Form of epidermolysis bullosa characterized by trauma-induced, subepidermal blistering with no family history of the disease. Direct immunofluorescence shows IMMUNOGLOBULIN G deposited at the dermo-epidermal junction.
Group of genetically determined disorders characterized by the blistering of skin and mucosae. There are four major forms: acquired, simple, junctional, and dystrophic. Each of the latter three has several varieties.
A non-fibrillar collagen involved in anchoring the epidermal BASEMENT MEMBRANE to underlying tissue. It is a homotrimer comprised of C-terminal and N-terminal globular domains connected by a central triple-helical region.
Visible accumulations of fluid within or beneath the epidermis.
Form of epidermolysis bullosa characterized by atrophy of blistered areas, severe scarring, and nail changes. It is most often present at birth or in early infancy and occurs in both autosomal dominant and recessive forms. All forms of dystrophic epidermolysis bullosa result from mutations in COLLAGEN TYPE VII, a major component fibrils of BASEMENT MEMBRANE and EPIDERMIS.
A form of epidermolysis bullosa characterized by serous bullae that heal without scarring. Mutations in the genes that encode KERATIN-5 and KERATIN-14 have been associated with several subtypes of epidermolysis bullosa simplex.
Form of epidermolysis bullosa having onset at birth or during the neonatal period and transmitted through autosomal recessive inheritance. It is characterized by generalized blister formation, extensive denudation, and separation and cleavage of the basal cell plasma membranes from the basement membrane.
Skin diseases characterized by local or general distributions of blisters. They are classified according to the site and mode of blister formation. Lesions can appear spontaneously or be precipitated by infection, trauma, or sunlight. Etiologies include immunologic and genetic factors. (From Scientific American Medicine, 1990)
A chronic and relatively benign subepidermal blistering disease usually of the elderly and without histopathologic acantholysis.
The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
Antibodies that react with self-antigens (AUTOANTIGENS) of the organism that produced them.
A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers.
Endogenous tissue constituents that have the ability to interact with AUTOANTIBODIES and cause an immune response.
A cytoskeletal linker protein with a molecular weight of greater than 500 kDa. It binds INTERMEDIATE FILAMENTS; MICROTUBULES; and ACTIN CYTOSKELETON and plays a central role in the organization and stability of the CYTOSKELETON. Plectin is phosphorylated by CALMODULIN KINASE; PROTEIN KINASE A; and PROTEIN KINASE C.
A type I keratin that is found associated with the KERATIN-5 in the internal stratified EPITHELIUM. Mutations in the gene for keratin-14 are associated with EPIDERMOLYSIS BULLOSA SIMPLEX.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
The region of the STOMACH at the junction with the DUODENUM. It is marked by the thickening of circular muscle layers forming the pyloric sphincter to control the opening and closure of the lumen.
A family of structurally-related short-chain collagens that do not form large fibril bundles.
Also known as CD104 antigen, this protein is distinguished from other beta integrins by its relatively long cytoplasmic domain (approximately 1000 amino acids vs. approximately 50). Five alternatively spliced isoforms have been described.
An anchoring junction of the cell to a non-cellular substrate, similar in morphology to halves of DESMOSOMES. They are composed of specialized areas of the plasma membrane where INTERMEDIATE FILAMENTS bind on the cytoplasmic face to the transmembrane linkers, INTEGRINS, via intracellular attachment proteins, while the extracellular domain of the integrins binds to EXTRACELLULAR MATRIX PROTEINS.
A water-soluble medicinal preparation applied to the skin.
A type II keratin that is found associated with the KERATIN-14 in the internal stratified EPITHELIUM. Mutations in the gene for keratin-5 are associated with EPIDERMOLYSIS BULLOSA SIMPLEX.
A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION.
Genes that influence the PHENOTYPE only in the homozygous state.
Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell.
A malignant skin neoplasm that seldom metastasizes but has potentialities for local invasion and destruction. Clinically it is divided into types: nodular, cicatricial, morphaic, and erythematoid (pagetoid). They develop on hair-bearing skin, most commonly on sun-exposed areas. Approximately 85% are found on the head and neck area and the remaining 15% on the trunk and limbs. (From DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1471)
A medical specialty concerned with the skin, its structure, functions, diseases, and treatment.
Studies in which the presence or absence of disease or other health-related variables are determined in each member of the study population or in a representative sample at one particular time. This contrasts with LONGITUDINAL STUDIES which are followed over a period of time.
Tumors or cancer of the SKIN.
The indelible marking of TISSUES, primarily SKIN, by pricking it with NEEDLES to imbed various COLORING AGENTS. Tattooing of the CORNEA is done to colorize LEUKOMA spots.
Abnormal responses to sunlight or artificial light due to extreme reactivity of light-absorbing molecules in tissues. It refers almost exclusively to skin photosensitivity, including sunburn, reactions due to repeated prolonged exposure in the absence of photosensitizing factors, and reactions requiring photosensitizing factors such as photosensitizing agents and certain diseases. With restricted reference to skin tissue, it does not include photosensitivity of the eye to light, as in photophobia or photosensitive epilepsy.
A syndrome characterized by headache, neck stiffness, low grade fever, and CSF lymphocytic pleocytosis in the absence of an acute bacterial pathogen. Viral meningitis is the most frequent cause although MYCOPLASMA INFECTIONS; RICKETTSIA INFECTIONS; diagnostic or therapeutic procedures; NEOPLASTIC PROCESSES; septic perimeningeal foci; and other conditions may result in this syndrome. (From Adams et al., Principles of Neurology, 6th ed, p745)

The carboxyl terminus of type VII collagen mediates antiparallel dimer formation and constitutes a new antigenic epitope for epidermolysis Bullosa acquisita autoantibodies. (1/38)

Type VII collagen, the major component of anchoring fibrils, consists of a central collagenous triple-helical domain flanked by two noncollagenous domains, NC1 and NC2. The NC2 domain has been implicated in catalyzing the antiparallel dimer formation of type VII procollagen. In this study, we produced the entire 161 amino acids of the NC2 domain plus 186 amino acids of adjacent collagenous domain (NC2/COL) and purified large quantities of the recombinant NC2/COL protein. Recombinant NC2/COL readily formed disulfide-bonded hexamers, each representing one antiparallel dimer of collagen VII. Removal of the collagenous helical domain from NC2/COL by collagenase digestion abolished the antiparallel dimer formation. Using site-directed mutagenesis, we found that mutation of either cysteine 2802 or cysteine 2804 alone within the NC2 domain blocked antiparallel dimer formation. In contrast, a single cysteine mutation, 2634, within the collagenous helical domain had no effect. A generated methionine to lysine substitution, M2798K, that is associated with recessive dystrophic epidermolysis bullosa, was unable to form antiparallel dimers. Furthermore, autoantibodies from epidermolysis bullosa acquisita patients also reacted with NC2/COL. We conclude that NC2 and its adjacent collagenous segment mediate antiparallel dimer formation of collagen VII. Epidermolysis bullosa acquisita autoantibodies bound to this domain may destabilize anchoring fibrils by interfering with antiparallel dimer assembly leading to epidermal-dermal disadherence.  (+info)

Autoantibodies to type VII collagen mediate Fcgamma-dependent neutrophil activation and induce dermal-epidermal separation in cryosections of human skin. (2/38)

Epidermolysis bullosa acquisita is an autoimmune subepidermal blistering disease associated with autoantibodies to type VII collagen, the major constituent of anchoring fibrils. Previous attempts to demonstrate the blister-inducing potential of autoantibodies to this protein have failed. To address this question, we used an in vitro model involving cryosections of human skin incubated with patients' autoantibodies and leukocytes from healthy donors. We show that sera from 14 of 16 epidermolysis bullosa acquisita patients, in contrast to sera from healthy controls, induced dermal-epidermal separation in the cryosections. Recruitment and activation of neutrophils at the dermal-epidermal junction was necessary for split induction, whereas mononuclear cells were not required. Importantly, patients' autoantibodies affinity-purified against a recombinant form of the noncollagenous 1 domain of type VII collagen retained their blister-inducing capacity in a dose-dependent manner, whereas patients' IgG that was depleted of reactivity to type VII collagen lost this ability. Monoclonal antibody LH7.2 to the noncollagenous 1 domain of type VII collagen also induced subepidermal splits in the cryosections; F(ab')(2) fragments of autoantibodies to type VII collagen were not pathogenic. We demonstrate the capacity of autoantibodies to type VII collagen to trigger an Fcgamma-dependent inflammation leading to split formation in cryosections of human skin.  (+info)

Induction of dermal-epidermal separation in mice by passive transfer of antibodies specific to type VII collagen. (3/38)

Epidermolysis bullosa acquisita (EBA) is a subepidermal blistering disorder associated with tissue-bound and circulating autoantibodies specific to type VII collagen, a major constituent of the dermal-epidermal junction. Previous attempts to transfer the disease by injection of patient autoantibodies into mice have been unsuccessful. To study the pathogenic relevance of antibodies specific to type VII collagen in vivo, we generated and characterized rabbit antibodies specific to a murine form of this antigen and passively transferred them into adult nude, BALB/c, and C57BL/6 mice. Immune rabbit IgG bound to the lamina densa of murine skin and immunoblotted type VII collagen. Mice injected with purified IgG specific to type VII collagen, in contrast to control mice, developed subepidermal skin blisters, reproducing the human disease at the clinical, histological, electron microscopical, and immunopathological levels. Titers of rabbit IgG in the serum of mice correlated with the extent of the disease. F(ab')(2) fragments of rabbit IgG specific to type VII collagen were not pathogenic. When injected into C5-deficient mice, antibodies specific to type VII collagen failed to induce the disease, whereas C5-sufficient mice were susceptible to blister induction. This animal model for EBA should facilitate further dissection of the pathogenesis of this disease and development of new therapeutic strategies.  (+info)

Evidence that anti-type VII collagen antibodies are pathogenic and responsible for the clinical, histological, and immunological features of epidermolysis bullosa acquisita. (4/38)

Epidermolysis bullosa acquisita (EBA) is an autoimmune blistering disease characterized by autoantibodies to type VII (anchoring fibril) collagen. Therefore, it is a prototypic autoimmune disease defined by a well-known autoantigen and autoantibody. In this study, we injected hairless immune competent mice with purified immunoglobulin G (IgG) fraction of serum from rabbits immunized with the non-collagenous amino-terminal domain (NC1) of human type VII collagen, the domain known to contain immunodominant epitopes. As a control, identical mice were injected with the IgG fraction of serum from non-immunized rabbits. Mice injected with immune IgG developed subepidermal skin blisters and erosions, IgG deposits at the epidermal-dermal junction of their skin, and circulating anti-NC1 antibodies in their serum-all features reminiscent of patients with EBA. Similar concentrations of control IgG purified from normal rabbits did not induce disease in the mice. These findings strongly suggest that autoantibodies that recognize human type VII collagen in EBA are pathogenic. This murine model, with features similar to the clinical, histological, and immunological features of EBA, will be useful for the fine dissection of immunopathogenic mechanisms in EBA and for the development of new therapeutic interventions.  (+info)

Induction of epidermolysis bullosa acquisita in mice by passive transfer of autoantibodies from patients. (5/38)

Epidermolysis bullosa acquisita (EBA) is an autoimmune sub-epidermal blistering disease characterized by autoantibodies to type VII (anchoring fibril) collagen. To date, however, direct evidence for a pathogenic role of human EBA autoantibodies has not been demonstrated. In this study, we affinity-purified anti-type VII collagen antibodies from EBA patients' sera and then injected them into adult hairless immunocompetent mice. Mice injected with EBA autoantibodies developed skin fragility, blisters, erosions, and nail loss on their paws - all features of EBA patients. By clinical, histological, immunological, and ultrastructural parameters, the induced lesions were reminiscent of human EBA. Histology showed bullous lesions with an epidermal-dermal separation. IgG and C3 deposits were observed at the epidermal-dermal junction. All mice had serum antibodies that labeled the dermal side of salt-split human skin like EBA sera. Direct immunogold electron microscopy specifically localized deposits of human IgG to anchoring fibrils. (Fab')(2) fragments generated from EBA autoantibodies did not induce disease. We conclude that EBA human patient autoantibodies cause sub-epidermal blisters and induce EBA skin lesions in mice. These passive transfer studies demonstrate that human EBA autoantibodies are pathogenic. This novel EBA mouse model can be used to further investigate EBA autoimmunity and to develop possible therapies.  (+info)

Autoimmunity to type VII collagen in SKH1 mice is independent of regulatory T cells. (6/38)

Epidermolysis bullosa acquisita is an autoimmune blistering disease characterized by circulating and skin basement membrane-bound IgG autoantibodies to type VII collagen, a major structural protein of the dermal-epidermal junction. Regulatory T cells (T(reg)) suppress self antigen-mediated autoimmune responses. To investigate the role of T(reg) in the the autoimmune response to type VII collagen in a mouse model, a monoclonal antibody against mouse CD25 was used to deplete T(reg). A recombinant mouse type VII collagen NC1 domain protein and mouse albumin were used as antigens. SKH1 mice were used as a testing host. Group 1 mice received NC1 immunization and were functionally depleted of T(reg); group 2 mice received NC1 immunization and rat isotype control; and group 3 mice received albumin immunization and were functionally depleted of T(reg). Results demonstrated that anti-NC1 IgG autoantibodies with high titres, as determined by enzyme-linked immunosorbent assay and Western blotting, developed in all mice immunized with NC1 (groups 1 and 2), but were undetected in group 3 mice. The predominant subclasses of anti-NC1 autoantibodies were IgG1, IgG2a and IgG2b; furthermore, these antibodies carried only the kappa light chain. IgG autoantibodies in the sera of NC1-immunized mice reacted with mouse skin basement membrane in vitro and deposited in skin basement membrane in vivo as detected by indirect and direct immunofluorescence microscopy, respectively. Our data suggest that the development of autoimmunity against type VII collagen in mice is independent of T(reg) function and the autoimmune response is mediated by both Th1 and Th2 cells. We speculate that the basement membrane deposition of IgG may eventually lead to blister development.  (+info)

Induction of complement-fixing autoantibodies against type VII collagen results in subepidermal blistering in mice. (7/38)

Experimental models reproducing an autoimmune response resulting in skin blistering in immunocompetent animals are lacking. Epidermolysis bullosa acquisita (EBA) is a bullous skin disease caused by autoantibodies to type VII collagen. In this study, we describe an active disease model of EBA by immunizing mice of different strains with murine type VII collagen. All mice developed circulating IgG autoantibodies that recognized type VII collagen and bound to the lamina densa of the dermal-epidermal junction. Importantly, subepidermal blisters developed in 82% of SJL-1, 56% of BALB/c mice, and 45% of Fc gammaRIIb-deficient mice, but not in SKH-1 mice. In susceptible animals, deposits of IgG1, IgG2, and complement C3 were detected at the dermal-epidermal junction. In contrast, in the nondiseased mice, tissue-bound autoantibodies were predominantly of the IgG1 subclass and complement activation was weak or absent. This active disease model reproduces in mice the clinical, histopathological, and immunopathological findings in EBA patients. This robust experimental system should greatly facilitate further studies on the pathogenesis of EBA and the development of novel immunomodulatory therapies for this and other autoimmune diseases.  (+info)

The alternative pathway of complement activation is critical for blister induction in experimental epidermolysis bullosa acquisita. (8/38)

Epidermolysis bullosa acquisita is a subepidermal blistering disease associated with tissue-bound and circulating autoantibodies against type VII collagen, a major constituent of the dermal-epidermal junction. The passive transfer of Abs against type VII collagen into mice induces a subepidermal blistering disease dependent upon activation of terminal complement components. To further dissect the role of the different complement activation pathways in this model, we injected C1q-deficient, mannan-binding lectin-deficient, and factor B-deficient mice with rabbit Abs against murine type VII collagen. The development and evolution of blistering had a similar pattern in mannan-binding lectin-deficient and control mice and was initially only marginally less extensive in C1q-deficient mice compared with controls. Importantly, factor B-deficient mice developed a delayed and significantly less severe blistering disease compared with factor B-sufficient mice. A significantly lower neutrophilic infiltration was observed in factor B-deficient mice compared with controls and local reconstitution with granulocytes restored the blistering disease in factor B-deficient mice. Our study provides the first direct evidence for the involvement of the alternative pathway in an autoantibody-induced blistering disease and should facilitate the development of new therapeutic strategies for epidermolysis bullosa acquisita and related autoimmune diseases.  (+info)

Epidermolysis Bullosa Acquisita (EBA) is a rare autoimmune blistering disorder characterized by the production of autoantibodies against type VII collagen, a protein that plays a crucial role in anchoring the epidermis to the dermis. This results in the formation of blisters and erosions on the skin and mucous membranes, particularly in areas subjected to friction or trauma.

EBA can be classified into two main forms: the mechanobullous form and the inflammatory form. The mechanobullous form is characterized by spontaneous blistering and mechanical fragility of the skin, while the inflammatory form presents with inflammation and erosions in the mucous membranes.

The onset of EBA can occur at any age, but it is more common in adults, particularly those over 40 years old. The diagnosis of EBA is based on clinical presentation, direct immunofluorescence (DIF) studies, and detection of autoantibodies against type VII collagen.

Treatment of EBA typically involves a combination of wound care, prevention of infection, and immunosuppressive therapy to control the production of autoantibodies. The prognosis of EBA varies depending on the severity and extent of skin and mucous membrane involvement, as well as the response to treatment.

Epidermolysis Bullosa (EB) is a group of rare inherited skin disorders that are characterized by the development of blisters, erosions, and scarring following minor trauma or friction. The condition results from a genetic defect that affects the structural proteins responsible for anchoring the epidermis (outer layer of the skin) to the dermis (inner layer of the skin).

There are several types of EB, which vary in severity and clinical presentation. These include:

1. Epidermolysis Bullosa Simplex (EBS): This is the most common form of EB, and it typically affects the skin's superficial layers. Blistering tends to occur after minor trauma or friction, and healing usually occurs without scarring. There are several subtypes of EBS, which vary in severity.
2. Junctional Epidermolysis Bullosa (JEB): This form of EB affects the deeper layers of the skin, and blistering can occur spontaneously or following minor trauma. Healing often results in scarring, and affected individuals may also experience nail loss, dental abnormalities, and fragile mucous membranes.
3. Dystrophic Epidermolysis Bullosa (DEB): DEB affects the deeper layers of the skin, and blistering can lead to significant scarring, contractures, and fusion of fingers and toes. There are two main subtypes of DEB: recessive DEB (RDEB), which is more severe and associated with a higher risk of skin cancer, and dominant DEB (DDEB), which tends to be milder.
4. Kindler Syndrome: This is a rare form of EB that affects both the epidermis and dermis. Blistering can occur spontaneously or following minor trauma, and affected individuals may experience photosensitivity, poikiloderma (a mottled skin appearance), and oral and gastrointestinal abnormalities.

Treatment for EB typically focuses on managing symptoms, preventing blister formation and infection, and promoting wound healing. There is currently no cure for EB, but research is ongoing to develop new therapies and treatments.

Collagen type VII is a type of collagen that is a major component of the anchoring fibrils, which are structures that help to attach the epidermis (the outermost layer of the skin) to the dermis (the layer of skin directly below the epidermis). Collagen type VII is composed of three identical chains that are encoded by the COL7A1 gene. Mutations in this gene can lead to a group of inherited blistering disorders known as autosomal recessive dystrophic epidermolysis bullosa, which is characterized by fragile skin and mucous membranes that blister and tear easily, often from minor trauma or friction.

A blister is a small fluid-filled bubble that forms on the skin due to friction, burns, or contact with certain chemicals or irritants. Blisters are typically filled with a clear fluid called serum, which is a component of blood. They can also be filled with blood (known as blood blisters) if the blister is caused by a more severe injury.

Blisters act as a natural protective barrier for the underlying skin and tissues, preventing infection and promoting healing. It's generally recommended to leave blisters intact and avoid breaking them, as doing so can increase the risk of infection and delay healing. If a blister is particularly large or painful, medical attention may be necessary to prevent complications.

Epidermolysis Bullosa Dystrophica (EBD) is a type of inherited skin disorder that belongs to the group of conditions known as Epidermolysis Bullosa. This condition is characterized by the development of fragile, blistering skin that can be caused by minor trauma or friction.

In EBD, the blisters form in the upper layer of the skin (epidermis) and the underlying layer (dermis), leading to scarring and tissue damage. The symptoms of EBD can range from mild to severe and may include:

* Blistering of the skin that can be triggered by friction, heat, or other factors
* Formation of scars, particularly on the hands and feet
* Thickening of the skin (hyperkeratosis)
* Nail abnormalities, such as ridged or brittle nails
* Mouth sores and blisters
* Dental problems, including tooth decay and gum disease

EBD is caused by mutations in the genes that provide instructions for making proteins that help to anchor the skin's layers together. As a result, the skin becomes fragile and prone to blistering.

There are several subtypes of EBD, each with its own specific genetic cause and symptoms. Treatment typically involves wound care, prevention of infection, and management of pain. In severe cases, surgery may be necessary to treat complications such as scarring or contractures.

Epidermolysis Bullosa Simplex (EBS) is a group of genetic skin disorders characterized by the development of blisters and erosions on the skin following minor trauma or friction. It is caused by mutations in genes that encode proteins responsible for anchoring the epidermis (outer layer of the skin) to the dermis (inner layer of the skin).

There are several subtypes of EBS, which vary in severity and clinical presentation. The most common form is called "Dowling-Meara" EBS, which is characterized by blistering at or near birth, widespread blistering, and scarring. Other forms of EBS include "Weber-Cockayne" EBS, which is characterized by localized blistering and healing with minimal scarring, and "Kobner" EBS, which is characterized by blistering in response to heat or physical trauma.

Treatment for EBS typically involves wound care, prevention of infection, and pain management. In some cases, protein therapy or bone marrow transplantation may be considered as a treatment option. It's important to note that the prognosis for individuals with EBS varies depending on the severity and subtype of the disorder.

Junctional Epidermolysis Bullosa (JEB) is a rare genetic skin disorder characterized by the presence of blisters and erosions on the skin and mucous membranes. It results from a defect in one of the proteins that anchors the epidermis (the outermost layer of the skin) to the dermis (the underlying layer of connective tissue). This defect causes the layers to separate easily, leading to blistering with minor friction or trauma.

JEB is usually apparent at birth or within the first few months of life. The severity of the condition can vary widely, even among members of the same family. There are several subtypes of JEB, each caused by mutations in different genes. These include:

1. Herlitz JEB: This is the most severe form, often lethal in infancy. It's characterized by widespread blistering over the entire body, including the mucous membranes, and severe growth retardation.

2. Non-Herlitz JEB: Less severe than Herlitz JEB, this form can still cause significant disability. Blistering tends to be localized to specific areas of the body, such as the hands, feet, and knees.

3. JEB with Pyloric Atresia: This subtype includes gastrointestinal abnormalities like pyloric atresia (a blockage in the lower part of the stomach), in addition to skin fragility.

Treatment for JEB typically focuses on managing symptoms and preventing complications. This may involve wound care, prevention of infection, pain management, nutritional support, and physical therapy. There is currently no cure for JEB.

Vesiculobullous skin diseases are a group of disorders characterized by the formation of blisters (vesicles) and bullae (larger blisters) on the skin. These blisters form when there is a separation between the epidermis (outer layer of the skin) and the dermis (layer beneath the epidermis) due to damage in the area where they join, known as the dermo-epidermal junction.

There are several types of vesiculobullous diseases, each with its own specific causes and symptoms. Some of the most common types include:

1. Pemphigus vulgaris: an autoimmune disorder where the immune system mistakenly attacks proteins that help to hold the skin together, causing blisters to form.
2. Bullous pemphigoid: another autoimmune disorder, but in this case, the immune system attacks a different set of proteins, leading to large blisters and inflammation.
3. Dermatitis herpetiformis: a skin condition associated with celiac disease, where gluten ingestion triggers an immune response that leads to the formation of itchy blisters.
4. Pemphigoid gestationis: a rare autoimmune disorder that occurs during pregnancy and causes blisters on the abdomen and other parts of the body.
5. Epidermolysis bullosa: a group of inherited disorders where there is a fragile skin structure, leading to blistering and wound formation after minor trauma or friction.

Treatment for vesiculobullous diseases depends on the specific diagnosis and may include topical or systemic medications, such as corticosteroids, immunosuppressants, or antibiotics, as well as wound care and prevention of infection.

According to the American Academy of Ophthalmology and the National Organization for Rare Disorders, bullous pemphigoid is an autoimmune blistering disorder characterized by the formation of large, fluid-filled blisters (bullae) on the skin and mucous membranes. This condition primarily affects older adults, with most cases occurring in individuals over 60 years of age.

In bullous pemphigoid, the immune system mistakenly produces antibodies against proteins called BP230 and BP180, which are found in the basement membrane zone – a layer that separates the epidermis (outer skin layer) from the dermis (inner skin layer). This autoimmune response leads to the formation of blisters, causing significant discomfort and potential complications if left untreated.

The symptoms of bullous pemphigoid typically include:

1. Large, fluid-filled blisters on the skin, often appearing on the trunk, arms, or legs. These blisters may be itchy or painful.
2. Blisters that rupture easily, leading to raw, open sores.
3. Mucous membrane involvement, such as blisters in the mouth, nose, eyes, or genital area.
4. Skin redness and irritation.
5. Fluid-filled bumps (papules) or pus-filled bumps (pustules).
6. Scarring and skin discoloration after blisters heal.

Treatment for bullous pemphigoid usually involves a combination of medications to control the immune response, reduce inflammation, and promote healing. These may include corticosteroids, immunosuppressants, or other targeted therapies. In some cases, antibiotics may also be prescribed to help manage secondary infections that can occur due to blister formation.

It is essential to consult with a healthcare professional for an accurate diagnosis and treatment plan if you suspect you have bullous pemphigoid or are experiencing related symptoms.

In medical terms, the skin is the largest organ of the human body. It consists of two main layers: the epidermis (outer layer) and dermis (inner layer), as well as accessory structures like hair follicles, sweat glands, and oil glands. The skin plays a crucial role in protecting us from external factors such as bacteria, viruses, and environmental hazards, while also regulating body temperature and enabling the sense of touch.

Autoantibodies are defined as antibodies that are produced by the immune system and target the body's own cells, tissues, or organs. These antibodies mistakenly identify certain proteins or molecules in the body as foreign invaders and attack them, leading to an autoimmune response. Autoantibodies can be found in various autoimmune diseases such as rheumatoid arthritis, lupus, and thyroiditis. The presence of autoantibodies can also be used as a diagnostic marker for certain conditions.

The basement membrane is a thin, specialized layer of extracellular matrix that provides structural support and separates epithelial cells (which line the outer surfaces of organs and blood vessels) from connective tissue. It is composed of two main layers: the basal lamina, which is produced by the epithelial cells, and the reticular lamina, which is produced by the connective tissue. The basement membrane plays important roles in cell adhesion, migration, differentiation, and survival.

The basal lamina is composed mainly of type IV collagen, laminins, nidogens, and proteoglycans, while the reticular lamina contains type III collagen, fibronectin, and other matrix proteins. The basement membrane also contains a variety of growth factors and cytokines that can influence cell behavior.

Defects in the composition or organization of the basement membrane can lead to various diseases, including kidney disease, eye disease, and skin blistering disorders.

Autoantigens are substances that are typically found in an individual's own body, but can stimulate an immune response because they are recognized as foreign by the body's own immune system. In autoimmune diseases, the immune system mistakenly attacks and damages healthy tissues and organs because it recognizes some of their components as autoantigens. These autoantigens can be proteins, DNA, or other molecules that are normally present in the body but have become altered or exposed due to various factors such as infection, genetics, or environmental triggers. The immune system then produces antibodies and activates immune cells to attack these autoantigens, leading to tissue damage and inflammation.

Plectin is a large cytolinker protein that plays a crucial role in the structural organization and stability of the cell. It has the ability to interact with various components of the cytoskeleton, including intermediate filaments, microtubules, and actin filaments, thereby providing a critical link between these structures. Plectin is widely expressed in many tissues and is involved in maintaining the integrity and functionality of cells under both physiological and pathological conditions. Mutations in the gene encoding plectin have been associated with several human diseases, including epidermolysis bullosa, muscular dystrophy, and neuropathies.

Keratin-14 is a type of keratin protein that is specifically expressed in the suprabasal layers of stratified epithelia, including the epidermis. It is a component of the intermediate filament cytoskeleton and plays an important role in maintaining the structural integrity and stability of epithelial cells. Mutations in the gene encoding keratin-14 have been associated with several genetic skin disorders, such as epidermolysis bullosa simplex and white sponge nevus.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

The pylorus is the lower, narrow part of the stomach that connects to the first part of the small intestine (duodenum). It consists of the pyloric canal, which is a short muscular tube, and the pyloric sphincter, a circular muscle that controls the passage of food from the stomach into the duodenum. The pylorus regulates the entry of chyme (partially digested food) into the small intestine by adjusting the size and frequency of the muscular contractions that push the chyme through the pyloric sphincter. This process helps in further digestion and absorption of nutrients in the small intestine.

Non-fibrillar collagens are a type of collagen that do not form fibrous structures, unlike the more common fibrillar collagens. They are a group of structurally diverse collagens that play important roles in various biological processes such as cell adhesion, migration, and differentiation. Non-fibrillar collagens include types IV, VI, VIII, X, XII, XIV, XVI, XIX, XXI, and XXVIII. They are often found in basement membranes and other specialized extracellular matrix structures.

Type IV collagen is a major component of the basement membrane and forms a network-like structure that provides a scaffold for other matrix components. Type VI collagen has a beaded filament structure and is involved in the organization of the extracellular matrix. Type VIII collagen is found in the eyes and helps to maintain the structural integrity of the eye. Type X collagen is associated with cartilage development and bone formation. Type XII and XIV collagens are fibril-associated collagens that help to regulate the organization and diameter of fibrillar collagens. The other non-fibrillar collagens have various functions, including cell adhesion, migration, and differentiation.

Overall, non-fibrillar collagens are important structural components of the extracellular matrix and play critical roles in various biological processes.

Integrin beta4, also known as ITGB4 or CD104, is a type of integrin subunit that forms part of the integrin receptor along with an alpha subunit. Integrins are transmembrane proteins involved in cell-cell and cell-extracellular matrix (ECM) adhesion, signal transduction, and regulation of various cellular processes such as proliferation, differentiation, and migration.

Integrin beta4 is unique among the integrin subunits because it has a large cytoplasmic domain that can interact with several intracellular signaling molecules, making it an important regulator of cell behavior. Integrin beta4 is widely expressed in various tissues, including epithelial cells, endothelial cells, and hematopoietic cells.

Integrin beta4 forms heterodimers with integrin alpha6 to form the receptor for laminins, which are major components of the basement membrane. This receptor is involved in maintaining the integrity of epithelial tissues and regulating cell migration during development, tissue repair, and cancer progression. Mutations in ITGB4 have been associated with several human diseases, including epidermolysis bullosa, a group of inherited skin disorders characterized by fragile skin and blistering.

Hemidesmosomes are specialized structures found in the cell membranes of epithelial cells that help to anchor them to the underlying basement membrane. They are composed of several proteins, including integrins and collagen type XVII, which interact with both intracellular keratin filaments and extracellular matrix components such as laminin-332. Hemidesmosomes play a crucial role in maintaining the integrity and stability of epithelial tissues by providing strong adhesive bonds between the epithelial cells and the underlying basement membrane, which is essential for normal tissue function and homeostasis. Mutations in genes encoding hemidesmosomal proteins can lead to various inherited skin blistering disorders, such as epidermolysis bullosa.

A skin cream is not a medical term per se, but it generally refers to a topical emollient preparation intended for application to the skin. It contains a mixture of water, oil, and active ingredients, which are formulated to provide various benefits such as moisturizing, protecting, soothing, or treating specific skin conditions. The exact definition and composition may vary depending on the product's intended use and formulation.

Examples of active ingredients in skin creams include:

1. Moisturizers (e.g., glycerin, hyaluronic acid) - help to retain water in the skin, making it feel softer and smoother.
2. Emollients (e.g., shea butter, coconut oil, petrolatum) - provide a protective barrier that helps prevent moisture loss and soften the skin.
3. Humectants (e.g., urea, lactic acid, alpha-hydroxy acids) - attract water from the environment or deeper layers of the skin to hydrate the surface.
4. Anti-inflammatory agents (e.g., hydrocortisone, aloe vera) - help reduce redness, swelling, and itching associated with various skin conditions.
5. Antioxidants (e.g., vitamin C, vitamin E, green tea extract) - protect the skin from free radical damage and environmental stressors that can lead to premature aging.
6. Sunscreen agents (e.g., zinc oxide, titanium dioxide, chemical filters) - provide broad-spectrum protection against UVA and UVB rays.
7. Skin lighteners (e.g., hydroquinone, kojic acid, arbutin) - help reduce the appearance of hyperpigmentation and even out skin tone.
8. Acne treatments (e.g., benzoyl peroxide, salicylic acid, retinoids) - target acne-causing bacteria, unclog pores, and regulate cell turnover to prevent breakouts.

It is essential to choose a skin cream based on your specific skin type and concerns, as well as any medical conditions or allergies you may have. Always consult with a dermatologist or healthcare provider before starting a new skincare regimen.

Keratin 5 is a type of keratin protein that is primarily expressed in the basal layer of epithelial tissues, including the skin, hair follicles, and nails. It forms heterodimers with keratin 14 and plays a crucial role in maintaining the structural integrity and stability of these tissues. Mutations in the gene that encodes keratin 5 (KRT5) can lead to several genetic disorders, such as epidermolysis bullosa simplex, which is characterized by blistering of the skin and mucous membranes.

Keratins are a type of fibrous structural proteins that constitute the main component of the integumentary system, which includes the hair, nails, and skin of vertebrates. They are also found in other tissues such as horns, hooves, feathers, and reptilian scales. Keratins are insoluble proteins that provide strength, rigidity, and protection to these structures.

Keratins are classified into two types: soft keratins (Type I) and hard keratins (Type II). Soft keratins are found in the skin and simple epithelial tissues, while hard keratins are present in structures like hair, nails, horns, and hooves.

Keratin proteins have a complex structure consisting of several domains, including an alpha-helical domain, beta-pleated sheet domain, and a non-repetitive domain. These domains provide keratin with its unique properties, such as resistance to heat, chemicals, and mechanical stress.

In summary, keratins are fibrous structural proteins that play a crucial role in providing strength, rigidity, and protection to various tissues in the body.

Recessive genes refer to the alleles (versions of a gene) that will only be expressed when an individual has two copies of that particular allele, one inherited from each parent. If an individual inherits one recessive allele and one dominant allele for a particular gene, the dominant allele will be expressed and the recessive allele will have no effect on the individual's phenotype (observable traits).

Recessive genes can still play a role in determining an individual's genetic makeup and can be passed down through generations even if they are not expressed. If two carriers of a recessive gene have children, there is a 25% chance that their offspring will inherit two copies of the recessive allele and exhibit the associated recessive trait.

Examples of genetic disorders caused by recessive genes include cystic fibrosis, sickle cell anemia, and albinism.

Keratinocytes are the predominant type of cells found in the epidermis, which is the outermost layer of the skin. These cells are responsible for producing keratin, a tough protein that provides structural support and protection to the skin. Keratinocytes undergo constant turnover, with new cells produced in the basal layer of the epidermis and older cells moving upward and eventually becoming flattened and filled with keratin as they reach the surface of the skin, where they are then shed. They also play a role in the immune response and can release cytokines and other signaling molecules to help protect the body from infection and injury.

Carcinoma, basal cell is a type of skin cancer that arises from the basal cells, which are located in the lower part of the epidermis (the outermost layer of the skin). It is also known as basal cell carcinoma (BCC) and is the most common form of skin cancer.

BCC typically appears as a small, shiny, pearly bump or nodule on the skin, often in sun-exposed areas such as the face, ears, neck, hands, and arms. It may also appear as a scar-like area that is white, yellow, or waxy. BCCs are usually slow growing and rarely spread (metastasize) to other parts of the body. However, they can be locally invasive and destroy surrounding tissue if left untreated.

The exact cause of BCC is not known, but it is thought to be related to a combination of genetic and environmental factors, including exposure to ultraviolet (UV) radiation from the sun or tanning beds. People with fair skin, light hair, and blue or green eyes are at increased risk of developing BCC.

Treatment for BCC typically involves surgical removal of the tumor, along with a margin of healthy tissue. Other treatment options may include radiation therapy, topical chemotherapy, or photodynamic therapy. Prevention measures include protecting your skin from UV radiation by wearing protective clothing, using sunscreen, and avoiding tanning beds.

Dermatology is a medical specialty that focuses on the diagnosis, treatment, and prevention of diseases and conditions related to the skin, hair, nails, and mucous membranes. A dermatologist is a medical doctor who has completed specialized training in this field. They are qualified to treat a wide range of skin conditions, including acne, eczema, psoriasis, skin cancer, and many others. Dermatologists may also perform cosmetic procedures to improve the appearance of the skin or to treat signs of aging.

A cross-sectional study is a type of observational research design that examines the relationship between variables at one point in time. It provides a snapshot or a "cross-section" of the population at a particular moment, allowing researchers to estimate the prevalence of a disease or condition and identify potential risk factors or associations.

In a cross-sectional study, data is collected from a sample of participants at a single time point, and the variables of interest are measured simultaneously. This design can be used to investigate the association between exposure and outcome, but it cannot establish causality because it does not follow changes over time.

Cross-sectional studies can be conducted using various data collection methods, such as surveys, interviews, or medical examinations. They are often used in epidemiology to estimate the prevalence of a disease or condition in a population and to identify potential risk factors that may contribute to its development. However, because cross-sectional studies only provide a snapshot of the population at one point in time, they cannot account for changes over time or determine whether exposure preceded the outcome.

Therefore, while cross-sectional studies can be useful for generating hypotheses and identifying potential associations between variables, further research using other study designs, such as cohort or case-control studies, is necessary to establish causality and confirm any findings.

Skin neoplasms refer to abnormal growths or tumors in the skin that can be benign (non-cancerous) or malignant (cancerous). They result from uncontrolled multiplication of skin cells, which can form various types of lesions. These growths may appear as lumps, bumps, sores, patches, or discolored areas on the skin.

Benign skin neoplasms include conditions such as moles, warts, and seborrheic keratoses, while malignant skin neoplasms are primarily classified into melanoma, squamous cell carcinoma, and basal cell carcinoma. These three types of cancerous skin growths are collectively known as non-melanoma skin cancers (NMSCs). Melanoma is the most aggressive and dangerous form of skin cancer, while NMSCs tend to be less invasive but more common.

It's essential to monitor any changes in existing skin lesions or the appearance of new growths and consult a healthcare professional for proper evaluation and treatment if needed.

Tattooing is defined medically as the process of inserting pigment into the skin's dermis layer to change its color. This procedure creates a permanent design or image. The equipment used for tattooing includes an electrically powered tattoo machine, needles, and ink. Tattooing can carry potential risks such as infection, allergic reactions, and scarring. It is essential to ensure that all tattooing procedures are performed under sterile conditions and by a licensed professional to minimize these risks.

Photosensitivity disorders refer to conditions that cause an abnormal reaction to sunlight or artificial light. This reaction can take the form of various skin changes, such as rashes, inflammation, or pigmentation, and in some cases, it can also lead to systemic symptoms like fatigue, fever, or joint pain.

The two main types of photosensitivity disorders are:

1. Phototoxic reactions: These occur when a substance (such as certain medications, chemicals, or plants) absorbs light energy and transfers it to skin cells, causing damage and inflammation. The reaction typically appears within 24 hours of exposure to the light source and can resemble a sunburn.

2. Photoallergic reactions: These occur when the immune system responds to the combination of light and a particular substance, leading to an allergic response. The reaction may not appear until several days after initial exposure and can cause redness, itching, and blistering.

It is important for individuals with photosensitivity disorders to avoid excessive sun exposure, wear protective clothing, and use broad-spectrum sunscreens with a high SPF rating to minimize the risk of phototoxic or photoallergic reactions.

Aseptic meningitis is a type of meningitis (inflammation of the membranes covering the brain and spinal cord) that is not caused by bacterial infection. Instead, it can be due to viral infections, fungal infections, or non-infectious causes such as certain medications, chemical irritants, or underlying medical conditions. In aseptic meningitis, the cerebrospinal fluid (CSF) analysis may show increased white blood cells, typically lymphocytes, but no bacterial growth on culture. Common viral causes include enteroviruses, herpes simplex virus, and varicella-zoster virus. Treatment depends on the underlying cause and may include supportive care, antiviral medications, or immunosuppressive therapy in some cases.

Epidermolysis bullosa acquisita, also known as acquired epidermolysis bullosa, is a longterm autoimmune blistering skin disease ... "Epidermolysis bullosa acquisita: A comprehensive review". Autoimmunity Reviews. 18 (8): 786-795. doi:10.1016/j.autrev.2019.06. ... Acquired epidermolysis bullosa". www.orpha.net. Archived from the original on 30 July 2017. Retrieved 19 April 2019. Kridin, ...
Epidermolysis bullosa acquisita is characterized clinically by blisters, scars, and milia primarily at the trauma-prone areas. ... Epidermolysis bullosa acquisita (EBA) is a chronic autoimmune subepidermal blistering disease of the skin and mucus membranes. ... Epidermolysis bullosa acquisita is rare in humans. In animals, epidermolysis bullosa acquisita has been reported in dogs only. ... encoded search term (Epidermolysis Bullosa Acquisita) and Epidermolysis Bullosa Acquisita What to Read Next on Medscape ...
Epidermolysis bullosa acquisita is characterized clinically by blisters, scars, and milia primarily at the trauma-prone areas. ... Epidermolysis bullosa acquisita (EBA) is a chronic autoimmune subepidermal blistering disease of the skin and mucus membranes. ... Epidermolysis bullosa acquisita is rare in humans. In animals, epidermolysis bullosa acquisita has been reported in dogs only. ... encoded search term (Epidermolysis Bullosa Acquisita) and Epidermolysis Bullosa Acquisita What to Read Next on Medscape ...
Epidermolysis bullosa acquisita (EBA) is a rare chronic autoimmune blistering disease that is caused by auto-antibodies against ... EPIDERMOLYSIS BULLOSA ACQUISITA. Epidermolysis bullosa acquisita (EBA) is a rare chronic autoimmune blistering disease that is ... EBA has many features in common with the dominantly inherited form of the blistering disease, dystrophic epidermolysis bullosa ...
Epidermolysis bullosa acquisita. Synonyms: Acquired epidermolysis bullosa. A rare chronic incurable sub epithelial autoimmune ... Epidermolysis bullosa acquisita?. Our RARE Concierge Services Guides are available to assist you by providing information, ... Epidermolysis bullosa acquisita. Get in touch with RARE Concierge.. Contact RARE Concierge ... The classical presentation is reminiscent of hereditary dystrophic epidermolysis bullosa (EB) with skin fragility blisters and ...
Epidermolysis bullosa acquisita is characterized clinically by blisters, scars, and milia primarily at the trauma-prone areas. ... Epidermolysis bullosa acquisita (EBA) is a chronic autoimmune subepidermal blistering disease of the skin and mucus membranes. ... Epidermolysis bullosa acquisita is rare in humans. In animals, epidermolysis bullosa acquisita has been reported in dogs only. ... encoded search term (Epidermolysis Bullosa Acquisita) and Epidermolysis Bullosa Acquisita What to Read Next on Medscape ...
Epidermolysis bullosa acquisita is characterized clinically by blisters, scars, and milia primarily at the trauma-prone areas. ... Epidermolysis bullosa acquisita (EBA) is a chronic autoimmune subepidermal blistering disease of the skin and mucus membranes. ... encoded search term (Epidermolysis Bullosa Acquisita) and Epidermolysis Bullosa Acquisita What to Read Next on Medscape ... the same target antigen recognized by patients with epidermolysis bullosa acquisita. The fact that epidermolysis bullosa ...
Epidermolysis Bullosa Acquisita - Etiology, pathophysiology, symptoms, signs, diagnosis & prognosis from the MSD Manuals - ... Epidermolysis bullosa acquisita is distinct from the inherited disorder epidermolysis bullosa Epidermolysis Bullosa ... Epidermolysis bullosa acquisita can occur in all ages. The exact etiology of epidermolysis bullosa acquisita is not known, but ... Symptoms and Signs of Epidermolysis Bullosa Acquisita Initial manifestations of epidermolysis bullosa acquisita are highly ...
Open the PDF for Intractable Epidermolysis bullosa acquisita: Efficacy of ,span class=search-highlight,Ciclosporin,/span, A ... View article titled, Intractable Epidermolysis bullosa acquisita: Efficacy of ,span class=search-highlight,Ciclosporin,/span ...
Serration pattern analysis for differentiating epidermolysis bullosa acquisita from other pemphigoid diseases. In: Journal of ... Serration pattern analysis for differentiating epidermolysis bullosa acquisita from other pemphigoid diseases. Journal of the ... Dive into the research topics of Serration pattern analysis for differentiating epidermolysis bullosa acquisita from other ... Serration pattern analysis for differentiating epidermolysis bullosa acquisita from other pemphigoid diseases. / Meijer, Joost ...
Epidermolysis bullosa acquisita mechanica. Fordham S, OBryen J, Bricknell J, Huang J, Banney L. Fordham S, et al. Among ...
Dual contribution of the spleen tyrosine kinase (SYK) to epidermolysis bullosa acquisita pathogenesis. Ludwig, R., Samavedam, U ... expression profiling in skin reveals SYK As a key regulator of inflammation in experimental epidermolysis bullosa acquisita. ...
Epidermolysis bullosa (EB) is a group of disorders in which skin blisters form after a minor injury. It is passed down in ... Epidermolysis bullosa (EB) is a group of disorders in which skin blisters form after a minor injury. It is passed down in ... Another rare type of EB is called epidermolysis bullosa acquisita. This form develops after birth. It is an autoimmune disorder ... EB; Junctional epidermolysis bullosa; Dystrophic epidermolysis bullosa; Hemidesmosomal epidermolysis bullosa; Weber-Cockayne ...
Epidermolysis bullosa acquisita (EBA) is a rare autoimmune bullous disease (AIBD). However, higher EBA incidence and ... Black Patients of African Descent and HLA-DRB1*15:03 Frequency Overrepresented in Epidermolysis Bullosa Acquisita. *Article ...
Epidermolysis bullosa acquisita (Arch Ophthalmol 2006;124:1615) *Lichen planus (Am J Ophthalmol 2003;136:239) *Ocular ...
Epidermolysis bullosa acquisita is an acquired blistering disease in which individuals develop autoantibodies to type VII ... Porphyrin studies are normal in cases of epidermolysis bullosa acquisita.4 Polymorphous light eruption is the most common ... The differential for PCT includes pseudoporphyria, epidermolysis bullosa acquisita, polymorphous light eruption, and hydroa ...
Epidermolysis bullosa acquisita may have associated milia.. *Transient acantholytic dermatosis (Grover disease) is a pruritic ...
Identification of the skin basement-membrane autoantigen in epidermolysis bullosa acquisita. Woodley, D.T., Briggaman, R.A., ... Identification of the skin basement-membrane autoantigen in epidermolysis bullosa acquisita [4]. ...
Epidermolysis bullosa (EB) is a group of rare diseases caused by genetic mutations. Learn about EB causes, symptoms, types, ... Epidermolysis bullosa acquisita (another condition) is an inappropriately named example of an autoimmune problem that really ... Genetic mutations cause epidermolysis bullosa.. Epidermolysis bullosa is a group of inherited conditions that affect the ... Epidermolysis Bullosa." Seminars in Perinatology 37 (2013): 32-39.. Has, Cristina, and Judith Fischer. "Inherited Epidermolysis ...
... epidermolysis bullosa acquisita, benign chronic familial pemphigus (Hailey-Hailey), and porphyria cutanea tarda). ...
Byrd V, Nemeth A. Steroid-induced diabetes complicating treatment of epidermolysis bullosa acquisita: a preventable treatment ...
The diagnosis was revised in these two patients to epidermolysis bullosa acquisita. Conclusion: SST is a simple, inexpensive ...
Development and validation of serological immunoassays in laminin γ-1 pemphigoid and epidermolysis bullosa acquisita by: ...
Epidermolysis bullosa acquisita. *Discoid and systemic lupus erythematosus. *IgA vasculitis/Henoch-Schonlein purpura. ...
Post COVID-19 cutaneous infection caused by Scedoporium apiospermum in a patient with epidermolysis bullosa acquisita. ... A case of the novel mutation p.L311P in KRT5 causing localized epidermolysis bullosa simplex in East Asian population. ...
Epidermolysis bullosa acquisita - Patients usually have a history of blisters at multiple sites with even minimal friction. ... Epidermolysis bullosa simplex - Patients usually have a history of blisters at multiple sites on the hands and feet. ...
Epidermolysis bullosa acquisita. *Substantial laboratory evaluation of autoimmune bullous diseases. *Interdisciplinary ...
In epidermolysis bullosa acquisita, intense IgG deposition is present[2]. The intensity of C3 deposition is usually less than ... 5.5 Epidermolysis Bullosa Acquisita. This disease is an acquired subepidermal blistering disease characterised by the presence ... Epidermolysis bullosa. Intact stratum corneum with vesicle formation in the lower epidermis at the basal layer. IgG, IgA, IgM, ... 3.3 Epidermolysis Bullosa. Antibodies (IgG, IgA, IgM, C3) attach to the anchoring fibrils causing weakened attachment between ...
... in two cases and of epidermolysis bullosa acquisita in one case. Our study supports the view that LPP is a heterogeneous ...

No FAQ available that match "epidermolysis bullosa acquisita"

No images available that match "epidermolysis bullosa acquisita"