis and treatment planning.

There are several types of contrast media available, each with its own specific properties and uses. Some common examples include barium sulfate, which is used as a contrast medium in X-ray studies of the gastrointestinal tract, and iodinated contrast media, which are commonly used in CT scans to highlight blood vessels and other structures.

While contrast media are generally considered safe, they can sometimes cause adverse reactions, ranging from mild symptoms such as nausea or hives to more serious complications such as anaphylaxis or kidney damage. As a result, it is important for healthcare providers to carefully evaluate each patient's medical history and individual risk factors before administering contrast media.

Papillary muscles are specialized muscle structures located in the heart, specifically in the ventricles (the lower chambers of the heart). They are attached to the tricuspid and mitral valves' leaflets via tendinous cords, also known as chordae tendineae. The main function of papillary muscles is to prevent the backflow of blood during contraction by providing tension to the valve leaflets through these tendinous cords.

There are two sets of papillary muscles in the heart:

1. Anterior and posterior papillary muscles in the left ventricle, which are attached to the mitral (bicuspid) valve.
2. Three smaller papillary muscles in the right ventricle, which are attached to the tricuspid valve.

These muscle structures play a crucial role in maintaining proper blood flow through the heart and ensuring efficient cardiac function.

Coronary angiography is a medical procedure that uses X-ray imaging to visualize the coronary arteries, which supply blood to the heart muscle. During the procedure, a thin, flexible catheter is inserted into an artery in the arm or groin and threaded through the blood vessels to the heart. A contrast dye is then injected through the catheter, and X-ray images are taken as the dye flows through the coronary arteries. These images can help doctors diagnose and treat various heart conditions, such as blockages or narrowing of the arteries, that can lead to chest pain or heart attacks. It is also known as coronary arteriography or cardiac catheterization.

Body Surface Potential Mapping (BSPM) is a non-invasive medical technique used to record and analyze the electrical activity of the heart from the surface of the body. It involves placing multiple electrodes on the skin of the chest, back, and limbs to measure the potential differences between these points during each heartbeat. This information is then used to create a detailed, visual representation of the electrical activation pattern of the heart, which can help in the diagnosis and evaluation of various cardiac disorders such as arrhythmias, myocardial infarction, and ventricular hypertrophy.

The BSPM technique provides high-resolution spatial and temporal information about the cardiac electrical activity, making it a valuable tool for both clinical and research purposes. It can help identify the origin and spread of abnormal electrical signals in the heart, which is crucial for determining appropriate treatment strategies. Overall, Body Surface Potential Mapping is an important diagnostic modality that offers unique insights into the electrical functioning of the heart.

Survival analysis is a branch of statistics that deals with the analysis of time to event data. It is used to estimate the time it takes for a certain event of interest to occur, such as death, disease recurrence, or treatment failure. The event of interest is called the "failure" event, and survival analysis estimates the probability of not experiencing the failure event until a certain point in time, also known as the "survival" probability.

Survival analysis can provide important information about the effectiveness of treatments, the prognosis of patients, and the identification of risk factors associated with the event of interest. It can handle censored data, which is common in medical research where some participants may drop out or be lost to follow-up before the event of interest occurs.

Survival analysis typically involves estimating the survival function, which describes the probability of surviving beyond a certain time point, as well as hazard functions, which describe the instantaneous rate of failure at a given time point. Other important concepts in survival analysis include median survival times, restricted mean survival times, and various statistical tests to compare survival curves between groups.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Phonocardiography is a non-invasive medical procedure that involves the graphical representation and analysis of sounds produced by the heart. It uses a device called a phonocardiograph to record these sounds, which are then displayed as waveforms on a screen. The procedure is often used in conjunction with other diagnostic techniques, such as electrocardiography (ECG), to help diagnose various heart conditions, including valvular heart disease and heart murmurs.

During the procedure, a specialized microphone called a phonendoscope is placed on the chest wall over the area of the heart. The microphone picks up the sounds generated by the heart's movements, such as the closing and opening of the heart valves, and transmits them to the phonocardiograph. The phonocardiograph then converts these sounds into a visual representation, which can be analyzed for any abnormalities or irregularities in the heart's function.

Phonocardiography is a valuable tool for healthcare professionals, as it can provide important insights into the health and functioning of the heart. By analyzing the waveforms produced during phonocardiography, doctors can identify any potential issues with the heart's valves or other structures, which may require further investigation or treatment. Overall, phonocardiography is an essential component of modern cardiac diagnostics, helping to ensure that patients receive accurate and timely diagnoses for their heart conditions.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Muscular diseases, also known as myopathies, refer to a group of conditions that affect the functionality and health of muscle tissue. These diseases can be inherited or acquired and may result from inflammation, infection, injury, or degenerative processes. They can cause symptoms such as weakness, stiffness, cramping, spasms, wasting, and loss of muscle function.

Examples of muscular diseases include:

1. Duchenne Muscular Dystrophy (DMD): A genetic disorder that results in progressive muscle weakness and degeneration due to a lack of dystrophin protein.
2. Myasthenia Gravis: An autoimmune disease that causes muscle weakness and fatigue, typically affecting the eyes and face, throat, and limbs.
3. Inclusion Body Myositis (IBM): A progressive muscle disorder characterized by muscle inflammation and wasting, typically affecting older adults.
4. Polymyositis: An inflammatory myopathy that causes muscle weakness and inflammation throughout the body.
5. Metabolic Myopathies: A group of inherited disorders that affect muscle metabolism, leading to exercise intolerance, muscle weakness, and other symptoms.
6. Muscular Dystonias: Involuntary muscle contractions and spasms that can cause abnormal postures or movements.

It is important to note that muscular diseases can have a significant impact on an individual's quality of life, mobility, and overall health. Proper diagnosis and treatment are crucial for managing symptoms and improving outcomes.

Gated Blood-Pool Imaging (GBPI) is a type of nuclear medicine test that uses radioactive material and a specialized camera to create detailed images of the heart and its function. In this procedure, a small amount of radioactive tracer is injected into the patient's bloodstream, which then accumulates in the heart muscle and the blood pool within the heart chambers.

The term "gated" refers to the use of an electrocardiogram (ECG) signal to synchronize the image acquisition with the heart's contractions. This allows for the visualization of the heart's motion during different phases of the cardiac cycle, providing valuable information about the size, shape, and contraction of the heart chambers, as well as the movement of the walls of the heart.

GBPI is often used to assess patients with known or suspected heart disease, such as valvular abnormalities, cardiomyopathies, or congenital heart defects. It can help diagnose and evaluate the severity of these conditions, guide treatment decisions, and monitor the effectiveness of therapy.

Angiocardiography is a medical procedure used to examine the heart and blood vessels, particularly the chambers of the heart and the valves between them. It involves injecting a contrast agent into the bloodstream and taking X-ray images as the agent flows through the heart. This allows doctors to visualize any abnormalities such as blockages, narrowing, or leakage in the heart valves or blood vessels.

There are different types of angiocardiography, including:

* Left heart catheterization (LHC): A thin tube called a catheter is inserted into a vein in the arm or groin and threaded through to the left side of the heart to measure pressure and oxygen levels.
* Right heart catheterization (RHC): Similar to LHC, but the catheter is threaded through to the right side of the heart to measure pressure and oxygen levels there.
* Selective angiocardiography: A catheter is used to inject the contrast agent into specific blood vessels or chambers of the heart to get a more detailed view.

Angiocardiography can help diagnose and evaluate various heart conditions, including congenital heart defects, coronary artery disease, cardiomyopathy, and valvular heart disease. It is an invasive procedure that carries some risks, such as bleeding, infection, and damage to blood vessels or heart tissue. However, it can provide valuable information for diagnosing and treating heart conditions.

Gamma-catenin, also known as plakoglobin, is a protein that is involved in cell adhesion and the regulation of gene expression. It is a member of the catenin family, which includes beta-catenin and alpha-catenin. Gamma-catenin is found at adherens junctions, where it interacts with cadherins to help maintain cell-cell adhesion. It also plays a role in the Wnt signaling pathway, where it can bind to TCF/LEF transcription factors and regulate the expression of target genes. Mutations in the gene that encodes gamma-catenin have been associated with several types of cancer, including colon cancer and melanoma.

'Mice, Inbred mdx' is a genetic strain of laboratory mice that are widely used as a model to study Duchenne muscular dystrophy (DMD), a severe and progressive muscle-wasting disorder in humans. The 'mdx' designation refers to the specific genetic mutation present in these mice, which is a point mutation in the gene encoding for dystrophin, a crucial protein involved in maintaining the structural integrity of muscle fibers.

Inbred mdx mice carry a spontaneous mutation in exon 23 of the dystrophin gene, resulting in the production of a truncated and nonfunctional form of the protein. This leads to a phenotype that closely resembles DMD in humans, including muscle weakness, degeneration, and fibrosis. The inbred nature of these mice ensures consistent genetic backgrounds and disease manifestations, making them valuable tools for studying the pathophysiology of DMD and testing potential therapies.

It is important to note that while the inbred mdx mouse model has been instrumental in advancing our understanding of DMD, it does not fully recapitulate all aspects of the human disease. Therefore, findings from these mice should be carefully interpreted and validated in more complex models or human studies before translating them into clinical applications.

Gadolinium is a rare earth metal that is used as a contrast agent in medical imaging techniques such as Magnetic Resonance Imaging (MRI) and Magnetic Resonance Angiography (MRA). It works by shortening the relaxation time of protons in tissues, which enhances the visibility of internal body structures on the images. Gadolinium-based contrast agents are injected into the patient's bloodstream during the imaging procedure.

It is important to note that in some individuals, gadolinium-based contrast agents can cause a condition called nephrogenic systemic fibrosis (NSF), which is a rare but serious disorder that affects people with severe kidney disease. NSF causes thickening and hardening of the skin, joints, eyes, and internal organs. Therefore, it is essential to evaluate a patient's renal function before administering gadolinium-based contrast agents.

Right Ventricular Function refers to the ability of the right ventricle (RV) of the heart to receive and eject blood during the cardiac cycle. The right ventricle is one of the four chambers of the heart and is responsible for pumping deoxygenated blood from the body to the lungs for re-oxygenation.

Right ventricular function can be assessed by measuring various parameters such as:

1. Right Ventricular Ejection Fraction (RVEF): It is the percentage of blood that is ejected from the right ventricle during each heartbeat. A normal RVEF ranges from 45-75%.
2. Right Ventricular Systolic Function: It refers to the ability of the right ventricle to contract and eject blood during systole (contraction phase). This can be assessed by measuring the tricuspid annular plane systolic excursion (TAPSE) or tissue Doppler imaging.
3. Right Ventricular Diastolic Function: It refers to the ability of the right ventricle to relax and fill with blood during diastole (relaxation phase). This can be assessed by measuring the right ventricular inflow pattern, tricuspid valve E/A ratio, or deceleration time.
4. Right Ventricular Afterload: It refers to the pressure that the right ventricle must overcome to eject blood into the pulmonary artery. Increased afterload can impair right ventricular function.

Abnormalities in right ventricular function can lead to various cardiovascular conditions such as pulmonary hypertension, heart failure, and arrhythmias.

The heart atria are the upper chambers of the heart that receive blood from the veins and deliver it to the lower chambers, or ventricles. There are two atria in the heart: the right atrium receives oxygen-poor blood from the body and pumps it into the right ventricle, which then sends it to the lungs to be oxygenated; and the left atrium receives oxygen-rich blood from the lungs and pumps it into the left ventricle, which then sends it out to the rest of the body. The atria contract before the ventricles during each heartbeat, helping to fill the ventricles with blood and prepare them for contraction.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

A syndrome, in medical terms, is a set of symptoms that collectively indicate or characterize a disease, disorder, or underlying pathological process. It's essentially a collection of signs and/or symptoms that frequently occur together and can suggest a particular cause or condition, even though the exact physiological mechanisms might not be fully understood.

For example, Down syndrome is characterized by specific physical features, cognitive delays, and other developmental issues resulting from an extra copy of chromosome 21. Similarly, metabolic syndromes like diabetes mellitus type 2 involve a group of risk factors such as obesity, high blood pressure, high blood sugar, and abnormal cholesterol or triglyceride levels that collectively increase the risk of heart disease, stroke, and diabetes.

It's important to note that a syndrome is not a specific diagnosis; rather, it's a pattern of symptoms that can help guide further diagnostic evaluation and management.

Fabry disease is a rare X-linked inherited lysosomal storage disorder caused by mutations in the GLA gene, which encodes the enzyme alpha-galactosidase A. This enzyme deficiency leads to the accumulation of glycosphingolipids, particularly globotriaosylceramide (Gb3 or GL-3), in various tissues and organs throughout the body. The accumulation of these lipids results in progressive damage to multiple organ systems, including the heart, kidneys, nerves, and skin.

The symptoms of Fabry disease can vary widely among affected individuals, but common manifestations include:

1. Pain: Acroparesthesias (burning or tingling sensations) in the hands and feet, episodic pain crises, chronic pain, and neuropathy.
2. Skin: Angiokeratomas (small, red, rough bumps on the skin), hypohidrosis (decreased sweating), and anhydrosis (absent sweating).
3. Gastrointestinal: Abdominal pain, diarrhea, constipation, nausea, and vomiting.
4. Cardiovascular: Left ventricular hypertrophy (enlargement of the heart muscle), cardiomyopathy, ischemic heart disease, arrhythmias, and valvular abnormalities.
5. Renal: Proteinuria (protein in the urine), hematuria (blood in the urine), chronic kidney disease, and end-stage renal disease.
6. Nervous system: Hearing loss, tinnitus, vertigo, stroke, and cognitive decline.
7. Ocular: Corneal opacities, cataracts, and retinal vessel abnormalities.
8. Pulmonary: Chronic cough, bronchial hyperresponsiveness, and restrictive lung disease.
9. Reproductive system: Erectile dysfunction in males and menstrual irregularities in females.

Fabry disease affects both males and females, but the severity of symptoms is generally more pronounced in males due to the X-linked inheritance pattern. Early diagnosis and treatment with enzyme replacement therapy (ERT) or chaperone therapy can help manage the progression of the disease and improve quality of life.

Medical survival rate is a statistical measure used to determine the percentage of patients who are still alive for a specific period of time after their diagnosis or treatment for a certain condition or disease. It is often expressed as a five-year survival rate, which refers to the proportion of people who are alive five years after their diagnosis. Survival rates can be affected by many factors, including the stage of the disease at diagnosis, the patient's age and overall health, the effectiveness of treatment, and other health conditions that the patient may have. It is important to note that survival rates are statistical estimates and do not necessarily predict an individual patient's prognosis.

LEOPARD syndrome is a rare genetic disorder that is characterized by multiple lentigines (freckle-like spots), electrocardiographic abnormalities, ocular hypertelorism (wide-set eyes), pulmonic stenosis (narrowing of the pulmonary valve opening), abnormal genitalia, retardation of growth, and deafness. It is caused by mutations in the PTPN11 gene, which provides instructions for making a protein called SHP-2. This protein plays important roles in signaling pathways that control various cellular functions, such as cell growth and division. The signs and symptoms of LEOPARD syndrome can vary widely among affected individuals, even among members of the same family. Treatment is typically focused on managing the specific features of the condition in each individual.

A chronic disease is a long-term medical condition that often progresses slowly over a period of years and requires ongoing management and care. These diseases are typically not fully curable, but symptoms can be managed to improve quality of life. Common chronic diseases include heart disease, stroke, cancer, diabetes, arthritis, and COPD (chronic obstructive pulmonary disease). They are often associated with advanced age, although they can also affect children and younger adults. Chronic diseases can have significant impacts on individuals' physical, emotional, and social well-being, as well as on healthcare systems and society at large.

Amiodarone is a Class III antiarrhythmic medication used to treat and prevent various types of irregular heart rhythms (arrhythmias). It works by stabilizing the electrical activity of the heart and slowing down the nerve impulses in the heart tissue. Amiodarone is available in oral tablet and injection forms.

The medical definition of 'Amiodarone' is:

A benzofuran derivative with Class III antiarrhythmic properties, used for the treatment of ventricular arrhythmias. It has a relatively slow onset of action and is therefore not useful in acute situations. Additionally, it has negative inotropic effects and may exacerbate heart failure. The most serious adverse effect is pulmonary fibrosis, which occurs in approximately 1-2% of patients. Other important side effects include corneal microdeposits, hepatotoxicity, thyroid dysfunction, and photosensitivity. Amiodarone has a very long half-life (approximately 50 days) due to its extensive tissue distribution. It is metabolized by the liver and excreted in bile and urine.

Sources:

1. UpToDate - Amiodarone use in adults: Indications, dosing, and adverse effects.
2. Micromedex - Amiodarone.
3. Drugs.com - Amiodarone.

Ethanol is the medical term for pure alcohol, which is a colorless, clear, volatile, flammable liquid with a characteristic odor and burning taste. It is the type of alcohol that is found in alcoholic beverages and is produced by the fermentation of sugars by yeasts.

In the medical field, ethanol is used as an antiseptic and disinfectant, and it is also used as a solvent for various medicinal preparations. It has central nervous system depressant properties and is sometimes used as a sedative or to induce sleep. However, excessive consumption of ethanol can lead to alcohol intoxication, which can cause a range of negative health effects, including impaired judgment, coordination, and memory, as well as an increased risk of accidents, injuries, and chronic diseases such as liver disease and addiction.

Stress echocardiography is a medical test that uses ultrasound imaging to assess how well your heart muscles are pumping blood and how well they respond to stress. It can help diagnose and evaluate coronary artery disease, valvular heart disease, and other cardiac conditions.

During the test, you will be asked to exercise on a treadmill or stationary bike while your heart rate and blood pressure are monitored. At peak exercise, a healthcare professional will take ultrasound images of your heart to evaluate its structure and function. If you are unable to exercise, medication may be given to simulate the effects of exercise on your heart.

The test can help identify areas of your heart that aren't receiving enough oxygen-rich blood due to blocked or narrowed arteries. It can also assess how well your heart valves are functioning and whether there are any structural abnormalities in your heart. Your healthcare provider will use the results of the test to develop a treatment plan tailored to your individual needs.

Endocardial fibroelastosis (EFE) is a rare heart condition characterized by the thickening and stiffening of the endocardium, which is the inner lining of the heart chambers. This thickening is caused by an overgrowth of fibrous tissue and elastic fibers in the endocardium, particularly affecting the left ventricle and atrium.

EFE can occur as a primary condition or secondary to other heart diseases, infections, or genetic disorders. In some cases, it may be associated with conditions such as congenital heart defects, metabolic disorders, or viral infections like coxsackievirus B.

The symptoms of EFE depend on the severity and underlying cause of the condition. They can include difficulty breathing, poor feeding, failure to thrive, fatigue, and irregular heart rhythms (arrhythmias). In severe cases, EFE can lead to heart failure and require medical intervention such as medications or even a heart transplant.

The exact cause of primary EFE is still unknown, but it is believed to involve genetic factors. Secondary EFE is usually a result of damage to the heart muscle due to various causes, including infections, inflammation, or other underlying conditions. Treatment for EFE focuses on addressing the underlying cause and managing symptoms to prevent further complications.

Alpha-Crystallin B chain is a protein that is a component of the eye lens. It is one of the two subunits of the alpha-crystallin protein, which is a major structural protein in the lens and helps to maintain the transparency and refractive properties of the lens. Alpha-Crystallin B chain is produced by the CRYAB gene and has chaperone-like properties, helping to prevent the aggregation of other proteins and contributing to the maintenance of lens clarity. Mutations in the CRYAB gene can lead to various eye disorders, including cataracts and certain types of glaucoma.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

The pericardium is the double-walled sac that surrounds the heart. It has an outer fibrous layer and an inner serous layer, which further divides into two parts: the parietal layer lining the fibrous pericardium and the visceral layer (epicardium) closely adhering to the heart surface.

The space between these two layers is filled with a small amount of lubricating serous fluid, allowing for smooth movement of the heart within the pericardial cavity. The pericardium provides protection, support, and helps maintain the heart's normal position within the chest while reducing friction during heart contractions.

Exercise tolerance is a term used to describe the ability of an individual to perform physical activity or exercise without experiencing symptoms such as shortness of breath, chest pain, or undue fatigue. It is often used as a measure of cardiovascular fitness and can be assessed through various tests, such as a stress test or a six-minute walk test. Exercise intolerance may indicate the presence of underlying medical conditions, such as heart disease, lung disease, or deconditioning.

Totiviridae is a family of non-enveloped, double-stranded RNA viruses that infect fungi and protozoa. The name "Totiviridae" is derived from the Latin word "totus," meaning "complete" or "whole," which refers to the fact that these viruses have a single segment of linear, non-segmented, double-stranded RNA genome.

The genome of Totiviridae viruses is around 4.6-5.3 kilobases in length and encodes two major proteins: the capsid protein and the RNA-dependent RNA polymerase (RdRp). The capsid protein forms a icosahedral symmetry capsid that protects the genome, while the RdRp is responsible for replicating the viral genome.

Totiviridae viruses are transmitted vertically from parent to offspring and can establish persistent infections in their hosts. They are not known to cause any significant disease symptoms in their natural hosts, but they can interfere with the host's growth and development. In some cases, Totiviridae viruses have been shown to provide resistance to other viral infections in their hosts.

Overall, Totiviridae viruses are important pathogens in fungi and protozoa, and understanding their biology and interactions with their hosts can provide insights into the development of novel antiviral strategies.

Premature cardiac complexes, also known as premature heartbeats or premature ventricular contractions (PVCs), refer to extra or early heartbeats that originate in the lower chambers of the heart (the ventricles). These extra beats disrupt the normal rhythm and sequence of heartbeats, causing the heart to beat earlier than expected.

Premature cardiac complexes can occur in healthy individuals as well as those with heart disease. They are usually harmless and do not cause any symptoms, but in some cases, they may cause palpitations, skipped beats, or a fluttering sensation in the chest. In rare cases, frequent premature cardiac complexes can lead to more serious heart rhythm disorders or decreased heart function.

The diagnosis of premature cardiac complexes is usually made through an electrocardiogram (ECG) or Holter monitoring, which records the electrical activity of the heart over a period of time. Treatment is typically not necessary unless the premature complexes are frequent, symptomatic, or associated with underlying heart disease. In such cases, medications, cardioversion, or catheter ablation may be recommended.

Myocardial stunning is a condition in cardiovascular medicine where the heart muscle (myocardium) temporarily loses its ability to contract effectively after being exposed to a brief, severe episode of ischemia (restriction of blood supply) or reperfusion injury (damage that occurs when blood flow is restored to an organ or tissue after a period of ischemia). This results in a reduction in the heart's pumping function, which can be detected using imaging techniques such as echocardiography.

The stunning phenomenon is believed to be caused by complex biochemical and cellular processes that occur during ischemia-reperfusion injury, including the generation of free radicals, calcium overload, inflammation, and activation of various signaling pathways. These changes can lead to the dysfunction of contractile proteins, mitochondrial damage, and altered gene expression in cardiomyocytes (heart muscle cells).

Myocardial stunning is often observed following procedures such as coronary angioplasty or bypass surgery, where blood flow is temporarily interrupted and then restored to the heart. It can also occur during episodes of unstable angina, acute myocardial infarction, or cardiac arrest. Although the stunning itself is usually reversible within a few days to several weeks, it may contribute to short-term hemodynamic instability and increased risk of adverse events such as heart failure, arrhythmias, or even death.

Management of myocardial stunning typically involves supportive care, optimizing hemodynamics, and addressing any underlying conditions that may have contributed to the ischemic episode. In some cases, medications like inotropes or vasopressors might be used to support cardiac function temporarily. Preventive strategies, such as maintaining adequate blood pressure, heart rate, and oxygenation during procedures, can help reduce the risk of myocardial stunning.

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

Risk assessment in the medical context refers to the process of identifying, evaluating, and prioritizing risks to patients, healthcare workers, or the community related to healthcare delivery. It involves determining the likelihood and potential impact of adverse events or hazards, such as infectious diseases, medication errors, or medical devices failures, and implementing measures to mitigate or manage those risks. The goal of risk assessment is to promote safe and high-quality care by identifying areas for improvement and taking action to minimize harm.

Hypertrophy, in the context of physiology and pathology, refers to an increase in the size of an organ or tissue due to an enlargement of its constituent cells. It is often used to describe the growth of muscle cells (myocytes) in response to increased workload or hormonal stimulation, resulting in an increase in muscle mass. However, hypertrophy can also occur in other organs such as the heart (cardiac hypertrophy) in response to high blood pressure or valvular heart disease.

It is important to note that while hypertrophy involves an increase in cell size, hyperplasia refers to an increase in cell number. In some cases, both hypertrophy and hyperplasia can occur together, leading to a significant increase in the overall size and function of the organ or tissue.

Adrenergic receptors are a type of G protein-coupled receptor that binds and responds to catecholamines, such as epinephrine (adrenaline) and norepinephrine (noradrenaline). Beta adrenergic receptors (β-adrenergic receptors) are a subtype of adrenergic receptors that include three distinct subclasses: β1, β2, and β3. These receptors are widely distributed throughout the body and play important roles in various physiological functions, including cardiovascular regulation, bronchodilation, lipolysis, and glucose metabolism.

β1-adrenergic receptors are primarily located in the heart and regulate cardiac contractility, chronotropy (heart rate), and relaxation. β2-adrenergic receptors are found in various tissues, including the lungs, vascular smooth muscle, liver, and skeletal muscle. They mediate bronchodilation, vasodilation, glycogenolysis, and lipolysis. β3-adrenergic receptors are mainly expressed in adipose tissue, where they stimulate lipolysis and thermogenesis.

Agonists of β-adrenergic receptors include catecholamines like epinephrine and norepinephrine, as well as synthetic drugs such as dobutamine (a β1-selective agonist) and albuterol (a non-selective β2-agonist). Antagonists of β-adrenergic receptors are commonly used in the treatment of various conditions, including hypertension, angina pectoris, heart failure, and asthma. Examples of β-blockers include metoprolol (a β1-selective antagonist) and carvedilol (a non-selective β-blocker with additional α1-adrenergic receptor blocking activity).

Oxidative stress is defined as an imbalance between the production of reactive oxygen species (free radicals) and the body's ability to detoxify them or repair the damage they cause. This imbalance can lead to cellular damage, oxidation of proteins, lipids, and DNA, disruption of cellular functions, and activation of inflammatory responses. Prolonged or excessive oxidative stress has been linked to various health conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and aging-related diseases.

Cardiac Resynchronization Therapy (CRT) is a medical treatment for heart failure that involves the use of a specialized device, called a biventricular pacemaker or a cardiac resynchronization therapy device, to help coordinate the timing of contractions between the left and right ventricles of the heart.

In a healthy heart, the ventricles contract in a coordinated manner, with the left ventricle contracting slightly before the right ventricle. However, in some people with heart failure, the electrical signals that control the contraction of the heart become disrupted, causing the ventricles to contract at different times. This is known as ventricular dyssynchrony and can lead to reduced pumping efficiency and further worsening of heart failure symptoms.

CRT works by delivering small electrical impulses to both ventricles simultaneously or in a coordinated manner, which helps restore normal synchrony and improve the efficiency of the heart's pumping function. This can lead to improved symptoms, reduced hospitalizations, and increased survival rates in some people with heart failure.

CRT is typically recommended for people with moderate to severe heart failure who have evidence of ventricular dyssynchrony and a wide QRS complex on an electrocardiogram (ECG). The procedure involves the implantation of a small device under the skin, usually in the upper chest area, which is connected to leads that are placed in the heart through veins.

While CRT can be an effective treatment for some people with heart failure, it is not without risks and potential complications, such as infection, bleeding, or damage to blood vessels or nerves. Therefore, careful consideration should be given to the potential benefits and risks of CRT before deciding whether it is appropriate for a particular individual.

Desmosomal cadherins, also known as desmocadherins, are a subfamily of the cadherin superfamily of calcium-dependent adhesion molecules. They are primarily responsible for cell-cell adhesion in tissues that undergo mechanical stress, such as epithelial and cardiac tissue.

Desmosomal cadherins include desmocadherin-1 (Desmoglein-1) and desmocadherin-2 (Desmocollin-2), which are located in the desmosomes of adjacent cells. Desmosomes are specialized intercellular junctions that provide strong adhesion and help maintain tissue integrity during mechanical stress.

Desmosomal cadherins have a unique structure, with an extracellular domain containing multiple cadherin repeats that mediate homophilic interactions between adjacent cells. They also have a cytoplasmic domain that interacts with desmoplakin, a protein that links the desmosomal cadherins to the intermediate filament cytoskeleton.

Mutations in desmosomal cadherins have been associated with several human genetic disorders, including skin blistering diseases and arrhythmogenic right ventricular cardiomyopathy (ARVC), a heart condition that can lead to sudden cardiac death.

Cardiotoxins are substances or drugs that have a toxic effect on the heart muscle (myocardium), leading to impaired cardiac function and potentially causing serious complications such as arrhythmias, reduced contractility, and decreased cardiac output. Cardiotoxins can be found in certain animals, plants, and medications.

Animal-derived cardiotoxins include some venoms from snakes, spiders, and scorpions. For example, the venom of the Australian taipan snake contains a powerful cardiotoxin that can cause rapid heart rate, low blood pressure, and even cardiac arrest in severe cases.

Plant-derived cardiotoxins are found in some species of digitalis (foxglove), which have been used traditionally to treat heart conditions but can also be toxic if not administered correctly. The active compounds in digitalis, such as digoxin and digitoxin, affect the electrical activity of the heart by inhibiting the sodium-potassium pump in cardiac muscle cells, leading to increased contractility and potentially causing arrhythmias.

Medications can also have cardiotoxic effects when used inappropriately or at high doses. Certain chemotherapeutic agents, such as doxorubicin and daunorubicin, are known to cause cardiac damage and dysfunction, particularly with long-term use or when administered in high cumulative doses. These drugs can lead to a condition called "chemotherapy-induced cardiomyopathy," which is characterized by reduced heart function and increased risk of congestive heart failure.

Other medications that may have cardiotoxic effects include certain antibiotics (such as erythromycin, clarithromycin, and azithromycin), antifungal agents (such as amphotericin B), and illicit drugs (such as cocaine and methamphetamine).

It is essential to use cardiotoxic substances with caution and under the supervision of a healthcare professional, as improper use or overexposure can lead to severe heart complications.

Ventricular function, in the context of cardiac medicine, refers to the ability of the heart's ventricles (the lower chambers) to fill with blood during the diastole phase and eject blood during the systole phase. The ventricles are primarily responsible for pumping oxygenated blood out to the body (left ventricle) and deoxygenated blood to the lungs (right ventricle).

There are several ways to assess ventricular function, including:

1. Ejection Fraction (EF): This is the most commonly used measure of ventricular function. It represents the percentage of blood that is ejected from the ventricle during each heartbeat. A normal left ventricular ejection fraction is typically between 55% and 70%.
2. Fractional Shortening (FS): This is another measure of ventricular function, which calculates the change in size of the ventricle during contraction as a percentage of the original size. A normal FS for the left ventricle is typically between 25% and 45%.
3. Stroke Volume (SV): This refers to the amount of blood that is pumped out of the ventricle with each heartbeat. SV is calculated by multiplying the ejection fraction by the end-diastolic volume (the amount of blood in the ventricle at the end of diastole).
4. Cardiac Output (CO): This is the total amount of blood that the heart pumps in one minute. It is calculated by multiplying the stroke volume by the heart rate.

Impaired ventricular function can lead to various cardiovascular conditions, such as heart failure, cardiomyopathy, and valvular heart disease. Assessing ventricular function is crucial for diagnosing these conditions, monitoring treatment response, and guiding clinical decision-making.

Mitochondrial diseases are a group of disorders caused by dysfunctions in the mitochondria, which are the energy-producing structures in cells. These diseases can affect people of any age and can manifest in various ways, depending on which organs or systems are affected. Common symptoms include muscle weakness, neurological problems, cardiac disease, diabetes, and vision/hearing loss. Mitochondrial diseases can be inherited from either the mother's or father's side, or they can occur spontaneously due to genetic mutations. They can range from mild to severe and can even be life-threatening in some cases.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

"Mesocricetus" is a genus of rodents, more commonly known as hamsters. It includes several species of hamsters that are native to various parts of Europe and Asia. The best-known member of this genus is the Syrian hamster, also known as the golden hamster or Mesocricetus auratus, which is a popular pet due to its small size and relatively easy care. These hamsters are burrowing animals and are typically solitary in the wild.

Emission-Computed Tomography, Single-Photon (SPECT) is a type of nuclear medicine imaging procedure that generates detailed, three-dimensional images of the distribution of radioactive pharmaceuticals within the body. It uses gamma rays emitted by a radiopharmaceutical that is introduced into the patient's body, and a specialized gamma camera to detect these gamma rays and create tomographic images. The data obtained from the SPECT imaging can be used to diagnose various medical conditions, evaluate organ function, and guide treatment decisions. It is commonly used to image the heart, brain, and bones, among other organs and systems.

Enterovirus infections are viral illnesses caused by enteroviruses, which are a type of picornavirus. These viruses commonly infect the gastrointestinal tract and can cause a variety of symptoms depending on the specific type of enterovirus and the age and overall health of the infected individual.

There are over 100 different types of enteroviruses, including polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses such as EV-D68 and EV-A71. Some enterovirus infections may be asymptomatic or cause only mild symptoms, while others can lead to more severe illnesses.

Common symptoms of enterovirus infections include fever, sore throat, runny nose, cough, muscle aches, and skin rashes. In some cases, enteroviruses can cause more serious complications such as meningitis (inflammation of the membranes surrounding the brain and spinal cord), encephalitis (inflammation of the brain), myocarditis (inflammation of the heart muscle), and paralysis.

Enterovirus infections are typically spread through close contact with an infected person, such as through respiratory droplets or fecal-oral transmission. They can also be spread through contaminated surfaces or objects. Preventive measures include good hygiene practices, such as washing hands frequently and avoiding close contact with sick individuals.

There are no specific antiviral treatments for enterovirus infections, and most cases resolve on their own within a few days to a week. However, severe cases may require hospitalization and supportive care, such as fluids and medication to manage symptoms. Prevention efforts include vaccination against poliovirus and surveillance for emerging enteroviruses.

Kinetocardiography (often abbreviated as KCG) is not a widely recognized or established medical term. However, in general terms, it appears to refer to a method of measuring and recording the motion or vibrations of the chest wall that may be related to cardiac activity. It's possible that this term is used in some specific research or technical contexts, but it does not have a standardized medical definition.

It's important to note that there is another term called "ballistocardiography" (BCG) which is a non-invasive method of measuring the mechanical forces generated by the heart and great vessels during each cardiac cycle. BCG can provide information about various aspects of cardiovascular function, such as stroke volume, contractility, and vascular compliance. However, kinetocardiography does not seem to be synonymous with ballistocardiography or any other established medical technique.

Cardiac volume refers to the amount of blood contained within the heart chambers at any given point in time. It is a measure of the volume of blood that is being moved by the heart during each cardiac cycle, which includes both systole (contraction) and diastole (relaxation) phases.

There are several types of cardiac volumes that are commonly measured or estimated using medical imaging techniques such as echocardiography or cardiac magnetic resonance imaging (MRI). These include:

1. End-diastolic volume (EDV): This is the volume of blood in the heart chambers at the end of diastole, when the heart chambers are fully filled with blood.
2. End-systolic volume (ESV): This is the volume of blood in the heart chambers at the end of systole, when the heart chambers have contracted and ejected most of the blood.
3. Stroke volume (SV): This is the difference between the EDV and ESV, and represents the amount of blood that is pumped out of the heart with each beat.
4. Cardiac output (CO): This is the product of the stroke volume and heart rate, and represents the total amount of blood that is pumped by the heart in one minute.

Abnormalities in cardiac volumes can indicate various heart conditions such as heart failure, valvular heart disease, or cardiomyopathy.

Cardiac surgical procedures are operations that are performed on the heart or great vessels (the aorta and vena cava) by cardiothoracic surgeons. These surgeries are often complex and require a high level of skill and expertise. Some common reasons for cardiac surgical procedures include:

1. Coronary artery bypass grafting (CABG): This is a surgery to improve blood flow to the heart in patients with coronary artery disease. During the procedure, a healthy blood vessel from another part of the body is used to create a detour around the blocked or narrowed portion of the coronary artery.
2. Valve repair or replacement: The heart has four valves that control blood flow through and out of the heart. If one or more of these valves become damaged or diseased, they may need to be repaired or replaced. This can be done using artificial valves or valves from animal or human donors.
3. Aneurysm repair: An aneurysm is a weakened area in the wall of an artery that can bulge out and potentially rupture. If an aneurysm occurs in the aorta, it may require surgical repair to prevent rupture.
4. Heart transplantation: In some cases, heart failure may be so severe that a heart transplant is necessary. This involves removing the diseased heart and replacing it with a healthy donor heart.
5. Arrhythmia surgery: Certain types of abnormal heart rhythms (arrhythmias) may require surgical treatment. One such procedure is called the Maze procedure, which involves creating a pattern of scar tissue in the heart to disrupt the abnormal electrical signals that cause the arrhythmia.
6. Congenital heart defect repair: Some people are born with structural problems in their hearts that require surgical correction. These may include holes between the chambers of the heart or abnormal blood vessels.

Cardiac surgical procedures carry risks, including bleeding, infection, stroke, and death. However, for many patients, these surgeries can significantly improve their quality of life and longevity.

Thallium radioisotopes are radioactive isotopes or variants of the element thallium (Tl), which decays and emits radiation. Thallium has several radioisotopes, with the most commonly used being thallium-201 (^201Tl). This radioisotope is used in medical imaging, specifically in myocardial perfusion scintigraphy, to evaluate blood flow to the heart muscle. It decays by electron capture and emits gamma radiation with a half-life of 73 hours, making it suitable for diagnostic procedures.

It's important to note that handling and using radioisotopes require proper training and safety measures due to their ionizing radiation properties.

Adrenergic beta-agonists are a class of medications that bind to and activate beta-adrenergic receptors, which are found in various tissues throughout the body. These receptors are part of the sympathetic nervous system and mediate the effects of the neurotransmitter norepinephrine (also called noradrenaline) and the hormone epinephrine (also called adrenaline).

When beta-agonists bind to these receptors, they stimulate a range of physiological responses, including relaxation of smooth muscle in the airways, increased heart rate and contractility, and increased metabolic rate. As a result, adrenergic beta-agonists are often used to treat conditions such as asthma, chronic obstructive pulmonary disease (COPD), and bronchitis, as they can help to dilate the airways and improve breathing.

There are several different types of beta-agonists, including short-acting and long-acting formulations. Short-acting beta-agonists (SABAs) are typically used for quick relief of symptoms, while long-acting beta-agonists (LABAs) are used for more sustained symptom control. Examples of adrenergic beta-agonists include albuterol (also known as salbutamol), terbutaline, formoterol, and salmeterol.

It's worth noting that while adrenergic beta-agonists can be very effective in treating respiratory conditions, they can also have side effects, particularly if used in high doses or for prolonged periods of time. These may include tremors, anxiety, palpitations, and increased blood pressure. As with any medication, it's important to use adrenergic beta-agonists only as directed by a healthcare professional.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Genetic predisposition to disease refers to an increased susceptibility or vulnerability to develop a particular illness or condition due to inheriting specific genetic variations or mutations from one's parents. These genetic factors can make it more likely for an individual to develop a certain disease, but it does not guarantee that the person will definitely get the disease. Environmental factors, lifestyle choices, and interactions between genes also play crucial roles in determining if a genetically predisposed person will actually develop the disease. It is essential to understand that having a genetic predisposition only implies a higher risk, not an inevitable outcome.

Adenine Nucleotide Translocator 1 (ANT1) is a protein found in the inner mitochondrial membrane of cells. It plays a crucial role in cellular energy metabolism by facilitating the exchange of adenosine diphosphate (ADP) and adenosine triphosphate (ATP) across the mitochondrial membrane.

In simpler terms, ANT1 helps to transport ATP, which is a major source of energy for cells, out of the mitochondria and exchange it for ADP, which can be converted back into ATP through cellular respiration. This process is essential for maintaining the energy balance within the cell and supporting various physiological functions.

Mutations in the gene that encodes ANT1 have been associated with certain mitochondrial disorders, such as autosomal recessive progressive external ophthalmoplegia (arPEO) and maternally inherited diabetes and deafness (MIDD). These genetic conditions can result in a range of symptoms, including muscle weakness, exercise intolerance, and neurological problems.

'Digitalis' is a medication that is derived from the foxglove plant (Digitalis purpurea). It contains cardiac glycosides, primarily digoxin and digitoxin, which have positive inotropic effects on the heart muscle, increasing its contractility. Digitalis is primarily used to treat various types of heart failure and atrial arrhythmias. It works by inhibiting the sodium-potassium pump in heart muscle cells, leading to an increase in intracellular calcium and enhanced cardiac muscle contraction.

It's important to note that digitalis has a narrow therapeutic index, meaning that the difference between a therapeutic and toxic dose is small. Therefore, it requires careful monitoring of serum drug levels and clinical response to ensure safe and effective use. Common side effects include gastrointestinal symptoms such as nausea, vomiting, and diarrhea, as well as visual disturbances and cardiac arrhythmias.

Troponin C is a subunit of the troponin complex, which is a protein complex that plays a crucial role in muscle contraction. In the heart, the troponin complex is found in the myofibrils of cardiac muscle cells (cardiomyocytes). It is composed of three subunits: troponin C, troponin T, and troponin I.

Troponin C has the ability to bind calcium ions (Ca²+), which is essential for muscle contraction. When Ca²+ binds to troponin C, it causes a conformational change that leads to the exposure of binding sites on troponin I for another protein called actin. This interaction allows for the cross-bridge formation between actin and myosin, generating the force needed for muscle contraction.

In clinical settings, cardiac troponins (including troponin T and troponin I) are commonly measured in blood tests to diagnose and monitor heart damage, particularly in conditions like myocardial infarction (heart attack). However, Troponin C is not typically used as a biomarker for heart injury because it is less specific to the heart than troponin T and troponin I. Increased levels of Troponin C in the blood can be found in various conditions involving muscle damage or disease, making it less useful for diagnosing heart-specific issues.

Troponin is a protein complex found in cardiac and skeletal muscle cells that plays a critical role in muscle contraction. It consists of three subunits: troponin C, which binds calcium ions; troponin I, which inhibits the interaction between actin and myosin in the absence of calcium; and troponin T, which binds to tropomyosin and helps anchor the complex to the muscle filament.

In clinical medicine, "troponin" usually refers to cardiac-specific isoforms of these proteins (cTnI and cTnT) that are released into the bloodstream following damage to the heart muscle, such as occurs in myocardial infarction (heart attack). Measurement of troponin levels in the blood is a sensitive and specific biomarker for the diagnosis of acute myocardial infarction.

Radiopharmaceuticals are defined as pharmaceutical preparations that contain radioactive isotopes and are used for diagnosis or therapy in nuclear medicine. These compounds are designed to interact specifically with certain biological targets, such as cells, tissues, or organs, and emit radiation that can be detected and measured to provide diagnostic information or used to destroy abnormal cells or tissue in therapeutic applications.

The radioactive isotopes used in radiopharmaceuticals have carefully controlled half-lives, which determine how long they remain radioactive and how long the pharmaceutical preparation remains effective. The choice of radioisotope depends on the intended use of the radiopharmaceutical, as well as factors such as its energy, range of emission, and chemical properties.

Radiopharmaceuticals are used in a wide range of medical applications, including imaging, cancer therapy, and treatment of other diseases and conditions. Examples of radiopharmaceuticals include technetium-99m for imaging the heart, lungs, and bones; iodine-131 for treating thyroid cancer; and samarium-153 for palliative treatment of bone metastases.

The use of radiopharmaceuticals requires specialized training and expertise in nuclear medicine, as well as strict adherence to safety protocols to minimize radiation exposure to patients and healthcare workers.

Mitochondrial DNA (mtDNA) is the genetic material present in the mitochondria, which are specialized structures within cells that generate energy. Unlike nuclear DNA, which is present in the cell nucleus and inherited from both parents, mtDNA is inherited solely from the mother.

MtDNA is a circular molecule that contains 37 genes, including 13 genes that encode for proteins involved in oxidative phosphorylation, a process that generates energy in the form of ATP. The remaining genes encode for rRNAs and tRNAs, which are necessary for protein synthesis within the mitochondria.

Mutations in mtDNA can lead to a variety of genetic disorders, including mitochondrial diseases, which can affect any organ system in the body. These mutations can also be used in forensic science to identify individuals and establish biological relationships.

A point mutation is a type of genetic mutation where a single nucleotide base (A, T, C, or G) in DNA is altered, deleted, or substituted with another nucleotide. Point mutations can have various effects on the organism, depending on the location of the mutation and whether it affects the function of any genes. Some point mutations may not have any noticeable effect, while others might lead to changes in the amino acids that make up proteins, potentially causing diseases or altering traits. Point mutations can occur spontaneously due to errors during DNA replication or be inherited from parents.

"Recovery of function" is a term used in medical rehabilitation to describe the process in which an individual regains the ability to perform activities or tasks that were previously difficult or impossible due to injury, illness, or disability. This can involve both physical and cognitive functions. The goal of recovery of function is to help the person return to their prior level of independence and participation in daily activities, work, and social roles as much as possible.

Recovery of function may be achieved through various interventions such as physical therapy, occupational therapy, speech-language therapy, and other rehabilitation strategies. The specific approach used will depend on the individual's needs and the nature of their impairment. Recovery of function can occur spontaneously as the body heals, or it may require targeted interventions to help facilitate the process.

It is important to note that recovery of function does not always mean a full return to pre-injury or pre-illness levels of ability. Instead, it often refers to the person's ability to adapt and compensate for any remaining impairments, allowing them to achieve their maximum level of functional independence and quality of life.

The actin cytoskeleton is a complex, dynamic network of filamentous (threadlike) proteins that provides structural support and shape to cells, allows for cell movement and division, and plays a role in intracellular transport. Actin filaments are composed of actin monomers that polymerize to form long, thin fibers. These filaments can be organized into different structures, such as stress fibers, which provide tension and support, or lamellipodia and filopodia, which are involved in cell motility. The actin cytoskeleton is constantly remodeling in response to various intracellular and extracellular signals, allowing for changes in cell shape and behavior.

Coronary vessels refer to the network of blood vessels that supply oxygenated blood and nutrients to the heart muscle, also known as the myocardium. The two main coronary arteries are the left main coronary artery and the right coronary artery.

The left main coronary artery branches off into the left anterior descending artery (LAD) and the left circumflex artery (LCx). The LAD supplies blood to the front of the heart, while the LCx supplies blood to the side and back of the heart.

The right coronary artery supplies blood to the right lower part of the heart, including the right atrium and ventricle, as well as the back of the heart.

Coronary vessel disease (CVD) occurs when these vessels become narrowed or blocked due to the buildup of plaque, leading to reduced blood flow to the heart muscle. This can result in chest pain, shortness of breath, or a heart attack.

A homozygote is an individual who has inherited the same allele (version of a gene) from both parents and therefore possesses two identical copies of that allele at a specific genetic locus. This can result in either having two dominant alleles (homozygous dominant) or two recessive alleles (homozygous recessive). In contrast, a heterozygote has inherited different alleles from each parent for a particular gene.

The term "homozygote" is used in genetics to describe the genetic makeup of an individual at a specific locus on their chromosomes. Homozygosity can play a significant role in determining an individual's phenotype (observable traits), as having two identical alleles can strengthen the expression of certain characteristics compared to having just one dominant and one recessive allele.

Congenital heart defects (CHDs) are structural abnormalities in the heart that are present at birth. They can affect any part of the heart's structure, including the walls of the heart, the valves inside the heart, and the major blood vessels that lead to and from the heart.

Congenital heart defects can range from mild to severe and can cause various symptoms depending on the type and severity of the defect. Some common symptoms of CHDs include cyanosis (a bluish tint to the skin, lips, and fingernails), shortness of breath, fatigue, poor feeding, and slow growth in infants and children.

There are many different types of congenital heart defects, including:

1. Septal defects: These are holes in the walls that separate the four chambers of the heart. The two most common septal defects are atrial septal defect (ASD) and ventricular septal defect (VSD).
2. Valve abnormalities: These include narrowed or leaky valves, which can affect blood flow through the heart.
3. Obstruction defects: These occur when blood flow is blocked or restricted due to narrowing or absence of a part of the heart's structure. Examples include pulmonary stenosis and coarctation of the aorta.
4. Cyanotic heart defects: These cause a lack of oxygen in the blood, leading to cyanosis. Examples include tetralogy of Fallot and transposition of the great arteries.

The causes of congenital heart defects are not fully understood, but genetic factors and environmental influences during pregnancy may play a role. Some CHDs can be detected before birth through prenatal testing, while others may not be diagnosed until after birth or later in childhood. Treatment for CHDs may include medication, surgery, or other interventions to improve blood flow and oxygenation of the body's tissues.

A cohort study is a type of observational study in which a group of individuals who share a common characteristic or exposure are followed up over time to determine the incidence of a specific outcome or outcomes. The cohort, or group, is defined based on the exposure status (e.g., exposed vs. unexposed) and then monitored prospectively to assess for the development of new health events or conditions.

Cohort studies can be either prospective or retrospective in design. In a prospective cohort study, participants are enrolled and followed forward in time from the beginning of the study. In contrast, in a retrospective cohort study, researchers identify a cohort that has already been assembled through medical records, insurance claims, or other sources and then look back in time to assess exposure status and health outcomes.

Cohort studies are useful for establishing causality between an exposure and an outcome because they allow researchers to observe the temporal relationship between the two. They can also provide information on the incidence of a disease or condition in different populations, which can be used to inform public health policy and interventions. However, cohort studies can be expensive and time-consuming to conduct, and they may be subject to bias if participants are not representative of the population or if there is loss to follow-up.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Radionuclide angiography (RNA) is a type of nuclear medicine imaging procedure used to evaluate the heart's function, specifically the pumping ability of the lower chambers of the heart (the ventricles). It involves the use of radioactive material (radionuclide or radiopharmaceutical) that is injected into the patient's bloodstream. A special camera then captures images of the distribution and accumulation of this radioactive material within the heart, providing information about blood flow, ventricular function, and any potential abnormalities in the heart muscle.

During a RNA procedure, the radiopharmaceutical is usually injected into a vein in the patient's arm. As the tracer circulates through the bloodstream, it accumulates in the heart tissue. The gamma camera captures images of the distribution and accumulation of the radionuclide within the heart at different time points. These images are then used to assess various aspects of heart function, such as ejection fraction (the percentage of blood that is pumped out of the ventricles with each beat), wall motion abnormalities, and any potential areas of reduced blood flow or damage in the heart muscle.

Radionuclide angiography can be used to diagnose and monitor various cardiac conditions, including coronary artery disease, heart failure, cardiomyopathy, and valvular heart disease. It is a non-invasive procedure that does not require catheterization or the use of contrast agents, making it a safer alternative for patients with kidney problems or allergies to contrast materials. However, as with any medical procedure involving radiation exposure, the benefits of RNA must be weighed against the potential risks.

A cicatrix is a medical term that refers to a scar or the process of scar formation. It is the result of the healing process following damage to body tissues, such as from an injury, wound, or surgery. During the healing process, specialized cells called fibroblasts produce collagen, which helps to reconnect and strengthen the damaged tissue. The resulting scar tissue may have a different texture, color, or appearance compared to the surrounding healthy tissue.

Cicatrix formation is a natural part of the body's healing response, but excessive scarring can sometimes cause functional impairment, pain, or cosmetic concerns. In such cases, various treatments may be used to minimize or improve the appearance of scars, including topical creams, steroid injections, laser therapy, and surgical revision.

Three-dimensional echocardiography (3DE) is a type of cardiac ultrasound that uses advanced technologies to create a real-time, detailed 3D image of the heart. This imaging technique provides a more comprehensive view of the heart's structure and function compared to traditional 2D echocardiography. By visualizing the heart from multiple angles, 3DE can help physicians better assess complex cardiac conditions, plan treatments, and monitor their effectiveness.

In a 3DE examination, a transducer (a handheld device that emits and receives sound waves) is placed on the chest to capture ultrasound data. This data is then processed by specialized software to create a 3D model of the heart. The procedure is non-invasive and typically takes less than an hour to complete.

Three-dimensional echocardiography has several clinical applications, including:

1. Evaluation of cardiac morphology and function in congenital heart disease
2. Assessment of valvular structure and function, such as mitral or aortic valve regurgitation or stenosis
3. Guidance during interventional procedures like transcatheter aortic valve replacement (TAVR)
4. Quantification of left ventricular volumes, ejection fraction, and mass
5. Assessment of right ventricular size and function
6. Detection and monitoring of cardiac tumors or other masses
7. Pre-surgical planning for complex heart surgeries

Overall, 3DE offers a more accurate and detailed view of the heart, allowing healthcare providers to make informed decisions about patient care and improve outcomes.

Myocardial infarction (MI), also known as a heart attack, is a medical condition characterized by the death of a segment of heart muscle (myocardium) due to the interruption of its blood supply. This interruption is most commonly caused by the blockage of a coronary artery by a blood clot formed on the top of an atherosclerotic plaque, which is a buildup of cholesterol and other substances in the inner lining of the artery.

The lack of oxygen and nutrients supply to the heart muscle tissue results in damage or death of the cardiac cells, causing the affected area to become necrotic. The extent and severity of the MI depend on the size of the affected area, the duration of the occlusion, and the presence of collateral circulation.

Symptoms of a myocardial infarction may include chest pain or discomfort, shortness of breath, nausea, lightheadedness, and sweating. Immediate medical attention is necessary to restore blood flow to the affected area and prevent further damage to the heart muscle. Treatment options for MI include medications, such as thrombolytics, antiplatelet agents, and pain relievers, as well as procedures such as percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG).

The chordae tendineae are cord-like tendons that attach the heart's papillary muscles to the tricuspid and mitral valves in the heart. They play a crucial role in preventing the backflow of blood into the atria during ventricular contraction. The chordae tendineae ensure that the cusps of the atrioventricular valves close properly and maintain their shape during the cardiac cycle. Damage to these tendons can result in heart conditions such as mitral or tricuspid valve regurgitation.

Autoantibodies are defined as antibodies that are produced by the immune system and target the body's own cells, tissues, or organs. These antibodies mistakenly identify certain proteins or molecules in the body as foreign invaders and attack them, leading to an autoimmune response. Autoantibodies can be found in various autoimmune diseases such as rheumatoid arthritis, lupus, and thyroiditis. The presence of autoantibodies can also be used as a diagnostic marker for certain conditions.

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

Sarcolemma is the medical term for the cell membrane that surrounds a muscle fiber or a skeletal muscle cell. It is responsible for providing protection and structure to the muscle fiber, as well as regulating the movement of ions and other molecules in and out of the cell. The sarcolemma plays a crucial role in the excitation-contraction coupling process that allows muscles to contract and relax.

The sarcolemma is composed of two main layers: the outer plasma membrane, which is similar to the cell membranes of other cells, and the inner basal lamina, which provides structural support and helps to anchor the muscle fiber to surrounding tissues. The sarcolemma also contains various ion channels, receptors, and transporters that are involved in regulating muscle function and communication with other cells.

Damage to the sarcolemma can lead to a variety of muscle disorders, including muscular dystrophy and myasthenia gravis.

Blood flow velocity is the speed at which blood travels through a specific part of the vascular system. It is typically measured in units of distance per time, such as centimeters per second (cm/s) or meters per second (m/s). Blood flow velocity can be affected by various factors, including cardiac output, vessel diameter, and viscosity of the blood. Measuring blood flow velocity is important in diagnosing and monitoring various medical conditions, such as heart disease, stroke, and peripheral vascular disease.

Calcium-binding proteins (CaBPs) are a diverse group of proteins that have the ability to bind calcium ions (Ca^2+^) with high affinity and specificity. They play crucial roles in various cellular processes, including signal transduction, muscle contraction, neurotransmitter release, and protection against oxidative stress.

The binding of calcium ions to these proteins induces conformational changes that can either activate or inhibit their functions. Some well-known CaBPs include calmodulin, troponin C, S100 proteins, and parvalbumins. These proteins are essential for maintaining calcium homeostasis within cells and for mediating the effects of calcium as a second messenger in various cellular signaling pathways.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Chagas disease, also known as American trypanosomiasis, is a tropical parasitic disease caused by the protozoan *Trypanosoma cruzi*. It is primarily transmitted to humans through the feces of triatomine bugs (also called "kissing bugs"), which defecate on the skin of people while they are sleeping. The disease can also be spread through contaminated food or drink, during blood transfusions, from mother to baby during pregnancy or childbirth, and through organ transplantation.

The acute phase of Chagas disease can cause symptoms such as fever, fatigue, body aches, headache, rash, loss of appetite, diarrhea, and vomiting. However, many people do not experience any symptoms during the acute phase. After several weeks or months, most people enter the chronic phase of the disease, which can last for decades or even a lifetime. During this phase, many people do not have any symptoms, but about 20-30% of infected individuals will develop serious cardiac or digestive complications, such as heart failure, arrhythmias, or difficulty swallowing.

Chagas disease is primarily found in Latin America, where it is estimated that around 6-7 million people are infected with the parasite. However, due to increased travel and migration, cases of Chagas disease have been reported in other parts of the world, including North America, Europe, and Asia. There is no vaccine for Chagas disease, but medications are available to treat the infection during the acute phase and to manage symptoms during the chronic phase.

"Restrictive Cardiomyopathy". The Lecturio Medical Concept Library. Retrieved 28 June 2021. "Restrictive Cardiomyopathy ... Restrictive cardiomyopathy (RCM) is a form of cardiomyopathy in which the walls of the heart are rigid (but not thickened). ... Reduced QRS voltage on EKG may be an indicator of amyloidosis-induced restrictive cardiomyopathy. Treatment of restrictive ... In time, restrictive cardiomyopathy patients develop diastolic dysfunction and eventually heart failure. Diagnosis is typically ...
... hypertrophic cardiomyopathy), abnormally large (dilated cardiomyopathy), or abnormally stiff (restrictive cardiomyopathy). Some ... Garcia, Mario J. (2016-05-03). "Constrictive Pericarditis Versus Restrictive Cardiomyopathy?". Journal of the American College ... Diseases of the heart muscle known as cardiomyopathies are of major importance. These include ischemic conditions caused by a ... Diseases affecting cardiac muscle, known as cardiomyopathies, are the leading cause of death in developed countries. The most ...
Types of cardiomyopathy include hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic ... In dilated cardiomyopathy the ventricles enlarge and weaken. In restrictive cardiomyopathy the ventricle stiffens. In many ... Restrictive cardiomyopathy (RCM) Brugada syndrome Acquired Stress cardiomyopathy Myocarditis, inflammation of and injury to ... Hypertrophic Cardiomyopathy, Arrhythmogenic Right Ventricular Cardiomyopathy and Other Cardiomyopathies, and Myocarditis: A ...
... restrictive cardiomyopathy makes the ventricles to stiffen; Hypertrophic cardiomyopathy is an inherited one from one generation ... There are different types of cardiomyopathy which include a hypertrophic cardiomyopathy which makes the heart muscles to ... Fibrosing cardiomyopathy is a type of a heart disease that affects the family of gorillas from West Africa that are in captive ... When fibrosing cardiomyopathy attacks a healthy heart, it comes with a bacterium or a virus that makes the muscles of the heart ...
Mutations in CRYAB could also cause restrictive cardiomyopathy. ER-anchored αBC can suppress aggregate formation mediated by ... mutation p.D109G causes restrictive cardiomyopathy". Human Mutation. 38 (8): 947-952. doi:10.1002/humu.23248. ISSN 1098-1004. ... mutation p.D109G causes restrictive cardiomyopathy". Human Mutation. 38 (8): 947-952. doi:10.1002/humu.23248. PMID 28493373. ... Mutations in CRYAB cause different cardiomyopathies, skeletal myopathies mainly myofibrillar myopathy, and also cataracts. In ...
It is contraindicated in cardiac tamponade and restrictive cardiomyopathy. The inotropic agent dobutamine is advised only in ... Patients with severe cardiomyopathy are at high risk for sudden cardiac death due to ventricular dysrhythmias. Although ICDs ... Phosphodiesterase inhibitors such as milrinone are sometimes utilized in severe cardiomyopathy. The mechanism of action is ... The RALES trial showed that the addition of spironolactone can improve mortality, particularly in severe cardiomyopathy ( ...
Specifically, hypertrophic cardiomyopathy (HCM) and restrictive cardiomyopathy (RCM) were noted. A further investigation of the ... "Filamin C Truncation Mutations Are Associated With Arrhythmogenic Dilated Cardiomyopathy and Changes in the Cell-Cell Adhesion ... "Filamin C Truncation Mutations Are Associated With Arrhythmogenic Dilated Cardiomyopathy and Changes in the Cell-Cell Adhesion ... "Filamin C Truncation Mutations Are Associated With Arrhythmogenic Dilated Cardiomyopathy and Changes in the Cell-Cell Adhesion ...
... which may be caused by diseases such as hypertensive cardiomyopathy, hypertrophic cardiomyopathy, restrictive cardiomyopathy, ... This includes patients with cardiomyopathy (hypertensive, hypertrophic, restrictive) and elderly individuals. Other factors ... in hypertrophic cardiomyopathy". Am. J. Cardiol. 70 (18): 1507-11. doi:10.1016/0002-9149(92)90313-N. PMID 1442632. Theodorakis ...
... may be associated with restrictive (HFPEF) and dilated phenotypes (HFREF). HFPEF results predominantly ... Seferović PM, Paulus WJ (July 2015). "Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated ... Diabetic cardiomyopathy is a disorder of the heart muscle in people with diabetes. It can lead to inability of the heart to ... Given that diabetic cardiomyopathy's definition excludes concomitant atherosclerosis or hypertension, there are no changes in ...
Yang SW, Hitz MP, Andelfinger G (Oct 2010). "Ventricular septal defect and restrictive cardiomyopathy in a paediatric TNNI3 ... Mutations in TNNI3K are associated to cardiomyopathies. GRCh38: Ensembl release 89: ENSG00000116783 - Ensembl, May 2017 GRCm38 ... atrial tachyarrhythmia and dilated cardiomyopathy". Human Molecular Genetics. 23 (21): 5793-804. doi:10.1093/hmg/ddu297. PMC ... expression of cardiac ankyrin repeat protein in human failing hearts due to arrhythmogenic right ventricular cardiomyopathy". ...
... including hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) and restrictive cardiomyopathy (RCM). The table below ... Mutations in this gene have been associated with familial hypertrophic cardiomyopathy as well as with restrictive and dilated ... "Infantile restrictive cardiomyopathy resulting from a mutation in the cardiac troponin T gene". Pediatrics. 117 (5): 1830-3. ... "Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes". Heart. 94 (11): ...
"Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes". Heart. 94 (11): ... Infantile idiopathic restrictive cardiomyopathy, and noncompaction of the left ventricular myocardium. ACTB is a highly complex ... such as Type 1R dilated cardiomyopathy and Type 11 hypertrophic cardiomyopathy. Certain defects of the atrial septum have been ... The mutations in ACTC1 are responsible for at least 5% of hypertrophic cardiomyopathies. The existence of a number of point ...
However, in vivo evidence suggest that chronic activation of p38 MAPK activity triggers restrictive cardiomyopathy with limited ... "The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy". Proceedings of the National Academy ...
"Feline Panleukopenia Virus Is Not Associated With Myocarditis or Endomyocardial Restrictive Cardiomyopathy in Cats". Mortality ... "Feline Panleukopenia Virus Is Not Associated With Myocarditis or Endomyocardial Restrictive Cardiomyopathy in Cats". Veterinary ... It has been stated that cats with FPLV may be at risk for endocarditis or cardiomyopathy (since CPV-2 is a well-known cause of ...
"Myosin light chain mutation causes autosomal recessive cardiomyopathy with mid-cavitary hypertrophy and restrictive physiology ... "Myosin light chain mutation causes autosomal recessive cardiomyopathy with mid-cavitary hypertrophy and restrictive physiology ... Mutations in MYL3 have been identified as a cause of familial hypertrophic cardiomyopathy, and associated with a mid-left ... Mass spectrometry characterization of MYL3 at COPaKB GeneReviews/NIH/NCBI/UW entry on Familial Hypertrophic Cardiomyopathy ...
Mutations in MYPN have been linked to nemaline myopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy and restrictive ... Specifics of these functions were gleaned from studies involving MYPN mutants associated with various cardiomyopathies. The ... "Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy". Cardiovascular Research. 77 (1): 118- ... "Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations". Human Molecular ...
Constrictive pericarditis Restrictive cardiomyopathy, which includes Amyloidosis (most common restrictive), Sarcoidosis and ... This is referred to as "reversible restrictive diastolic dysfunction". Class IV diastolic dysfunction patients will not ... Witteles RM, Fowler MB (January 2008). "Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options ... "restrictive filling dynamics"; they are both severe forms of diastolic dysfunction, and patients tend to have advanced heart ...
"Restrictive loss of plakoglobin in cardiomyocytes leads to arrhythmogenic cardiomyopathy". Human Molecular Genetics. 20 (23): ... van Tintelen JP, Hauer RN (Jul 2009). "Cardiomyopathies: New test for arrhythmogenic right ventricular cardiomyopathy". Nature ... Erken H, Yariz KO, Duman D, Kaya CT, Sayin T, Heper AO, Tekin M (Oct 2011). "Cardiomyopathy with alopecia and palmoplantar ... Mutation of the JUP gene encoding plakoglobin has been implicated as one of the causes of the cardiomyopathy known as ...
The differential diagnosis of Kussmaul's sign includes constrictive pericarditis, restrictive cardiomyopathy, pericardial ...
... mutations in the DES gene Restrictive cardiomyopathy (RCM), mutations in the DES gene Non-compaction cardiomyopathy, mutations ... November 2019). "Restrictive Cardiomyopathy is Caused by a Novel Homozygous Desmin (DES) Mutation p.Y122H Leading to a Severe ... June 2019). "Noncompaction cardiomyopathy is caused by a novel in-frame desmin (DES) deletion mutation within the 1A coiled- ... Brodehl A, Gaertner-Rommel A, Milting H (August 2018). "Molecular insights into cardiomyopathies associated with desmin (DES) ...
November 2019). "Restrictive Cardiomyopathy is Caused by a Novel Homozygous Desmin (DES) Mutation p.Y122H Leading to a Severe ... June 2019). "Noncompaction cardiomyopathy is caused by a novel in-frame desmin (DES) deletion mutation within the 1A coiled- ... Brodehl A, Gaertner-Rommel A, Milting H (August 2018). "Molecular insights into cardiomyopathies associated with desmin (DES) ... January 2021). "The Desmin (DES) Mutation p.A337P Is Associated with Left-Ventricular Non-Compaction Cardiomyopathy". Genes. 12 ...
... restrictive cardiomyopathy, pericardial effusion, and severe right-sided heart failure.[citation needed] With cardiac tamponade ... low ventricular compliance Right heart failure Cardiac tumours Tricuspid stenosis Restrictive cardiomyopathy Pulmonary embolism ...
... and hypertrophic cardiomyopathy (12-35%). Restrictive lung function has been reported in some people. A number of diverse ... For example, an increase in hypertrophic cardiomyopathy is seen in people with a mutation of KRAS and an increased risk of ... Nosan G, Bertok S, Vesel S, Yntema HG, Paro-Panjan D (December 2013). "A lethal course of hypertrophic cardiomyopathy in Noonan ... Noonan syndrome with hypertrophic cardiomyopathy is associated with increased mortality. Jacqueline Noonan was practicing as a ...
In particular, restrictive cardiomyopathy has many similar clinical features to constrictive pericarditis, and differentiating ... which is only present in restrictive cardiomyopathy but not in constrictive pericarditis Conventional cardiac catheterization ... "Restrictive pericarditis". eMedicine. MedScape. Retrieved 21 September 2015. "Imaging in Constrictive pericarditis". eMedicine ...
... while the restrictive cardiomyopathy often seen may require diuretics. Life expectancy with Fabry disease for males was 58.2 ... leading to a restrictive cardiomyopathy causing shortness of breath. Fabry disease can also affect the way in which the heart ... Patients have developed hypertrophic cardiomyopathy, arrhythmias, conduction abnormalities, and valvular abnormalities. ... "Anderson-Fabry cardiomyopathy: prevalence, pathophysiology, diagnosis and treatment". Heart Failure Reviews. 20 (2): 179-191. ...
restrictive vs. hypertrophic (presented below). Ischemic cardiomyopathy - Cardiomyopathy causing ischemia of the heart due to ... Nonischemic cardiomyopathy - Cardiomyopathy caused by something other than ischemia. Amyloid cardiomyopathy - Cardiomyopathy ... Restrictive cardiomyopathy (RCM) - Cardiomyopathy caused by excessive rigidity of the heart that prevents effective contraction ... Takotsubo cardiomyopathy (Transient apical ballooning, stress-induced cardiomyopathy) - A type of dilated cardiomyopathy caused ...
After repeated bouts of pneumonia and general ill-health, Wright was diagnosed with restrictive cardiomyopathy, a condition ...
Hypertrophic cardiomyopathy (HCM) Arrhythmogenic right ventricular dysplasia (ARVC) Dilated cardiomyopathy (DCM) Restrictive ... cardiomyopathy (RCM) Myocarditis Coronary artery disease (CAD) Ion Channelopathies - Long QT syndrome (inc. Jervell and Lange- ...
Amyloid Transthyretin Senile systemic amyloidosis Restrictive cardiomyopathy Jacobson, D. R., Pastore, R. D., Yaghoubian, R., ... Familial amyloid cardiomyopathy (FAC), or transthyretin amyloid cardiomyopathy (ATTR-CM) results from the aggregation and ... Falk, R. H. & Elkayam, U. (2010). Cardiomyopathy: the importance of recognizing the uncommon diagnosis. Prog Cardiovasc Dis 52 ... Jain, Anubhav; Zahra, Farah (2022). "Transthyretin Amyloid Cardiomyopathy (ATTR-CM)". StatPearls. StatPearls Publishing. PMID ...
... or Cardiomyopathy - often with hypertrophy, restrictive physiology, and congestive heart failure. The changes may be ... Tönnesmann E, Kandolf R, Lewalter T (June 2013). "Chloroquine cardiomyopathy - a review of the literature". Immunopharmacology ...
"Restrictive Cardiomyopathy". The Lecturio Medical Concept Library. Retrieved 28 June 2021. "Restrictive Cardiomyopathy ... Restrictive cardiomyopathy (RCM) is a form of cardiomyopathy in which the walls of the heart are rigid (but not thickened). ... Reduced QRS voltage on EKG may be an indicator of amyloidosis-induced restrictive cardiomyopathy. Treatment of restrictive ... In time, restrictive cardiomyopathy patients develop diastolic dysfunction and eventually heart failure. Diagnosis is typically ...
Restrictive cardiomyopathy refers to a set of changes in how the heart muscle functions. These changes cause the heart to fill ... Restrictive cardiomyopathy refers to a set of changes in how the heart muscle functions. These changes cause the heart to fill ... Restrictive cardiomyopathy may affect either or both of the lower heart chambers (ventricles). Restrictive cardiomyopathy is a ... Restrictive cardiomyopathy refers to a set of changes in how the heart muscle functions. These changes cause the heart to fill ...
... is a rare disease of the myocardium and is the least common of the 3 clinically recognized and described cardiomyopathies. Its ... encoded search term (Restrictive Cardiomyopathy) and Restrictive Cardiomyopathy What to Read Next on Medscape ... Restrictive cardiomyopathy (RCM) can be idiopathic or secondary to a heart muscle disease that manifests as restrictive ... Restrictive cardiomyopathy (RCM) may be caused by various local and systemic disorders; many of them are rare and unlikely to ...
Familial restrictive cardiomyopathy is a genetic form of heart disease. Explore symptoms, inheritance, genetics of this ... Genetic Testing Registry: Familial restrictive cardiomyopathy *Genetic Testing Registry: Cardiomyopathy, familial restrictive, ... restrictive cardiomyopathy accounts for less than five percent of all cardiomyopathies. The proportion of restrictive ... medlineplus.gov/genetics/condition/familial-restrictive-cardiomyopathy/ Familial restrictive cardiomyopathy. ...
Familial restrictive cardiomyopathy ... Registry: Cardiomyopathy, familial restrictive, 1 Genetic Testing Registry: ... It is the most typical type of restrictive cardiomyopathy . ... called familial cardiac amyloidosis. It can also develop as the ... do mutations in contractile proteins cause the primary familial cardiomyopathies? J ... WJ. Genetics of restrictive ... membrane that surrounds the heart (pericarditis), and rarely, restrictive cardiomyopathy, in which the heart muscle is stiff ...
Ventricular assistant in restrictive cardiomyopathy: Making the right connection.. Robert D B Jaquiss. Journal of Thoracic and ...
Restrictive Cardiomyopathy - Etiology, pathophysiology, symptoms, signs, diagnosis & prognosis from the MSD Manuals - Medical ... Etiology of Restrictive Cardiomyopathy Restrictive cardiomyopathy is not always a primary cardiac disorder. Although the cause ... Symptoms and Signs of Restrictive Cardiomyopathy Symptoms of restrictive cardiomyopathy are exertional dyspnea, orthopnea, ... Primary restrictive cardiomyopathies include idiopathic restrictive cardiomyopathy and endomyocardial fibrosis while the others ...
Myocardial tuberculosis presenting as restrictive cardiomyopathy. H. K. Bali, S. Wahi, B. K. Sharma, I. S. Anand, B. N. Datta, ... Myocardial tuberculosis presenting as restrictive cardiomyopathy. / Bali, H. K.; Wahi, S.; Sharma, B. K. et al. In: American ... Myocardial tuberculosis presenting as restrictive cardiomyopathy. In: American Heart Journal. 1990 ; Vol. 120, No. 3. pp. 703- ... title = "Myocardial tuberculosis presenting as restrictive cardiomyopathy",. author = "Bali, {H. K.} and S. Wahi and Sharma, {B ...
Restrictive cardiomyopathy answers are found in the Diagnosaurus powered by Unbound Medicine. Available for iPhone, iPad, ... cardiomyopathy. Zeiger RFR. Restrictive Cardiomyopathy [Internet]. In: Diagnosaurus. McGraw-Hill Education; 2014. [cited 2023 ... Zeiger, Roni F.. "Restrictive Cardiomyopathy." Diagnosaurus, 4th ed., McGraw-Hill Education, 2014. Medicine Central, im. ... unboundmedicine.com/medicine/view/Diagnosaurus/114590/all/Restrictive_cardiomyopathy. Zeiger RFR. Restrictive cardiomyopathy. ...
... is a rare disease of the myocardium and is the least common of the 3 clinically recognized and described cardiomyopathies. Its ... encoded search term (Restrictive Cardiomyopathy) and Restrictive Cardiomyopathy What to Read Next on Medscape ... Restrictive cardiomyopathy (RCM) is a rare disease of the myocardium and is the least common of the 3 clinically recognized and ... Kushwaha SS, Fallon JT, Fuster V. Restrictive cardiomyopathy. N Engl J Med. 1997 Jan 23. 336(4):267-76. [QxMD MEDLINE Link]. ...
A medical instrument is any tool, apparatus, appliance, material, used alone or in combination with other such items meant to be used on ...
... familial-restrictive-cardiomyopathy [meta_description] => [meta_keywords] => [meta_title] => [quantity_discount] => 0 [ ... Familial restrictive cardiomyopathy [description] => [description_short] => [quantity] => 0 [minimal_quantity] => 1 [available_ ...
Restrictive" by people in this website by year, and whether "Cardiomyopathy, Restrictive" was a major or minor topic of these ... "Cardiomyopathy, Restrictive" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH ( ... Below are the most recent publications written about "Cardiomyopathy, Restrictive" by people in Profiles. ... Below are MeSH descriptors whose meaning is more general than "Cardiomyopathy, Restrictive". ...
Copyright © 2023 Society of NeuroInterventional Surgery. All rights reserved. ...
title = "Constrictive Pericarditis Versus Restrictive Cardiomyopathy",. keywords = "Cardiology, Cardiomyopathy, Clinical ... Constrictive Pericarditis Versus Restrictive Cardiomyopathy. / Mankad, Sunil V.; Park, Seong Mi; Oh, Jae K. Myocardial Imaging ... Mankad, S. V., Park, S. M., & Oh, J. K. (2008). Constrictive Pericarditis Versus Restrictive Cardiomyopathy. In Myocardial ... Mankad, Sunil V. ; Park, Seong Mi ; Oh, Jae K. / Constrictive Pericarditis Versus Restrictive Cardiomyopathy. Myocardial ...
He was found to have mixed LVNC with a restrictive phenotype, a rare phenotype of this form of cardiomyopathy. Eventually, the ... known to be associated with various forms of cardiomyopathy, but has not been reported in restrictive LVNC. ... Genetic testing for inherited cardiomyopathies found a mutation in MYH7 (Arg369Gln), ... is a rare form of heritable cardiomyopathy with wide genotypic variability, numerous phenotypic variations, and a wide spectrum ...
... Yan-ping Ruan1, Chao-xia Lu2, Xiao- ... Pediatric restrictive cardio- myopathy due to a heterozygous mutation of the TNNI3 gene. J Biomed Res 2014; 28:59-63. ... Restrictive Cardiomyopathy Resulting from a Troponin I Type 3 Mutation in a Chinese Family[J].Chinese Medical Sciences Journal ... Infantile rest- rictive cardiomyopathy resulting from a mutation in the cardiac troponin T gene. Pediatrics 2006; 117:1830-3. ...
Restrictive Cardiomyopathy * 2001/viewarticle/997225. FDA Denies Approval for Patisiran in ATTR Cardiomyopathy, Despite Panel ...
Ventricular assistant in restrictive cardiomyopathy: Making the right connection. / Jaquiss, Robert D.B. In: Journal of ... Ventricular assistant in restrictive cardiomyopathy: Making the right connection. Journal of Thoracic and Cardiovascular ... Jaquiss, Robert D.B. / Ventricular assistant in restrictive cardiomyopathy : Making the right connection. In: Journal of ... Jaquiss, R. D. B. (2016). Ventricular assistant in restrictive cardiomyopathy: Making the right connection. Journal of Thoracic ...
367 Restrictive cardiomyopathy - is it the most frequent cardiac involvement in systemic scleroderma? ... 367 Restrictive cardiomyopathy - is it the most frequent cardiac involvement in systemic scleroderma? ... Conclusions Our patient has the severe, obstructive form of cardiomyopathy. This was the cause of the respiratory symptoms, ...
Her parents took her to the doctor to find out she had restrictive cardiomyopathy. ... Restrictive Cardiomyopathy. Restrictive cardiomyopathy is when the heart has changes that make it not quite function properly. ... A doctor sat them down and told them that their little girl had something called restrictive cardiomyopathy. Jada needed a ...
Explore more about Restrictive Cardiomyopathy Epidemiology at: Restrictive Cardiomyopathy Epidemiology Insights. Restrictive ... Restrictive Cardiomyopathy: An Overview. Restrictive cardiomyopathy refers to a set of changes in how the heart muscle ... Restrictive Cardiomyopathy Market The Restrictive Cardiomyopathy market outlook of the report helps to build a detailed ... Restrictive Cardiomyopathy Epidemiology The Restrictive Cardiomyopathy epidemiology section provides insights into the ...
Keywords: amyloid cardiomyopathy; amyloidosis; heart diseases; heart failure; restrictive cardiomyopathy. MeSH terms * ... Amyloid cardiomyopathy Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017 Jun;161(2):117-127. doi: 10.5507/bp.2017.001. ... multi-disciplinary cooperation and proper therapy are key aspects of care for patients with amyloid cardiomyopathy. Early ...
Cardiomyopathy is a disease in which your heart muscle weakens and has difficulty pumping blood. Read about its causes, risk ... Restrictive cardiomyopathy. Restrictive cardiomyopathy occurs when the ventricles stiffen and cant relax enough to fill up ... Pediatric cardiomyopathy. When cardiomyopathy affects a child, its called pediatric cardiomyopathy. *Idiopathic cardiomyopathy ... This is a form of dilated cardiomyopathy.. *Ischemic cardiomyopathy. Ischemic cardiomyopathy occurs when your heart can no ...
Restrictive cardiomyopathy. This is the least common type of cardiomyopathy. It can occur for no known reason. Sometimes its ... The cause of cardiomyopathy depends on the type:. *Dilated cardiomyopathy. The cause of this most common type of cardiomyopathy ... Heart disease symptoms caused by diseased heart muscle (cardiomyopathy). Early stages of cardiomyopathy may not cause ... Hypertrophic cardiomyopathy. This type is usually passed down through families (inherited).. * ...
Explore more about Restrictive Cardiomyopathy Epidemiology at: Restrictive Cardiomyopathy Epidemiology Insights. Restrictive ... Restrictive Cardiomyopathy: An Overview. Restrictive cardiomyopathy refers to a set of changes in how the heart muscle ... Restrictive Cardiomyopathy Market The Restrictive Cardiomyopathy market outlook of the report helps to build a detailed ... Restrictive Cardiomyopathy Epidemiology The Restrictive Cardiomyopathy epidemiology section provides insights into the ...
Stress induced cardiomyopathy, or broken heart syndrome, occurs when a stressful event stuns the heart, temporarily leading to ... also identifies a sixth type: transthyretin amyloid cardiomyopathy, which can be a type of restrictive cardiomyopathy. ... Stress induced cardiomyopathy, aka broken heart syndrome or Takotsubo cardiomyopathy, refers to a condition in which the heart ... Stress induced cardiomyopathy - or simply stress cardiomyopathy - is a condition in which a sudden stressor "stuns" the heart ...
Restrictive cardiomyopathy (RCM) is the only recognized disease entity in children that presents with isolated, irreversible DD ... Restrictive cardiomyopathy (RCM) is the only recognized disease entity in children that presents with isolated, irreversible DD ... Restrictive cardiomyopathy (RCM) is the only recognized disease entity in children that presents with isolated, irreversible DD ... Restrictive cardiomyopathy (RCM) is the only recognized disease entity in children that presents with isolated, irreversible DD ...

No FAQ available that match "cardiomyopathy restrictive"

No images available that match "cardiomyopathy restrictive"