A disease that is characterized by frequent urination, excretion of large amounts of dilute URINE, and excessive THIRST. Etiologies of diabetes insipidus include deficiency of antidiuretic hormone (also known as ADH or VASOPRESSIN) secreted by the NEUROHYPOPHYSIS, impaired KIDNEY response to ADH, and impaired hypothalamic regulation of thirst.
A genetic or acquired polyuric disorder characterized by persistent hypotonic urine and HYPOKALEMIA. This condition is due to renal tubular insensitivity to VASOPRESSIN and failure to reduce urine volume. It may be the result of mutations of genes encoding VASOPRESSIN RECEPTORS or AQUAPORIN-2; KIDNEY DISEASES; adverse drug effects; or complications from PREGNANCY.
A genetic or acquired polyuric disorder caused by a deficiency of VASOPRESSINS secreted by the NEUROHYPOPHYSIS. Clinical signs include the excretion of large volumes of dilute URINE; HYPERNATREMIA; THIRST; and polydipsia. Etiologies include HEAD TRAUMA; surgeries and diseases involving the HYPOTHALAMUS and the PITUITARY GLAND. This disorder may also be caused by mutations of genes such as ARVP encoding vasopressin and its corresponding neurophysin (NEUROPHYSINS).
A chronic, acquired, idiopathic, progressive eruption of the skin that occurs in the context of RENAL FAILURE. It is sometimes accompanied by systemic fibrosis. The pathogenesis seems to be multifactorial, with postulated involvement of circulating fibrocytes. There is a strong association between this disorder and the use of gadolinium-based contrast agents.
Urination of a large volume of urine with an increase in urinary frequency, commonly seen in diabetes (DIABETES MELLITUS; DIABETES INSIPIDUS).
Aquaporin 2 is a water-specific channel protein that is expressed in KIDNEY COLLECTING DUCTS. The translocation of aquaporin 2 to the apical PLASMA MEMBRANE is regulated by VASOPRESSIN, and MUTATIONS in AQP2 have been implicated in a variety of kidney disorders including DIABETES INSIPIDUS.
A synthetic analog of the pituitary hormone, ARGININE VASOPRESSIN. Its action is mediated by the VASOPRESSIN receptor V2. It has prolonged antidiuretic activity, but little pressor effects. It also modulates levels of circulating FACTOR VIII and VON WILLEBRAND FACTOR.
Specific molecular sites or proteins on or in cells to which VASOPRESSINS bind or interact in order to modify the function of the cells. Two types of vasopressin receptor exist, the V1 receptor in the vascular smooth muscle and the V2 receptor in the kidneys. The V1 receptor can be subdivided into V1a and V1b (formerly V3) receptors.
Aquaporin 6 is an aquaglyceroporin that is found primarily in KIDNEY COLLECTING DUCTS. AQP6 protein functions as an anion-selective channel.
Disorders involving either the ADENOHYPOPHYSIS or the NEUROHYPOPHYSIS. These diseases usually manifest as hypersecretion or hyposecretion of PITUITARY HORMONES. Neoplastic pituitary masses can also cause compression of the OPTIC CHIASM and other adjacent structures.
A mutant strain of Rattus norvegicus used in research on renal function and hypertension and as a disease model for diabetes insipidus.
Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure.
Agents that reduce the excretion of URINE, most notably the octapeptide VASOPRESSINS.
Carrier proteins for OXYTOCIN and VASOPRESSIN. They are polypeptides of about 10-kDa, synthesized in the HYPOTHALAMUS. Neurophysin I is associated with oxytocin and neurophysin II is associated with vasopressin in their respective precursors and during transportation down the axons to the neurohypophysis (PITUITARY GLAND, POSTERIOR).
The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE.
A sulfonylurea hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. (From Martindale, The Extra Pharmacopoeia, 30th ed, p277)
Diminution or cessation of secretion of one or more hormones from the anterior pituitary gland (including LH; FOLLICLE STIMULATING HORMONE; SOMATOTROPIN; and CORTICOTROPIN). This may result from surgical or radiation ablation, non-secretory PITUITARY NEOPLASMS, metastatic tumors, infarction, PITUITARY APOPLEXY, infiltrative or granulomatous processes, and other conditions.
A class of porins that allow the passage of WATER and other small molecules across CELL MEMBRANES.
Drugs used for their effects on the kidneys' regulation of body fluid composition and volume. The most commonly used are the diuretics. Also included are drugs used for their antidiuretic and uricosuric actions, for their effects on the kidneys' clearance of other drugs, and for diagnosis of renal function.
The ability of the kidney to excrete in the urine high concentrations of solutes from the blood plasma.
A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence.
A heterogeneous group of disorders characterized by HYPERGLYCEMIA and GLUCOSE INTOLERANCE.
Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland.
A drive stemming from a physiological need for WATER.
Neoplastic, inflammatory, infectious, and other diseases of the hypothalamus. Clinical manifestations include appetite disorders; AUTONOMIC NERVOUS SYSTEM DISEASES; SLEEP DISORDERS; behavioral symptoms related to dysfunction of the LIMBIC SYSTEM; and neuroendocrine disorders.
The withholding of water in a structured experimental situation.
Excessive amount of sodium in the blood. (Dorland, 27th ed)
A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY.
An increase in the excretion of URINE. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A hereditary or acquired form of generalized dysfunction of the PROXIMAL KIDNEY TUBULE without primary involvement of the KIDNEY GLOMERULUS. It is usually characterized by the tubular wasting of nutrients and salts (GLUCOSE; AMINO ACIDS; PHOSPHATES; and BICARBONATES) resulting in HYPOKALEMIA; ACIDOSIS; HYPERCALCIURIA; and PROTEINURIA.
Benign and malignant tumors of the HYPOTHALAMUS. Pilocytic astrocytomas and hamartomas are relatively frequent histologic types. Neoplasms of the hypothalamus frequently originate from adjacent structures, including the OPTIC CHIASM, optic nerve (see OPTIC NERVE NEOPLASMS), and pituitary gland (see PITUITARY NEOPLASMS). Relatively frequent clinical manifestations include visual loss, developmental delay, macrocephaly, and precocious puberty. (From Devita et al., Cancer: Principles and Practice of Oncology, 5th ed, p2051)
A group of disorders resulting from the abnormal proliferation of and tissue infiltration by LANGERHANS CELLS which can be detected by their characteristic Birbeck granules (X bodies), or by monoclonal antibody staining for their surface CD1 ANTIGENS. Langerhans-cell granulomatosis can involve a single organ, or can be a systemic disorder.
A thiazide diuretic with actions and uses similar to those of HYDROCHLOROTHIAZIDE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p812)
Gadolinium. An element of the rare earth family of metals. It has the atomic symbol Gd, atomic number 64, and atomic weight 157.25. Its oxide is used in the control rods of some nuclear reactors.
Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla.
A hereditary condition characterized by multiple symptoms including those of DIABETES INSIPIDUS; DIABETES MELLITUS; OPTIC ATROPHY; and DEAFNESS. This syndrome is also known as DIDMOAD (first letter of each word) and is usually associated with VASOPRESSIN deficiency. It is caused by mutations in gene WFS1 encoding wolframin, a 100-kDa transmembrane protein.
An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER.
A condition of HYPONATREMIA and renal salt loss attributed to overexpansion of BODY FLUIDS resulting from sustained release of ANTIDIURETIC HORMONES which stimulates renal resorption of water. It is characterized by normal KIDNEY function, high urine OSMOLALITY, low serum osmolality, and neurological dysfunction. Etiologies include ADH-producing neoplasms, injuries or diseases involving the HYPOTHALAMUS, the PITUITARY GLAND, and the LUNG. This syndrome can also be drug-induced.
A bony prominence situated on the upper surface of the body of the sphenoid bone. It houses the PITUITARY GLAND.
Congenital or acquired cysts of the brain, spinal cord, or meninges which may remain stable in size or undergo progressive enlargement.
The balance of fluid in the BODY FLUID COMPARTMENTS; total BODY WATER; BLOOD VOLUME; EXTRACELLULAR SPACE; INTRACELLULAR SPACE, maintained by processes in the body that regulate the intake and excretion of WATER and ELECTROLYTES, particularly SODIUM and POTASSIUM.
The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
A lithium salt, classified as a mood-stabilizing agent. Lithium ion alters the metabolism of BIOGENIC MONOAMINES in the CENTRAL NERVOUS SYSTEM, and affects multiple neurotransmission systems.
A benign pituitary-region neoplasm that originates from Rathke's pouch. The two major histologic and clinical subtypes are adamantinous (or classical) craniopharyngioma and papillary craniopharyngioma. The adamantinous form presents in children and adolescents as an expanding cystic lesion in the pituitary region. The cystic cavity is filled with a black viscous substance and histologically the tumor is composed of adamantinomatous epithelium and areas of calcification and necrosis. Papillary craniopharyngiomas occur in adults, and histologically feature a squamous epithelium with papillations. (From Joynt, Clinical Neurology, 1998, Ch14, p50)
Conditions or pathological processes associated with the disease of diabetes mellitus. Due to the impaired control of BLOOD GLUCOSE level in diabetic patients, pathological processes develop in numerous tissues and organs including the EYE, the KIDNEY, the BLOOD VESSELS, and the NERVE TISSUE.
Liquid by-product of excretion produced in the kidneys, temporarily stored in the bladder until discharge through the URETHRA.
Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA.
Excessive thirst manifested by excessive fluid intake. It is characteristic of many diseases such as DIABETES MELLITUS; DIABETES INSIPIDUS; and NEPHROGENIC DIABETES INSIPIDUS. The condition may be psychogenic in origin.
Abnormal enlargement or swelling of a KIDNEY due to dilation of the KIDNEY CALICES and the KIDNEY PELVIS. It is often associated with obstruction of the URETER or chronic kidney diseases that prevents normal drainage of urine into the URINARY BLADDER.
The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.
A group of inherited kidney disorders characterized by the abnormally elevated levels of AMINO ACIDS in URINE. Genetic mutations of transport proteins result in the defective reabsorption of free amino acids at the PROXIMAL RENAL TUBULES. Renal aminoaciduria are classified by the specific amino acid or acids involved.
Aquaporin 3 is an aquaglyceroporin that is expressed in the KIDNEY COLLECTING DUCTS and is constitutively localized at the basolateral MEMBRANE.
A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM.
Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY.
PROCEDURES that use NEUROENDOSCOPES for disease diagnosis and treatment. Neuroendoscopy, generally an integration of the neuroendoscope with a computer-assisted NEURONAVIGATION system, provides guidance in NEUROSURGICAL PROCEDURES.
A group of genetic disorders of the KIDNEY TUBULES characterized by the accumulation of metabolically produced acids with elevated plasma chloride, hyperchloremic metabolic ACIDOSIS. Defective renal acidification of URINE (proximal tubules) or low renal acid excretion (distal tubules) can lead to complications such as HYPOKALEMIA, hypercalcinuria with NEPHROLITHIASIS and NEPHROCALCINOSIS, and RICKETS.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Atrophy of the optic disk which may be congenital or acquired. This condition indicates a deficiency in the number of nerve fibers which arise in the RETINA and converge to form the OPTIC DISK; OPTIC NERVE; OPTIC CHIASM; and optic tracts. GLAUCOMA; ISCHEMIA; inflammation, a chronic elevation of intracranial pressure, toxins, optic nerve compression, and inherited conditions (see OPTIC ATROPHIES, HEREDITARY) are relatively common causes of this condition.
Inorganic compounds that contain lithium as an integral part of the molecule.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
Examinations that evaluate functions of the pituitary gland.
The condition that results from excessive loss of water from a living organism.
Deficiency of sodium in the blood; salt depletion. (Dorland, 27th ed)
Aquaporin 1 forms a water-specific channel that is constitutively expressed at the PLASMA MEMBRANE of ERYTHROCYTES and KIDNEY TUBULES, PROXIMAL. It provides these cells with a high permeability to WATER. In humans polymorphisms of this protein result in the Colton blood group antigen.
'Skin diseases' is a broad term for various conditions affecting the skin, including inflammatory disorders, infections, benign and malignant tumors, congenital abnormalities, and degenerative diseases, which can cause symptoms such as rashes, discoloration, eruptions, lesions, itching, or pain.
A thiazide diuretic with actions and uses similar to those of HYDROCHLOROTHIAZIDE. It has been used in the treatment of familial hyperkalemia, hypertension, edema, and urinary tract disorders. (From Martindale, The Extra Pharmacopoeia, 30th ed, p810)
The consumption of liquids.
Pathological processes of the ENDOCRINE GLANDS, and diseases resulting from abnormal level of available HORMONES.
Diabetes mellitus induced by PREGNANCY but resolved at the end of pregnancy. It does not include previously diagnosed diabetics who become pregnant (PREGNANCY IN DIABETICS). Gestational diabetes usually develops in late pregnancy when insulin antagonistic hormones peaks leading to INSULIN RESISTANCE; GLUCOSE INTOLERANCE; and HYPERGLYCEMIA.
Genes that influence the PHENOTYPE only in the homozygous state.
The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces.
The female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in human and other male-heterogametic species.
Substances used to allow enhanced visualization of tissues.
Pathological processes of the KIDNEY or its component tissues.
Glucose in blood.
A malignant kidney tumor, caused by the uncontrolled multiplication of renal stem (blastemal), stromal (STROMAL CELLS), and epithelial (EPITHELIAL CELLS) elements. However, not all three are present in every case. Several genes or chromosomal areas have been associated with Wilms tumor which is usually found in childhood as a firm lump in a child's side or ABDOMEN.
Conditions in which the production of adrenal CORTICOSTEROIDS falls below the requirement of the body. Adrenal insufficiency can be caused by defects in the ADRENAL GLANDS, the PITUITARY GLAND, or the HYPOTHALAMUS.
Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER.
Discharge of URINE, liquid waste processed by the KIDNEY, from the body.
A complex of gadolinium with a chelating agent, diethylenetriamine penta-acetic acid (DTPA see PENTETIC ACID), that is given to enhance the image in cranial and spinal MRIs. (From Martindale, The Extra Pharmacopoeia, 30th ed, p706)
A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed)
An antihyperlipoproteinemic agent and uricosuric agent.
Agents that inhibit SODIUM CHLORIDE SYMPORTERS. They act as DIURETICS. Excess use is associated with HYPOKALEMIA.
A type of mutation in which a number of NUCLEOTIDES deleted from or inserted into a protein coding sequence is not divisible by three, thereby causing an alteration in the READING FRAMES of the entire coding sequence downstream of the mutation. These mutations may be induced by certain types of MUTAGENS or may occur spontaneously.
The response of cells in sensing a difference in OSMOTIC PRESSURE between the inside and outside of the cell. This response includes signaling from osmotic sensors to activate transcription factors, which in turn regulate the expression of osmocompensatory genes, all functioning to maintain CELL VOLUME and the water concentration inside the cells.
A condition resulting from the excessive retention of water with sodium depletion.
Minor hemoglobin components of human erythrocytes designated A1a, A1b, and A1c. Hemoglobin A1c is most important since its sugar moiety is glucose covalently bound to the terminal amino acid of the beta chain. Since normal glycohemoglobin concentrations exclude marked blood glucose fluctuations over the preceding three to four weeks, the concentration of glycosylated hemoglobin A is a more reliable index of the blood sugar average over a long period of time.
A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)

Long-term regulation of aquaporins in the kidney. (1/148)

The discovery of the aquaporin family of water channels has greatly improved our understanding of how water crosses epithelial cells, particularly in the kidney. The study of the mechanisms involved in the regulation of collecting duct water permeability, in particular, has advanced very rapidly since the identification and characterization of aquaporin-2 (AQP2) in 1993. One of the more surprising findings has been the dramatic long-term changes that are seen in the abundance of this protein, as well as the recognition that these changes represent a way of modulating the acute antidiuretic effects of vasopressin. Furthermore, such changes seem to be of etiological and pathological significance in a number of clinical disorders of water balance. This review focuses on the various conditions in which AQP2 expression is altered (either increased or decreased) and on what this can tell us about the signals and mechanisms controlling these changes. Ultimately, this may be of great value in the clinical management of water balance disorders. Evidence is also now beginning to emerge that there are similar changes in the expression of other renal aquaporins, which had previously been thought to provide an essentially constitutive water permeability pathway, suggesting that they too should be considered as regulatory factors in the control of body water balance.  (+info)

An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. (2/148)

Autosomal recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin, are caused by mutations in the aquaporin-2 (AQP2) gene. Missense AQP2 proteins in recessive NDI have been shown to be retarded in the endoplasmic reticulum, whereas AQP2-E258K, an AQP2 mutant in dominant NDI, was retained in the Golgi complex. In this study, we identified the molecular mechanisms underlying recessive and dominant NDI. Sucrose gradient centrifugation of rat and human kidney proteins and subsequent immunoblotting revealed that AQP2 forms homotetramers. When expressed in oocytes, wild-type AQP2 and AQP2-E258K also formed homotetramers, whereas AQP2-R187C, a mutant in recessive NDI, was expressed as a monomer. Upon co-injection, AQP2-E258K, but not AQP2-R187C, was able to heterotetramerize with wild-type AQP2. Since an AQP monomer is the functional unit and AQP2-E258K is a functional but misrouted water channel, heterotetramerization of AQP2-E258K with wild-type AQP2 and inhibition of further routing of this complex to the plasma membrane is the cause of dominant NDI. This case of NDI is the first example of a dominant disease in which the 'loss-of-function' phenotype is caused by an impaired routing rather than impaired function of the wild-type protein.  (+info)

Treatment of nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride. (3/148)

Nephrogenic diabetes insipidus (NDI) is characterised by the inability of the kidney to concentrate urine in response to arginine vasopressin. The consequences are severe polyuria and polydipsia, often associated with hypertonic dehydration. Intracerebral calcification, seizures, psychosomatic retardation, hydronephrosis, and hydroureters are its sequelae. In this study, four children with NDI were treated with 3 mg/kg/day hydrochlorothiazide and 0.3 mg/kg/day amiloride orally three times a day for up to five years. While undergoing treatment, none of the patients had signs of dehydration or electrolyte imbalance, all showed normal body growth, and there was no evidence of cerebral calcification or seizures. All but one had normal psychomotor development and normal sonography of the urinary tract. However, normal fluid balance was not attainable (fluid intake, 3.8-7.7 l/m2/day; urine output, 2.2-7.4 l/m2/day). The treatment was well tolerated and no side effects could be detected. Prolonged treatment with hydrochlorothiazide/amiloride appears to be more effective and better tolerated than just hydrochlorothiazide. Its efficacy appears to be similar to that of hydrochlorothiazide/indomethacin but without their severe side effects.  (+info)

Effect of DDAVP on nocturnal enuresis in a patient with nephrogenic diabetes insipidus. (4/148)

The case of an 8 year old boy with both nocturnal enuresis and nephrogenic diabetes insipidus is presented. Diagnosis of nephrogenic diabetes insipidus was based on a typical medical history, the characteristic result of a fluid restriction test, the lack of an effect of 1-desamino-8-D-arginine (DDAVP) on both urine osmolality and plasma coagulation factors and, finally, the detection of a hemizygous missense mutation within the arginine vasopressin (AVP) receptor gene. Hydrochlorothiazide treatment and dietary measures reduced the patient's urine volume to one third of its original volume. However, this had no effect on enuresis. The daily intranasal application of DDAVP did not further reduce urine output but dramatically decreased the frequency of bed wetting. This observation contradicts the common notion that the therapeutic effect of DDAVP in nocturnal enuresis is the result of compensation for a nocturnal AVP deficit. Rather, it points to a different mode of action of DDAVP in patients with enuresis. It is hypothesised that central AVP receptors are a target of DDAVP and that they might play an important role in the pathogenesis of nocturnal enuresis.  (+info)

Clinical presentation and follow-up of 30 patients with congenital nephrogenic diabetes insipidus. (5/148)

Congenital nephrogenic diabetes insipidus is characterized by insensitivity of the distal nephron to arginine vasopressin. Clinical knowledge of this disease is based largely on case reports. For this study, data were collected on clinical presentation and during long-term follow-up of 30 male patients with congenital nephrogenic diabetes insipidus. The majority of patients (87%) were diagnosed within the first 2.5 yr of life. Main symptoms at clinical presentation were vomiting and anorexia, failure to thrive, fever, and constipation. Three older patients were diagnosed as a result of events not directly related to the disease. Except for a possibly milder phenotype in patients with a G185C mutation, no clear relationship between clinical and genetic data could be found. Most patients were on hydrochlorothiazide-amiloride treatment without significant side effects. Two patients suffered from severe hydronephrosis with a small rupture of the urinary tract after a minor trauma, and two patients experienced episodes of acute urine retention. Height SD scores for age remained below the 50th percentile in the majority of patients, whereas weight for height SD scores showed a catch-up after several years of underweight.  (+info)

A novel mutation in the vasopressin V2 receptor gene in a woman with congenital nephrogenic diabetes insipidus. (6/148)

A 56-year-old Japanese woman with congenital nephrogenic diabetes insipidus (CNDI) is reported. She was diagnosed with CNDI accompanied by advanced gastric cancer. After total gastrectomy, approximately 500 ml fluid per hour was necessary to prevent dehydration. Urinary volume was decreased by administration of hydrochlorothiazide. We detected a novel mutation in the vasopressin V2 receptor gene of her chromosomal DNA. A substitution from G to A was found at the 631 nucleotide position, altering codon 12 from glycine (GGG) to glutamic acid (GAG) in the first extracellular domain. This missense mutation appeared to be the cause of her resistance to arginine vasopressin.  (+info)

Functional analysis of aquaporin-2 mutants associated with nephrogenic diabetes insipidus by yeast expression. (7/148)

Mutations of aquaporin-2 (AQP2) vasopressin water channel cause nephrogenic diabetes insipidus (NDI). It has been suggested that impaired routing of AQP2 mutants to the plasma membrane causes the disease; however, no determinations have been made of mutation-induced alterations of AQP2 channel water permeability. To address this issue, a series of AQP2 mutants were expressed in yeast, and the osmotic water permeability (P(f)) of the isolated vesicles was measured. Wild-type and mutant AQP2 were expressed equally well in vesicles. P(f) of the vesicles containing wild-type AQP2 was 22 times greater than that of the control, which was sensitive to mercury and weakly dependent on the temperature. P(f) measurements and mercury inhibition examinations suggested that mutants L22V and P262L are fully functional, whereas mutants N68S, R187C, and S216P are partially functional. In contrast, mutants N123D, T125M, T126M, A147T, and C181W had very low water permeability. Our results suggest that the structure between the third and fifth hydrophilic loops is critical for the functional integrity of the AQP2 water channel and that disruption of AQP2 water permeability by mutations may cause NDI.  (+info)

Misfolding of mutant aquaporin-2 water channels in nephrogenic diabetes insipidus. (8/148)

We reported that several aquaporin-2 (AQP2) point mutants that cause nephrogenic diabetes insipidus (NDI) are retained in the endoplasmic reticulum (ER) of transfected mammalian cells and degraded but can be rescued by chemical chaperones to function as plasma membrane water channels (Tamarappoo, B. K., and Verkman, A. S. (1998) J. Clin. Invest. 101, 2257-2267). To test whether mutant AQP2 proteins are misfolded, AQP2 folding was assessed by comparative detergent extractability and limited proteolysis, and AQP2 degradation kinetics was measured by label-pulse-chase and immunoprecipitation. In ER membranes from transfected CHO cells containing [(35)S]methionine-labeled AQP2, mutants T126M and A147T were remarkably detergent-resistant; for example wild-type AQP2 was >95% solubilized by 0.5% CHAPS whereas T126M was <10% solubilized. E258K, an NDI-causing AQP2 mutant which is retained in the Golgi, is highly detergent soluble like wild-type AQP2. The mutants and wild-type AQP2 were equally susceptible to digestion by trypsin, thermolysin, and proteinase K. Stopped-flow light scattering measurements indicated that T126M AQP2 at the ER was fully functional as a water channel. Pulse-chase studies indicated that the increased degradation rates for T126M (t((1)/(2)) 2.5 h) and A147T (2 h) compared with wild-type AQP2 (4 h) involve a brefeldin A-resistant, ER-dependent degradation mechanism. After growth of cells for 48 h in the chemical chaperone glycerol, AQP2 mutants T126M and A147T became properly targeted and relatively detergent-soluble. These results provide evidence that NDI-causing mutant AQP2 proteins are misfolded, but functional, and that chemical chaperones both correct the trafficking and folding defects. Strategies to facilitate protein folding might thus have therapeutic efficacy in NDI.  (+info)

Diabetes Insipidus is a medical condition characterized by the excretion of large amounts of dilute urine (polyuria) and increased thirst (polydipsia). It is caused by a deficiency in the hormone vasopressin (also known as antidiuretic hormone or ADH), which regulates the body's water balance.

In normal physiology, vasopressin is released from the posterior pituitary gland in response to an increase in osmolality of the blood or a decrease in blood volume. This causes the kidneys to retain water and concentrate the urine. In Diabetes Insipidus, there is either a lack of vasopressin production (central diabetes insipidus) or a decreased response to vasopressin by the kidneys (nephrogenic diabetes insipidus).

Central Diabetes Insipidus can be caused by damage to the hypothalamus or pituitary gland, such as from tumors, trauma, or surgery. Nephrogenic Diabetes Insipidus can be caused by genetic factors, kidney disease, or certain medications that interfere with the action of vasopressin on the kidneys.

Treatment for Diabetes Insipidus depends on the underlying cause. In central diabetes insipidus, desmopressin, a synthetic analogue of vasopressin, can be administered to replace the missing hormone. In nephrogenic diabetes insipidus, treatment may involve addressing the underlying kidney disease or adjusting medications that interfere with vasopressin action. It is important for individuals with Diabetes Insipidus to maintain adequate hydration and monitor their fluid intake and urine output.

Nephrogenic diabetes insipidus is a type of diabetes insipidus that occurs due to the inability of the kidneys to respond to the antidiuretic hormone (ADH), also known as vasopressin. This results in excessive thirst and the production of large amounts of dilute urine.

In nephrogenic diabetes insipidus, the problem lies in the kidney tubules, which fail to absorb water from the urine due to a defect in the receptors or channels that respond to ADH. This can be caused by genetic factors, certain medications, kidney diseases, and electrolyte imbalances.

Treatment for nephrogenic diabetes insipidus typically involves addressing the underlying cause, if possible, as well as managing symptoms through a low-salt diet, increased fluid intake, and medications that increase water reabsorption in the kidneys.

Neurogenic diabetes insipidus is a condition characterized by the production of large amounts of dilute urine (polyuria) and increased thirst (polydipsia) due to deficiency of antidiuretic hormone (ADH), also known as vasopressin, which is produced by the hypothalamus and stored in the posterior pituitary gland.

Neurogenic diabetes insipidus can occur when there is damage to the hypothalamus or pituitary gland, leading to a decrease in ADH production or release. Causes of neurogenic diabetes insipidus include brain tumors, head trauma, surgery, meningitis, encephalitis, and autoimmune disorders.

In this condition, the kidneys are unable to reabsorb water from the urine due to the lack of ADH, resulting in the production of large volumes of dilute urine. This can lead to dehydration, electrolyte imbalances, and other complications if not properly managed. Treatment typically involves replacing the missing ADH with a synthetic hormone called desmopressin, which can be administered as a nasal spray, oral tablet, or injection.

Nephrogenic Systemic Fibrosis (NSF), previously referred to as Nephrogenic Fibrosing Dermopathy (NFD), is a rare but serious condition characterized by thickening and hardening of the skin, joint stiffness, and in some cases, organ fibrosis. It primarily affects people with impaired kidney function, particularly those who have undergone dialysis or have received a transplant. The condition is associated with exposure to gadolinium-based contrast agents (GBCAs) used in magnetic resonance imaging (MRI). However, not all patients exposed to GBCAs develop NSF, and the exact cause remains unclear.

Polyuria is a medical term that describes the production of large volumes of urine, typically defined as exceeding 2.5-3 liters per day in adults. This condition can lead to frequent urination, sometimes as often as every one to two hours, and often worsens during the night (nocturia). Polyuria is often a symptom of an underlying medical disorder such as diabetes mellitus or diabetes insipidus, rather than a disease itself. Other potential causes include kidney diseases, heart failure, liver cirrhosis, and certain medications. Proper diagnosis and treatment of the underlying condition are essential to manage polyuria effectively.

Aquaporin 2 (AQP2) is a type of aquaporin, which is a water channel protein found in the membranes of cells. Specifically, AQP2 is located in the principal cells of the collecting ducts in the kidneys. It plays a crucial role in regulating water reabsorption and urine concentration by facilitating the movement of water across the cell membrane in response to the hormone vasopressin (also known as antidiuretic hormone). When vasopressin binds to receptors on the cell surface, it triggers a cascade of intracellular signals that lead to the translocation of AQP2 water channels from intracellular vesicles to the apical membrane. This increases the permeability of the apical membrane to water, allowing for efficient reabsorption of water and concentration of urine. Dysfunction in AQP2 has been implicated in various kidney disorders, such as nephrogenic diabetes insipidus.

Desmopressin, also known as 1-deamino-8-D-arginine vasopressin (dDAVP), is a synthetic analogue of the natural hormone arginine vasopressin. It is commonly used in medical practice for the treatment of diabetes insipidus, a condition characterized by excessive thirst and urination due to lack of antidiuretic hormone (ADH).

Desmopressin works by binding to V2 receptors in the kidney, which leads to increased water reabsorption and reduced urine production. It also has some effect on V1 receptors, leading to vasoconstriction and increased blood pressure. However, its primary use is for its antidiuretic effects.

In addition to its use in diabetes insipidus, desmopressin may also be used to treat bleeding disorders such as hemophilia and von Willebrand disease, as it can help to promote platelet aggregation and reduce bleeding times. It is available in various forms, including nasal sprays, injectable solutions, and oral tablets or dissolvable films.

Vasopressin receptors are a type of G protein-coupled receptor that bind to and are activated by the hormone vasopressin (also known as antidiuretic hormone or ADH). There are two main types of vasopressin receptors, V1 and V2.

V1 receptors are found in various tissues throughout the body, including vascular smooth muscle, heart, liver, and kidney. Activation of V1 receptors leads to vasoconstriction (constriction of blood vessels), increased heart rate and force of heart contractions, and release of glycogen from the liver.

V2 receptors are primarily found in the kidney's collecting ducts. When activated, they increase water permeability in the collecting ducts, allowing for the reabsorption of water into the bloodstream and reducing urine production. This helps to regulate fluid balance and maintain normal blood pressure.

Abnormalities in vasopressin receptor function can contribute to various medical conditions, including hypertension, heart failure, and kidney disease.

Aquaporin 6 (AQP6) is a protein that functions as a water channel in the membranes of certain cells. It is a member of the aquaporin family, which are proteins that allow the selective transport of water and small solutes across biological membranes. Aquaporin 6 is primarily expressed in the kidney, where it is localized to the intracellular vesicles of intercalated cells in the collecting ducts. It is thought to play a role in acid-base balance and urine concentration by regulating the movement of water and hydrogen ions (protons) across cell membranes. Aquaporin 6 has also been found to be permeable to anions, making it unique among aquaporins. Additionally, AQP6 has been identified in other tissues such as the brain, lung, and testis, but its function in these tissues is not well understood.

Pituitary diseases refer to a group of conditions that affect the pituitary gland, a small endocrine gland located at the base of the brain. The pituitary gland is responsible for producing and secreting several important hormones that regulate various bodily functions, including growth and development, metabolism, stress response, and reproduction.

Pituitary diseases can be classified into two main categories:

1. Pituitary tumors: These are abnormal growths in or around the pituitary gland that can affect its function. Pituitary tumors can be benign (non-cancerous) or malignant (cancerous), and they can vary in size. Some pituitary tumors produce excess hormones, leading to a variety of symptoms, while others may not produce any hormones but can still cause problems by compressing nearby structures in the brain.
2. Pituitary gland dysfunction: This refers to conditions that affect the normal function of the pituitary gland without the presence of a tumor. Examples include hypopituitarism, which is a condition characterized by decreased production of one or more pituitary hormones, and Sheehan's syndrome, which occurs when the pituitary gland is damaged due to severe blood loss during childbirth.

Symptoms of pituitary diseases can vary widely depending on the specific condition and the hormones that are affected. Treatment options may include surgery, radiation therapy, medication, or a combination of these approaches.

I'm sorry for any confusion, but "Rats, Brattleboro" is not a recognized medical term or condition. It seems like it could be a nonsensical phrase or a reference to something specific, such as a place (Brattleboro, a town in Vermont) and an exclamation of frustration or surprise ("rats"). If you're referring to a specific medical condition or concept, please provide more context so I can give you a more accurate and helpful response.

Vasopressin, also known as antidiuretic hormone (ADH), is a hormone that helps regulate water balance in the body. It is produced by the hypothalamus and stored in the posterior pituitary gland. When the body is dehydrated or experiencing low blood pressure, vasopressin is released into the bloodstream, where it causes the kidneys to decrease the amount of urine they produce and helps to constrict blood vessels, thereby increasing blood pressure. This helps to maintain adequate fluid volume in the body and ensure that vital organs receive an adequate supply of oxygen-rich blood. In addition to its role in water balance and blood pressure regulation, vasopressin also plays a role in social behaviors such as pair bonding and trust.

Antidiuretic agents are medications or substances that reduce the amount of urine produced by the body. They do this by increasing the reabsorption of water in the kidneys, which leads to a decrease in the excretion of water and solutes in the urine. This can help to prevent dehydration and maintain fluid balance in the body.

The most commonly used antidiuretic agent is desmopressin, which works by mimicking the action of a natural hormone called vasopressin (also known as antidiuretic hormone or ADH). Vasopressin is produced by the pituitary gland and helps to regulate water balance in the body. When the body's fluid levels are low, vasopressin is released into the bloodstream, where it causes the kidneys to reabsorb more water and produce less urine.

Antidiuretic agents may be used to treat a variety of medical conditions, including diabetes insipidus (a rare disorder that causes excessive thirst and urination), bedwetting in children, and certain types of headaches. They may also be used to manage fluid balance in patients with kidney disease or heart failure.

It is important to use antidiuretic agents only under the supervision of a healthcare provider, as they can have side effects and may interact with other medications. Overuse or misuse of these drugs can lead to water retention, hyponatremia (low sodium levels in the blood), and other serious complications.

Neurophysins are small protein molecules that are derived from the larger precursor protein, pro-neurophysin. They are synthesized in the hypothalamus of the brain and are stored in and released from neurosecretory granules, along with neurohypophysial hormones such as oxytocin and vasopressin.

Neurophysins serve as carrier proteins for these hormones, helping to stabilize them and facilitate their transport and release into the bloodstream. There are two main types of neurophysins, neurophysin I and neurophysin II, which are associated with oxytocin and vasopressin, respectively.

Neurophysins have been studied for their potential role in various physiological processes, including water balance, social behavior, and reproductive functions. However, their precise mechanisms of action and functional significance are still not fully understood.

Arginine vasopressin (AVP), also known as antidiuretic hormone (ADH), is a hormone produced in the hypothalamus and stored in the posterior pituitary gland. It plays a crucial role in regulating water balance and blood pressure in the body.

AVP acts on the kidneys to promote water reabsorption, which helps maintain adequate fluid volume and osmotic balance in the body. It also constricts blood vessels, increasing peripheral vascular resistance and thereby helping to maintain blood pressure. Additionally, AVP has been shown to have effects on cognitive function, mood regulation, and pain perception.

Deficiencies or excesses of AVP can lead to a range of medical conditions, including diabetes insipidus (characterized by excessive thirst and urination), hyponatremia (low sodium levels in the blood), and syndrome of inappropriate antidiuretic hormone secretion (SIADH).

Chlorpropamide is a type of oral anti-diabetic drug known as a sulfonylurea, which is used to lower blood glucose levels in people with type 2 diabetes. It works by stimulating the release of insulin from the pancreas and increasing the sensitivity of peripheral tissues to insulin.

Here's the medical definition:

Chlorpropamide: A first-generation sulfonylurea medication used in the management of type 2 diabetes mellitus. It acts by stimulating the release of insulin from the pancreatic beta cells and increasing peripheral tissue sensitivity to insulin. Chlorpropamide has a longer duration of action than other sulfonylureas, with a peak effect at around 6-12 hours after administration. Common side effects include hypoglycemia, weight gain, and gastrointestinal symptoms such as nausea and diarrhea. It is important to monitor blood glucose levels regularly while taking chlorpropamide to avoid hypoglycemia.

Hypopituitarism is a medical condition characterized by deficient secretion of one or more hormones produced by the pituitary gland, a small endocrine gland located at the base of the brain. The pituitary gland controls several other endocrine glands in the body, including the thyroid, adrenals, and sex glands (ovaries and testes).

Hypopituitarism can result from damage to the pituitary gland due to various causes such as tumors, surgery, radiation therapy, trauma, or inflammation. In some cases, hypopituitarism may also be caused by a dysfunction of the hypothalamus, a region in the brain that regulates the pituitary gland's function.

The symptoms and signs of hypopituitarism depend on which hormones are deficient and can include fatigue, weakness, decreased appetite, weight loss, low blood pressure, decreased sex drive, infertility, irregular menstrual periods, intolerance to cold, constipation, thinning hair, dry skin, and depression.

Treatment of hypopituitarism typically involves hormone replacement therapy to restore the deficient hormones' normal levels. The type and dosage of hormones used will depend on which hormones are deficient and may require regular monitoring and adjustments over time.

Aquaporins are a type of membrane protein that function as water channels, allowing the selective and efficient transport of water molecules across biological membranes. They play crucial roles in maintaining fluid homeostasis, regulating cell volume, and supporting various physiological processes in the body. In humans, there are 13 different aquaporin subtypes (AQP0 to AQP12) that have been identified, each with distinct tissue expression patterns and functions. Some aquaporins also facilitate the transport of small solutes such as glycerol and urea. Dysfunction or misregulation of aquaporins has been implicated in several pathological conditions, including neurological disorders, cancer, and water balance-related diseases.

"Renal agents" is not a standardized medical term with a single, widely accepted definition. However, in a general sense, renal agents could refer to medications or substances that have an effect on the kidneys or renal function. This can include drugs that are primarily used to treat kidney diseases or disorders (such as certain types of diuretics, ACE inhibitors, or ARBs), as well as chemicals or toxins that can negatively impact renal function if they are not properly eliminated from the body.

It's worth noting that the term "renal agent" is not commonly used in medical literature or clinical practice, and its meaning may vary depending on the context in which it is used. If you have any specific questions about a particular medication or substance and its effect on renal function, I would recommend consulting with a healthcare professional for more accurate information.

Kidney concentrating ability refers to the capacity of the kidneys to increase the concentration of solutes, such as urea and minerals, and remove waste products while reabsorbing water to maintain fluid balance in the body. This is primarily regulated by the hormone vasopressin (ADH), which signals the collecting ducts in the nephrons of the kidneys to absorb more water, resulting in the production of concentrated urine. A decreased kidney concentrating ability may indicate a variety of renal disorders or diseases, such as diabetes insipidus or chronic kidney disease.

Diabetes Mellitus, Type 1 is a chronic autoimmune disease characterized by the destruction of insulin-producing beta cells in the pancreas, leading to an absolute deficiency of insulin. This results in an inability to regulate blood glucose levels, causing hyperglycemia (high blood sugar). Type 1 diabetes typically presents in childhood or early adulthood, although it can develop at any age. It is usually managed with regular insulin injections or the use of an insulin pump, along with monitoring of blood glucose levels and adjustments to diet and physical activity. Uncontrolled type 1 diabetes can lead to serious complications such as kidney damage, nerve damage, blindness, and cardiovascular disease.

Diabetes Mellitus is a chronic metabolic disorder characterized by elevated levels of glucose in the blood (hyperglycemia) due to absolute or relative deficiency in insulin secretion and/or insulin action. There are two main types: Type 1 diabetes, which results from the autoimmune destruction of pancreatic beta cells leading to insulin deficiency, and Type 2 diabetes, which is associated with insulin resistance and relative insulin deficiency.

Type 1 diabetes typically presents in childhood or young adulthood, while Type 2 diabetes tends to occur later in life, often in association with obesity and physical inactivity. Both types of diabetes can lead to long-term complications such as damage to the eyes, kidneys, nerves, and cardiovascular system if left untreated or not well controlled.

The diagnosis of diabetes is usually made based on fasting plasma glucose levels, oral glucose tolerance tests, or hemoglobin A1c (HbA1c) levels. Treatment typically involves lifestyle modifications such as diet and exercise, along with medications to lower blood glucose levels and manage associated conditions.

The posterior pituitary gland, also known as the neurohypophysis, is the posterior portion of the pituitary gland. It is primarily composed of nerve fibers that originate from the hypothalamus, a region of the brain. These nerve fibers release two important hormones: oxytocin and vasopressin (also known as antidiuretic hormone or ADH).

Oxytocin plays a role in social bonding, sexual reproduction, and childbirth. During childbirth, it stimulates uterine contractions to help facilitate delivery, and after birth, it helps to trigger the release of milk from the mother's breasts during breastfeeding.

Vasopressin, on the other hand, helps regulate water balance in the body by controlling the amount of water that is excreted by the kidneys. It does this by increasing the reabsorption of water in the collecting ducts of the kidney, which leads to a more concentrated urine and helps prevent dehydration.

Overall, the posterior pituitary gland plays a critical role in maintaining fluid balance, social bonding, and reproduction.

Thirst, also known as dry mouth or polydipsia, is a physiological need or desire to drink fluids to maintain fluid balance and hydration in the body. It is primarily regulated by the hypothalamus in response to changes in osmolality and volume of bodily fluids, particularly blood. Thirst can be triggered by various factors such as dehydration, excessive sweating, diarrhea, vomiting, fever, burns, certain medications, and medical conditions affecting the kidneys, adrenal glands, or other organs. It is a vital homeostatic mechanism to ensure adequate hydration and proper functioning of various bodily systems.

Hypothalamic diseases refer to conditions that affect the hypothalamus, a small but crucial region of the brain responsible for regulating many vital functions in the body. The hypothalamus helps control:

1. Body temperature
2. Hunger and thirst
3. Sleep cycles
4. Emotions and behavior
5. Release of hormones from the pituitary gland

Hypothalamic diseases can be caused by genetic factors, infections, tumors, trauma, or other conditions that damage the hypothalamus. Some examples of hypothalamic diseases include:

1. Hypothalamic dysfunction syndrome: A condition characterized by various symptoms such as obesity, sleep disturbances, and hormonal imbalances due to hypothalamic damage.
2. Kallmann syndrome: A genetic disorder that affects the development of the hypothalamus and results in a lack of sexual maturation and a decreased sense of smell.
3. Prader-Willi syndrome: A genetic disorder that causes obesity, developmental delays, and hormonal imbalances due to hypothalamic dysfunction.
4. Craniopharyngiomas: Tumors that develop near the pituitary gland and hypothalamus, often causing visual impairment, hormonal imbalances, and growth problems.
5. Infiltrative diseases: Conditions such as sarcoidosis or histiocytosis can infiltrate the hypothalamus, leading to various symptoms related to hormonal imbalances and neurological dysfunction.
6. Traumatic brain injury: Damage to the hypothalamus due to head trauma can result in various hormonal and neurological issues.
7. Infections: Bacterial or viral infections that affect the hypothalamus, such as encephalitis or meningitis, can cause damage and lead to hypothalamic dysfunction.

Treatment for hypothalamic diseases depends on the underlying cause and may involve medications, surgery, hormone replacement therapy, or other interventions to manage symptoms and improve quality of life.

Water deprivation is a condition that occurs when an individual is deliberately or unintentionally not given access to adequate water for a prolonged period. This can lead to dehydration, which is the excessive loss of body water and electrolytes. In severe cases, water deprivation can result in serious health complications, including seizures, kidney damage, brain damage, coma, and even death. It's important to note that water is essential for many bodily functions, including maintaining blood pressure, regulating body temperature, and removing waste products from the body. Therefore, it's crucial to stay hydrated by drinking an adequate amount of water each day.

Hypernatremia is a medical condition characterized by an abnormally high concentration of sodium (na+) in the blood, specifically a serum sodium level greater than 145 mEq/L. Sodium is an essential electrolyte that helps regulate water balance in and around your cells. It's crucial for many body functions, including the maintenance of blood pressure, regulation of nerve and muscle function, and regulation of fluid balance.

Hypernatremia typically results from a deficit of total body water relative to solute, which can be caused by decreased water intake, increased water loss, or a combination of both. Common causes include dehydration due to severe vomiting or diarrhea, excessive sweating, burns, kidney diseases, and the use of certain medications such as diuretics.

Symptoms of hypernatremia can range from mild to severe and may include thirst, muscle weakness, lethargy, irritability, confusion, seizures, and in extreme cases, coma or even death. Treatment typically involves correcting the underlying cause and gradually rehydrating the individual with intravenous fluids to restore normal sodium levels.

Diabetes Mellitus, Type 2 is a metabolic disorder characterized by high blood glucose (or sugar) levels resulting from the body's inability to produce sufficient amounts of insulin or effectively use the insulin it produces. This form of diabetes usually develops gradually over several years and is often associated with older age, obesity, physical inactivity, family history of diabetes, and certain ethnicities.

In Type 2 diabetes, the body's cells become resistant to insulin, meaning they don't respond properly to the hormone. As a result, the pancreas produces more insulin to help glucose enter the cells. Over time, the pancreas can't keep up with the increased demand, leading to high blood glucose levels and diabetes.

Type 2 diabetes is managed through lifestyle modifications such as weight loss, regular exercise, and a healthy diet. Medications, including insulin therapy, may also be necessary to control blood glucose levels and prevent long-term complications associated with the disease, such as heart disease, nerve damage, kidney damage, and vision loss.

Diuresis is a medical term that refers to an increased production of urine by the kidneys. It can occur as a result of various factors, including certain medications, medical conditions, or as a response to a physiological need, such as in the case of dehydration. Diuretics are a class of drugs that promote diuresis and are often used to treat conditions such as high blood pressure, heart failure, and edema.

Diuresis can be classified into several types based on its underlying cause or mechanism, including:

1. Osmotic diuresis: This occurs when the kidneys excrete large amounts of urine in response to a high concentration of solutes (such as glucose) in the tubular fluid. The high osmolarity of the tubular fluid causes water to be drawn out of the bloodstream and into the urine, leading to an increase in urine output.
2. Forced diuresis: This is a medical procedure in which large amounts of intravenous fluids are administered to promote diuresis. It is used in certain clinical situations, such as to enhance the excretion of toxic substances or to prevent kidney damage.
3. Natriuretic diuresis: This occurs when the kidneys excrete large amounts of sodium and water in response to the release of natriuretic peptides, which are hormones that regulate sodium balance and blood pressure.
4. Aquaresis: This is a type of diuresis that occurs in response to the ingestion of large amounts of water, leading to dilute urine production.
5. Pathological diuresis: This refers to increased urine production due to underlying medical conditions such as diabetes insipidus or pyelonephritis.

It is important to note that excessive diuresis can lead to dehydration and electrolyte imbalances, so it should be monitored carefully in clinical settings.

Fanconi syndrome is a medical condition that affects the proximal tubules of the kidneys. These tubules are responsible for reabsorbing various substances, such as glucose, amino acids, and electrolytes, back into the bloodstream after they have been filtered through the kidneys.

In Fanconi syndrome, there is a defect in the reabsorption process, causing these substances to be lost in the urine instead. This can lead to a variety of symptoms, including:

* Polyuria (excessive urination)
* Polydipsia (excessive thirst)
* Dehydration
* Metabolic acidosis (an imbalance of acid and base in the body)
* Hypokalemia (low potassium levels)
* Hypophosphatemia (low phosphate levels)
* Vitamin D deficiency
* Rickets (softening and weakening of bones in children) or osteomalacia (softening of bones in adults)

Fanconi syndrome can be caused by a variety of underlying conditions, including genetic disorders, kidney diseases, drug toxicity, and heavy metal poisoning. Treatment typically involves addressing the underlying cause, as well as managing symptoms such as electrolyte imbalances and acid-base disturbances.

Hypothalamic neoplasms refer to tumors that originate in the hypothalamus, a small region of the brain that is located at the base of the brain and forms part of the limbic system. The hypothalamus plays a critical role in regulating many bodily functions, including hormone release, temperature regulation, hunger, thirst, sleep, and emotional behavior.

Hypothalamic neoplasms can be benign or malignant and can arise from various cell types within the hypothalamus, such as neurons, glial cells, or supportive tissue. These tumors can cause a variety of symptoms depending on their size, location, and rate of growth. Common symptoms include endocrine disorders (such as diabetes insipidus or precocious puberty), visual disturbances, headaches, behavioral changes, and cognitive impairment.

The diagnosis of hypothalamic neoplasms typically involves a combination of clinical evaluation, imaging studies (such as MRI or CT scans), and sometimes biopsy or surgical removal of the tumor. Treatment options depend on the type, size, and location of the tumor but may include surgery, radiation therapy, chemotherapy, or a combination of these approaches. Regular follow-up care is essential to monitor for recurrence or progression of the tumor.

Langerhans cell histiocytosis (LCH) is a rare disorder characterized by the abnormal proliferation and accumulation of dendritic cells called Langerhans cells in various tissues and organs of the body. These cells are part of the immune system and normally help to fight infection. However, in LCH, an overactive immune response leads to the excessive buildup of these cells, forming granulomas that can damage organs and impair their function.

The exact cause of LCH is not fully understood, but it is thought to involve genetic mutations that lead to uncontrolled cell growth and division. The disorder can affect people of any age, although it is most commonly diagnosed in children under the age of 15.

LCH can affect a single organ or multiple organs, depending on the severity and extent of the disease. Commonly affected sites include the bones, skin, lymph nodes, lungs, liver, spleen, and pituitary gland. Symptoms vary widely depending on the location and severity of the disease, but may include bone pain, rashes, fatigue, fever, weight loss, cough, and difficulty breathing.

Treatment for LCH depends on the extent and severity of the disease. In mild cases, observation and monitoring may be sufficient. More severe cases may require chemotherapy, radiation therapy, or surgery to remove affected tissues. In some cases, immunosuppressive drugs or targeted therapies that target specific genetic mutations may be used.

Overall, LCH is a complex and poorly understood disorder that requires careful evaluation and management by a team of medical specialists. While the prognosis for patients with LCH has improved in recent years, some cases can be life-threatening or lead to long-term complications.

Chlorothiazide is a medication that belongs to a class of diuretics known as thiazide diuretics. It works by increasing the excretion of salt and water from the body through urine, which helps to reduce blood pressure and decrease edema (swelling). Chlorothiazide is used to treat hypertension (high blood pressure), heart failure, and edema caused by various medical conditions.

The medical definition of Chlorothiazide is:

A thiazide diuretic drug used in the treatment of hypertension, heart failure, and edema. It acts by inhibiting the reabsorption of sodium and chloride ions in the distal convoluted tubule of the nephron, leading to increased excretion of salt and water in the urine. Chlorothiazide has a rapid onset of action and a short duration of effect, making it useful for acute situations requiring prompt diuresis. It is available in oral and injectable forms.

Gadolinium is a rare earth metal that is used as a contrast agent in medical imaging techniques such as Magnetic Resonance Imaging (MRI) and Magnetic Resonance Angiography (MRA). It works by shortening the relaxation time of protons in tissues, which enhances the visibility of internal body structures on the images. Gadolinium-based contrast agents are injected into the patient's bloodstream during the imaging procedure.

It is important to note that in some individuals, gadolinium-based contrast agents can cause a condition called nephrogenic systemic fibrosis (NSF), which is a rare but serious disorder that affects people with severe kidney disease. NSF causes thickening and hardening of the skin, joints, eyes, and internal organs. Therefore, it is essential to evaluate a patient's renal function before administering gadolinium-based contrast agents.

Collecting kidney tubules, also known as collecting ducts, are the final portion of the renal tubule in the nephron of the kidney. They collect filtrate from the distal convoluted tubules and glomeruli and are responsible for the reabsorption of water and electrolytes back into the bloodstream under the influence of antidiuretic hormone (ADH) and aldosterone. The collecting ducts then deliver the remaining filtrate to the ureter, which transports it to the bladder for storage until urination.

Wolfram Syndrome is a rare, progressive, genetic disorder that affects multiple organ systems, particularly the eyes, brain, endocrine system, and hearing. It is characterized by the combination of several features including diabetes insipidus (DI), diabetes mellitus (DM), optic nerve atrophy, and various neurological symptoms. The onset of this syndrome typically occurs in childhood.

The two major types of Wolfram Syndrome are WFS1 and WFS2, with WFS1 being the most common form. They are caused by mutations in different genes (WFS1 and CISD2 respectively), both of which play a role in maintaining the health of cells in the body, particularly those in the pancreas, eyes, and ears.

The symptoms of Wolfram Syndrome can vary widely among affected individuals, but often include:
- Diabetes insipidus (DI): This is characterized by excessive thirst and urination due to problems with the body's regulation of fluids.
- Diabetes mellitus (DM): This type of diabetes results from issues with insulin production or usage, leading to high blood sugar levels.
- Optic nerve atrophy: This can cause vision loss, typically starting in early childhood and progressing over time.
- Neurological symptoms: These may include hearing loss, problems with balance and coordination, difficulty swallowing, and neuropsychiatric issues such as depression and anxiety.

Currently, there is no cure for Wolfram Syndrome, and treatment primarily focuses on managing the individual symptoms of the disorder.

Lithium is not a medical term per se, but it is a chemical element with symbol Li and atomic number 3. In the field of medicine, lithium is most commonly referred to as a medication, specifically as "lithium carbonate" or "lithium citrate," which are used primarily to treat bipolar disorder. These medications work by stabilizing mood and reducing the severity and frequency of manic episodes.

Lithium is a naturally occurring substance, and it is an alkali metal. In its elemental form, lithium is highly reactive and flammable. However, when combined with carbonate or citrate ions to form lithium salts, it becomes more stable and safe for medical use.

It's important to note that lithium levels in the body must be closely monitored while taking this medication because too much lithium can lead to toxicity, causing symptoms such as tremors, nausea, diarrhea, and in severe cases, seizures, coma, or even death. Regular blood tests are necessary to ensure that lithium levels remain within the therapeutic range.

Inappropriate Antidiuretic Hormone (ADH) Syndrome, also known as the Syndrome of Inappropriate Antidiuresis (SIAD), is a condition characterized by the excessive release or action of antidiuretic hormone (ADH) leading to an imbalance of water and electrolytes in the body.

ADH is a hormone produced by the pituitary gland that helps regulate water balance in the body by controlling the amount of urine produced by the kidneys. In normal conditions, ADH levels increase in response to dehydration or decreased blood volume, causing the kidneys to retain water and decrease urine output.

However, in Inappropriate ADH Syndrome, there is an overproduction or inappropriate release of ADH, even when the body does not need it. This can lead to a condition called hyponatremia, which is low sodium levels in the blood. Hyponatremia can cause symptoms such as headache, confusion, seizures, and in severe cases, coma or death.

Inappropriate ADH Syndrome can be caused by various factors, including certain medications, brain tumors, lung diseases, and other medical conditions that affect the production or release of ADH. It is important to diagnose and treat Inappropriate ADH Syndrome promptly to prevent serious complications from hyponatremia. Treatment typically involves addressing the underlying cause and adjusting fluid intake and electrolyte levels as needed.

The Sella Turcica, also known as the Turkish saddle, is a depression or fossa in the sphenoid bone located at the base of the skull. It forms a housing for the pituitary gland, which is a small endocrine gland often referred to as the "master gland" because it controls other glands and makes several essential hormones. The Sella Turcica has a saddle-like shape, with its anterior and posterior clinoids forming the front and back of the saddle, respectively. This region is of significant interest in neuroimaging and clinical settings, as various conditions such as pituitary tumors or other abnormalities may affect the size, shape, and integrity of the Sella Turcica.

Central nervous system (CNS) cysts are abnormal fluid-filled sacs that develop in the brain or spinal cord. These cysts can be congenital, meaning they are present at birth and develop as a result of abnormal embryonic development, or they can be acquired later in life due to injury, infection, or disease.

CNS cysts can vary in size and may cause symptoms depending on their location and the amount of pressure they place on surrounding brain or spinal cord tissue. Symptoms may include headaches, seizures, weakness, numbness, or difficulty with coordination and balance. In some cases, CNS cysts may not cause any symptoms and may be discovered incidentally during imaging studies performed for other reasons.

There are several types of CNS cysts, including:

1. Arachnoid cysts: These are the most common type of CNS cyst and occur between the layers of the arachnoid membrane that covers the brain and spinal cord.
2. Colloid cysts: These cysts typically develop at the junction of the third and fourth ventricles in the brain and can obstruct the flow of cerebrospinal fluid (CSF), leading to increased intracranial pressure.
3. Ependymal cysts: These cysts arise from the ependymal cells that line the ventricular system of the brain and can cause symptoms by compressing surrounding brain tissue.
4. Neuroglial cysts: These cysts are composed of glial cells, which support and protect nerve cells in the CNS.
5. Pineal cysts: These cysts develop in the pineal gland, a small endocrine gland located near the center of the brain.

Treatment for CNS cysts depends on their size, location, and symptoms. In some cases, observation and monitoring may be all that is necessary. However, if the cyst is causing significant symptoms or is at risk of rupturing or obstructing CSF flow, surgical intervention may be required to remove or reduce the size of the cyst.

Water-electrolyte balance refers to the regulation of water and electrolytes (sodium, potassium, chloride, bicarbonate) in the body to maintain homeostasis. This is crucial for various bodily functions such as nerve impulse transmission, muscle contraction, fluid balance, and pH regulation. The body maintains this balance through mechanisms that control water intake, excretion, and electrolyte concentration in various body fluids like blood and extracellular fluid. Disruptions in water-electrolyte balance can lead to dehydration or overhydration, and imbalances in electrolytes can cause conditions such as hyponatremia (low sodium levels) or hyperkalemia (high potassium levels).

Osmolar concentration is a measure of the total number of solute particles (such as ions or molecules) dissolved in a solution per liter of solvent (usually water), which affects the osmotic pressure. It is expressed in units of osmoles per liter (osmol/L). Osmolarity and osmolality are related concepts, with osmolarity referring to the number of osmoles per unit volume of solution, typically measured in liters, while osmolality refers to the number of osmoles per kilogram of solvent. In clinical contexts, osmolar concentration is often used to describe the solute concentration of bodily fluids such as blood or urine.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Lithium carbonate is a medical inorganic salt that is commonly used as a medication, particularly in the treatment of bipolar disorder. It works by stabilizing mood and reducing the severity and frequency of manic episodes. Lithium carbonate is available in immediate-release and extended-release forms, and it is typically taken orally in the form of tablets or capsules.

The medical definition of lithium carbonate is: "A white, crystalline powder used as a mood-stabilizing drug, primarily in the treatment of bipolar disorder. It acts by reducing the availability of sodium and potassium ions within nerve cells, which alters the electrical activity of the brain and helps to regulate mood. Lithium carbonate is also used in the treatment of cluster headaches and to reduce aggression in patients with behavioral disorders."

It's important to note that lithium carbonate requires careful medical supervision due to its narrow therapeutic index, meaning there is a small range between an effective dose and a toxic one. Regular monitoring of blood levels is necessary to ensure safe and effective treatment.

A craniopharyngioma is a type of brain tumor that develops near the pituitary gland, which is a small gland located at the base of the brain. These tumors arise from remnants of Rathke's pouch, an embryonic structure involved in the development of the pituitary gland.

Craniopharyngiomas are typically slow-growing and benign (non-cancerous), but they can still cause significant health problems due to their location. They can compress nearby structures such as the optic nerves, hypothalamus, and pituitary gland, leading to symptoms like vision loss, hormonal imbalances, and cognitive impairment.

Treatment for craniopharyngiomas usually involves surgical removal of the tumor, followed by radiation therapy in some cases. Regular follow-up with a healthcare team is essential to monitor for recurrence and manage any long-term effects of treatment.

Diabetes complications refer to a range of health issues that can develop as a result of poorly managed diabetes over time. These complications can affect various parts of the body and can be classified into two main categories: macrovascular and microvascular.

Macrovascular complications include:

* Cardiovascular disease (CVD): People with diabetes are at an increased risk of developing CVD, including coronary artery disease, peripheral artery disease, and stroke.
* Peripheral arterial disease (PAD): This condition affects the blood vessels that supply oxygen and nutrients to the limbs, particularly the legs. PAD can cause pain, numbness, or weakness in the legs and may increase the risk of amputation.

Microvascular complications include:

* Diabetic neuropathy: This is a type of nerve damage that can occur due to prolonged high blood sugar levels. It commonly affects the feet and legs, causing symptoms such as numbness, tingling, or pain.
* Diabetic retinopathy: This condition affects the blood vessels in the eye and can cause vision loss or blindness if left untreated.
* Diabetic nephropathy: This is a type of kidney damage that can occur due to diabetes. It can lead to kidney failure if not managed properly.

Other complications of diabetes include:

* Increased risk of infections, particularly skin and urinary tract infections.
* Slow healing of wounds, which can increase the risk of infection and amputation.
* Gum disease and other oral health problems.
* Hearing impairment.
* Sexual dysfunction.

Preventing or managing diabetes complications involves maintaining good blood sugar control, regular monitoring of blood glucose levels, following a healthy lifestyle, and receiving routine medical care.

Urine is a physiological excretory product that is primarily composed of water, urea, and various ions (such as sodium, potassium, chloride, and others) that are the byproducts of protein metabolism. It also contains small amounts of other substances like uric acid, creatinine, ammonia, and various organic compounds. Urine is produced by the kidneys through a process called urination or micturition, where it is filtered from the blood and then stored in the bladder until it is excreted from the body through the urethra. The color, volume, and composition of urine can provide important diagnostic information about various medical conditions.

Pituitary neoplasms refer to abnormal growths or tumors in the pituitary gland, a small endocrine gland located at the base of the brain. These neoplasms can be benign (non-cancerous) or malignant (cancerous), with most being benign. They can vary in size and may cause various symptoms depending on their location, size, and hormonal activity.

Pituitary neoplasms can produce and secrete excess hormones, leading to a variety of endocrine disorders such as Cushing's disease (caused by excessive ACTH production), acromegaly (caused by excessive GH production), or prolactinoma (caused by excessive PRL production). They can also cause local compression symptoms due to their size, leading to headaches, vision problems, and cranial nerve palsies.

The exact causes of pituitary neoplasms are not fully understood, but genetic factors, radiation exposure, and certain inherited conditions may increase the risk of developing these tumors. Treatment options for pituitary neoplasms include surgical removal, radiation therapy, and medical management with drugs that can help control hormonal imbalances.

Polydipsia is a medical term that describes excessive thirst or an abnormally increased desire to drink fluids. It is often associated with conditions that cause increased fluid loss, such as diabetes insipidus and diabetes mellitus, as well as certain psychiatric disorders that can lead to excessive water intake. Polydipsia should not be confused with simple dehydration, where the body's overall water content is reduced due to inadequate fluid intake or excessive fluid loss. Instead, polydipsia refers to a persistent and strong drive to drink fluids, even when the body is adequately hydrated. Prolonged polydipsia can lead to complications such as hyponatremia (low sodium levels in the blood) and may indicate an underlying medical issue that requires further evaluation and treatment.

Hydronephrosis is a medical condition characterized by the swelling of one or both kidneys due to the accumulation of urine. This occurs when the flow of urine from the kidney to the bladder is obstructed, causing urine to back up into the kidney. The obstruction can be caused by various factors such as kidney stones, tumors, or congenital abnormalities. If left untreated, hydronephrosis can lead to serious complications including kidney damage and infection. It is typically diagnosed through imaging tests such as ultrasound, CT scan, or MRI.

I must clarify that the term "pedigree" is not typically used in medical definitions. Instead, it is often employed in genetics and breeding, where it refers to the recorded ancestry of an individual or a family, tracing the inheritance of specific traits or diseases. In human genetics, a pedigree can help illustrate the pattern of genetic inheritance in families over multiple generations. However, it is not a medical term with a specific clinical definition.

Renal aminoacidurias are a group of inherited kidney disorders characterized by the abnormal excretion of amino acids in the urine (aminoaciduria). This condition results from defects in the renal tubular transport systems that are responsible for the reabsorption of amino acids from the filtrate in the kidneys.

There are several types of renal aminoacidurias, each associated with a specific genetic mutation affecting different transporter proteins in the proximal renal tubules. The most common type is cystinuria, which is caused by a defect in the transport system for four amino acids: cystine, ornithine, lysine, and arginine. Other types of renal aminoacidurias include Hartnup disorder, Lowe syndrome, and Dent disease, among others.

The clinical manifestations of renal aminoacidurias vary depending on the specific type and severity of the disorder. Some individuals may be asymptomatic or have only mild symptoms, while others may experience severe complications such as kidney stones, urinary tract infections, neurological symptoms, or growth retardation.

Treatment for renal aminoacidurias typically involves dietary modifications, increased fluid intake, and medications to reduce the risk of kidney stone formation and other complications. In some cases, surgery may be necessary to remove large kidney stones.

Aquaporin 3 (AQP3) is a type of aquaglyceroporin, which is a subclass of aquaporins - water channel proteins that facilitate the transport of water and small solutes across biological membranes. AQP3 is primarily expressed in the epithelial cells of various tissues, including the skin, kidneys, and gastrointestinal tract.

In the skin, AQP3 plays a crucial role in maintaining skin hydration by facilitating water transport across the cell membrane. It also transports small neutral solutes like glycerol and urea, which contribute to skin moisturization and elasticity. In addition, AQP3 has been implicated in several physiological processes, such as wound healing, epidermal proliferation, and cutaneous sensory perception.

In the kidneys, AQP3 is involved in water reabsorption in the collecting ducts, helping to regulate body fluid homeostasis. In the gastrointestinal tract, it facilitates water absorption and secretion, contributing to maintaining proper hydration and electrolyte balance. Dysregulation of AQP3 has been associated with various pathological conditions, such as skin disorders, kidney diseases, and cancer.

The pituitary gland is a small, endocrine gland located at the base of the brain, in the sella turcica of the sphenoid bone. It is often called the "master gland" because it controls other glands and makes the hormones that trigger many body functions. The pituitary gland measures about 0.5 cm in height and 1 cm in width, and it weighs approximately 0.5 grams.

The pituitary gland is divided into two main parts: the anterior lobe (adenohypophysis) and the posterior lobe (neurohypophysis). The anterior lobe is further divided into three zones: the pars distalis, pars intermedia, and pars tuberalis. Each part of the pituitary gland has distinct functions and produces different hormones.

The anterior pituitary gland produces and releases several important hormones, including:

* Growth hormone (GH), which regulates growth and development in children and helps maintain muscle mass and bone strength in adults.
* Thyroid-stimulating hormone (TSH), which controls the production of thyroid hormones by the thyroid gland.
* Adrenocorticotropic hormone (ACTH), which stimulates the adrenal glands to produce cortisol and other steroid hormones.
* Follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which regulate reproductive function in both males and females.
* Prolactin, which stimulates milk production in pregnant and lactating women.

The posterior pituitary gland stores and releases two hormones that are produced by the hypothalamus:

* Antidiuretic hormone (ADH), which helps regulate water balance in the body by controlling urine production.
* Oxytocin, which stimulates uterine contractions during childbirth and milk release during breastfeeding.

Overall, the pituitary gland plays a critical role in maintaining homeostasis and regulating various bodily functions, including growth, development, metabolism, and reproductive function.

I couldn't find a medical definition specifically for "Diabetes Mellitus, Experimental." However, I can provide you with information about experimental diabetes research and its relevance to understanding the disease.

Experimental diabetes models are used in biomedical research to study the pathophysiology of diabetes mellitus and to test potential therapies or treatments. These models can be broadly categorized into two types: chemically-induced and genetically modified.

1. Chemically-induced diabetes models: These involve administering chemicals, such as alloxan or streptozotocin, to animals (commonly mice or rats) to destroy their pancreatic β-cells, which produce insulin. This results in hyperglycemia and symptoms similar to those seen in type 1 diabetes in humans.
2. Genetically modified diabetes models: These involve altering the genes of animals (commonly mice) to create a diabetes phenotype. Examples include non-obese diabetic (NOD) mice, which develop an autoimmune form of diabetes similar to human type 1 diabetes, and various strains of obese mice with insulin resistance, such as ob/ob or db/db mice, which model aspects of type 2 diabetes.

These experimental models help researchers better understand the mechanisms behind diabetes development and progression, identify new therapeutic targets, and test potential treatments before moving on to human clinical trials. However, it's essential to recognize that these models may not fully replicate all aspects of human diabetes, so findings from animal studies should be interpreted with caution.

Neuroendoscopy is a minimally invasive surgical technique that involves the use of an endoscope to access and treat various conditions within the brain and spinal column. An endoscope is a long, flexible tube with a light and camera at its tip, which allows surgeons to view and operate on internal structures through small incisions or natural openings in the body.

In neuroendoscopy, the surgeon uses the endoscope to navigate through the brain's ventricular system (fluid-filled spaces) or other narrow spaces within the skull or spine to diagnose and treat conditions such as hydrocephalus, brain tumors, arachnoid cysts, and intraventricular hemorrhage.

The benefits of neuroendoscopy include reduced trauma to surrounding tissues, shorter hospital stays, faster recovery times, and improved outcomes compared to traditional open surgical approaches. However, neuroendoscopic procedures require specialized training and expertise due to the complexity of the anatomy involved.

Renal tubular acidosis (RTA) is a medical condition that occurs when the kidneys are unable to properly excrete acid into the urine, leading to an accumulation of acid in the bloodstream. This results in a state of metabolic acidosis.

There are several types of RTA, but renal tubular acidosis type 1 (also known as distal RTA) is characterized by a defect in the ability of the distal tubules to acidify the urine, leading to an inability to lower the pH of the urine below 5.5, even in the face of metabolic acidosis. This results in a persistently alkaline urine, which can lead to calcium phosphate stones and bone demineralization.

Type 1 RTA is often caused by inherited genetic defects, but it can also be acquired due to various kidney diseases, drugs, or autoimmune disorders. Symptoms of type 1 RTA may include fatigue, weakness, muscle cramps, decreased appetite, and vomiting. Treatment typically involves alkali therapy to correct the acidosis and prevent complications.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Optic atrophy is a medical term that refers to the degeneration and shrinkage (atrophy) of the optic nerve, which transmits visual information from the eye to the brain. This condition can result in various vision abnormalities, including loss of visual acuity, color vision deficiencies, and peripheral vision loss.

Optic atrophy can occur due to a variety of causes, such as:

* Traumatic injuries to the eye or optic nerve
* Glaucoma
* Optic neuritis (inflammation of the optic nerve)
* Ischemic optic neuropathy (reduced blood flow to the optic nerve)
* Compression or swelling of the optic nerve
* Hereditary or congenital conditions affecting the optic nerve
* Toxins and certain medications that can damage the optic nerve.

The diagnosis of optic atrophy typically involves a comprehensive eye examination, including visual acuity testing, refraction assessment, slit-lamp examination, and dilated funduscopic examination to evaluate the health of the optic nerve. In some cases, additional diagnostic tests such as visual field testing, optical coherence tomography (OCT), or magnetic resonance imaging (MRI) may be necessary to confirm the diagnosis and determine the underlying cause.

There is no specific treatment for optic atrophy, but addressing the underlying cause can help prevent further damage to the optic nerve. In some cases, vision rehabilitation may be recommended to help patients adapt to their visual impairment.

Lithium compounds refer to chemical substances that contain the element lithium (Li) combined with one or more other elements. Lithium is an alkali metal with the atomic number 3 and is highly reactive, so it is typically found in nature combined with other elements to form stable compounds.

Lithium compounds have a variety of uses, including in the production of ceramics, glass, and lubricants. However, they are perhaps best known for their use in psychiatric medicine, particularly in the treatment of bipolar disorder. Lithium carbonate (Li2CO3) is the most commonly prescribed lithium compound for this purpose.

Lithium compounds work by affecting the levels of certain neurotransmitters in the brain, including serotonin and dopamine. They can help to reduce the severity and frequency of manic episodes in people with bipolar disorder, as well as potentially having a mood-stabilizing effect. It is important to note that lithium compounds must be used under the close supervision of a healthcare provider, as they can have serious side effects if not properly monitored.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Pituitary function tests are a group of diagnostic exams that evaluate the proper functioning of the pituitary gland, a small endocrine gland located at the base of the brain. The pituitary gland is responsible for producing and releasing several essential hormones that regulate various bodily functions, including growth, metabolism, stress response, reproduction, and lactation.

These tests typically involve measuring the levels of different hormones in the blood, stimulating or suppressing the pituitary gland with specific medications, and assessing the body's response to these challenges. Some common pituitary function tests include:

1. Growth hormone (GH) testing: Measures GH levels in the blood, often after a provocative test using substances like insulin, arginine, clonidine, or glucagon to stimulate GH release.
2. Thyroid-stimulating hormone (TSH) and free thyroxine (FT4) testing: Assesses the function of the thyroid gland by measuring TSH and FT4 levels in response to TRH (thyrotropin-releasing hormone) stimulation.
3. Adrenocorticotropic hormone (ACTH) and cortisol testing: Evaluates the hypothalamic-pituitary-adrenal axis by measuring ACTH and cortisol levels after a CRH (corticotropin-releasing hormone) stimulation test or an insulin tolerance test.
4. Prolactin (PRL) testing: Measures PRL levels in the blood, which can be elevated due to pituitary tumors or other conditions affecting the hypothalamus.
5. Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) testing: Assesses reproductive function by measuring FSH and LH levels, often in conjunction with estradiol or testosterone levels.
6. Gonadotropin-releasing hormone (GnRH) stimulation test: Evaluates gonadal function by measuring FSH and LH levels after GnRH administration.
7. Growth hormone (GH) testing: Measures GH levels in response to various stimuli, such as insulin-like growth factor-1 (IGF-1), glucagon, or arginine.
8. Vasopressin (ADH) testing: Assesses the posterior pituitary function by measuring ADH levels and performing a water deprivation test.

These tests can help diagnose various pituitary disorders, such as hypopituitarism, hyperpituitarism, or pituitary tumors, and guide appropriate treatment strategies.

Dehydration is a condition that occurs when your body loses more fluids than it takes in. It's normal to lose water throughout the day through activities like breathing, sweating, and urinating; however, if you don't replenish this lost fluid, your body can become dehydrated.

Mild to moderate dehydration can cause symptoms such as:
- Dry mouth
- Fatigue or weakness
- Dizziness or lightheadedness
- Headache
- Dark colored urine
- Muscle cramps

Severe dehydration can lead to more serious health problems, including heat injury, urinary and kidney problems, seizures, and even hypovolemic shock, a life-threatening condition that occurs when your blood volume is too low.

Dehydration can be caused by various factors such as illness (e.g., diarrhea, vomiting), excessive sweating, high fever, burns, alcohol consumption, and certain medications. It's essential to stay hydrated by drinking plenty of fluids, especially during hot weather, exercise, or when you're ill.

Hyponatremia is a condition characterized by abnormally low sodium levels in the blood, specifically levels less than 135 mEq/L. Sodium is an essential electrolyte that helps regulate water balance in and around your cells and plays a crucial role in nerve and muscle function. Hyponatremia can occur due to various reasons, including certain medical conditions, medications, or excessive water intake leading to dilution of sodium in the body. Symptoms may range from mild, such as nausea, confusion, and headache, to severe, like seizures, coma, or even death in extreme cases. It's essential to seek medical attention if you suspect hyponatremia, as prompt diagnosis and treatment are vital for a favorable outcome.

Aquaporin 1 (AQP1) is a type of aquaporin, which is a family of water channel proteins that facilitate the transport of water molecules across biological membranes. Aquaporin 1 is primarily responsible for facilitating water movement in various tissues, including the kidneys, red blood cells, and the brain.

In the kidneys, AQP1 is located in the proximal tubule and descending thin limb of the loop of Henle, where it helps to reabsorb water from the filtrate back into the bloodstream. In the red blood cells, AQP1 aids in the regulation of cell volume by allowing water to move in and out of the cells in response to osmotic changes. In the brain, AQP1 is found in the choroid plexus and cerebral endothelial cells, where it plays a role in the formation and circulation of cerebrospinal fluid.

Defects or mutations in the AQP1 gene can lead to various medical conditions, such as kidney disease, neurological disorders, and blood disorders.

Skin diseases, also known as dermatological conditions, refer to any medical condition that affects the skin, which is the largest organ of the human body. These diseases can affect the skin's function, appearance, or overall health. They can be caused by various factors, including genetics, infections, allergies, environmental factors, and aging.

Skin diseases can present in many different forms, such as rashes, blisters, sores, discolorations, growths, or changes in texture. Some common examples of skin diseases include acne, eczema, psoriasis, dermatitis, fungal infections, viral infections, bacterial infections, and skin cancer.

The symptoms and severity of skin diseases can vary widely depending on the specific condition and individual factors. Some skin diseases are mild and can be treated with over-the-counter medications or topical creams, while others may require more intensive treatments such as prescription medications, light therapy, or even surgery.

It is important to seek medical attention if you experience any unusual or persistent changes in your skin, as some skin diseases can be serious or indicative of other underlying health conditions. A dermatologist is a medical doctor who specializes in the diagnosis and treatment of skin diseases.

Bendroflumethiazide is a diuretic medication, which means it helps the body get rid of excess salt and water by increasing urine production. It is primarily used to treat high blood pressure and edema (swelling) caused by various medical conditions.

The drug works by inhibiting the reabsorption of sodium and chloride ions in the distal convoluted tubule of the kidney, which leads to increased water excretion. This results in a decrease in blood volume and, consequently, reduced blood pressure.

Bendroflumethiazide is available under various brand names, such as Aprinox, Corrida, and Natrilix. It's important to note that this medication should only be taken under the supervision of a healthcare professional, as it can have side effects and interact with other medications.

The term "drinking" is commonly used to refer to the consumption of beverages, but in a medical context, it usually refers to the consumption of alcoholic drinks. According to the Merriam-Webster Medical Dictionary, "drinking" is defined as:

1. The act or habit of swallowing liquid (such as water, juice, or alcohol)
2. The ingestion of alcoholic beverages

It's important to note that while moderate drinking may not pose significant health risks for some individuals, excessive or binge drinking can lead to a range of negative health consequences, including addiction, liver disease, heart disease, and increased risk of injury or violence.

The endocrine system is a complex network of glands and organs that produce, store, and secrete hormones. It plays a crucial role in regulating various functions in the body, including metabolism, growth and development, tissue function, sexual function, reproduction, sleep, and mood.

Endocrine system diseases or disorders occur when there is a problem with the production or regulation of hormones. This can result from:

1. Overproduction or underproduction of hormones by the endocrine glands.
2. Impaired response of target cells to hormones.
3. Disruption in the feedback mechanisms that regulate hormone production.

Examples of endocrine system diseases include:

1. Diabetes Mellitus - a group of metabolic disorders characterized by high blood sugar levels due to insulin deficiency or resistance.
2. Hypothyroidism - underactive thyroid gland leading to slow metabolism, weight gain, fatigue, and depression.
3. Hyperthyroidism - overactive thyroid gland causing rapid heartbeat, anxiety, weight loss, and heat intolerance.
4. Cushing's Syndrome - excess cortisol production resulting in obesity, high blood pressure, and weak muscles.
5. Addison's Disease - insufficient adrenal hormone production leading to weakness, fatigue, and low blood pressure.
6. Acromegaly - overproduction of growth hormone after puberty causing enlargement of bones, organs, and soft tissues.
7. Gigantism - similar to acromegaly but occurs before puberty resulting in excessive height and body size.
8. Hypopituitarism - underactive pituitary gland leading to deficiencies in various hormones.
9. Hyperparathyroidism - overactivity of the parathyroid glands causing calcium imbalances and kidney stones.
10. Precocious Puberty - early onset of puberty due to premature activation of the pituitary gland.

Treatment for endocrine system diseases varies depending on the specific disorder and may involve medication, surgery, lifestyle changes, or a combination of these approaches.

Gestational diabetes is a type of diabetes that occurs during pregnancy. It is characterized by an increase in blood sugar levels that begins or is first recognized during pregnancy. The condition usually develops around the 24th week of gestation and is caused by the body's inability to produce enough insulin to meet the increased demands of pregnancy.

Gestational diabetes typically resolves after delivery, but women who have had gestational diabetes are at an increased risk of developing type 2 diabetes later in life. It is important for women with gestational diabetes to manage their blood sugar levels during pregnancy to reduce the risk of complications for both the mother and the baby.

Management of gestational diabetes may include lifestyle modifications such as dietary changes and exercise, as well as monitoring blood sugar levels and potentially using insulin or other medications to control blood sugar levels. Regular prenatal care is essential for women with gestational diabetes to ensure that their blood sugar levels are properly managed and to monitor the growth and development of the fetus.

Recessive genes refer to the alleles (versions of a gene) that will only be expressed when an individual has two copies of that particular allele, one inherited from each parent. If an individual inherits one recessive allele and one dominant allele for a particular gene, the dominant allele will be expressed and the recessive allele will have no effect on the individual's phenotype (observable traits).

Recessive genes can still play a role in determining an individual's genetic makeup and can be passed down through generations even if they are not expressed. If two carriers of a recessive gene have children, there is a 25% chance that their offspring will inherit two copies of the recessive allele and exhibit the associated recessive trait.

Examples of genetic disorders caused by recessive genes include cystic fibrosis, sickle cell anemia, and albinism.

The kidney medulla is the inner portion of the renal pyramids in the kidney, consisting of multiple conical structures found within the kidney. It is composed of loops of Henle and collecting ducts responsible for concentrating urine by reabsorbing water and producing a hyperosmotic environment. The kidney medulla has a unique blood supply and is divided into an inner and outer zone, with the inner zone having a higher osmolarity than the outer zone. This region of the kidney helps regulate electrolyte and fluid balance in the body.

The X chromosome is one of the two types of sex-determining chromosomes in humans (the other being the Y chromosome). It's one of the 23 pairs of chromosomes that make up a person's genetic material. Females typically have two copies of the X chromosome (XX), while males usually have one X and one Y chromosome (XY).

The X chromosome contains hundreds of genes that are responsible for the production of various proteins, many of which are essential for normal bodily functions. Some of the critical roles of the X chromosome include:

1. Sex Determination: The presence or absence of the Y chromosome determines whether an individual is male or female. If there is no Y chromosome, the individual will typically develop as a female.
2. Genetic Disorders: Since females have two copies of the X chromosome, they are less likely to be affected by X-linked genetic disorders than males. Males, having only one X chromosome, will express any recessive X-linked traits they inherit.
3. Dosage Compensation: To compensate for the difference in gene dosage between males and females, a process called X-inactivation occurs during female embryonic development. One of the two X chromosomes is randomly inactivated in each cell, resulting in a single functional copy per cell.

The X chromosome plays a crucial role in human genetics and development, contributing to various traits and characteristics, including sex determination and dosage compensation.

Contrast media are substances that are administered to a patient in order to improve the visibility of internal body structures or processes in medical imaging techniques such as X-rays, CT scans, MRI scans, and ultrasounds. These media can be introduced into the body through various routes, including oral, rectal, or intravenous administration.

Contrast media work by altering the appearance of bodily structures in imaging studies. For example, when a patient undergoes an X-ray examination, contrast media can be used to highlight specific organs, tissues, or blood vessels, making them more visible on the resulting images. In CT and MRI scans, contrast media can help to enhance the differences between normal and abnormal tissues, allowing for more accurate diagnosis and treatment planning.

There are several types of contrast media available, each with its own specific properties and uses. Some common examples include barium sulfate, which is used as a contrast medium in X-ray studies of the gastrointestinal tract, and iodinated contrast media, which are commonly used in CT scans to highlight blood vessels and other structures.

While contrast media are generally considered safe, they can sometimes cause adverse reactions, ranging from mild symptoms such as nausea or hives to more serious complications such as anaphylaxis or kidney damage. As a result, it is important for healthcare providers to carefully evaluate each patient's medical history and individual risk factors before administering contrast media.

Kidney disease, also known as nephropathy or renal disease, refers to any functional or structural damage to the kidneys that impairs their ability to filter blood, regulate electrolytes, produce hormones, and maintain fluid balance. This damage can result from a wide range of causes, including diabetes, hypertension, glomerulonephritis, polycystic kidney disease, lupus, infections, drugs, toxins, and congenital or inherited disorders.

Depending on the severity and progression of the kidney damage, kidney diseases can be classified into two main categories: acute kidney injury (AKI) and chronic kidney disease (CKD). AKI is a sudden and often reversible loss of kidney function that occurs over hours to days, while CKD is a progressive and irreversible decline in kidney function that develops over months or years.

Symptoms of kidney diseases may include edema, proteinuria, hematuria, hypertension, electrolyte imbalances, metabolic acidosis, anemia, and decreased urine output. Treatment options depend on the underlying cause and severity of the disease and may include medications, dietary modifications, dialysis, or kidney transplantation.

Blood glucose, also known as blood sugar, is the concentration of glucose in the blood. Glucose is a simple sugar that serves as the main source of energy for the body's cells. It is carried to each cell through the bloodstream and is absorbed into the cells with the help of insulin, a hormone produced by the pancreas.

The normal range for blood glucose levels in humans is typically between 70 and 130 milligrams per deciliter (mg/dL) when fasting, and less than 180 mg/dL after meals. Levels that are consistently higher than this may indicate diabetes or other metabolic disorders.

Blood glucose levels can be measured through a variety of methods, including fingerstick blood tests, continuous glucose monitoring systems, and laboratory tests. Regular monitoring of blood glucose levels is important for people with diabetes to help manage their condition and prevent complications.

Wilms tumor, also known as nephroblastoma, is a type of kidney cancer that primarily affects children. It occurs in the cells of the developing kidneys and is named after Dr. Max Wilms, who first described this type of tumor in 1899. Wilms tumor typically develops before the age of 5, with most cases occurring in children under the age of 3.

The medical definition of Wilms tumor is:

A malignant, embryonal kidney tumor originating from the metanephric blastema, which is a mass of undifferentiated cells in the developing kidney. Wilms tumor is characterized by its rapid growth and potential for spread (metastasis) to other parts of the body, particularly the lungs and liver. The tumor usually presents as a large, firm, and irregular mass in the abdomen, and it may be associated with various symptoms such as abdominal pain, swelling, or blood in the urine.

Wilms tumor is typically treated with a combination of surgery, chemotherapy, and radiation therapy. The prognosis for children with Wilms tumor has improved significantly over the past few decades due to advances in treatment methods and early detection.

Adrenal insufficiency is a condition in which the adrenal glands do not produce adequate amounts of certain hormones, primarily cortisol and aldosterone. Cortisol helps regulate metabolism, respond to stress, and suppress inflammation, while aldosterone helps regulate sodium and potassium levels in the body to maintain blood pressure.

Primary adrenal insufficiency, also known as Addison's disease, occurs when there is damage to the adrenal glands themselves, often due to autoimmune disorders, infections, or certain medications. Secondary adrenal insufficiency occurs when the pituitary gland fails to produce enough adrenocorticotropic hormone (ACTH), which stimulates the adrenal glands to produce cortisol.

Symptoms of adrenal insufficiency may include fatigue, weakness, weight loss, decreased appetite, nausea, vomiting, diarrhea, abdominal pain, low blood pressure, dizziness, and darkening of the skin. Treatment typically involves replacing the missing hormones with medications taken orally or by injection.

Kidney tubules are the structural and functional units of the kidney responsible for reabsorption, secretion, and excretion of various substances. They are part of the nephron, which is the basic unit of the kidney's filtration and reabsorption process.

There are three main types of kidney tubules:

1. Proximal tubule: This is the initial segment of the kidney tubule that receives the filtrate from the glomerulus. It is responsible for reabsorbing approximately 65% of the filtrate, including water, glucose, amino acids, and electrolytes.
2. Loop of Henle: This U-shaped segment of the tubule consists of a thin descending limb, a thin ascending limb, and a thick ascending limb. The loop of Henle helps to concentrate urine by creating an osmotic gradient that allows water to be reabsorbed in the collecting ducts.
3. Distal tubule: This is the final segment of the kidney tubule before it empties into the collecting duct. It is responsible for fine-tuning the concentration of electrolytes and pH balance in the urine by selectively reabsorbing or secreting substances such as sodium, potassium, chloride, and hydrogen ions.

Overall, kidney tubules play a critical role in maintaining fluid and electrolyte balance, regulating acid-base balance, and removing waste products from the body.

Urination, also known as micturition, is the physiological process of excreting urine from the urinary bladder through the urethra. It is a complex process that involves several systems in the body, including the urinary system, nervous system, and muscular system.

In medical terms, urination is defined as the voluntary or involuntary discharge of urine from the urethra, which is the final pathway for the elimination of waste products from the body. The process is regulated by a complex interplay between the detrusor muscle of the bladder, the internal and external sphincters of the urethra, and the nervous system.

During urination, the detrusor muscle contracts, causing the bladder to empty, while the sphincters relax to allow the urine to flow through the urethra and out of the body. The nervous system plays a crucial role in coordinating these actions, with sensory receptors in the bladder sending signals to the brain when it is time to urinate.

Urination is essential for maintaining the balance of fluids and electrolytes in the body, as well as eliminating waste products such as urea, creatinine, and other metabolic byproducts. Abnormalities in urination can indicate underlying medical conditions, such as urinary tract infections, bladder dysfunction, or neurological disorders.

Gadolinium DTPA (Diethylenetriaminepentaacetic acid) is a type of gadolinium-based contrast agent (GBCA) used in medical imaging, particularly magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA). It functions as a paramagnetic substance that enhances the visibility of internal body structures during these imaging techniques.

The compound Gadolinium DTPA is formed when gadolinium ions are bound to diethylenetriaminepentaacetic acid, a chelating agent. This binding helps to make the gadolinium ion safer for use in medical imaging by reducing its toxicity and improving its stability in the body.

Gadolinium DTPA is eliminated from the body primarily through the kidneys, making it important to monitor renal function before administering this contrast agent. In some cases, Gadolinium DTPA may cause adverse reactions, including allergic-like responses and nephrogenic systemic fibrosis (NSF) in patients with impaired kidney function.

A missense mutation is a type of point mutation in which a single nucleotide change results in the substitution of a different amino acid in the protein that is encoded by the affected gene. This occurs when the altered codon (a sequence of three nucleotides that corresponds to a specific amino acid) specifies a different amino acid than the original one. The function and/or stability of the resulting protein may be affected, depending on the type and location of the missense mutation. Missense mutations can have various effects, ranging from benign to severe, depending on the importance of the changed amino acid for the protein's structure or function.

Halofenate is not typically considered a medication with a primary use in modern medical practice. However, historically it has been used as a treatment for gout and hyperuricemia (high levels of uric acid in the blood). It is a compound with both uricosuric and anti-inflammatory properties.

The uricosuric action of halofenate helps to lower serum uric acid levels by increasing its excretion in the urine, while its anti-inflammatory effects may help alleviate symptoms associated with gout attacks. It is important to note that due to its limited use and potential side effects, other medications are often preferred for managing gout and hyperuricemia.

Please consult a healthcare professional or pharmacist for more information about specific medications and treatment options.

Sodium chloride symporter inhibitors are a class of pharmaceutical agents that block the function of the sodium chloride symporter (NCC), which is a protein found in the kidney's distal convoluted tubule. The NCC is responsible for reabsorbing sodium and chloride ions from the filtrate back into the bloodstream, helping to regulate electrolyte balance and blood pressure.

Sodium chloride symporter inhibitors work by selectively binding to and blocking the NCC, preventing it from transporting sodium and chloride ions across the cell membrane. This leads to increased excretion of sodium and chloride in the urine, which can help lower blood pressure in patients with hypertension.

Examples of sodium chloride symporter inhibitors include thiazide diuretics such as hydrochlorothiazide and chlorthalidone, which have been used for many years to treat hypertension and edema associated with heart failure and liver cirrhosis. These medications work by reducing the amount of sodium and fluid in the body, which helps lower blood pressure and reduce swelling.

It's worth noting that while sodium chloride symporter inhibitors can be effective at treating hypertension, they can also cause side effects such as electrolyte imbalances, dehydration, and increased urination. As with any medication, it's important to use them under the guidance of a healthcare provider and to follow dosing instructions carefully.

A frameshift mutation is a type of genetic mutation that occurs when the addition or deletion of nucleotides in a DNA sequence is not divisible by three. Since DNA is read in groups of three nucleotides (codons), which each specify an amino acid, this can shift the "reading frame," leading to the insertion or deletion of one or more amino acids in the resulting protein. This can cause a protein to be significantly different from the normal protein, often resulting in a nonfunctional protein and potentially causing disease. Frameshift mutations are typically caused by insertions or deletions of nucleotides, but they can also result from more complex genetic rearrangements.

Osmoregulation is the physiological process by which an organism maintains the balance of osmotic pressure, or the concentration of solutes, in its body fluids. This is achieved through various homeostatic mechanisms that involve the regulation of water and electrolyte intake and excretion. In humans, for example, the kidneys play a crucial role in maintaining osmoregulation by filtering the blood, reabsorbing necessary solutes and water, and excreting excess solutes and waste products as urine. Other organisms, such as marine fish, may use specialized organs like the gills to actively regulate their salt and water balance in response to changes in their environment.

Medical Definition of Water Intoxication:

Water intoxication, also known as hyponatremia, is a condition that occurs when an individual consumes water in such large quantities that the body's electrolyte balance is disrupted. This results in an abnormally low sodium level in the blood (hyponatremia), which can cause symptoms ranging from mild to severe, including nausea, headache, confusion, seizures, coma, and even death in extreme cases. It's important to note that water intoxication is rare and typically only occurs in situations where large amounts of water are consumed in a short period of time, such as during endurance sports or when someone is trying to intentionally harm themselves.

Glycosylated Hemoglobin A, also known as Hemoglobin A1c or HbA1c, is a form of hemoglobin that is bound to glucose. It is formed in a non-enzymatic glycation reaction with glucose in the blood. The amount of this hemoglobin present in the blood is proportional to the average plasma glucose concentration over the previous 8-12 weeks, making it a useful indicator for monitoring long-term blood glucose control in people with diabetes mellitus.

In other words, HbA1c reflects the integrated effects of glucose regulation over time and is an important clinical marker for assessing glycemic control and risk of diabetic complications. The normal range for HbA1c in individuals without diabetes is typically less than 5.7%, while a value greater than 6.5% is indicative of diabetes.

Medical definitions of water generally describe it as a colorless, odorless, tasteless liquid that is essential for all forms of life. It is a universal solvent, making it an excellent medium for transporting nutrients and waste products within the body. Water constitutes about 50-70% of an individual's body weight, depending on factors such as age, sex, and muscle mass.

In medical terms, water has several important functions in the human body:

1. Regulation of body temperature through perspiration and respiration.
2. Acting as a lubricant for joints and tissues.
3. Facilitating digestion by helping to break down food particles.
4. Transporting nutrients, oxygen, and waste products throughout the body.
5. Helping to maintain healthy skin and mucous membranes.
6. Assisting in the regulation of various bodily functions, such as blood pressure and heart rate.

Dehydration can occur when an individual does not consume enough water or loses too much fluid due to illness, exercise, or other factors. This can lead to a variety of symptoms, including dry mouth, fatigue, dizziness, and confusion. Severe dehydration can be life-threatening if left untreated.

... , also known as renal diabetes insipidus, is a form of diabetes insipidus primarily due to ... neurogenic diabetes insipidus) or the kidneys' response to antidiuretic hormone (nephrogenic diabetes insipidus), diabetes ... Diabetes Insipidus, Nephrogenic, X-linked - 304800 Online Mendelian Inheritance in Man (OMIM): Diabetes Insipidus, Nephrogenic ... "Nephrogenic Diabetes Insipidus". Archived from the original on 2009-04-01. Retrieved 2009-04-04. "Diabetes Insipidus". National ...
"Diabetes Insipidus vs. Diabetes Mellitus". Bichet DG (April 2006). "Nephrogenic Diabetes Insipidus". Advances in Chronic Kidney ... Hereditary forms of diabetes insipidus account for less than 10% of the cases of diabetes insipidus seen in clinical practice. ... to avoid confusion with diabetes mellitus. "Diabetes Insipidus". National Institute of Diabetes and Digestive and Kidney ... "Nephrogenic Diabetes Insipidus". NORD (National Organization for Rare Disorders). 2016. Archived from the original on 19 ...
Sands JM, Bichet DG (February 2006). "Nephrogenic diabetes insipidus". Annals of Internal Medicine. 144 (3): 186-194. doi: ... a condition called nephrogenic diabetes insipidus. Clearance of lithium by the kidneys is usually successful with certain ... a condition called lithium-induced nephrogenic diabetes insipidus. Continued use of lithium can lead to more serious kidney ... "Dysregulation of renal aquaporins and epithelial sodium channel in lithium-induced nephrogenic diabetes insipidus". Seminars in ...
Bichet DG (Apr 2006). "Nephrogenic diabetes insipidus". Advances in Chronic Kidney Disease. 13 (2): 96-104. doi:10.1053/j.ackd. ... When the function of AVPR2 is lost, the disease nephrogenic diabetes insipidus (NDI) results. Vasopressin receptor antagonists ... Birnbaumer M, Gilbert S, Rosenthal W (Jul 1994). "An extracellular congenital nephrogenic diabetes insipidus mutation of the ... GeneReviews/NCBI/NIH/UW entry on Nephrogenic Diabetes Insipidus "Symbol Report: AVPR2". HUGO Gene Nomenclature Committee (HGNC ...
DHCR24 Diabetes insipidus, nephrogenic; 125800; AQP2 Diabetes insipidus, nephrogenic; 304800; AVPR2 Diabetes insipidus, ... KCNJ11 Diabetes mellitus, type 1; 125852; INS Diabetes mellitus, type 2; 125853; PAX4 Diabetes mellitus type II; 125853; AKT2 ... GCK Diabetes mellitus, insulin-dependent, 2; 125852; INS Diabetes mellitus, insulin-dependent, 20; 612520; HNF1A Diabetes ... GCK Diabetes mellitus, permanent neonatal; 606176; ABCC8 Diabetes mellitus, permanent neonatal; 606176; GCK Diabetes mellitus, ...
In rats, acquired nephrogenic diabetes insipidus can be caused impaired regulation of aquaporin-2 due to administration of ... Bichet DG (2006). "Nephrogenic diabetes insipidus" (PDF). Adv Chronic Kidney Dis. 13 (2): 96-104. doi:10.1053/j.ackd.2006.01. ... Aquaporins play a key role in acquired forms of nephrogenic diabetes insipidus, disorders that cause increased urine production ... Christensen, S; Kusano, E; Yusufi, A N; Murayama, N; Dousa, TP (1985-06-01). "Pathogenesis of nephrogenic diabetes insipidus ...
Khanna, A (May 2006). "Acquired Nephrogenic Diabetes Insipidus". Seminars in Nephrology (Review). 26 (3): 244-8. doi:10.1016/j. ... If the diabetes insipidus is due to kidney problems the medication causing the problem may need to be stopped or the underlying ... Hypernatremia due to diabetes insipidus as a result of a brain disorder, may be treated with the medication desmopressin. ... Leroy, C.; Karrouz, W.; Douillard, C.; Do Cao, C.; Cortet, C.; Wémeau, J. L.; Vantyghem, M. C. (2013). "Diabetes insipidus". ...
GeneReviews/NCBI/NIH/UW entry on Nephrogenic Diabetes Insipidus Aquaporin+2 at the U.S. National Library of Medicine Medical ... Mutations in this channel are associated with nephrogenic diabetes insipidus, which can be autosomal dominant or recessive. ... ISBN 978-0-7167-7601-7. Bichet DG (April 2006). "Nephrogenic diabetes insipidus" (PDF). Advances in Chronic Kidney Disease. 13 ... Kuwahara M (February 1998). "Aquaporin-2, a vasopressin-sensitive water channel, and nephrogenic diabetes insipidus". Internal ...
... it causes iatrogenic nephrogenic diabetes insipidus. Conivaptan has not been approved by the American Food and Drug ...
... nephrogenic diabetes insipidus) 5. Ataxia, poor coordination, imbalance 6. Mild spasticity (especially lower limbs) 7. Diabetes ... Intellectual disability, hexadactyly, central diabetes insipidus, blindness (usually by 30 years due to central retinal ...
The use in SIADH actually relies on a side effect; demeclocycline induces nephrogenic diabetes insipidus (dehydration due to ... Like only few other known tetracycline derivatives, demeclocycline causes nephrogenic diabetes insipidus. Furthermore ... Verbalis JG (2014). Fliers E, Korbonits M, Romijn JA (eds.). "Disorders of water metabolism: diabetes insipidus and the ... Hayek A, Ramirez J (August 1974). "Demeclocycline-induced diabetes insipidus". JAMA. 229 (6): 676-677. doi:10.1001/jama. ...
"X-linked nephrogenic diabetes insipidus mutations in North America and the Hopewell hypothesis". Journal of Clinical ... The North American ancestry of the X-linked form of the genetic disease congenital nephrogenic diabetes insipidus has been ...
Spanakis E, Milord E, Gragnoli C (December 2008). "AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and ... When the function of AVPR2 is lost, the disease Nephrogenic Diabetes Insipidus (NDI) results. Vasopressin receptor antagonists ...
Congenital nephrogenic diabetes insipidus (NDI) may result from V2R or aquaporin-2 (AQP2) mutations. Exogenously administered ...
... s can be used to paradoxically decrease urine flow in people with nephrogenic diabetes insipidus. Thiazides may also be ... Welch, Thomas R. (2015-09-01). "Diuretics for diabetes insipidus". The Journal of Pediatrics. 167 (3): 503-505. doi:10.1016/j. ... in infants with central diabetes insipidus. Thiazides are useful in treating kidney stones and bladder stones that result from ... "New insights into the paradoxical effect of thiazides in diabetes insipidus therapy". Nephrology Dialysis Transplantation. 15 ( ...
... is a key component of treatment of nephrogenic diabetes insipidus. Nephrogenic diabetes insipidus occurs when the kidney is ... which leads to reversal of nephrogenic diabetes insipidus by a means that is independent of vasopressin. Some reviews have ... Verbalis JG (May 2003). "Diabetes insipidus". Rev Endocr Metab Disord. 4 (2): 177-85. doi:10.1023/a:1022946220908. PMID ... diabetes insipidus, and renal tubular acidosis. Because chlortalidone is effective in most patients with high blood pressure, ...
Ahmad M (2006). "Abacavir-induced reversible Fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired ...
... can cause nephrogenic diabetes insipidus; its long-term use can lead to nephropathy. Despite expensive treatments, lupus ... It is particularly associated with poorly managed diabetes mellitus and is a primary reason for dialysis in many developed ... It is classified as a small blood vessel complication of diabetes. Gabow 1990 talks about Autosomal Dominant Polycystic Kidney ... Chronic conditions that can produce nephropathy include systemic lupus erythematosus, diabetes mellitus and high blood pressure ...
Extended use of lithium to treat mental disorders has been known to lead to acquired nephrogenic diabetes insipidus. Lithium ... from lithium-induced nephrogenic diabetes insipidus. Dehydration and certain drugs, including NSAIDs such as ibuprofen, can ...
... "nephrogenic diabetes insipidus"). If one of these tests shows a deficiency of hormones produced by the pituitary, magnetic ... Antidiuretic hormone (ADH) deficiency leads to the syndrome of diabetes insipidus (unrelated to diabetes mellitus): inability ... Symptoms of diabetes insipidus should prompt a formal fluid deprivation test to assess the body's response to dehydration, ... Maghnie M (2003). "Diabetes insipidus". Horm. Res. 59 (Suppl 1): 42-54. doi:10.1159/000067844. PMID 12566720. S2CID 24638358. ...
... of contiguous gene deletion of the AVPR2 and ARHGAP4 genes in unrelated Japanese kindreds with nephrogenic diabetes insipidus ...
It is also used in the diagnostic workup for diabetes insipidus, in order to distinguish central from DI due to the kidneys. ... Desmopressin is not effective at treating nephrogenic DI, thus a positive response is generally indicative of central DI. ... Desmopressin, sold under the trade name DDAVP among others, is a medication used to treat diabetes insipidus, bedwetting, ... Desmopressin is used in the treatment of central diabetes insipidus (DI) as a replacement for endogenous antidiuretic hormone ( ...
Diabetes insipidus* in dogs can be central, caused by a lack of antidiuretic hormone (ADH), or nephrogenic, caused by a lack of ... Nephrogenic diabetes insipidus (NDI) can be primary (hereditary) or secondary (caused by a variety of metabolic and renal ... Central diabetes insipidus (CDI) is usually idiopathic, but can also be caused by head trauma or tumors of the brain. ... Diabetes mellitus in dogs is type 1, or insulin dependent diabetes: a lack of insulin production due to destruction of ...
... including Nephrogenic diabetes insipidus Diabetes insipidus Diabetes mellitus Renal glucosuria Vitamin A deficiency Liver ... Development and performances of a Japanese Quail line homozygous for the diabetes insipidus (di) mutation. Poultry Science, 86: ...
... nephrogenic diabetes insipidus, G6PD deficiency or ectodermal dysplasia. Mishra, A; Greaves, R; Massie, J (November 2005). "The ...
... which is effective due to the side effect of inducing nephrogenic diabetes insipidus. Demeclocycline is used for cases of ... MRI scans may be used to help with differentiating between PPD and diabetes insipidus, such as by examining the signal of the ... consistent with diabetes insipidus or SIADH, leading to misdiagnosis. Dry mouth is often a side effect of medications used in ... such as diabetes insipidus. Diagnosis may be complicated by the fact that chronic and extreme compulsive drinking may impair ...
Glucose-6-phosphate dehydrogenase deficiency Haemophilia A and B Hunter syndrome Inherited nephrogenic diabetes insipidus ...
... the PBS datacasting subsidiary Nephrogenic diabetes insipidus, a form of diabetes insipidus due primarily to pathology of the ...
... tumor Nephrocalcinosis Nephrogenic diabetes insipidus Nephrolithiasis type 2 Nephronophthisis familial adult spastic q- ... type 5 Neonatal diabetes mellitus Neonatal diabetes mellitus, permanent (PNDM) Neonatal diabetes mellitus, transient (TNDM) ... Non functioning pancreatic endocrine tumor Nonallergic atopic dermatitis Non-Hodgkin lymphoma Noninsulin-dependent diabetes ...
Functional tubule abnormalities such as nephrogenic diabetes insipidus result from marked reduction in vasa recta blood flow, ... Risk factors for papillary necrosis include analgesics, concomitant cirrhosis, diabetes, pyelonephritis, systemic vasculitis, ... diabetes mellitus, or from NSAIDs. The use of renal biopsy is not necessary unless there is a sudden onset of large protein ...
Nephrogenic diabetes insipidus, also known as renal diabetes insipidus, is a form of diabetes insipidus primarily due to ... neurogenic diabetes insipidus) or the kidneys response to antidiuretic hormone (nephrogenic diabetes insipidus), diabetes ... Diabetes Insipidus, Nephrogenic, X-linked - 304800 Online Mendelian Inheritance in Man (OMIM): Diabetes Insipidus, Nephrogenic ... "Nephrogenic Diabetes Insipidus". Archived from the original on 2009-04-01. Retrieved 2009-04-04. "Diabetes Insipidus". National ...
Nephrogenic diabetes insipidus is a disorder of water balance. Explore symptoms, inheritance, genetics of this condition. ... Genetic Testing Registry: Diabetes insipidus, nephrogenic, autosomal *Genetic Testing Registry: Diabetes insipidus, nephrogenic ... medlineplus.gov/genetics/condition/nephrogenic-diabetes-insipidus/ Nephrogenic diabetes insipidus. ... Nephrogenic diabetes insipidus should not be confused with diabetes mellitus. , which is much more common. Diabetes mellitus is ...
Nephrogenic Diabetes Insipidus - Learn about the causes, symptoms, diagnosis & treatment from the Merck Manuals - Medical ... What causes nephrogenic diabetes insipidus? Nephrogenic diabetes insipidus happens when your kidneys stop responding to a ... How can doctors tell if I have nephrogenic diabetes insipidus? Doctors suspect nephrogenic diabetes insipidus if youre ... Thats called central diabetes insipidus Central Diabetes Insipidus Central diabetes insipidus is not having enough of a ...
Copyright © 2023 BMJ Publishing Group Ltd & Royal College of Paediatrics and Child Health. All rights reserved.. ...
... ; Acquired nephrogenic diabetes insipidus; Congenital nephrogenic ... Nephrogenic diabetes insipidus (NDI) is a disorder in which a defect in the small tubes (tubules) in the kidneys causes a ... Congenital nephrogenic diabetes insipidus is present at birth. It is a result of a defect passed down through families. Men are ... Diabetes insipidus Sodium blood test References. Bockenhauer D. Fluid, electrolyte, and acid-base disorders in children. In: Yu ...
Find all the information on Nephrogenic diabetes insipidus and talk to all the patients suffering from this condition ✓ ... See the forum Nephrogenic diabetes insipidus Newsfeed Nephrogenic diabetes insipidus. on Dec 13, 2019 ...
Nephrogenic Diabetes Insipidus - Etiology, pathophysiology, symptoms, signs, diagnosis & prognosis from the MSD Manuals - ... Central Diabetes Insipidus) Arginine vasopressin deficiency (central diabetes insipidus) results from a deficiency of ... Nephrogenic diabetes insipidus (NDI) is an inability to concentrate urine due to impaired renal tubule response to vasopressin ... The placenta can secrete vasopressinase during the 2nd half of pregnancy (a syndrome called gestational diabetes insipidus). ...
... of nephrogenic diabetes insipidus on the X chromosome may be another clue to explain the association of nephrogenic diabetes ... Intracranial calcifications and nephrogenic diabetes insipidus.. EuropeanJournal of Pediatrics Letters to the editors @ ... on mental retardation, nephrogenic diabetes insipidus and intracerebral calcifications [5]. We also have a 15-year-old boy with ... Am J Med Genet 29 : 239-246 3. Miura J, Tachi N, Okabe M (1983) Two cases of nephrogenic diabetes insipidus associated with ...
Diabetes insipidus (DI) is defined as the passage of large volumes (>3 L/24 hr) of dilute urine (< 300 mOsm/kg). It has the ... Nephrogenic diabetes insipidus. In adults, nephrogenic DI most often develops as a result of lithium toxicity or hypercalcemia ... encoded search term (Diabetes Insipidus) and Diabetes Insipidus What to Read Next on Medscape ... leading to nephrogenic diabetes insipidus and nephrogenic syndrome of inappropriate antidiuresis: implications for treatments. ...
... including nephrogenic diabetes insipidus (NDI). ELF5 and nuclear factor of activated T cells 5 (NFAT5) are two transcription ... Diabetes Insípido Nefrogênico/genética; Diabetes Insípido Nefrogênico/metabolismo; Diabetes Mellitus/metabolismo; Fator V/ ... deletion of the nuclear factor of activated T cells 5 in collecting duct principal cells causes nephrogenic diabetes insipidus ... Diabetes Insípido Nefrogênico; Diabetes Mellitus; Túbulos Renais Coletores; Fatores de Transcrição/metabolismo; Animais; ...
Diabetes insipidus (central and nephrogenic). * Hypernatremia due to dehydration [2] * Hypernatremia due to iatrogenic or ...
Use of acetazolamide in lithium-induced nephrogenic diabetes insipidus: a case report. Endocrinol Diabetes Metab Case Rep. 2018 ... Lithium-induced nephrogenic diabetes insipidus. J Am Board Fam Pract. 1999 Jan-Feb. 12(1):43-7. [QxMD MEDLINE Link]. ... Lithium-induced Nephrogenic Diabetes Insipidus: Renal Effects of Amiloride. Clin J Am Soc Nephrol. 2008. epub ahead of print:[ ... The most common complication of long-term lithium therapy is nephrogenic diabetes insipidus. [6, 7, 8] At the cellular level, ...
Renal and urinary disorders:Nephrogenic diabetes insipidus (NDI) Respiratory, thoracic and mediastinal disorders:Pneumonitis ...
Acetazolamide Attenuates Lithium-Induced Nephrogenic Diabetes Insipidus. de Groot T, Sinke AP, Kortenoeven ML, Alsady M, ...
1974). Nephrogenic diabetes insipidus with fluorosis. Pediatrics. 54(3):320-2.. Grobleri SR, et al. (2001). Dental fluorosis ... Klein H. (1975). Dental fluorosis associated with hereditary diabetes insipidus. Oral Surg Oral Med Oral Pathol. 40(6):736-41. ... 1994). Dental fluorosis as a complication of hereditary diabetes insipidus: studies of six affected patients. Pediatr Dent. 16( ... and those who have diabetes insipidus. See: Greenberg 1974; Klein 1975; Massler & Schour 1952; Marier & Rose 1977; Lin 1991; ...
Hypothyroidism, nephrogenic diabetes insipidus, polyuria, tremor. Serum lithium levels should be monitored at least every six ...
Nephrogenic Diabetes Insipidus *Cystinosis and Fanconi Syndrome *Primary Hyperoxaluria *Tubulointerstitial Nephritis. Systemic ...
It is characteristic of many diseases such as DIABETES MELLITUS; DIABETES INSIPIDUS; and NEPHROGENIC DIABETES INSIPIDUS. The ... Aging & Age-Related Disease Cancer & Neoplastic Disease Cardiovascular Disease COVID-19 Developmental Disease Diabetes ...
Diabetes insipidus, nephrogenic, autosomal recessive Reversed 0. HGVS NC_000012.11:g.50344816A,G ...
Nephrogenic diabetes insipidus in infants. Dosing : Safety and efficacy for use in pediatric patients has not yet been ...
diabetes mellitus central diabetes insipidus. hyperadrenocorticism (Cushings syndrome). nephrogenic diabetes insipidus. ...
nephrogenic diabetes insipidus Figure from McConnell, The Nature of Disease, 2nd ed., LWW, 2014 6. Lower Urinary Tract ...
Diabetes Facts , Facts About Diabetes , Nephrogenic Diabetes Insipidus *Diabetes Facts , Facts About Diabetes , What is Type 2 ... Symptoms of Diabetes Insipidus. Symptoms of Diabetes Insipidus. Diabetes Insipidus. is a rare condition that occurs when the ... Symptoms of Diabetes Insipidus - TypeFree Diabetes By Admin , Diabetes Facts , Symptoms of Diabetes , Symptoms of Diabetes ... Diabetes Facts , Symptoms of Diabetes , Symptoms of Diabetes Insipidus *Diabetes Facts , Symptoms of Diabetes , Tips to Help ...
Desmopressin acetate is ineffective for the treatment of nephrogenic diabetes insipidus. Patients were selected for therapy ... Central Diabetes Insipidus. In long-term clinical studies in which patients with diabetes insipidus were followed for periods ... Central Diabetes Insipidus. Dose response studies in patients with diabetes insipidus have demonstrated that oral doses of ... Central Diabetes Insipidus Laboratory tests for monitoring the patient with central diabetes insipidus or post-surgical or head ...
Diabetes insipidus (DI) is defined as the passage of large volumes (>3 L/24 hr) of dilute urine (< 300 mOsm/kg). It has the ... Nephrogenic diabetes insipidus. In adults, nephrogenic DI most often develops as a result of lithium toxicity or hypercalcemia ... encoded search term (Diabetes Insipidus) and Diabetes Insipidus What to Read Next on Medscape ... leading to nephrogenic diabetes insipidus and nephrogenic syndrome of inappropriate antidiuresis: implications for treatments. ...
Primary Nephrogenic Diabetes Insipidus. 23. Hypertension. 24. Atypical Cushings and SARDS. 25. Central Diabetes Insipidus. ... 4. Diabetes mellitus (basic diabetes that most people are familiar with - high blood sugar). 5. Hepatic disease (Liver disease) ... Dogs: Diabetes Mellitus, Kidney disease, Kidney Infection, Liver Disease, Cushings diseas. Cats: Kidney disease, Diabetes ... And all of them have peed a lot as well, but all are healthy and two at least have been tested for diabetes etc and no problems ...
Mutations in the vasopressin V2 receptor and aquaporin-2 genes in 12 families with congenital nephrogenic diabetes insipidus. ... Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Ma, T., Song, Y., Yang, B., Gillespie, A., Carlson, ... Desmopressin for nocturnal enuresis in nephrogenic diabetes insipidus. Müller, D., Marr, N., Ankermann, T., Eggert, P., Deen, P ... DDAVP in the treatment of central diabetes insipidus [4].. *We have found that infusion of desmopressin acetate (1-desamino-8-D ...
Epac1 null mice have nephrogenic diabetes insipidus with deficient corticopapillary osmotic gradient and weaker collecting duct ...
Diabetes insipidus - nephrogenic : Symptoms & Signs,.... March 27, 2011 Creutzfeldt-Jakob disease : Symptoms & Signs, Diagnosis ...
  • Diabetes mellitus is characterized by high blood sugar (glucose) levels resulting from a shortage of the hormone insulin or an insensitivity to this hormone. (medlineplus.gov)
  • Although nephrogenic diabetes insipidus and diabetes mellitus have some features in common, they are separate disorders with different causes. (medlineplus.gov)
  • called diabetes mellitus), which is a problem with high blood sugar. (merckmanuals.com)
  • This is not glucose-based Diabetes mellitus. (typefreediabetes.com)
  • Medical providers often look at diabetes mellitus as the cause of excessive thirst and urination first because of the seriousness of that disease. (diabetesinsipidus.org)
  • Testing for blood sugar levels and other tests are often used to exclude the more common diabetes mellitus. (diabetesinsipidus.org)
  • Although most people would have heard of diabetes mellitus or 'sugar diabetes' few would have come across the condition called diabetes insipidus, a completely different and unrelated condition. (health-care-clinic.org)
  • This is in contrast to central or neurogenic diabetes insipidus, which is caused by insufficient levels of vasopressin (also called antidiuretic hormone, ADH). (wikipedia.org)
  • Nephrogenic diabetes insipidus is caused by an improper response of the kidney to vasopressin, leading to a decrease in the ability of the kidney to concentrate the urine by removing free water. (wikipedia.org)
  • Central Diabetes Insipidus Central diabetes insipidus is not having enough of a hormone called vasopressin. (merckmanuals.com)
  • Vasopressin, diabetes insipidus, and the syndrome of inappropriate antidiuresis. (adam.com)
  • Nephrogenic diabetes insipidus (NDI) is an inability to concentrate urine due to impaired renal tubule response to vasopressin (ADH), which leads to excretion of large amounts of dilute urine. (msdmanuals.com)
  • Arginine Vasopressin Deficiency (Central Diabetes Insipidus) Arginine vasopressin deficiency (central diabetes insipidus) results from a deficiency of vasopressin (antidiuretic hormone [ADH]) due to a hypothalamic-pituitary disorder. (msdmanuals.com)
  • Vasopressin, which is administered through a nasal spray or tablets, is the most common medication used to treat diabetes insipidus. (typefreediabetes.com)
  • Robben, J.H., Knoers, N.V. & Deen, P.M. Characterization of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus in a polarized cell model. (nature.com)
  • A disorder of water metabolism, diabetes insipidus results from a deficiency of circulating vasopressin (also called antidiuretic hormone) or from renal resistance to this hormone. (health-care-clinic.org)
  • Pituitary diabetes insipidus is caused by deficiency of vasopressin, whereas nephrogenic diabetes insipidus is caused by renal tubular resistance to the action of vasopressin. (health-care-clinic.org)
  • Until the cause of diabetes insipidus can be identified and eliminated, administration of various forms of vasopressin can control fluid balance and prevent dehydration. (health-care-clinic.org)
  • Etiologies of diabetes insipidus include deficiency of antidiuretic hormone (also known as ADH or VASOPRESSIN) secreted by the NEUROHYPOPHYSIS, impaired KIDNEY response to ADH, and impaired hypothalamic regulation of thirst. (reference.md)
  • Nephrogenic diabetes insipidus, also known as renal diabetes insipidus, is a form of diabetes insipidus primarily due to pathology of the kidney. (wikipedia.org)
  • This form of diabetes insipidus can also be hereditary due to defects in the following genes: Differential diagnosis includes nephrogenic diabetes insipidus, neurogenic/central diabetes insipidus and psychogenic polydipsia. (wikipedia.org)
  • The other common form of diabetes insipidus is called nephrogenic. (diabetesinsipidus.org)
  • The hypophyseal form of diabetes insipidus develops as a result of compression and destruction of the pars nervosa, infundibular stalk, or supraoptic nucleus in the hypothalamus. (merckvetmanual.com)
  • Congenital nephrogenic diabetes insipidus. (bmj.com)
  • Congenital nephrogenic diabetes insipidus is present at birth. (adam.com)
  • Wildin RS, Antush MJ, Bennett RL, Schoof JM, Scott CR: Heterogeneous AVPR2 gene mutations in congenital nephrogenic diabetes insipidus. (hmdb.ca)
  • [ 3 ] The differential diagnosis of polyuria includes central diabetes insipidus, congenital or acquired nephrogenic diabetes insipidus, psychogenic polydipsia, high protein or hyperglycemic osmotic diuresis, salt-wasting nephropathies, mixed polyuria due to excess solute and water intake, and postobstructive diuresis following recovery from urinary obstruction. (medscape.com)
  • Any underlying cause such as high blood calcium must be corrected to treat nephrogenic diabetes insipidus. (wikipedia.org)
  • How do doctors treat nephrogenic diabetes insipidus? (merckmanuals.com)
  • if no response occurs to desmopressin, then the cause is likely to be nephrogenic. (wikipedia.org)
  • After the water fasting period has expired, a dose of desmopressin will typically be administered to determine if it is central or nephrogenic diabetes insipidus. (diabetesinsipidus.org)
  • Desmopressin Acetate Injection 4 mcg/mL is indicated as antidiuretic replacement therapy in the management of central (cranial) diabetes insipidus and for the management of the temporary polyuria and polydipsia following head trauma or surgery in the pituitary region. (druglib.com)
  • Desmopressin acetate is ineffective for the treatment of nephrogenic diabetes insipidus. (druglib.com)
  • citation needed] The clinical manifestation is similar to neurogenic diabetes insipidus, presenting with polydipsia (excessive thirst) and polyuria (excretion of a large amount of dilute urine). (wikipedia.org)
  • However, people with nephrogenic diabetes insipidus produce too much urine (polyuria), which causes them to be excessively thirsty (polydipsia). (medlineplus.gov)
  • However, some females who carry a single mutated copy of the AVPR2 gene have features of nephrogenic diabetes insipidus, including polyuria and polydipsia. (medlineplus.gov)
  • Dipsogenic diabetes insipidus or primary polydipsia is simply caused by drinking too much water or fluids. (alleydog.com)
  • Central diabetes insipidus is characterized by decreased secretion of antidiuretic hormone (ADH), which gives rise to polyuria and polydipsia by diminishing the person's ability to concentrate urine. (medscape.com)
  • Two other forms of diabetes insipidus are gestational diabetes insipidus and primary polydipsia. (medscape.com)
  • As such, people with diabetes insipidus generally have a constant urge to urinate and frequently feel thirsty. (typefreediabetes.com)
  • Most people with diabetes insipidus get it after an injury to the head or after brain surgery. (health-care-clinic.org)
  • Some people with diabetes insipidus have a brain tumor. (health-care-clinic.org)
  • citation needed] Persons with nephrogenic diabetes insipidus will need to consume enough fluids to equal the amount of urine produced. (wikipedia.org)
  • Nephrogenic DI is characterized by a decrease in the ability to concentrate urine because of resistance to ADH action in the kidney. (medscape.com)
  • The importance of this AVP, V2R, and AQP2 axis is highlighted by low urine osmolality and polyuria in people with various water balance disorders, including nephrogenic diabetes insipidus (NDI). (bvsalud.org)
  • Central diabetes insipidus is caused by a damage to the pituitary gland or hypothalamus which leads to a dysregulated production of anti-diuretic hormone (ADH) which facilitates the amount of fluid in urine. (alleydog.com)
  • Anything above 3 liters of urine in a 24 hour period on a regular basis may qualify for a diabetes insipidus diagnosis. (diabetesinsipidus.org)
  • With diabetes insipidus, there is always high levels of diluted urine even when there are no incoming fluids. (diabetesinsipidus.org)
  • The central version of this disorder will respond to the hormone and reduce urine intake levels, while the nephrogenic version will not respond to the hormones at all. (diabetesinsipidus.org)
  • Diabetes insipidus is defined as the passage of large volumes of dilute urine. (medscape.com)
  • Urine osmolality is decreased below normal plasma osmolality (~300 mOsm/kg) in both hypophyseal and nephrogenic forms, even if the animal is deprived of water. (merckvetmanual.com)
  • The increase of urine osmolality above that of plasma in response to exogenous ADH in the hypophyseal form, but not in the nephrogenic form, is useful in the clinical differentiation of the two forms of the disease. (merckvetmanual.com)
  • Urine concentrating ability nephrogenic diabetes insipidus, fanconis syndrome. (elastizell.com)
  • Dose response studies in patients with diabetes insipidus have demonstrated that oral doses of 0.025 mg to 0.4 mg produced clinically significant antidiuretic effects. (nih.gov)
  • Diabetes insipidus is caused by a lack of antidiuretic hormone (ADH) or an inability of the kidneys to respond to ADH. (merckvetmanual.com)
  • Central diabetes insipidus is caused by reduced secretion of antidiuretic hormone (ADH). (merckvetmanual.com)
  • The acquired form of nephrogenic diabetes insipidus can result from chronic kidney disease, certain medications (such as lithium), low levels of potassium in the blood (hypokalemia), high levels of calcium in the blood (hypercalcemia), or an obstruction of the urinary tract. (medlineplus.gov)
  • Diagnosis of diabetes insipidus is based on chronic polyuria that does not respond to dehydration and is not due to primary renal disease. (merckvetmanual.com)
  • Nephro-" means kidney, and "nephrogenic" means caused by the kidneys. (merckmanuals.com)
  • Central diabetes insipidus is caused by a reduction of the anti-diuretic hormone vasopression, causing the kidneys to continue pulling water out of the body because it is registering an excessive amount. (diabetesinsipidus.org)
  • When associated with a net water loss, diabetes insipidus (either neurogenic or nephrogenic) can be a cause. (bpac.org.nz)
  • citation needed] In addition to kidney and systemic disorders, nephrogenic diabetes insipidus can present itself as a side effect of some medications. (wikipedia.org)
  • Nephrogenic diabetes insipidus can be either acquired or hereditary. (medlineplus.gov)
  • Infants with hereditary nephrogenic diabetes insipidus may eat poorly and fail to gain weight and grow at the expected rate (failure to thrive). (medlineplus.gov)
  • The hereditary form of nephrogenic diabetes insipidus can be caused by mutations in at least two genes. (medlineplus.gov)
  • About 90 percent of all cases of hereditary nephrogenic diabetes insipidus result from mutations in the AVPR2 gene. (medlineplus.gov)
  • The placenta can secrete vasopressinase during the 2nd half of pregnancy (a syndrome called gestational diabetes insipidus). (msdmanuals.com)
  • Gestational diabetes insipidus occurs when the placenta produces an enzyme which terminates ADH. (alleydog.com)
  • 5] there are no elements to exclude the diagnosis of "classic" nephrogenic diabetes insipidus. (docksci.com)
  • In our patient the demonstration of a partial defect in the m o t h e r is in accordance with the diagnosis of X-linked nephrogenic diabetes insipidus. (docksci.com)
  • If there is good blood sugar control, then medical providers typically move toward a diabetes insipidus diagnosis. (diabetesinsipidus.org)
  • Once a medical provider has determined that it is indeed a diabetes insipidus diagnosis, it becomes important to find the cause of the disorder. (diabetesinsipidus.org)
  • Diabetes insipidus might seem a little scary when the diagnosis first comes in, but with dietary and lifestyle changes, it can be easily controlled. (diabetesinsipidus.org)
  • The most common complication of long-term lithium therapy is nephrogenic diabetes insipidus. (medscape.com)
  • after many years of lithium use, however, permanent nephrogenic diabetes insipidus may occur. (medscape.com)
  • Four patients developed Fanconi syndrome and 3 were proved to have nephrogenic diabetes insipidus. (jrheum.org)
  • But with nephrogenic diabetes insipidus, your body loses too much water through urination. (merckmanuals.com)
  • The exception to this would be dipsogenic diabetes insipidus, which fasting will bring the person back toward more normal urination habits. (diabetesinsipidus.org)
  • One patient developed hypokalaemic nephropathy and subsequent nephrogenic diabetes insipidus. (weeksmd.com)
  • Nephrogenic diabetes insipidus is caused by a defect in kidney tubules which manage the excretion and absorption of water. (alleydog.com)
  • These include Addison's disease, nephrogenic diabetes insipidus, and hypothyroidism . (yourdictionary.com)
  • The greatest danger of diabetes insipidus is the thirst not being met, causing dehydration to occur, and that can create several severe health issues over time. (diabetesinsipidus.org)
  • We also agree that intracerebral calcifications might be a consequence of severe dehydration during the course of nephrogenic diabetes insipidus, especially in infancy [4]. (docksci.com)
  • If the patient is unable to obtain adequate quantities of water, features of diabetes insipidus include signs and symptoms of dehydration (poor tissue turgor, dry mucous membranes, constipation, muscle weakness, dizziness, and hypotension). (health-care-clinic.org)
  • Nephrogenic diabetes insipidus is a disorder of water balance. (medlineplus.gov)
  • In uncomplicated diabetes insipidus, the prognosis is good with adequate water replacement, and patients usually lead normal lives. (health-care-clinic.org)
  • The prognosis for patients with diabetes insipidus is generally excellent, depending on the underlying illness. (medscape.com)
  • Our second and stronger argument was the concurrence of several dysmorphic signs present in both affected boys, which are unusual for nephrogenic diabetes insipidus and which partly resembled those described for Cockayne syndrome. (docksci.com)
  • Sugar-sweetened soft drinks have been shown to cause obesity, type 2 diabetes, dental decay and metabolic syndrome. (weeksmd.com)
  • Nephrogenic Diabetes Insipidus may be caused by medications. (typefreediabetes.com)
  • Additionally, patients with Nephrogenic Diabetes Insipidus may take medications to reduce the need to urinate. (typefreediabetes.com)
  • Kambouzis M, Dlouhy SR, Trofatter JA, Conneally PM, Hooles ME (1988) Localization of the gene for X-linked nephrogenic diabetes insipidus to Xq28. (docksci.com)
  • Kambouris M, Dlouhy SR, Trofatter JA, Conneally PM, Hodes ME (1988) Localization of the gene for X-linked nephrogenic diabetes insipidus to Xq28. (docksci.com)
  • If not, then a person with Nephrogenic Diabetes Insipidus may have to drink fluids to counteract those fluids that the body expels. (typefreediabetes.com)
  • Diabetes Diabetes is a disease in which your blood sugar (glucose) levels are too high. (merckmanuals.com)
  • on the possibility of a new familial disease in the patients reported in his paper, but rather we think the localization of nephrogenic diabetes insipidus on the X chromosome may be another clue to explain the association of nephrogenic diabetes insipidus and mental retardation in some patients. (docksci.com)
  • The lesions responsible for the disruption of ADH synthesis or secretion in hypophyseal diabetes insipidus include large pituitary neoplasms (endocrinologically active or inactive), a dorsally expanding cyst or inflammatory granuloma, and traumatic injury to the skull, with hemorrhage and glial proliferation in the neurohypophyseal system. (merckvetmanual.com)
  • citation needed] Nephrogenic diabetes insipidus is most common in its acquired forms, meaning that the defect was not present at birth. (wikipedia.org)
  • These problems with water balance are characteristic of nephrogenic diabetes insipidus. (medlineplus.gov)
  • Sir: We agree that classic nephrogenic diabetes insipidus cannot be ruled out in our patients [3]. (docksci.com)