The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus.
A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313)
A localization-related (focal) form of epilepsy characterized by seizures which arise in the FRONTAL LOBE. A variety of clinical syndromes exist depending on the exact location of the seizure focus. Frontal lobe seizures may be idiopathic (cryptogenic) or caused by an identifiable disease process such as traumatic injuries, neoplasms, or other macroscopic or microscopic lesions of the frontal lobes (symptomatic frontal lobe seizures). (From Adams et al., Principles of Neurology, 6th ed, pp318-9)
A localization-related (focal) form of epilepsy characterized by recurrent seizures that arise from foci within the temporal lobe, most commonly from its mesial aspect. A wide variety of psychic phenomena may be associated, including illusions, hallucinations, dyscognitive states, and affective experiences. The majority of complex partial seizures (see EPILEPSY, COMPLEX PARTIAL) originate from the temporal lobes. Temporal lobe seizures may be classified by etiology as cryptogenic, familial, or symptomatic (i.e., related to an identified disease process or lesion). (From Adams et al., Principles of Neurology, 6th ed, p321)
Recurrent conditions characterized by epileptic seizures which arise diffusely and simultaneously from both hemispheres of the brain. Classification is generally based upon motor manifestations of the seizure (e.g., convulsive, nonconvulsive, akinetic, atonic, etc.) or etiology (e.g., idiopathic, cryptogenic, and symptomatic). (From Mayo Clin Proc, 1996 Apr;71(4):405-14)
Lower lateral part of the cerebral hemisphere responsible for auditory, olfactory, and semantic processing. It is located inferior to the lateral fissure and anterior to the OCCIPITAL LOBE.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain.
Drugs used to prevent SEIZURES or reduce their severity.
One of the paired, but seldom symmetrical, air spaces located between the inner and outer compact layers of the FRONTAL BONE in the forehead.
A clinically diverse group of epilepsy syndromes characterized either by myoclonic seizures or by myoclonus in association with other seizure types. Myoclonic epilepsy syndromes are divided into three subtypes based on etiology: familial, cryptogenic, and symptomatic (i.e., occurring secondary to known disease processes such as infections, hypoxic-ischemic injuries, trauma, etc.).
The bone that forms the frontal aspect of the skull. Its flat part forms the forehead, articulating inferiorly with the NASAL BONE and the CHEEK BONE on each side of the face.
A generalized seizure disorder characterized by recurrent major motor seizures. The initial brief tonic phase is marked by trunk flexion followed by diffuse extension of the trunk and extremities. The clonic phase features rhythmic flexor contractions of the trunk and limbs, pupillary dilation, elevations of blood pressure and pulse, urinary incontinence, and tongue biting. This is followed by a profound state of depressed consciousness (post-ictal state) which gradually improves over minutes to hours. The disorder may be cryptogenic, familial, or symptomatic (caused by an identified disease process). (From Adams et al., Principles of Neurology, 6th ed, p329)
A disorder characterized by the onset of myoclonus in adolescence, a marked increase in the incidence of absence seizures (see EPILEPSY, ABSENCE), and generalized major motor seizures (see EPILEPSY, TONIC-CLONIC). The myoclonic episodes tend to occur shortly after awakening. Seizures tend to be aggravated by sleep deprivation and alcohol consumption. Hereditary and sporadic forms have been identified. (From Adams et al., Principles of Neurology, 6th ed, p323)
A subtype of epilepsy characterized by seizures that are consistently provoked by a certain specific stimulus. Auditory, visual, and somatosensory stimuli as well as the acts of writing, reading, eating, and decision making are examples of events or activities that may induce seizure activity in affected individuals. (From Neurol Clin 1994 Feb;12(1):57-8)
A disorder characterized by recurrent partial seizures marked by impairment of cognition. During the seizure the individual may experience a wide variety of psychic phenomenon including formed hallucinations, illusions, deja vu, intense emotional feelings, confusion, and spatial disorientation. Focal motor activity, sensory alterations and AUTOMATISM may also occur. Complex partial seizures often originate from foci in one or both temporal lobes. The etiology may be idiopathic (cryptogenic partial complex epilepsy) or occur as a secondary manifestation of a focal cortical lesion (symptomatic partial complex epilepsy). (From Adams et al., Principles of Neurology, 6th ed, pp317-8)
Tests designed to assess neurological function associated with certain behaviors. They are used in diagnosing brain dysfunction or damage and central nervous system disorders or injury.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures.
Clinical or subclinical disturbances of cortical function due to a sudden, abnormal, excessive, and disorganized discharge of brain cells. Clinical manifestations include abnormal motor, sensory and psychic phenomena. Recurrent seizures are usually referred to as EPILEPSY or "seizure disorder."
Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES.
Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot.
Dominance of one cerebral hemisphere over the other in cerebral functions.
Decrease in the size of a cell, tissue, organ, or multiple organs, associated with a variety of pathological conditions such as abnormal cellular changes, ischemia, malnutrition, or hormonal changes.
A technique of inputting two-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer.
The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulchi. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions.
Pathologic conditions affecting the BRAIN, which is composed of the intracranial components of the CENTRAL NERVOUS SYSTEM. This includes (but is not limited to) the CEREBRAL CORTEX; intracranial white matter; BASAL GANGLIA; THALAMUS; HYPOTHALAMUS; BRAIN STEM; and CEREBELLUM.
Posterior portion of the CEREBRAL HEMISPHERES responsible for processing visual sensory information. It is located posterior to the parieto-occipital sulcus and extends to the preoccipital notch.
An autosomal dominant inherited partial epilepsy syndrome with onset between age 3 and 13 years. Seizures are characterized by PARESTHESIA and tonic or clonic activity of the lower face associated with drooling and dysarthria. In most cases, affected children are neurologically and developmentally normal. (From Epilepsia 1998 39;Suppl 4:S32-S41)
Recurrent seizures causally related to CRANIOCEREBRAL TRAUMA. Seizure onset may be immediate but is typically delayed for several days after the injury and may not occur for up to two years. The majority of seizures have a focal onset that correlates clinically with the site of brain injury. Cerebral cortex injuries caused by a penetrating foreign object (CRANIOCEREBRAL TRAUMA, PENETRATING) are more likely than closed head injuries (HEAD INJURIES, CLOSED) to be associated with epilepsy. Concussive convulsions are nonepileptic phenomena that occur immediately after head injury and are characterized by tonic and clonic movements. (From Rev Neurol 1998 Feb;26(150):256-261; Sports Med 1998 Feb;25(2):131-6)
Treatment of chronic, severe and intractable psychiatric disorders by surgical removal or interruption of certain areas or pathways in the brain, especially in the prefrontal lobes.
The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin.
Inflammation of the NASAL MUCOSA in the FRONTAL SINUS. In many cases, it is caused by an infection of the bacteria STREPTOCOCCUS PNEUMONIAE or HAEMOPHILUS INFLUENZAE.
A pathological process consisting of hardening or fibrosis of an anatomical structure, often a vessel or a nerve.
An involuntary expression of merriment and pleasure; it includes the patterned motor responses as well as the inarticulate vocalization.
Disturbances in mental processes related to learning, thinking, reasoning, and judgment.
Neural tracts connecting one part of the nervous system with another.
Intellectual or mental process whereby an organism obtains knowledge.
A condition characterized by long-standing brain dysfunction or damage, usually of three months duration or longer. Potential etiologies include BRAIN INFARCTION; certain NEURODEGENERATIVE DISORDERS; CRANIOCEREBRAL TRAUMA; ANOXIA, BRAIN; ENCEPHALITIS; certain NEUROTOXICITY SYNDROMES; metabolic disorders (see BRAIN DISEASES, METABOLIC); and other conditions.
The coordination of a sensory or ideational (cognitive) process and a motor activity.
The time from the onset of a stimulus until a response is observed.
A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation.
A method of computed tomography that uses radionuclides which emit a single photon of a given energy. The camera is rotated 180 or 360 degrees around the patient to capture images at multiple positions along the arc. The computer is then used to reconstruct the transaxial, sagittal, and coronal images from the 3-dimensional distribution of radionuclides in the organ. The advantages of SPECT are that it can be used to observe biochemical and physiological processes as well as size and volume of the organ. The disadvantage is that, unlike positron-emission tomography where the positron-electron annihilation results in the emission of 2 photons at 180 degrees from each other, SPECT requires physical collimation to line up the photons, which results in the loss of many available photons and hence degrades the image.
Surgery performed on the nervous system or its parts.
Conditions characterized by recurrent paroxysmal neuronal discharges which arise from a focal region of the brain. Partial seizures are divided into simple and complex, depending on whether consciousness is unaltered (simple partial seizure) or disturbed (complex partial seizure). Both types may feature a wide variety of motor, sensory, and autonomic symptoms. Partial seizures may be classified by associated clinical features or anatomic location of the seizure focus. A secondary generalized seizure refers to a partial seizure that spreads to involve the brain diffusely. (From Adams et al., Principles of Neurology, 6th ed, pp317)
An anticonvulsant used to control grand mal and psychomotor or focal seizures. Its mode of action is not fully understood, but some of its actions resemble those of PHENYTOIN; although there is little chemical resemblance between the two compounds, their three-dimensional structure is similar.
The storing or preserving of video signals for television to be played back later via a transmitter or receiver. Recordings may be made on magnetic tape or discs (VIDEODISC RECORDING).
A neurosurgical procedure that removes the anterior TEMPORAL LOBE including the medial temporal structures of CEREBRAL CORTEX; AMYGDALA; HIPPOCAMPUS; and the adjacent PARAHIPPOCAMPAL GYRUS. This procedure is generally used for the treatment of intractable temporal epilepsy (EPILEPSY, TEMPORAL LOBE).
An acquired organic mental disorder with loss of intellectual abilities of sufficient severity to interfere with social or occupational functioning. The dysfunction is multifaceted and involves memory, behavior, personality, judgment, attention, spatial relations, language, abstract thought, and other executive functions. The intellectual decline is usually progressive, and initially spares the level of consciousness.
A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction.
Seizures that occur during a febrile episode. It is a common condition, affecting 2-5% of children aged 3 months to five years. An autosomal dominant pattern of inheritance has been identified in some families. The majority are simple febrile seizures (generally defined as generalized onset, single seizures with a duration of less than 30 minutes). Complex febrile seizures are characterized by focal onset, duration greater than 30 minutes, and/or more than one seizure in a 24 hour period. The likelihood of developing epilepsy (i.e., a nonfebrile seizure disorder) following simple febrile seizures is low. Complex febrile seizures are associated with a moderately increased incidence of epilepsy. (From Menkes, Textbook of Child Neurology, 5th ed, p784)
In invertebrate zoology, a lateral lobe of the FOREBRAIN in certain ARTHROPODS. In vertebrate zoology, either of the corpora bigemina of non-mammalian VERTEBRATES. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1329)
Disturbances in registering an impression, in the retention of an acquired impression, or in the recall of an impression. Memory impairments are associated with DEMENTIA; CRANIOCEREBRAL TRAUMA; ENCEPHALITIS; ALCOHOLISM (see also ALCOHOL AMNESTIC DISORDER); SCHIZOPHRENIA; and other conditions.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image.
Remembrance of information for a few seconds to hours.
One of the convolutions on the medial surface of the CEREBRAL HEMISPHERES. It surrounds the rostral part of the brain and CORPUS CALLOSUM and forms part of the LIMBIC SYSTEM.
Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
The branch of psychology which investigates the psychology of crime with particular reference to the personality factors of the criminal.
A slowly hydrolyzed muscarinic agonist with no nicotinic effects. Pilocarpine is used as a miotic and in the treatment of glaucoma.
A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves.
A prolonged seizure or seizures repeated frequently enough to prevent recovery between episodes occurring over a period of 20-30 minutes. The most common subtype is generalized tonic-clonic status epilepticus, a potentially fatal condition associated with neuronal injury and respiratory and metabolic dysfunction. Nonconvulsive forms include petit mal status and complex partial status, which may manifest as behavioral disturbances. Simple partial status epilepticus consists of persistent motor, sensory, or autonomic seizures that do not impair cognition (see also EPILEPSIA PARTIALIS CONTINUA). Subclinical status epilepticus generally refers to seizures occurring in an unresponsive or comatose individual in the absence of overt signs of seizure activity. (From N Engl J Med 1998 Apr 2;338(14):970-6; Neurologia 1997 Dec;12 Suppl 6:25-30)
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
The measurement of magnetic fields over the head generated by electric currents in the brain. As in any electrical conductor, electric fields in the brain are accompanied by orthogonal magnetic fields. The measurement of these fields provides information about the localization of brain activity which is complementary to that provided by ELECTROENCEPHALOGRAPHY. Magnetoencephalography may be used alone or together with electroencephalography, for measurement of spontaneous or evoked activity, and for research or clinical purposes.
A gamma-emitting RADIONUCLIDE IMAGING agent used in the evaluation of regional cerebral blood flow and in non-invasive dynamic biodistribution studies and MYOCARDIAL PERFUSION IMAGING. It has also been used to label leukocytes in the investigation of INFLAMMATORY BOWEL DISEASES.
Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits.
A verbal or nonverbal means of communicating ideas or feelings.
Focusing on certain aspects of current experience to the exclusion of others. It is the act of heeding or taking notice or concentrating.
A neuropsychiatric disorder characterized by one or more of the following essential features: immobility, mutism, negativism (active or passive refusal to follow commands), mannerisms, stereotypies, posturing, grimacing, excitement, echolalia, echopraxia, muscular rigidity, and stupor; sometimes punctuated by sudden violent outbursts, panic, or hallucinations. This condition may be associated with psychiatric illnesses (e.g., SCHIZOPHRENIA; MOOD DISORDERS) or organic disorders (NEUROLEPTIC MALIGNANT SYNDROME; ENCEPHALITIS, etc.). (From DSM-IV, 4th ed, 1994; APA, Thesaurus of Psychological Index Terms, 1994)
Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres.
Includes both producing and responding to words, either written or spoken.
Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain.
The circulation of blood through the BLOOD VESSELS of the BRAIN.
Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain.
A set of cognitive functions that controls complex, goal-directed thought and behavior. Executive function involves multiple domains, such as CONCEPT FORMATION, goal management, cognitive flexibility, INHIBITION control, and WORKING MEMORY. Impaired executive function is seen in a range of disorders, e.g., SCHIZOPHRENIA; and ADHD.
Any operation on the cranium or incision into the cranium. (Dorland, 28th ed)
Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity.
The use of diffusion ANISOTROPY data from diffusion magnetic resonance imaging results to construct images based on the direction of the faster diffusing molecules.
An interdisciplinary science concerned with studies of the biological bases of behavior - biochemical, genetic, physiological, and neurological - and applying these to the understanding and treatment of mental illness.
The observable response of a man or animal to a situation.
A physical property showing different values in relation to the direction in or along which the measurement is made. The physical property may be with regard to thermal or electric conductivity or light refraction. In crystallography, it describes crystals whose index of refraction varies with the direction of the incident light. It is also called acolotropy and colotropy. The opposite of anisotropy is isotropy wherein the same values characterize the object when measured along axes in all directions.
An amino acid that occurs in vertebrate tissues and in urine. In muscle tissue, creatine generally occurs as phosphocreatine. Creatine is excreted as CREATININE in the urine.
Surgically placed electric conductors through which ELECTRIC STIMULATION is delivered to or electrical activity is recorded from a specific point inside the body.
A learning situation involving more than one alternative from which a selection is made in order to attain a specific goal.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Cognitive disorders including delirium, dementia, and other cognitive disorders. These may be the result of substance use, trauma, or other causes.
Tests designed to assess language behavior and abilities. They include tests of vocabulary, comprehension, grammar and functional use of language, e.g., Development Sentence Scoring, Receptive-Expressive Emergent Language Scale, Parsons Language Sample, Utah Test of Language Development, Michigan Language Inventory and Verbal Language Development Scale, Illinois Test of Psycholinguistic Abilities, Northwestern Syntax Screening Test, Peabody Picture Vocabulary Test, Ammons Full-Range Picture Vocabulary Test, and Assessment of Children's Language Comprehension.
A severe emotional disorder of psychotic depth characteristically marked by a retreat from reality with delusion formation, HALLUCINATIONS, emotional disharmony, and regressive behavior.
An aphasia characterized by impairment of expressive LANGUAGE (speech, writing, signs) and relative preservation of receptive language abilities (i.e., comprehension). This condition is caused by lesions of the motor association cortex in the FRONTAL LOBE (BROCA AREA and adjacent cortical and white matter regions).
Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure.
A compound suggested to be both a nootropic and a neuroprotective agent.
The study of crime and criminals with special reference to the personality factors and social conditions leading toward, or away from crime.
Non-invasive methods of visualizing the CENTRAL NERVOUS SYSTEM, especially the brain, by various imaging modalities.
One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter.
Conceptual functions or thinking in all its forms.
Abnormalities in the development of the CEREBRAL CORTEX. These include malformations arising from abnormal neuronal and glial CELL PROLIFERATION or APOPTOSIS (Group I); abnormal neuronal migration (Group II); and abnormal establishment of cortical organization (Group III). Many INBORN METABOLIC BRAIN DISORDERS affecting CNS formation are often associated with cortical malformations. They are common causes of EPILEPSY and developmental delay.
A heterogeneous group of primarily familial disorders characterized by myoclonic seizures, tonic-clonic seizures, ataxia, progressive intellectual deterioration, and neuronal degeneration. These include LAFORA DISEASE; MERRF SYNDROME; NEURONAL CEROID-LIPOFUSCINOSIS; sialidosis (see MUCOLIPIDOSES), and UNVERRICHT-LUNDBORG SYNDROME.
A non-inherited congenital condition with vascular and neurological abnormalities. It is characterized by facial vascular nevi (PORT-WINE STAIN), and capillary angiomatosis of intracranial membranes (MENINGES; CHOROID). Neurological features include EPILEPSY; cognitive deficits; GLAUCOMA; and visual defects.
A degenerative disease of the BRAIN characterized by the insidious onset of DEMENTIA. Impairment of MEMORY, judgment, attention span, and problem solving skills are followed by severe APRAXIAS and a global loss of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe cortical atrophy and the triad of SENILE PLAQUES; NEUROFIBRILLARY TANGLES; and NEUROPIL THREADS. (From Adams et al., Principles of Neurology, 6th ed, pp1049-57)
Ascertaining of deception through detection of emotional disturbance as manifested by changes in physiologic processes usually using a polygraph.
The age, developmental stage, or period of life at which a disease or the initial symptoms or manifestations of a disease appear in an individual.
A diagnostic technique that incorporates the measurement of molecular diffusion (such as water or metabolites) for tissue assessment by MRI. The degree of molecular movement can be measured by changes of apparent diffusion coefficient (ADC) with time, as reflected by tissue microstructure. Diffusion MRI has been used to study BRAIN ISCHEMIA and tumor response to treatment.
Communication through a system of conventional vocal symbols.
The science that investigates the principles governing correct or reliable inference and deals with the canons and criteria of validity in thought and demonstration. This system of reasoning is applicable to any branch of knowledge or study. (Random House Unabridged Dictionary, 2d ed & Sippl, Computer Dictionary, 4th ed)
The ability to learn and to deal with new situations and to deal effectively with tasks involving abstractions.
A characteristic symptom complex.
A fatty acid with anticonvulsant properties used in the treatment of epilepsy. The mechanisms of its therapeutic actions are not well understood. It may act by increasing GAMMA-AMINOBUTYRIC ACID levels in the brain or by altering the properties of voltage dependent sodium channels.
The selecting and organizing of visual stimuli based on the individual's past experience.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
The detailed examination of observable activity or behavior associated with the execution or completion of a required function or unit of work.
Sleep disorders characterized by impaired arousal from the deeper stages of sleep (generally stage III or IV sleep).
An imaging technique using compounds labelled with short-lived positron-emitting radionuclides (such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18) to measure cell metabolism. It has been useful in study of soft tissues such as CANCER; CARDIOVASCULAR SYSTEM; and brain. SINGLE-PHOTON EMISSION-COMPUTED TOMOGRAPHY is closely related to positron emission tomography, but uses isotopes with longer half-lives and resolution is lower.
Methods and procedures for the diagnosis of diseases of the nervous system, central and peripheral, or demonstration of neurologic function or dysfunction.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
Conditions characterized by deficiencies of comprehension or expression of written and spoken forms of language. These include acquired and developmental disorders.
An abrupt voluntary shift in ocular fixation from one point to another, as occurs in reading.
The abrupt cessation of all vital bodily functions, manifested by the permanent loss of total cerebral, respiratory, and cardiovascular functions.
Elements of limited time intervals, contributing to particular results or situations.
The relationships between symbols and their meanings.
A cognitive disorder marked by an impaired ability to comprehend or express language in its written or spoken form. This condition is caused by diseases which affect the language areas of the dominant hemisphere. Clinical features are used to classify the various subtypes of this condition. General categories include receptive, expressive, and mixed forms of aphasia.
The faculty of expressing the amusing, clever, or comical or the keen perception and cleverly apt expression of connections between ideas that awaken amusement and pleasure. (From Random House Unabridged Dictionary, 2d ed)
Acquired or developmental conditions marked by an impaired ability to comprehend or generate spoken forms of language.
The process whereby a representation of past experience is elicited.
Assessment of sensory and motor responses and reflexes that is used to determine impairment of the nervous system.
A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism.
A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)).
Methods developed to aid in the interpretation of ultrasound, radiographic images, etc., for diagnosis of disease.
The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Rare indolent tumors comprised of neoplastic glial and neuronal cells which occur primarily in children and young adults. Benign lesions tend to be associated with long survival unless the tumor degenerates into a histologically malignant form. They tend to occur in the optic nerve and white matter of the brain and spinal cord.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
The most common clinical form of FRONTOTEMPORAL LOBAR DEGENERATION, this dementia presents with personality and behavioral changes often associated with disinhibition, apathy, and lack of insight.
Compounds that contain the radical R2C=N.OH derived from condensation of ALDEHYDES or KETONES with HYDROXYLAMINE. Members of this group are CHOLINESTERASE REACTIVATORS.
Derived from TELENCEPHALON, cerebrum is composed of a right and a left hemisphere. Each contains an outer cerebral cortex and a subcortical basal ganglia. The cerebrum includes all parts within the skull except the MEDULLA OBLONGATA, the PONS, and the CEREBELLUM. Cerebral functions include sensorimotor, emotional, and intellectual activities.
The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object.
Brain waves seen on EEG characterized by a high amplitude and a frequency of 4 Hz and below. They are considered the "deep sleep waves" observed during sleep in dreamless states, infancy, and in some brain disorders.
A group of cognitive disorders characterized by the inability to perform previously learned skills that cannot be attributed to deficits of motor or sensory function. The two major subtypes of this condition are ideomotor (see APRAXIA, IDEOMOTOR) and ideational apraxia, which refers to loss of the ability to mentally formulate the processes involved with performing an action. For example, dressing apraxia may result from an inability to mentally formulate the act of placing clothes on the body. Apraxias are generally associated with lesions of the dominant PARIETAL LOBE and supramarginal gyrus. (From Adams et al., Principles of Neurology, 6th ed, pp56-7)
Pathologic partial or complete loss of the ability to recall past experiences (AMNESIA, RETROGRADE) or to form new memories (AMNESIA, ANTEROGRADE). This condition may be of organic or psychologic origin. Organic forms of amnesia are usually associated with dysfunction of the DIENCEPHALON or HIPPOCAMPUS. (From Adams et al., Principles of Neurology, 6th ed, pp426-7)
Structural abnormalities of the central or peripheral nervous system resulting primarily from defects of embryogenesis.
A noninvasive technique that uses the differential absorption properties of hemoglobin and myoglobin to evaluate tissue oxygenation and indirectly can measure regional hemodynamics and blood flow. Near-infrared light (NIR) can propagate through tissues and at particular wavelengths is differentially absorbed by oxygenated vs. deoxygenated forms of hemoglobin and myoglobin. Illumination of intact tissue with NIR allows qualitative assessment of changes in the tissue concentration of these molecules. The analysis is also used to determine body composition.
The repeated weak excitation of brain structures, that progressively increases sensitivity to the same stimulation. Over time, this can lower the threshold required to trigger seizures.
A congenital abnormality in which the CEREBRUM is underdeveloped, the fontanels close prematurely, and, as a result, the head is small. (Desk Reference for Neuroscience, 2nd ed.)
Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex.
Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system.
The knowledge or perception that someone or something present has been previously encountered.
Timed test in which the subject must read a list of words or identify colors presented with varying instructions and different degrees of distraction. (Campbell's Psychiatric Dictionary. 8th ed.)
A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans.
The lectin wheatgerm agglutinin conjugated to the enzyme HORSERADISH PEROXIDASE. It is widely used for tracing neural pathways.
A condition marked by recurrent seizures that occur during the first 4-6 weeks of life despite an otherwise benign neonatal course. Autosomal dominant familial and sporadic forms have been identified. Seizures generally consist of brief episodes of tonic posturing and other movements, apnea, eye deviations, and blood pressure fluctuations. These tend to remit after the 6th week of life. The risk of developing epilepsy at an older age is moderately increased in the familial form of this disorder. (Neurologia 1996 Feb;11(2):51-5)
The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time.
Organic compounds that contain technetium as an integral part of the molecule. These compounds are often used as radionuclide imaging agents.
A cognitive process involving the formation of ideas generalized from the knowledge of qualities, aspects, and relations of objects.
A course of food intake that is high in FATS and low in CARBOHYDRATES. This diet provides sufficient PROTEINS for growth but insufficient amount of carbohydrates for the energy needs of the body. A ketogenic diet generates 80-90% of caloric requirements from fats and the remainder from proteins.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
The interference with or prevention of a behavioral or verbal response even though the stimulus for that response is present; in psychoanalysis the unconscious restraining of an instinctual process.
The ability to generate new ideas or images.
The measurement of an organ in volume, mass, or heaviness.
Disorders of speech articulation caused by imperfect coordination of pharynx, larynx, tongue, or face muscles. This may result from CRANIAL NERVE DISEASES; NEUROMUSCULAR DISEASES; CEREBELLAR DISEASES; BASAL GANGLIA DISEASES; BRAIN STEM diseases; or diseases of the corticobulbar tracts (see PYRAMIDAL TRACTS). The cortical language centers are intact in this condition. (From Adams et al., Principles of Neurology, 6th ed, p489)
A circumscribed collection of purulent exudate in the brain, due to bacterial and other infections. The majority are caused by spread of infected material from a focus of suppuration elsewhere in the body, notably the PARANASAL SINUSES, middle ear (see EAR, MIDDLE); HEART (see also ENDOCARDITIS, BACTERIAL), and LUNG. Penetrating CRANIOCEREBRAL TRAUMA and NEUROSURGICAL PROCEDURES may also be associated with this condition. Clinical manifestations include HEADACHE; SEIZURES; focal neurologic deficits; and alterations of consciousness. (Adams et al., Principles of Neurology, 6th ed, pp712-6)
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states.
Standardized procedures utilizing rating scales or interview schedules carried out by health personnel for evaluating the degree of mental illness.
Any of various diseases affecting the white matter of the central nervous system.
An adjunctive treatment for PARTIAL EPILEPSY and refractory DEPRESSION that delivers electrical impulses to the brain via the VAGUS NERVE. A battery implanted under the skin supplies the energy.
Subjectively experienced sensations in the absence of an appropriate stimulus, but which are regarded by the individual as real. They may be of organic origin or associated with MENTAL DISORDERS.
A degenerative disease of the central nervous system characterized by balance difficulties; OCULAR MOTILITY DISORDERS (supranuclear ophthalmoplegia); DYSARTHRIA; swallowing difficulties; and axial DYSTONIA. Onset is usually in the fifth decade and disease progression occurs over several years. Pathologic findings include neurofibrillary degeneration and neuronal loss in the dorsal MESENCEPHALON; SUBTHALAMIC NUCLEUS; RED NUCLEUS; pallidum; dentate nucleus; and vestibular nuclei. (From Adams et al., Principles of Neurology, 6th ed, pp1076-7)
Partial or complete loss of vision in one half of the visual field(s) of one or both eyes. Subtypes include altitudinal hemianopsia, characterized by a visual defect above or below the horizontal meridian of the visual field. Homonymous hemianopsia refers to a visual defect that affects both eyes equally, and occurs either to the left or right of the midline of the visual field. Binasal hemianopsia consists of loss of vision in the nasal hemifields of both eyes. Bitemporal hemianopsia is the bilateral loss of vision in the temporal fields. Quadrantanopsia refers to loss of vision in one quarter of the visual field in one or both eyes.
Computer-assisted processing of electric, ultrasonic, or electronic signals to interpret function and activity.
Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
A relatively common neoplasm of the CENTRAL NERVOUS SYSTEM that arises from arachnoidal cells. The majority are well differentiated vascular tumors which grow slowly and have a low potential to be invasive, although malignant subtypes occur. Meningiomas have a predilection to arise from the parasagittal region, cerebral convexity, sphenoidal ridge, olfactory groove, and SPINAL CANAL. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2056-7)
The awareness of the spatial properties of objects; includes physical space.
Heterogeneous group of neurodegenerative disorders characterized by frontal and temporal lobe atrophy associated with neuronal loss, gliosis, and dementia. Patients exhibit progressive changes in social, behavioral, and/or language function. Multiple subtypes or forms are recognized based on presence or absence of TAU PROTEIN inclusions. FTLD includes three clinical syndromes: FRONTOTEMPORAL DEMENTIA, semantic dementia, and PRIMARY PROGRESSIVE NONFLUENT APHASIA.
A disorder beginning in childhood. It is marked by the presence of markedly abnormal or impaired development in social interaction and communication and a markedly restricted repertoire of activity and interest. Manifestations of the disorder vary greatly depending on the developmental level and chronological age of the individual. (DSM-V)
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
An anticonvulsant that is used to treat a wide variety of seizures. It is also an anti-arrhythmic and a muscle relaxant. The mechanism of therapeutic action is not clear, although several cellular actions have been described including effects on ion channels, active transport, and general membrane stabilization. The mechanism of its muscle relaxant effect appears to involve a reduction in the sensitivity of muscle spindles to stretch. Phenytoin has been proposed for several other therapeutic uses, but its use has been limited by its many adverse effects and interactions with other drugs.
The science and art of collecting, summarizing, and analyzing data that are subject to random variation. The term is also applied to the data themselves and to the summarization of the data.
Substances that act in the brain stem or spinal cord to produce tonic or clonic convulsions, often by removing normal inhibitory tone. They were formerly used to stimulate respiration or as antidotes to barbiturate overdose. They are now most commonly used as experimental tools.
Those affective states which can be experienced and have arousing and motivational properties.
Signals for an action; that specific portion of a perceptual field or pattern of stimuli to which a subject has learned to respond.
Learning to respond verbally to a verbal stimulus cue.
An epileptic syndrome characterized by the triad of infantile spasms, hypsarrhythmia, and arrest of psychomotor development at seizure onset. The majority present between 3-12 months of age, with spasms consisting of combinations of brief flexor or extensor movements of the head, trunk, and limbs. The condition is divided into two forms: cryptogenic (idiopathic) and symptomatic (secondary to a known disease process such as intrauterine infections; nervous system abnormalities; BRAIN DISEASES, METABOLIC, INBORN; prematurity; perinatal asphyxia; TUBEROUS SCLEROSIS; etc.). (From Menkes, Textbook of Child Neurology, 5th ed, pp744-8)
Use of sound to elicit a response in the nervous system.
An analogue of GAMMA-AMINOBUTYRIC ACID. It is an irreversible inhibitor of 4-AMINOBUTYRATE TRANSAMINASE, the enzyme responsible for the catabolism of GAMMA-AMINOBUTYRIC ACID. (From Martindale The Extra Pharmacopoeia, 31st ed)
A surgical specialty concerned with the treatment of diseases and disorders of the brain, spinal cord, and peripheral and sympathetic nervous system.
Bony cavity that holds the eyeball and its associated tissues and appendages.
Bleeding within the subcortical regions of cerebral hemispheres (BASAL GANGLIA). It is often associated with HYPERTENSION or ARTERIOVENOUS MALFORMATIONS. Clinical manifestations may include HEADACHE; DYSKINESIAS; and HEMIPARESIS.
A false belief regarding the self or persons or objects outside the self that persists despite the facts, and is not considered tenable by one's associates.
Use of electric potential or currents to elicit biological responses.
Standardized tests that measure the present general ability or aptitude for intellectual performance.
Tests designed to measure intellectual functioning in children and adults.
A genus of the family CEBIDAE, subfamily CEBINAE, consisting of four species which are divided into two groups, the tufted and untufted. C. apella has tufts of hair over the eyes and sides of the head. The remaining species are without tufts - C. capucinus, C. nigrivultatus, and C. albifrons. Cebus inhabits the forests of Central and South America.
The act of making a selection among two or more alternatives, usually after a period of deliberation.
The compound is given by intravenous injection to do POSITRON-EMISSION TOMOGRAPHY for the assessment of cerebral and myocardial glucose metabolism in various physiological or pathological states including stroke and myocardial ischemia. It is also employed for the detection of malignant tumors including those of the brain, liver, and thyroid gland. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1162)
Relatively permanent change in behavior that is the result of past experience or practice. The concept includes the acquisition of knowledge.
The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction).
Subnormal intellectual functioning which originates during the developmental period. This has multiple potential etiologies, including genetic defects and perinatal insults. Intelligence quotient (IQ) scores are commonly used to determine whether an individual has an intellectual disability. IQ scores between 70 and 79 are in the borderline range. Scores below 67 are in the disabled range. (from Joynt, Clinical Neurology, 1992, Ch55, p28)
Compounds that are used in medicine as sources of radiation for radiotherapy and for diagnostic purposes. They have numerous uses in research and industry. (Martindale, The Extra Pharmacopoeia, 30th ed, p1161)
Bleeding into one or both CEREBRAL HEMISPHERES including the BASAL GANGLIA and the CEREBRAL CORTEX. It is often associated with HYPERTENSION and CRANIOCEREBRAL TRAUMA.
A relatively common sequela of blunt head injury, characterized by a global disruption of axons throughout the brain. Associated clinical features may include NEUROBEHAVIORAL MANIFESTATIONS; PERSISTENT VEGETATIVE STATE; DEMENTIA; and other disorders.

Prognostic factors in presurgical assessment of frontal lobe epilepsy. (1/88)

OBJECTIVES: To determine predictors for surgical outcome in the presurgical assessment of frontal lobe epilepsy. METHODS: Thirty seven patients were operated on for frontal lobe epilepsy between 1975 and 1996. Their medical records were reviewed for ictal semiology, age at onset, duration of the epilepsy, age at operation, preoperative interictal and ictal encephalographic findings, and abnormalities on neuroimaging and neuropsychological testing. In addition, type of resection and pathology were compared with surgical outcome. RESULTS: Univariate statistical analysis showed that the presence of a focal abnormality on neuroimaging was associated with favourable outcome. The presence of the following ictal findings was associated with poor outcome: autonomic manifestations, eye deviation, head version contralateral to the operated side, and bilateral or multifocal ictal onset. Fifteen patients had secondarily generalised interictal discharges and, interestingly, their presence was not associated with poor outcome. Multivariate logistic regression showed that the presence of a focal abnormality on neuroimaging was significantly associated with a favourable outcome while contralateral head version was the only variable significantly associated with poor surgical outcome. CONCLUSIONS: A focal abnormality on neuroimaging was the only variable which was significantly associated with a favourable surgical outcome, whereas contralateral head version was the most significant predictor for a poor outcome. The presence of generalised discharges before surgery was not associated with poor outcome.  (+info)

Nocturnal frontal lobe epilepsy. A clinical and polygraphic overview of 100 consecutive cases. (2/88)

Nocturnal frontal lobe epilepsy (NFLE) has been delineated as a distinct syndrome in the heterogeneous group of paroxysmal sleep-related disturbances. The variable duration and intensity of the seizures distinguish three non-rapid eye movement-related subtypes: paroxysmal arousals, characterized by brief and sudden recurrent motor paroxysmal behaviour; nocturnal paroxysmal dystonia, motor attacks with complex dystonic-dyskinetic features; and episodic nocturnal wanderings, stereotyped, agitated somnambulism. We review the clinical and polysomnographic data related to 100 consecutive cases of NFLE in order to define the clinical and neurophysiological characteristics of the different seizure types that constitute NFLE. NFLE seizures predominate in males (7:3). Age at onset of the nocturnal seizures varies, but centres during infancy and adolescence. A familial recurrence of the epileptic attacks is found in 25% of the cases, while 39% of the patients present a family history of nocturnal paroxysmal episodes that fit the diagnostic criteria for parasomnias. A minority of cases (13%) have personal antecedents (such as birth anoxia, febrile convulsions) or brain CT or MRI abnormalities (14%). In many patients, ictal (44%) and interictal (51%) EEGs are uninformative. Marked autonomic activation is a common finding during the seizures. NFLE does not show a tendency to spontaneous remission. Carbamazepine completely abolishes the seizures in approximately 20% of the cases and gives remarkable relief (reduction of the seizures by at least 50%) in another 48%. VideoEEG recordings confirm that NFLE comprises a spectrum of distinct phenomena, different in intensity but representing a continuum of the same epileptic condition. We believe that the detailed clinical and videoEEG characterization of patients with NFLE represents the first step towards a better understanding of the pathogenic mechanisms and different clinical outcomes of the various seizure types that constitute the syndrome.  (+info)

Rebirth. (3/88)

This essay was awarded the Patient's Millennium Gowers prize of 1999 by the council of the British Branch of the International League Against Epilepsy.  (+info)

Dominant partial epilepsies. A clinical, electrophysiological and genetic study of 19 European families. (4/88)

Nineteen families with autosomal dominant partial epilepsy were analysed clinically and electrophysiologically in detail. Seventy-one patients were studied as well as 33 non-epileptic at-risk family members. We subdivided the families into those with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) (n = 8), familial temporal lobe epilepsy (n = 7) and autosomal dominant partial epilepsy with variable foci (n = 4). However, the application of this nosology to certain families was difficult in cases of non-specific or conflicting clinical and electrophysiological evidence. This was underscored by the observation by depth electrode recordings in one patient that a so-called ADNFLE may originate in an extrafrontal area. The evolution of familial partial epilepsies, which exhibit great intrafamilial variability, is not always benign. The level of pharmacoresistance may reach 30%, close to that seen in classical cryptogenic partial epilepsies. The familial character of a partial epilepsy may be unrecognized in small families as some affected members may have only EEG abnormalities and are clinically asymptomatic, which reflects incomplete clinical penetrance. In view of the recent discoveries of mutations in the alpha4 nicotinic acetylcholine receptor subunit in a few families with ADNFLE, this genetic study focused on genes encoding nicotinic receptor subunits and a candidate region on chromosome 10q. No mutation was detected in the alpha4 and 012 nicotinic acetylcholine receptor subunits. Positive but not significant lod scores were obtained in four families with markers from the candidate region on chromosome 10q.  (+info)

Cryptogenic gelastic epilepsy of frontal lobe origin: a paediatric case report. (5/88)

Gelastic (laughing) seizures are an uncommon seizure type which in most cases has an organic cerebral pathology and specifically a hypothalamic hamartoma. The interictal EEG frequently shows focal activity. This report describes a 3 1/2-year-old boy who presented with episodes of unmotivated laughter associated with other epileptic symptomatology before the age of 3 years. Prolonged ambulatory EEG monitoring recorded electroclinical seizures starting in the right frontal area and spreading to the adjacent frontotemporal region. Neurological examination and brain magnetic resonance imaging were normal. Vigabatrin resulted in immediate remission of the seizures and normalization of the EEG.  (+info)

Are ictal vocalisations related to the lateralisation of frontal lobe epilepsy? (6/88)

The purpose was to analyse whether non-speech vocalisations in seizures originating in the frontal lobe do have lateralising value. Patients were included who had undergone presurgical evaluation with ictal video-EEG monitoring at the Epilepsy Centre, had had resective epilepsy surgery involving the frontal lobe, and who had remained seizure free>1 year postoperatively. Twenty seven patients aged 1-42 years (mean 18) met the inclusion criteria. Age at epilepsy onset ranged from 1 month to 41 years (mean 7.1 years). All selected patients had a unilateral MRI detected lesion within the frontal lobe. Fifteen patients had right sided, 12 patients had left sided epileptogenic zones. Seizures recorded during EEG-video monitoring were re-evaluated to identify the occurrence of ictal vocalisations. Pure ictal vocalisations were distinguished from ictal sound productions due to motor or vegetative seizure activity (for example, cloni or respiratory sounds). Pure ictal vocalisation occurred in 11 patients of whom nine had a left frontal epileptogenic zone (p<0.01). It is concluded that ictal vocalisation could be an additional lateralising sign in frontal lobe epilepsy. The results suggest that not only speech, but vocalisation at a subverbal level also shows a left hemispheric dominance in humans.  (+info)

Inter-ictal and post-ictal psychoses in frontal lobe epilepsy: a retrospective comparison with psychoses in temporal lobe epilepsy. (7/88)

There have been few studies of the psychopathology of patients with frontal lobe epilepsy (FLE). The majority of studies of both inter-ictal and post-ictal psychoses have strongly suggested the influence of temporal lobe disturbance on psychoses. Patients with organic brain damage or schizophrenia, however, sometimes show frontal lobe dysfunction. The purpose of this study was to better understand the effect, if any, of frontal lobe disturbance and seizure on psychopathology. Patients were divided into four groups based on epilepsy type and preceding seizures; 8 with FLE/inter-ictal psychosis, 3 with FLE/post-ictal psychosis, 29 with temporal lobe epilepsy (TLE)/inter-ictal psychosis, and 8 with TLE/post-ictal psychosis. Psychopathologic symptoms were retrospectively reviewed based on case notes, using a modified brief psychiatric rating scale (BPRS). Psychomotor excitement, hostility, suspiciousness, and hallucinatory behaviour were prominent features in all four groups. Six orthogonal factors were derived by factor analysis from the original data based on the 18 BPRS items. FLE patients with inter-ictal psychosis showed marked hebephrenic characteristics (i.e. emotional withdrawal and blunted effect). Our findings suggest that patients with FLE can exhibit various psychiatric symptoms. However, their psychotic symptoms, hebephrenic symptoms in particular, may often be overlooked.  (+info)

CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. (8/88)

Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is an uncommon, idiopathic partial epilepsy characterized by clusters of motor seizures occurring in sleep. We describe a mutation of the beta2 subunit of the nicotinic acetylcholine receptor, effecting a V287M substitution within the M2 domain. The mutation, in an evolutionary conserved region of CHRNB2, is associated with ADNFLE in a Scottish family. Functional receptors with the V287M mutation are highly expressed in Xenopus oocytes and characterized by an approximately 10-fold increase in acetylcholine sensitivity. CHRNB2 is a new gene for idiopathic epilepsy, the second acetylcholine receptor subunit implicated in ADNFLE.  (+info)

The frontal lobe is the largest lobes of the human brain, located at the front part of each cerebral hemisphere and situated in front of the parietal and temporal lobes. It plays a crucial role in higher cognitive functions such as decision making, problem solving, planning, parts of social behavior, emotional expressions, physical reactions, and motor function. The frontal lobe is also responsible for what's known as "executive functions," which include the ability to focus attention, understand rules, switch focus, plan actions, and inhibit inappropriate behaviors. It is divided into five areas, each with its own specific functions: the primary motor cortex, premotor cortex, Broca's area, prefrontal cortex, and orbitofrontal cortex. Damage to the frontal lobe can result in a wide range of impairments, depending on the location and extent of the injury.

Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures. These seizures are caused by abnormal electrical activity in the brain, which can result in a wide range of symptoms, including convulsions, loss of consciousness, and altered sensations or behaviors. Epilepsy can have many different causes, including genetic factors, brain injury, infection, or stroke. In some cases, the cause may be unknown.

There are many different types of seizures that can occur in people with epilepsy, and the specific type of seizure will depend on the location and extent of the abnormal electrical activity in the brain. Some people may experience only one type of seizure, while others may have several different types. Seizures can vary in frequency, from a few per year to dozens or even hundreds per day.

Epilepsy is typically diagnosed based on the patient's history of recurrent seizures and the results of an electroencephalogram (EEG), which measures the electrical activity in the brain. Imaging tests such as MRI or CT scans may also be used to help identify any structural abnormalities in the brain that may be contributing to the seizures.

While there is no cure for epilepsy, it can often be effectively managed with medication. In some cases, surgery may be recommended to remove the area of the brain responsible for the seizures. With proper treatment and management, many people with epilepsy are able to lead normal, productive lives.

Frontal lobe epilepsy is a type of focal epilepsy, which means that the seizures originate from a specific area in the brain called the frontal lobe. The frontal lobe is located at the front part of the brain and is responsible for various functions such as motor function, problem-solving, decision making, emotional expression, and social behavior.

In frontal lobe epilepsy, seizures can be quite varied in their presentation, but they often occur during sleep or wakefulness and may include symptoms such as:

* Brief staring spells or automatisms (such as lip smacking, chewing, or fumbling movements)
* Sudden and frequent falls or drops
* Vocalizations or sounds
* Complex behaviors, such as agitation, aggression, or sexual arousal
* Auras or warning sensations before the seizure

Frontal lobe epilepsy can be difficult to diagnose due to the varied nature of the seizures and their occurrence during sleep. Diagnostic tests such as electroencephalogram (EEG) and imaging studies like magnetic resonance imaging (MRI) may be used to help confirm the diagnosis. Treatment typically involves medication, but in some cases, surgery may be recommended if medications are not effective or cause significant side effects.

Temporal lobe epilepsy (TLE) is a type of focal (localized) epilepsy that originates from the temporal lobes of the brain. The temporal lobes are located on each side of the brain and are involved in processing sensory information, memory, and emotion. TLE is characterized by recurrent seizures that originate from one or both temporal lobes.

The symptoms of TLE can vary depending on the specific area of the temporal lobe that is affected. However, common symptoms include auras (sensory or emotional experiences that occur before a seizure), strange smells or tastes, lip-smacking or chewing movements, and memory problems. Some people with TLE may also experience automatisms (involuntary movements such as picking at clothes or fumbling with objects) during their seizures.

Treatment for TLE typically involves medication to control seizures, although surgery may be recommended in some cases. The goal of treatment is to reduce the frequency and severity of seizures and improve quality of life.

Generalized epilepsy is a type of epilepsy characterized by seizures that involve both halves of the brain (generalized onset) from the beginning of the seizure. These types of seizures include tonic-clonic (grand mal) seizures, absence (petit mal) seizures, and myoclonic seizures. Generalized epilepsy can be caused by genetic factors or brain abnormalities, and it is typically treated with medication. People with generalized epilepsy may experience difficulties with learning, memory, and behavior, and they may have a higher risk of injury during a seizure. It's important for individuals with generalized epilepsy to work closely with their healthcare team to manage their condition and reduce the frequency and severity of seizures.

The temporal lobe is one of the four main lobes of the cerebral cortex in the brain, located on each side of the head roughly level with the ears. It plays a major role in auditory processing, memory, and emotion. The temporal lobe contains several key structures including the primary auditory cortex, which is responsible for analyzing sounds, and the hippocampus, which is crucial for forming new memories. Damage to the temporal lobe can result in various neurological symptoms such as hearing loss, memory impairment, and changes in emotional behavior.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Electroencephalography (EEG) is a medical procedure that records electrical activity in the brain. It uses small, metal discs called electrodes, which are attached to the scalp with paste or a specialized cap. These electrodes detect tiny electrical charges that result from the activity of brain cells, and the EEG machine then amplifies and records these signals.

EEG is used to diagnose various conditions related to the brain, such as seizures, sleep disorders, head injuries, infections, and degenerative diseases like Alzheimer's or Parkinson's. It can also be used during surgery to monitor brain activity and ensure that surgical procedures do not interfere with vital functions.

EEG is a safe and non-invasive procedure that typically takes about 30 minutes to an hour to complete, although longer recordings may be necessary in some cases. Patients are usually asked to relax and remain still during the test, as movement can affect the quality of the recording.

Anticonvulsants are a class of drugs used primarily to treat seizure disorders, also known as epilepsy. These medications work by reducing the abnormal electrical activity in the brain that leads to seizures. In addition to their use in treating epilepsy, anticonvulsants are sometimes also prescribed for other conditions, such as neuropathic pain, bipolar disorder, and migraine headaches.

Anticonvulsants can work in different ways to reduce seizure activity. Some medications, such as phenytoin and carbamazepine, work by blocking sodium channels in the brain, which helps to stabilize nerve cell membranes and prevent excessive electrical activity. Other medications, such as valproic acid and gabapentin, increase the levels of a neurotransmitter called gamma-aminobutyric acid (GABA) in the brain, which has a calming effect on nerve cells and helps to reduce seizure activity.

While anticonvulsants are generally effective at reducing seizure frequency and severity, they can also have side effects, such as dizziness, drowsiness, and gastrointestinal symptoms. In some cases, these side effects may be managed by adjusting the dosage or switching to a different medication. It is important for individuals taking anticonvulsants to work closely with their healthcare provider to monitor their response to the medication and make any necessary adjustments.

A frontal sinus is a paired, air-filled paranasal sinus located in the frontal bone of the skull, above the eyes and behind the forehead. It is one of the four pairs of sinuses found in the human head. The frontal sinuses are lined with mucous membrane and are interconnected with the nasal cavity through small openings called ostia. They help to warm, humidify, and filter the air we breathe, and contribute to the resonance of our voice. Variations in size, shape, and asymmetry of frontal sinuses are common among individuals.

Myoclonic epilepsies are a group of epilepsy syndromes characterized by the presence of myoclonic seizures. A myoclonic seizure is a type of seizure that involves quick, involuntary muscle jerks or twitches. These seizures can affect one part of the body or multiple parts simultaneously and may vary in frequency and severity.

Myoclonic epilepsies can occur at any age but are more common in infancy, childhood, or adolescence. Some myoclonic epilepsy syndromes have a genetic basis, while others may be associated with brain injury, infection, or other medical conditions.

Some examples of myoclonic epilepsy syndromes include:

1. Juvenile Myoclonic Epilepsy (JME): This is the most common type of myoclonic epilepsy and typically begins in adolescence. It is characterized by myoclonic jerks, often occurring upon awakening or after a period of relaxation, as well as generalized tonic-clonic seizures.
2. Progressive Myoclonic Epilepsies (PME): These are rare inherited disorders that typically begin in childhood or adolescence and involve both myoclonic seizures and other types of seizures. PMEs often progress to include cognitive decline, movement disorders, and other neurological symptoms.
3. Lennox-Gastaut Syndrome (LGS): This is a severe form of epilepsy that typically begins in early childhood and involves multiple types of seizures, including myoclonic seizures. LGS can be difficult to treat and often results in cognitive impairment and developmental delays.
4. Myoclonic Astatic Epilepsy (MAE): Also known as Doose syndrome, MAE is a childhood epilepsy syndrome characterized by myoclonic seizures, atonic seizures (brief periods of muscle weakness or loss of tone), and other types of seizures. It often responds well to treatment with antiepileptic drugs.

The management of myoclonic epilepsies typically involves a combination of medication, lifestyle changes, and, in some cases, dietary modifications. The specific treatment plan will depend on the type of myoclonic epilepsy and its underlying cause.

The frontal bone is the bone that forms the forehead and the upper part of the eye sockets (orbits) in the skull. It is a single, flat bone that has a prominent ridge in the middle called the superior sagittal sinus, which contains venous blood. The frontal bone articulates with several other bones, including the parietal bones at the sides and back, the nasal bones in the center of the face, and the zygomatic (cheek) bones at the lower sides of the orbits.

Tonic-clonic epilepsy, also known as grand mal epilepsy, is a type of generalized seizure that affects the entire brain. This type of epilepsy is characterized by two distinct phases: the tonic phase and the clonic phase.

During the tonic phase, which usually lasts for about 10-20 seconds, the person loses consciousness and their muscles stiffen, causing them to fall to the ground. This can result in injuries if the person falls unexpectedly or hits an object on the way down.

The clonic phase follows immediately after the tonic phase and is characterized by rhythmic jerking movements of the limbs, face, and neck. These movements are caused by alternating contractions and relaxations of the muscles and can last for several minutes. The person may also lose bladder or bowel control during this phase.

After the seizure, the person may feel tired, confused, and disoriented. They may also have a headache, sore muscles, and difficulty remembering what happened during the seizure.

Tonic-clonic epilepsy can be caused by a variety of factors, including genetics, brain injury, infection, or stroke. It is typically diagnosed through a combination of medical history, physical examination, and diagnostic tests such as an electroencephalogram (EEG) or imaging studies. Treatment may include medication, surgery, or dietary changes, depending on the underlying cause and severity of the seizures.

Juvenile Myoclonic Epilepsy (JME) is a genetic condition that is characterized by the occurrence of myoclonic seizures, which are sudden, brief, shock-like jerks of muscles typically occurring in the arms and legs. These seizures usually begin in adolescence or early adulthood, between 12 to 18 years of age.

JME is a type of generalized epilepsy, meaning that it involves abnormal electrical activity throughout the brain rather than just one area. In addition to myoclonic seizures, individuals with JME may also experience absence seizures (brief periods of staring and unresponsiveness) and/or tonic-clonic seizures (generalized convulsions).

The condition is often inherited in an autosomal dominant manner, meaning that a child has a 50% chance of inheriting the gene mutation from a parent with JME. However, not all cases are familial, and some may result from new genetic changes (mutations) that occur spontaneously.

JME is typically treated with anticonvulsant medications such as valproate or lamotrigine to control seizures. Lifestyle modifications, including avoiding sleep deprivation, stress, and excessive alcohol consumption, may also help reduce the frequency of seizures. With appropriate treatment, most individuals with JME can lead normal or near-normal lives.

Reflex epilepsy is a type of epilepsy in which seizures are consistently triggered by specific, recurring sensory stimuli. These triggers can vary widely and may include visual patterns, flashes of light, touch, sound, or even emotional experiences. When the brain receives input from these triggers, it responds with an abnormal electrical discharge that can lead to a seizure.

Reflex epilepsy is relatively rare, accounting for only about 5-10% of all epilepsy cases. It's important to note that not everyone who experiences seizures in response to these triggers has reflex epilepsy; the defining characteristic of this condition is the consistent and reproducible nature of the seizure response to a specific stimulus.

There are several different types of reflex epilepsy, each characterized by its own unique set of triggers. For example, some people with this condition may experience seizures in response to visual patterns or flashes of light (known as photosensitive epilepsy), while others may have seizures triggered by certain sounds or tactile sensations.

Treatment for reflex epilepsy typically involves identifying and avoiding triggers whenever possible, as well as using medication to control seizures. In some cases, surgery may be recommended to remove the specific area of the brain that is responsible for the abnormal electrical activity. With proper treatment and management, many people with reflex epilepsy are able to lead full and active lives.

Complex partial epilepsy, also known as temporal lobe epilepsy or focal impaired awareness epilepsy, is a type of epilepsy characterized by recurrent, unprovoked seizures that originate in the temporal lobe or other localized areas of the brain. These seizures typically involve alterations in consciousness or awareness, and may include automatisms (involuntary, repetitive movements), such as lip smacking, fidgeting, or picking at clothes. Complex partial seizures can last from a few seconds to several minutes and may be followed by a post-ictal period of confusion or fatigue.

Complex partial epilepsy is often associated with structural abnormalities in the brain, such as hippocampal sclerosis, tumors, or malformations. It can also be caused by infectious or inflammatory processes, vascular disorders, or genetic factors. The diagnosis of complex partial epilepsy typically involves a thorough neurological evaluation, including a detailed history of seizure symptoms, neuroimaging studies (such as MRI or CT scans), and electroencephalography (EEG) to record brain activity during and between seizures.

Treatment for complex partial epilepsy usually involves medication therapy with antiepileptic drugs (AEDs). In some cases, surgery may be recommended if medications are not effective in controlling seizures or if there is a structural lesion that can be safely removed. Other treatment options may include dietary modifications, such as the ketogenic diet, or vagus nerve stimulation.

Neuropsychological tests are a type of psychological assessment that measures cognitive functions, such as attention, memory, language, problem-solving, and perception. These tests are used to help diagnose and understand the cognitive impact of neurological conditions, including dementia, traumatic brain injury, stroke, Parkinson's disease, and other disorders that affect the brain.

The tests are typically administered by a trained neuropsychologist and can take several hours to complete. They may involve paper-and-pencil tasks, computerized tasks, or interactive activities. The results of the tests are compared to normative data to help identify any areas of cognitive weakness or strength.

Neuropsychological testing can provide valuable information for treatment planning, rehabilitation, and assessing response to treatment. It can also be used in research to better understand the neural basis of cognition and the impact of neurological conditions on cognitive function.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Brain mapping is a broad term that refers to the techniques used to understand the structure and function of the brain. It involves creating maps of the various cognitive, emotional, and behavioral processes in the brain by correlating these processes with physical locations or activities within the nervous system. Brain mapping can be accomplished through a variety of methods, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET) scans, electroencephalography (EEG), and others. These techniques allow researchers to observe which areas of the brain are active during different tasks or thoughts, helping to shed light on how the brain processes information and contributes to our experiences and behaviors. Brain mapping is an important area of research in neuroscience, with potential applications in the diagnosis and treatment of neurological and psychiatric disorders.

A seizure is an uncontrolled, abnormal firing of neurons (brain cells) that can cause various symptoms such as convulsions, loss of consciousness, altered awareness, or changes in behavior. Seizures can be caused by a variety of factors including epilepsy, brain injury, infection, toxic substances, or genetic disorders. They can also occur without any identifiable cause, known as idiopathic seizures. Seizures are a medical emergency and require immediate attention.

The parietal lobe is a region of the brain that is located in the posterior part of the cerebral cortex, covering the upper and rear portions of the brain. It is involved in processing sensory information from the body, such as touch, temperature, and pain, as well as spatial awareness and perception, visual-spatial cognition, and the integration of different senses.

The parietal lobe can be divided into several functional areas, including the primary somatosensory cortex (which receives tactile information from the body), the secondary somatosensory cortex (which processes more complex tactile information), and the posterior parietal cortex (which is involved in spatial attention, perception, and motor planning).

Damage to the parietal lobe can result in various neurological symptoms, such as neglect of one side of the body, difficulty with spatial orientation, problems with hand-eye coordination, and impaired mathematical and language abilities.

Functional laterality, in a medical context, refers to the preferential use or performance of one side of the body over the other for specific functions. This is often demonstrated in hand dominance, where an individual may be right-handed or left-handed, meaning they primarily use their right or left hand for tasks such as writing, eating, or throwing.

However, functional laterality can also apply to other bodily functions and structures, including the eyes (ocular dominance), ears (auditory dominance), or legs. It's important to note that functional laterality is not a strict binary concept; some individuals may exhibit mixed dominance or no strong preference for one side over the other.

In clinical settings, assessing functional laterality can be useful in diagnosing and treating various neurological conditions, such as stroke or traumatic brain injury, where understanding any resulting lateralized impairments can inform rehabilitation strategies.

Cerebral dominance is a concept in neuropsychology that refers to the specialization of one hemisphere of the brain over the other for certain cognitive functions. In most people, the left hemisphere is dominant for language functions such as speaking and understanding spoken or written language, while the right hemisphere is dominant for non-verbal functions such as spatial ability, face recognition, and artistic ability.

Cerebral dominance does not mean that the non-dominant hemisphere is incapable of performing the functions of the dominant hemisphere, but rather that it is less efficient or specialized in those areas. The concept of cerebral dominance has been used to explain individual differences in cognitive abilities and learning styles, as well as the laterality of brain damage and its effects on cognition and behavior.

It's important to note that cerebral dominance is a complex phenomenon that can vary between individuals and can be influenced by various factors such as genetics, environment, and experience. Additionally, recent research has challenged the strict lateralization of functions and suggested that there is more functional overlap and interaction between the two hemispheres than previously thought.

Atrophy is a medical term that refers to the decrease in size and wasting of an organ or tissue due to the disappearance of cells, shrinkage of cells, or decreased number of cells. This process can be caused by various factors such as disuse, aging, degeneration, injury, or disease.

For example, if a muscle is immobilized for an extended period, it may undergo atrophy due to lack of use. Similarly, certain medical conditions like diabetes, cancer, and heart failure can lead to the wasting away of various tissues and organs in the body.

Atrophy can also occur as a result of natural aging processes, leading to decreased muscle mass and strength in older adults. In general, atrophy is characterized by a decrease in the volume or weight of an organ or tissue, which can have significant impacts on its function and overall health.

Computer-assisted image processing is a medical term that refers to the use of computer systems and specialized software to improve, analyze, and interpret medical images obtained through various imaging techniques such as X-ray, CT (computed tomography), MRI (magnetic resonance imaging), ultrasound, and others.

The process typically involves several steps, including image acquisition, enhancement, segmentation, restoration, and analysis. Image processing algorithms can be used to enhance the quality of medical images by adjusting contrast, brightness, and sharpness, as well as removing noise and artifacts that may interfere with accurate diagnosis. Segmentation techniques can be used to isolate specific regions or structures of interest within an image, allowing for more detailed analysis.

Computer-assisted image processing has numerous applications in medical imaging, including detection and characterization of lesions, tumors, and other abnormalities; assessment of organ function and morphology; and guidance of interventional procedures such as biopsies and surgeries. By automating and standardizing image analysis tasks, computer-assisted image processing can help to improve diagnostic accuracy, efficiency, and consistency, while reducing the potential for human error.

The cerebral cortex is the outermost layer of the brain, characterized by its intricate folded structure and wrinkled appearance. It is a region of great importance as it plays a key role in higher cognitive functions such as perception, consciousness, thought, memory, language, and attention. The cerebral cortex is divided into two hemispheres, each containing four lobes: the frontal, parietal, temporal, and occipital lobes. These areas are responsible for different functions, with some regions specializing in sensory processing while others are involved in motor control or associative functions. The cerebral cortex is composed of gray matter, which contains neuronal cell bodies, and is covered by a layer of white matter that consists mainly of myelinated nerve fibers.

Brain diseases, also known as neurological disorders, refer to a wide range of conditions that affect the brain and nervous system. These diseases can be caused by various factors such as genetics, infections, injuries, degeneration, or structural abnormalities. They can affect different parts of the brain, leading to a variety of symptoms and complications.

Some examples of brain diseases include:

1. Alzheimer's disease - a progressive degenerative disorder that affects memory and cognitive function.
2. Parkinson's disease - a movement disorder characterized by tremors, stiffness, and difficulty with coordination and balance.
3. Multiple sclerosis - a chronic autoimmune disease that affects the nervous system and can cause a range of symptoms such as vision loss, muscle weakness, and cognitive impairment.
4. Epilepsy - a neurological disorder characterized by recurrent seizures.
5. Brain tumors - abnormal growths in the brain that can be benign or malignant.
6. Stroke - a sudden interruption of blood flow to the brain, which can cause paralysis, speech difficulties, and other neurological symptoms.
7. Meningitis - an infection of the membranes surrounding the brain and spinal cord.
8. Encephalitis - an inflammation of the brain that can be caused by viruses, bacteria, or autoimmune disorders.
9. Huntington's disease - a genetic disorder that affects muscle coordination, cognitive function, and mental health.
10. Migraine - a neurological condition characterized by severe headaches, often accompanied by nausea, vomiting, and sensitivity to light and sound.

Brain diseases can range from mild to severe and may be treatable or incurable. They can affect people of all ages and backgrounds, and early diagnosis and treatment are essential for improving outcomes and quality of life.

The occipital lobe is the portion of the cerebral cortex that lies at the back of the brain (posteriorly) and is primarily involved in visual processing. It contains areas that are responsible for the interpretation and integration of visual stimuli, including color, form, movement, and recognition of objects. The occipital lobe is divided into several regions, such as the primary visual cortex (V1), secondary visual cortex (V2 to V5), and the visual association cortex, which work together to process different aspects of visual information. Damage to the occipital lobe can lead to various visual deficits, including blindness or partial loss of vision, known as a visual field cut.

Rolandic epilepsy, also known as benign focal epilepsy of childhood with centrotemporal spikes (BFEC), is a type of epilepsy that primarily affects children. It is called "Rolandic" because the seizures often originate in or near the Rolandic area of the brain, which is involved in speech and motor function.

The hallmark feature of Rolandic epilepsy is focal seizures that typically involve tingling or numbness sensations on one side of the face, tongue, or mouth, followed by speech difficulties and sometimes weakness or jerking movements on one side of the body. These seizures usually occur during sleep or drowsiness and can cause awakening from sleep.

Rolandic epilepsy is typically outgrown by adolescence, and many children with this condition do not require long-term treatment. However, some children may experience cognitive or behavioral difficulties that warrant evaluation and management.

It's important to note that while Rolandic epilepsy is considered benign, it can still have a significant impact on a child's quality of life and daily functioning. Proper diagnosis and management are essential to ensure the best possible outcomes for children with this condition.

Post-traumatic epilepsy (PTE) is a type of epilepsy that is caused by brain injury or trauma. The head injury can be either traumatic (such as from a car accident, fall, or physical assault) or non-traumatic (such as stroke, infection, or brain tumor).

In PTE, the first seizure occurs within one week to one year after the initial injury. The seizures may be immediate (within the first 24 hours of the injury) or delayed (occurring more than one week after the injury).

PTE is characterized by recurrent seizures that are caused by abnormal electrical activity in the brain. These seizures can vary in severity and frequency, and may cause a range of symptoms such as convulsions, loss of consciousness, and altered sensations or emotions.

The diagnosis of PTE is typically made based on the patient's history of head trauma, along with the results of an electroencephalogram (EEG) and neuroimaging studies such as MRI or CT scans. Treatment for PTE may include medication to control seizures, as well as surgery or other interventions in some cases.

Psychosurgery is a surgical intervention aimed at modifying or altering brain functions to treat severe and disabling mental disorders. It involves the deliberate destruction or disconnection of specific areas of the brain, typically through procedures such as lobotomy or stereotactic neurosurgery. These interventions are usually considered a last resort when other treatments have failed, and they are reserved for individuals with extreme cases of mental illness, such as intractable depression, obsessive-compulsive disorder, or severe anxiety disorders.

It's important to note that psychosurgery is a highly controversial and stigmatized field, and its use has declined significantly since the mid-20th century due to concerns about its effectiveness, ethics, and potential for harm. Today, psychosurgery is tightly regulated and subject to strict ethical guidelines in most countries.

The prefrontal cortex is the anterior (frontal) part of the frontal lobe in the brain, involved in higher-order cognitive processes such as planning complex cognitive behavior, personality expression, decision making, and moderating social behavior. It also plays a significant role in working memory and executive functions. The prefrontal cortex is divided into several subregions, each associated with specific cognitive and emotional functions. Damage to the prefrontal cortex can result in various impairments, including difficulties with planning, decision making, and social behavior regulation.

Frontal sinusitis is a type of sinus infection that specifically involves the frontal sinuses, which are located in the forehead region above the eyes. The condition is characterized by inflammation and infection of the mucous membrane lining the frontal sinuses, leading to symptoms such as headaches, facial pain or pressure, nasal congestion, and thick nasal discharge.

Frontal sinusitis can be caused by viral, bacterial, or fungal infections, as well as structural issues like nasal polyps or deviated septum that obstruct the sinus drainage pathways. Treatment options for frontal sinitis may include antibiotics, nasal decongestants, corticosteroids, saline nasal irrigation, and in some cases, endoscopic sinus surgery to alleviate obstructions and improve sinus drainage.

Sclerosis is a medical term that refers to the abnormal hardening or scarring of body tissues, particularly in the context of various degenerative diseases affecting the nervous system. The term "sclerosis" comes from the Greek word "skleros," which means hard. In these conditions, the normally flexible and adaptable nerve cells or their protective coverings (myelin sheath) become rigid and inflexible due to the buildup of scar tissue or abnormal protein deposits.

There are several types of sclerosis, but one of the most well-known is multiple sclerosis (MS). In MS, the immune system mistakenly attacks the myelin sheath surrounding nerve fibers in the brain and spinal cord, leading to scarring and damage that disrupts communication between the brain and the rest of the body. This results in a wide range of symptoms, such as muscle weakness, numbness, vision problems, balance issues, and cognitive impairment.

Other conditions that involve sclerosis include:

1. Amyotrophic lateral sclerosis (ALS): Also known as Lou Gehrig's disease, ALS is a progressive neurodegenerative disorder affecting motor neurons in the brain and spinal cord, leading to muscle weakness, stiffness, and atrophy.
2. Systemic sclerosis: A rare autoimmune connective tissue disorder characterized by thickening and hardening of the skin and internal organs due to excessive collagen deposition.
3. Plaque psoriasis: A chronic inflammatory skin condition marked by red, scaly patches (plaques) resulting from rapid turnover and accumulation of skin cells.
4. Adhesive capsulitis: Also known as frozen shoulder, this condition involves stiffening and thickening of the shoulder joint's capsule due to scarring or inflammation, leading to limited mobility and pain.

While I'm an assistant and not a doctor, I can share that laughter is not typically defined in a medical context. However, it's often studied in the field of psychology and health. Laughter is a human behavior characterized by involuntary vocalizations and facial expressions, often associated with positive emotions and humor.

From a physiological perspective, when we laugh, our bodies respond with a series of reactions. The diaphragm and abdominal muscles contract, causing us to breathe in and out rapidly, which can lead to increased heart rate and blood pressure. At the same time, the brain releases endorphins, which are chemicals associated with feelings of happiness and well-being.

In a medical context, laughter is sometimes used as a therapeutic tool. Laughter therapy, for instance, is used to promote physical and emotional health through intentional laughter exercises. It's believed that laughter can help reduce stress, improve mood, boost the immune system, and alleviate pain.

Cognitive disorders are a category of mental health disorders that primarily affect cognitive abilities including learning, memory, perception, and problem-solving. These disorders can be caused by various factors such as brain injury, degenerative diseases, infection, substance abuse, or developmental disabilities. Examples of cognitive disorders include dementia, amnesia, delirium, and intellectual disability. It's important to note that the specific definition and diagnostic criteria for cognitive disorders may vary depending on the medical source or classification system being used.

Neural pathways, also known as nerve tracts or fasciculi, refer to the highly organized and specialized routes through which nerve impulses travel within the nervous system. These pathways are formed by groups of neurons (nerve cells) that are connected in a series, creating a continuous communication network for electrical signals to transmit information between different regions of the brain, spinal cord, and peripheral nerves.

Neural pathways can be classified into two main types: sensory (afferent) and motor (efferent). Sensory neural pathways carry sensory information from various receptors in the body (such as those for touch, temperature, pain, and vision) to the brain for processing. Motor neural pathways, on the other hand, transmit signals from the brain to the muscles and glands, controlling movements and other effector functions.

The formation of these neural pathways is crucial for normal nervous system function, as it enables efficient communication between different parts of the body and allows for complex behaviors, cognitive processes, and adaptive responses to internal and external stimuli.

Cognition refers to the mental processes involved in acquiring, processing, and utilizing information. These processes include perception, attention, memory, language, problem-solving, and decision-making. Cognitive functions allow us to interact with our environment, understand and respond to stimuli, learn new skills, and remember experiences.

In a medical context, cognitive function is often assessed as part of a neurological or psychiatric evaluation. Impairments in cognition can be caused by various factors, such as brain injury, neurodegenerative diseases (e.g., Alzheimer's disease), infections, toxins, and mental health conditions. Assessing cognitive function helps healthcare professionals diagnose conditions, monitor disease progression, and develop treatment plans.

Chronic brain damage is a condition characterized by long-term, persistent injury to the brain that results in cognitive, physical, and behavioral impairments. It can be caused by various factors such as trauma, hypoxia (lack of oxygen), infection, toxic exposure, or degenerative diseases. The effects of chronic brain damage may not be immediately apparent and can worsen over time, leading to significant disability and reduced quality of life.

The symptoms of chronic brain damage can vary widely depending on the severity and location of the injury. They may include:

* Cognitive impairments such as memory loss, difficulty concentrating, trouble with problem-solving and decision-making, and decreased learning ability
* Motor impairments such as weakness, tremors, poor coordination, and balance problems
* Sensory impairments such as hearing or vision loss, numbness, tingling, or altered sense of touch
* Speech and language difficulties such as aphasia (problems with understanding or producing speech) or dysarthria (slurred or slow speech)
* Behavioral changes such as irritability, mood swings, depression, anxiety, and personality changes

Chronic brain damage can be diagnosed through a combination of medical history, physical examination, neurological evaluation, and imaging studies such as MRI or CT scans. Treatment typically focuses on managing symptoms and maximizing function through rehabilitation therapies such as occupational therapy, speech therapy, and physical therapy. In some cases, medication or surgery may be necessary to address specific symptoms or underlying causes of the brain damage.

Psychomotor performance refers to the integration and coordination of mental processes (cognitive functions) with physical movements. It involves the ability to perform complex tasks that require both cognitive skills, such as thinking, remembering, and perceiving, and motor skills, such as gross and fine motor movements. Examples of psychomotor performances include driving a car, playing a musical instrument, or performing surgical procedures.

In a medical context, psychomotor performance is often used to assess an individual's ability to perform activities of daily living (ADLs) and instrumental activities of daily living (IADLs), such as bathing, dressing, cooking, cleaning, and managing medications. Deficits in psychomotor performance can be a sign of neurological or psychiatric disorders, such as dementia, Parkinson's disease, or depression.

Assessment of psychomotor performance may involve tests that measure reaction time, coordination, speed, precision, and accuracy of movements, as well as cognitive functions such as attention, memory, and problem-solving skills. These assessments can help healthcare professionals develop appropriate treatment plans and monitor the progression of diseases or the effectiveness of interventions.

Reaction time, in the context of medicine and physiology, refers to the time period between the presentation of a stimulus and the subsequent initiation of a response. This complex process involves the central nervous system, particularly the brain, which perceives the stimulus, processes it, and then sends signals to the appropriate muscles or glands to react.

There are different types of reaction times, including simple reaction time (responding to a single, expected stimulus) and choice reaction time (choosing an appropriate response from multiple possibilities). These measures can be used in clinical settings to assess various aspects of neurological function, such as cognitive processing speed, motor control, and alertness.

However, it is important to note that reaction times can be influenced by several factors, including age, fatigue, attention, and the use of certain medications or substances.

The hippocampus is a complex, curved formation in the brain that resembles a seahorse (hence its name, from the Greek word "hippos" meaning horse and "kampos" meaning sea monster). It's part of the limbic system and plays crucial roles in the formation of memories, particularly long-term ones.

This region is involved in spatial navigation and cognitive maps, allowing us to recognize locations and remember how to get to them. Additionally, it's one of the first areas affected by Alzheimer's disease, which often results in memory loss as an early symptom.

Anatomically, it consists of two main parts: the Ammon's horn (or cornu ammonis) and the dentate gyrus. These structures are made up of distinct types of neurons that contribute to different aspects of learning and memory.

Emission-Computed Tomography, Single-Photon (SPECT) is a type of nuclear medicine imaging procedure that generates detailed, three-dimensional images of the distribution of radioactive pharmaceuticals within the body. It uses gamma rays emitted by a radiopharmaceutical that is introduced into the patient's body, and a specialized gamma camera to detect these gamma rays and create tomographic images. The data obtained from the SPECT imaging can be used to diagnose various medical conditions, evaluate organ function, and guide treatment decisions. It is commonly used to image the heart, brain, and bones, among other organs and systems.

Neurosurgical procedures are operations that are performed on the brain, spinal cord, and peripheral nerves. These procedures are typically carried out by neurosurgeons, who are medical doctors with specialized training in the diagnosis and treatment of disorders of the nervous system. Neurosurgical procedures can be used to treat a wide range of conditions, including traumatic injuries, tumors, aneurysms, vascular malformations, infections, degenerative diseases, and congenital abnormalities.

Some common types of neurosurgical procedures include:

* Craniotomy: A procedure in which a bone flap is temporarily removed from the skull to gain access to the brain. This type of procedure may be performed to remove a tumor, repair a blood vessel, or relieve pressure on the brain.
* Spinal fusion: A procedure in which two or more vertebrae in the spine are fused together using bone grafts and metal hardware. This is often done to stabilize the spine and alleviate pain caused by degenerative conditions or spinal deformities.
* Microvascular decompression: A procedure in which a blood vessel that is causing pressure on a nerve is repositioned or removed. This type of procedure is often used to treat trigeminal neuralgia, a condition that causes severe facial pain.
* Deep brain stimulation: A procedure in which electrodes are implanted in specific areas of the brain and connected to a battery-operated device called a neurostimulator. The neurostimulator sends electrical impulses to the brain to help alleviate symptoms of movement disorders such as Parkinson's disease or dystonia.
* Stereotactic radiosurgery: A non-invasive procedure that uses focused beams of radiation to treat tumors, vascular malformations, and other abnormalities in the brain or spine. This type of procedure is often used for patients who are not good candidates for traditional surgery due to age, health status, or location of the lesion.

Neurosurgical procedures can be complex and require a high degree of skill and expertise. Patients considering neurosurgical treatment should consult with a qualified neurosurgeon to discuss their options and determine the best course of action for their individual situation.

Epilepsy, partial is a type of epilepsy characterized by recurrent, unprovoked seizures that originate in a specific, localized area of the brain. These seizures are also known as focal seizures and can vary in severity and symptoms depending on the location of the abnormal electrical activity in the brain.

Partial epilepsies can be further classified into two main categories: simple partial seizures and complex partial seizures. Simple partial seizures do not involve a loss of consciousness, while complex partial seizures are associated with impaired awareness or responsiveness during the seizure.

The causes of partial epilepsies can include brain injury, infection, stroke, tumors, genetic factors, or an unknown cause. Treatment typically involves anti-seizure medications, and in some cases, surgery may be recommended to remove the specific area of the brain responsible for the seizures.

Carbamazepine is an anticonvulsant medication that is primarily used to treat seizure disorders (epilepsy) and neuropathic pain. It works by decreasing the abnormal electrical activity in the brain, which helps to reduce the frequency and severity of seizures. Carbamazepine may also be used off-label for other conditions such as bipolar disorder and trigeminal neuralgia.

The medication is available in various forms, including tablets, extended-release tablets, chewable tablets, and suspension. It is usually taken two to four times a day with food to reduce stomach upset. Common side effects of carbamazepine include dizziness, drowsiness, headache, nausea, vomiting, and unsteady gait.

It is important to note that carbamazepine can interact with other medications, including some antidepressants, antipsychotics, and birth control pills, so it is essential to inform your healthcare provider of all the medications you are taking before starting carbamazepine. Additionally, carbamazepine levels in the blood may need to be monitored regularly to ensure that the medication is working effectively and not causing toxicity.

I apologize, but "video recording" is not a term that has a specific medical definition. It generally refers to the process of capturing and storing moving visual images on electronic media, which is used in various medical fields for different purposes such as surgical training, telemedicine consultations, or monitoring patient conditions. However, there is no unique medical meaning associated with this term.

Anterior Temporal Lobectomy is a surgical procedure that involves the removal of a portion of the anterior (front) part of the temporal lobe of the brain. This procedure is often performed to treat certain types of epilepsy that are resistant to medication, as well as other conditions such as tumors or degenerative diseases that affect this area of the brain.

The temporal lobe is located on each side of the brain and is involved in several important functions, including hearing, memory, emotion, and language comprehension. The anterior portion of the temporal lobe contains structures such as the amygdala and hippocampus, which are critical for the formation and retrieval of memories.

During an anterior temporal lobectomy, a neurosurgeon will make an incision in the skull and remove a portion of the brain tissue that is causing seizures or other symptoms. The size and location of the resection will depend on the specific condition being treated and the individual patient's needs. After the surgery, patients may require rehabilitation to help them recover from any cognitive or physical deficits caused by the procedure.

Dementia is a broad term that describes a decline in cognitive functioning, including memory, language, problem-solving, and judgment, severe enough to interfere with daily life. It is not a specific disease but rather a group of symptoms that may be caused by various underlying diseases or conditions. Alzheimer's disease is the most common cause of dementia, accounting for 60-80% of cases. Other causes include vascular dementia, Lewy body dementia, frontotemporal dementia, and Huntington's disease.

The symptoms of dementia can vary widely depending on the cause and the specific areas of the brain that are affected. However, common early signs of dementia may include:

* Memory loss that affects daily life
* Difficulty with familiar tasks
* Problems with language or communication
* Difficulty with visual and spatial abilities
* Misplacing things and unable to retrace steps
* Decreased or poor judgment
* Withdrawal from work or social activities
* Changes in mood or behavior

Dementia is a progressive condition, meaning that symptoms will gradually worsen over time. While there is currently no cure for dementia, early diagnosis and treatment can help slow the progression of the disease and improve quality of life for those affected.

A nerve net, also known as a neural net or neuronal network, is not a medical term per se, but rather a concept in neuroscience and artificial intelligence (AI). It refers to a complex network of interconnected neurons that process and transmit information. In the context of the human body, the nervous system can be thought of as a type of nerve net, with the brain and spinal cord serving as the central processing unit and peripheral nerves carrying signals to and from various parts of the body.

In the field of AI, artificial neural networks are computational models inspired by the structure and function of biological nerve nets. These models consist of interconnected nodes or "neurons" that process information and learn patterns through a process of training and adaptation. They have been used in a variety of applications, including image recognition, natural language processing, and machine learning.

Febrile seizures are a type of seizure that occurs in young children, typically between the ages of 6 months and 5 years, and is often associated with fever. A febrile seizure is defined as a convulsion or seizure that is brought on by a high fever, usually greater than 100.4°F (38°C), but can also occur in response to a rapid rise in body temperature. The seizures can vary in length and may involve shaking of the entire body, jerking of the arms and legs, or just twitching of one part of the body. They can be quite alarming to witness, but they are usually harmless and do not cause any long-term neurological problems.

Febrile seizures are most commonly caused by viral infections, such as a cold or flu, but they can also occur with bacterial infections, such as a urinary tract infection or ear infection. In some cases, the fever and seizure may be the first signs that a child is ill.

While febrile seizures are generally harmless, it is important to seek medical attention if your child has a seizure. This is because a small percentage of children who have febrile seizures may go on to develop epilepsy, a condition characterized by recurrent seizures. Additionally, some serious underlying conditions, such as meningitis or encephalitis, can cause fever and seizures, so it is important to rule out these possibilities with a thorough medical evaluation.

If your child has a febrile seizure, the best course of action is to remain calm and make sure they are in a safe place where they cannot injure themselves. Do not try to restrain them or put anything in their mouth. Instead, gently turn them onto their side to prevent choking and call for medical help. Most febrile seizures last only a few minutes and resolve on their own without any treatment. After the seizure, your child may be sleepy or confused, but they should return to their normal state within a short period of time.

The optic lobe in non-mammals refers to a specific region of the brain that is responsible for processing visual information. It is a part of the protocerebrum in the insect brain and is analogous to the mammalian visual cortex. The optic lobes receive input directly from the eyes via the optic nerves and are involved in the interpretation and integration of visual stimuli, enabling non-mammals to perceive and respond to their environment. In some invertebrates, like insects, the optic lobe is further divided into subregions, including the lamina, medulla, and lobula, each with distinct functions in visual processing.

Memory disorders are a category of cognitive impairments that affect an individual's ability to acquire, store, retain, and retrieve memories. These disorders can be caused by various underlying medical conditions, including neurological disorders, psychiatric illnesses, substance abuse, or even normal aging processes. Some common memory disorders include:

1. Alzheimer's disease: A progressive neurodegenerative disorder that primarily affects older adults and is characterized by a decline in cognitive abilities, including memory, language, problem-solving, and decision-making skills.
2. Dementia: A broader term used to describe a group of symptoms associated with a decline in cognitive function severe enough to interfere with daily life. Alzheimer's disease is the most common cause of dementia, but other causes include vascular dementia, Lewy body dementia, and frontotemporal dementia.
3. Amnesia: A memory disorder characterized by difficulties in forming new memories or recalling previously learned information due to brain damage or disease. Amnesia can be temporary or permanent and may result from head trauma, stroke, infection, or substance abuse.
4. Mild cognitive impairment (MCI): A condition where an individual experiences mild but noticeable memory or cognitive difficulties that are greater than expected for their age and education level. While some individuals with MCI may progress to dementia, others may remain stable or even improve over time.
5. Korsakoff's syndrome: A memory disorder often caused by alcohol abuse and thiamine deficiency, characterized by severe short-term memory loss, confabulation (making up stories to fill in memory gaps), and disorientation.

It is essential to consult a healthcare professional if you or someone you know experiences persistent memory difficulties, as early diagnosis and intervention can help manage symptoms and improve quality of life.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Emission computed tomography (ECT) is a type of tomographic imaging technique in which an emission signal from within the body is detected to create cross-sectional images of that signal's distribution. In Emission-Computed Tomography (ECT), a radionuclide is introduced into the body, usually through injection, inhalation or ingestion. The radionuclide emits gamma rays that are then detected by external gamma cameras.

The data collected from these cameras is then used to create cross-sectional images of the distribution of the radiopharmaceutical within the body. This allows for the identification and quantification of functional information about specific organs or systems within the body, such as blood flow, metabolic activity, or receptor density.

One common type of Emission-Computed Tomography is Single Photon Emission Computed Tomography (SPECT), which uses a single gamma camera that rotates around the patient to collect data from multiple angles. Another type is Positron Emission Tomography (PET), which uses positron-emitting radionuclides and detects the coincident gamma rays emitted by the annihilation of positrons and electrons.

Overall, ECT is a valuable tool in medical imaging for diagnosing and monitoring various diseases, including cancer, heart disease, and neurological disorders.

Short-term memory, also known as primary or active memory, is the system responsible for holding and processing limited amounts of information for brief periods of time, typically on the order of seconds to minutes. It has a capacity of around 7±2 items, as suggested by George Miller's "magic number" theory. Short-term memory allows us to retain and manipulate information temporarily while we are using it, such as remembering a phone number while dialing or following a set of instructions. Information in short-term memory can be maintained through rehearsal, which is the conscious repetition of the information. Over time, if the information is not transferred to long-term memory through consolidation processes, it will be forgotten.

The gyrus cinguli, also known as the cingulate gyrus, is a structure located in the brain. It forms part of the limbic system and plays a role in various functions such as emotion, memory, and perception of pain. The gyrus cinguli is situated in the medial aspect of the cerebral hemisphere, adjacent to the corpus callosum, and curves around the frontal portion of the corpus callosum, forming a C-shaped structure. It has been implicated in several neurological and psychiatric conditions, including depression, anxiety disorders, and chronic pain syndromes.

In the context of medical and clinical neuroscience, memory is defined as the brain's ability to encode, store, retain, and recall information or experiences. Memory is a complex cognitive process that involves several interconnected regions of the brain and can be categorized into different types based on various factors such as duration and the nature of the information being remembered.

The major types of memory include:

1. Sensory memory: The shortest form of memory, responsible for holding incoming sensory information for a brief period (less than a second to several seconds) before it is either transferred to short-term memory or discarded.
2. Short-term memory (also called working memory): A temporary storage system that allows the brain to hold and manipulate information for approximately 20-30 seconds, although this duration can be extended through rehearsal strategies. Short-term memory has a limited capacity, typically thought to be around 7±2 items.
3. Long-term memory: The memory system responsible for storing large amounts of information over extended periods, ranging from minutes to a lifetime. Long-term memory has a much larger capacity compared to short-term memory and is divided into two main categories: explicit (declarative) memory and implicit (non-declarative) memory.

Explicit (declarative) memory can be further divided into episodic memory, which involves the recollection of specific events or episodes, including their temporal and spatial contexts, and semantic memory, which refers to the storage and retrieval of general knowledge, facts, concepts, and vocabulary, independent of personal experience or context.

Implicit (non-declarative) memory encompasses various forms of learning that do not require conscious awareness or intention, such as procedural memory (skills and habits), priming (facilitated processing of related stimuli), classical conditioning (associative learning), and habituation (reduced responsiveness to repeated stimuli).

Memory is a crucial aspect of human cognition and plays a significant role in various aspects of daily life, including learning, problem-solving, decision-making, social interactions, and personal identity. Memory dysfunction can result from various neurological and psychiatric conditions, such as dementia, Alzheimer's disease, stroke, traumatic brain injury, and depression.

Criminal psychology is a subfield of psychology that focuses on the study of the thoughts, feelings, and behaviors of individuals who commit crimes. It involves understanding the motives, emotions, and cognitive processes underlying criminal behavior in order to help explain why some people engage in illegal activities. Criminal psychologists may also apply their knowledge to assist in the investigation and prevention of crime, such as by providing profiles of unknown offenders or consulting on jail and prison management.

Criminal psychology is a multidisciplinary field that draws upon various areas of psychology, including developmental, social, cognitive, and forensic psychology, as well as other disciplines such as criminology and sociology. It involves the use of scientific methods to study criminal behavior, including observational studies, surveys, experiments, and case studies.

Criminal psychologists may work in a variety of settings, including law enforcement agencies, forensic hospitals, prisons, and academic institutions. They may also provide expert testimony in court cases or consult with attorneys on legal issues related to criminal behavior.

Pilocarpine is a cholinergic agonist, which means it stimulates the parasympathetic nervous system by binding to muscarinic receptors. It is primarily used in the treatment of dry mouth (xerostomia) caused by radiation therapy or Sjögren's syndrome, as well as in the management of glaucoma due to its ability to construct the pupils and reduce intraocular pressure. Pilocarpine can also be used to treat certain cardiovascular conditions and chronic bronchitis. It is available in various forms, including tablets, ophthalmic solutions, and topical gels.

Myelinated nerve fibers are neuronal processes that are surrounded by a myelin sheath, a fatty insulating substance that is produced by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. This myelin sheath helps to increase the speed of electrical impulse transmission, also known as action potentials, along the nerve fiber. The myelin sheath has gaps called nodes of Ranvier where the electrical impulses can jump from one node to the next, which also contributes to the rapid conduction of signals. Myelinated nerve fibers are typically found in the peripheral nerves and the optic nerve, but not in the central nervous system (CNS) tracts that are located within the brain and spinal cord.

Status epilepticus is a serious and life-threatening medical condition characterized by an ongoing seizure activity or a series of seizures without full recovery of consciousness between them, lasting for 30 minutes or more. It is a neurological emergency that requires immediate medical attention to prevent potential complications such as brain damage, respiratory failure, or even death.

The condition can occur in people with a history of epilepsy or seizure disorders, as well as those without any prior history of seizures. The underlying causes of status epilepticus can vary and may include infection, trauma, stroke, metabolic imbalances, toxins, or other medical conditions that affect the brain's normal functioning. Prompt diagnosis and treatment are crucial to prevent long-term neurological damage and improve outcomes in patients with this condition.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Magnetoencephalography (MEG) is a non-invasive functional neuroimaging technique used to measure the magnetic fields produced by electrical activity in the brain. These magnetic fields are detected by very sensitive devices called superconducting quantum interference devices (SQUIDs), which are cooled to extremely low temperatures to enhance their sensitivity. MEG provides direct and real-time measurement of neural electrical activity with high temporal resolution, typically on the order of milliseconds, allowing for the investigation of brain function during various cognitive, sensory, and motor tasks. It is often used in conjunction with other neuroimaging techniques, such as fMRI, to provide complementary information about brain structure and function.

Technetium Tc 99m Exametazime is a radiopharmaceutical agent used in nuclear medicine imaging procedures. The compound consists of the radioisotope Technetium-99m (^99m^Tc) bonded to Exametazime, also known as HMPAO (hexamethylpropyleneamine oxime).

Once injected into the patient's bloodstream, Technetium Tc 99m Exametazime distributes evenly throughout the brain, crossing the blood-brain barrier and entering cells. The radioactive decay of Technetium-99m emits gamma rays that can be detected by a gamma camera, creating images of the brain's blood flow and distribution of the tracer.

This imaging technique is often used in cerebral perfusion studies to assess conditions such as stroke, epilepsy, or dementia, providing valuable information about regional cerebral blood flow and potential areas of injury or abnormality.

A brain injury is defined as damage to the brain that occurs following an external force or trauma, such as a blow to the head, a fall, or a motor vehicle accident. Brain injuries can also result from internal conditions, such as lack of oxygen or a stroke. There are two main types of brain injuries: traumatic and acquired.

Traumatic brain injury (TBI) is caused by an external force that results in the brain moving within the skull or the skull being fractured. Mild TBIs may result in temporary symptoms such as headaches, confusion, and memory loss, while severe TBIs can cause long-term complications, including physical, cognitive, and emotional impairments.

Acquired brain injury (ABI) is any injury to the brain that occurs after birth and is not hereditary, congenital, or degenerative. ABIs are often caused by medical conditions such as strokes, tumors, anoxia (lack of oxygen), or infections.

Both TBIs and ABIs can range from mild to severe and may result in a variety of physical, cognitive, and emotional symptoms that can impact a person's ability to perform daily activities and function independently. Treatment for brain injuries typically involves a multidisciplinary approach, including medical management, rehabilitation, and supportive care.

In the context of medicine, particularly in neurolinguistics and speech-language pathology, language is defined as a complex system of communication that involves the use of symbols (such as words, signs, or gestures) to express and exchange information. It includes various components such as phonology (sound systems), morphology (word structures), syntax (sentence structure), semantics (meaning), and pragmatics (social rules of use). Language allows individuals to convey their thoughts, feelings, and intentions, and to understand the communication of others. Disorders of language can result from damage to specific areas of the brain, leading to impairments in comprehension, production, or both.

In a medical or psychological context, attention is the cognitive process of selectively concentrating on certain aspects of the environment while ignoring other things. It involves focusing mental resources on specific stimuli, sensory inputs, or internal thoughts while blocking out irrelevant distractions. Attention can be divided into different types, including:

1. Sustained attention: The ability to maintain focus on a task or stimulus over time.
2. Selective attention: The ability to concentrate on relevant stimuli while ignoring irrelevant ones.
3. Divided attention: The capacity to pay attention to multiple tasks or stimuli simultaneously.
4. Alternating attention: The skill of shifting focus between different tasks or stimuli as needed.

Deficits in attention are common symptoms of various neurological and psychiatric conditions, such as ADHD, dementia, depression, and anxiety disorders. Assessment of attention is an essential part of neuropsychological evaluations and can be measured using various tests and tasks.

Catatonia is a state of neurogenic motor immobility and behavioral abnormality manifested by stupor, mutism, negativism, rigidity, posturing, stereotypy, agitation, or Grimmacing. It can be a symptom associated with various neurological and mental disorders, such as schizophrenia, bipolar disorder, depression, or brain injury. Catatonic symptoms can also occur as a side effect of certain medications.

The diagnosis of catatonia is typically made based on the observation of characteristic clinical symptoms and the exclusion of other potential causes through medical evaluation. Treatment for catatonia may include medication, such as benzodiazepines or electroconvulsive therapy (ECT), depending on the underlying cause and severity of the symptoms.

The basal ganglia are a group of interconnected nuclei, or clusters of neurons, located in the base of the brain. They play a crucial role in regulating motor function, cognition, and emotion. The main components of the basal ganglia include the striatum (made up of the caudate nucleus, putamen, and ventral striatum), globus pallidus (divided into external and internal segments), subthalamic nucleus, and substantia nigra (with its pars compacta and pars reticulata).

The basal ganglia receive input from various regions of the cerebral cortex and other brain areas. They process this information and send output back to the thalamus and cortex, helping to modulate and coordinate movement. The basal ganglia also contribute to higher cognitive functions such as learning, decision-making, and habit formation. Dysfunction in the basal ganglia can lead to neurological disorders like Parkinson's disease, Huntington's disease, and dystonia.

In the context of medical and clinical psychology, particularly in the field of applied behavior analysis (ABA), "verbal behavior" is a term used to describe the various functions or purposes of spoken language. It was first introduced by the psychologist B.F. Skinner in his 1957 book "Verbal Behavior."

Skinner proposed that verbal behavior could be classified into several categories based on its function, including:

1. Mand: A verbal operant in which a person requests or demands something from another person. For example, saying "I would like a glass of water" is a mand.
2. Tact: A verbal operant in which a person describes or labels something in their environment. For example, saying "That's a red apple" is a tact.
3. Echoic: A verbal operant in which a person repeats or imitates what they have heard. For example, saying "Hello" after someone says hello to you is an echoic.
4. Intraverbal: A verbal operant in which a person responds to another person's verbal behavior with their own verbal behavior, without simply repeating or imitating what they have heard. For example, answering a question like "What's the capital of France?" is an intraverbal.
5. Textual: A verbal operant in which a person reads or writes text. For example, reading a book or writing a letter are textual.

Understanding the function of verbal behavior can be helpful in assessing and treating communication disorders, such as those seen in autism spectrum disorder (ASD). By identifying the specific functions of a child's verbal behavior, therapists can develop targeted interventions to help them communicate more effectively.

The thalamus is a large, paired structure in the brain that serves as a relay station for sensory and motor signals to the cerebral cortex. It is located in the dorsal part of the diencephalon and is made up of two symmetrical halves, each connected to the corresponding cerebral hemisphere.

The thalamus receives inputs from almost all senses, except for the olfactory system, and processes them before sending them to specific areas in the cortex. It also plays a role in regulating consciousness, sleep, and alertness. Additionally, the thalamus is involved in motor control by relaying information between the cerebellum and the motor cortex.

The thalamus is divided into several nuclei, each with distinct connections and functions. Some of these nuclei are involved in sensory processing, while others are involved in motor function or regulation of emotions and cognition. Overall, the thalamus plays a critical role in integrating information from various brain regions and modulating cognitive and emotional processes.

Cerebrovascular circulation refers to the network of blood vessels that supply oxygenated blood and nutrients to the brain tissue, and remove waste products. It includes the internal carotid arteries, vertebral arteries, circle of Willis, and the intracranial arteries that branch off from them.

The internal carotid arteries and vertebral arteries merge to form the circle of Willis, a polygonal network of vessels located at the base of the brain. The anterior cerebral artery, middle cerebral artery, posterior cerebral artery, and communicating arteries are the major vessels that branch off from the circle of Willis and supply blood to different regions of the brain.

Interruptions or abnormalities in the cerebrovascular circulation can lead to various neurological conditions such as stroke, transient ischemic attack (TIA), and vascular dementia.

Brain neoplasms, also known as brain tumors, are abnormal growths of cells within the brain. These growths can be benign (non-cancerous) or malignant (cancerous). Benign brain tumors typically grow slowly and do not spread to other parts of the body. However, they can still cause serious problems if they press on sensitive areas of the brain. Malignant brain tumors, on the other hand, are cancerous and can grow quickly, invading surrounding brain tissue and spreading to other parts of the brain or spinal cord.

Brain neoplasms can arise from various types of cells within the brain, including glial cells (which provide support and insulation for nerve cells), neurons (nerve cells that transmit signals in the brain), and meninges (the membranes that cover the brain and spinal cord). They can also result from the spread of cancer cells from other parts of the body, known as metastatic brain tumors.

Symptoms of brain neoplasms may vary depending on their size, location, and growth rate. Common symptoms include headaches, seizures, weakness or paralysis in the limbs, difficulty with balance and coordination, changes in speech or vision, confusion, memory loss, and changes in behavior or personality.

Treatment for brain neoplasms depends on several factors, including the type, size, location, and grade of the tumor, as well as the patient's age and overall health. Treatment options may include surgery, radiation therapy, chemotherapy, targeted therapy, or a combination of these approaches. Regular follow-up care is essential to monitor for recurrence and manage any long-term effects of treatment.

Executive function is a term used to describe a set of cognitive processes that are necessary for the control and regulation of thought and behavior. These functions include:

1. Working memory: The ability to hold and manipulate information in mind over short periods of time.
2. Cognitive flexibility: The ability to switch between tasks or mental sets, and to adapt to new rules and situations.
3. Inhibitory control: The ability to inhibit or delay automatic responses, and to resist impulses and distractions.
4. Planning and organization: The ability to plan and organize actions, and to manage time and resources effectively.
5. Problem-solving: The ability to analyze problems, generate solutions, and evaluate the outcomes of actions.
6. Decision-making: The ability to weigh risks and benefits, and to make informed choices based on available information.
7. Emotional regulation: The ability to manage and regulate emotions, and to respond appropriately to social cues and situations.

Executive functions are primarily controlled by the frontal lobes of the brain, and they play a critical role in goal-directed behavior, problem-solving, decision-making, and self-regulation. Deficits in executive function can have significant impacts on daily life, including difficulties with academic performance, work productivity, social relationships, and mental health.

A craniotomy is a surgical procedure where a bone flap is temporarily removed from the skull to access the brain. This procedure is typically performed to treat various neurological conditions, such as brain tumors, aneurysms, arteriovenous malformations, or traumatic brain injuries. After the underlying brain condition is addressed, the bone flap is usually replaced and secured back in place with plates and screws. The purpose of a craniotomy is to provide access to the brain for diagnostic or therapeutic interventions while minimizing potential damage to surrounding tissues.

Photic stimulation is a medical term that refers to the exposure of the eyes to light, specifically repetitive pulses of light, which is used as a method in various research and clinical settings. In neuroscience, it's often used in studies related to vision, circadian rhythms, and brain function.

In a clinical context, photic stimulation is sometimes used in the diagnosis of certain medical conditions such as seizure disorders (like epilepsy). By observing the response of the brain to this light stimulus, doctors can gain valuable insights into the functioning of the brain and the presence of any neurological disorders.

However, it's important to note that photic stimulation should be conducted under the supervision of a trained healthcare professional, as improper use can potentially trigger seizures in individuals who are susceptible to them.

Diffusion Tensor Imaging (DTI) is a type of magnetic resonance imaging (MRI) technique that allows for the measurement and visualization of water diffusion in biological tissues, particularly in the brain. DTI provides information about the microstructural organization and integrity of nerve fibers within the brain by measuring the directionality of water diffusion in the brain's white matter tracts.

In DTI, a tensor is used to describe the three-dimensional diffusion properties of water molecules in each voxel (three-dimensional pixel) of an MRI image. The tensor provides information about the magnitude and direction of water diffusion, which can be used to calculate various diffusion metrics such as fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). These metrics provide insights into the structural properties of nerve fibers, including their orientation, density, and integrity.

DTI has numerous clinical applications, such as in the diagnosis and monitoring of neurological disorders like multiple sclerosis, traumatic brain injury, and neurodegenerative diseases. It can also be used for presurgical planning to identify critical white matter tracts that need to be preserved during surgery.

Biological psychiatry is a branch of medicine that aims to understand and treat mental disorders by studying the biological mechanisms underlying behavior, cognition, and emotion. This can include the study of genetics, neurochemistry, brain structure and function, and other physiological processes that may contribute to the development and expression of mental illnesses.

Biological psychiatrists use a variety of approaches to understand and treat mental disorders, including psychopharmacology (the use of medications to treat psychiatric symptoms), neurostimulation techniques (such as electroconvulsive therapy or transcranial magnetic stimulation), and behavioral interventions (such as cognitive-behavioral therapy).

The ultimate goal of biological psychiatry is to develop more effective treatments for mental illnesses by gaining a deeper understanding of the underlying biological mechanisms that contribute to their development and expression.

'Behavior' is a term used in the medical and scientific community to describe the actions or reactions of an individual in response to internal or external stimuli. It can be observed and measured, and it involves all the responses of a person, including motor responses, emotional responses, and cognitive responses. Behaviors can be voluntary or involuntary, adaptive or maladaptive, and normal or abnormal. They can also be influenced by genetic, physiological, environmental, and social factors. In a medical context, the study of behavior is often relevant to understanding and treating various mental health conditions, such as anxiety disorders, mood disorders, and personality disorders.

Anisotropy is a medical term that refers to the property of being directionally dependent, meaning that its properties or characteristics vary depending on the direction in which they are measured. In the context of medicine and biology, anisotropy can refer to various biological structures, tissues, or materials that exhibit different physical or chemical properties along different axes.

For example, certain types of collagen fibers in tendons and ligaments exhibit anisotropic behavior because they are stronger and stiffer when loaded along their long axis compared to being loaded perpendicular to it. Similarly, some brain tissues may show anisotropy due to the presence of nerve fibers that are organized in specific directions, leading to differences in electrical conductivity or diffusion properties depending on the orientation of the measurement.

Anisotropy is an important concept in various medical fields, including radiology, neurology, and materials science, as it can provide valuable information about the structure and function of biological tissues and help guide diagnostic and therapeutic interventions.

Creatine is a organic acid that is produced naturally in the liver, kidneys and pancreas. It is also found in small amounts in certain foods such as meat and fish. The chemical formula for creatine is C4H9N3O2. In the body, creatine is converted into creatine phosphate, which is used to help produce energy during high-intensity exercise, such as weightlifting or sprinting.

Creatine can also be taken as a dietary supplement, in the form of creatine monohydrate, with the goal of increasing muscle creatine and phosphocreatine levels, which may improve athletic performance and help with muscle growth. However, it is important to note that while some studies have found that creatine supplementation can improve exercise performance and muscle mass in certain populations, others have not found significant benefits.

Creatine supplements are generally considered safe when used as directed, but they can cause side effects such as weight gain, stomach discomfort, and muscle cramps in some people. It is always recommended to consult a healthcare professional before starting any new supplement regimen.

Implanted electrodes are medical devices that are surgically placed inside the body to interface directly with nerves, neurons, or other electrically excitable tissue for various therapeutic purposes. These electrodes can be used to stimulate or record electrical activity from specific areas of the body, depending on their design and application.

There are several types of implanted electrodes, including:

1. Deep Brain Stimulation (DBS) electrodes: These are placed deep within the brain to treat movement disorders such as Parkinson's disease, essential tremor, and dystonia. DBS electrodes deliver electrical impulses that modulate abnormal neural activity in targeted brain regions.
2. Spinal Cord Stimulation (SCS) electrodes: These are implanted along the spinal cord to treat chronic pain syndromes. SCS electrodes emit low-level electrical pulses that interfere with pain signals traveling to the brain, providing relief for patients.
3. Cochlear Implant electrodes: These are surgically inserted into the cochlea of the inner ear to restore hearing in individuals with severe to profound hearing loss. The electrodes stimulate the auditory nerve directly, bypassing damaged hair cells within the cochlea.
4. Retinal Implant electrodes: These are implanted in the retina to treat certain forms of blindness caused by degenerative eye diseases like retinitis pigmentosa. The electrodes convert visual information from a camera into electrical signals, which stimulate remaining retinal cells and transmit the information to the brain via the optic nerve.
5. Sacral Nerve Stimulation (SNS) electrodes: These are placed near the sacral nerves in the lower back to treat urinary or fecal incontinence and overactive bladder syndrome. SNS electrodes deliver electrical impulses that regulate the function of the affected muscles and nerves.
6. Vagus Nerve Stimulation (VNS) electrodes: These are wrapped around the vagus nerve in the neck to treat epilepsy and depression. VNS electrodes provide intermittent electrical stimulation to the vagus nerve, which has connections to various regions of the brain involved in these conditions.

Overall, implanted electrodes serve as a crucial component in many neuromodulation therapies, offering an effective treatment option for numerous neurological and sensory disorders.

In the context of medicine, problem-solving refers to the cognitive process by which healthcare professionals identify, analyze, and address clinical issues or challenges in order to provide optimal care for their patients. This may involve gathering relevant information, generating potential solutions, evaluating their feasibility and risks, selecting the most appropriate course of action, and implementing and monitoring the chosen intervention. Effective problem-solving skills are essential for making informed decisions, improving patient outcomes, and reducing medical errors.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Delirium, Dementia, Amnestic, and Other Cognitive Disorders are conditions that affect cognitive abilities such as thinking, memory, perception, and judgment. Here are brief medical definitions of each:

1. Delirium: A serious disturbance in mental abilities that results in confused thinking and reduced awareness of the environment. It can cause hallucinations, delusions, and disorientation. Delirium often comes on suddenly and can be caused by various factors such as medication side effects, infection, or illness.
2. Dementia: A chronic and progressive decline in cognitive abilities that affects memory, language, problem-solving, and judgment. Alzheimer's disease is the most common cause of dementia, but other conditions such as vascular dementia, Lewy body dementia, and frontotemporal dementia can also cause it. Dementia can significantly interfere with daily life and activities.
3. Amnestic Disorders: A group of conditions that primarily affect memory. These disorders can be caused by brain injury, illness, or substance abuse. The most common amnestic disorder is Korsakoff's syndrome, which is caused by alcohol abuse and results in significant memory loss and confusion.
4. Other Cognitive Disorders: This category includes a range of conditions that affect cognitive abilities but do not fit into the categories of delirium, dementia, or amnestic disorders. Examples include mild cognitive impairment (MCI), which is a decline in cognitive abilities that does not interfere significantly with daily life, and various cognitive disorders caused by brain injury or disease.

It's important to note that these conditions can overlap and may co-occur with other mental health or neurological disorders. Proper diagnosis and treatment require a comprehensive evaluation by a qualified healthcare professional.

A language test is not a medical term per se, but it is commonly used in the field of speech-language pathology, which is a medical discipline. A language test, in this context, refers to an assessment tool used by speech-language pathologists to evaluate an individual's language abilities. These tests typically measure various aspects of language, including vocabulary, grammar, syntax, semantics, and pragmatics.

Language tests can be standardized or non-standardized and may be administered individually or in a group setting. The results of these tests help speech-language pathologists diagnose language disorders, develop treatment plans, and monitor progress over time. It is important to note that language testing should be conducted by a qualified professional who has experience in administering and interpreting language assessments.

Schizophrenia is a severe mental disorder characterized by disturbances in thought, perception, emotion, and behavior. It often includes hallucinations (usually hearing voices), delusions, paranoia, and disorganized speech and behavior. The onset of symptoms typically occurs in late adolescence or early adulthood. Schizophrenia is a complex, chronic condition that requires ongoing treatment and management. It significantly impairs social and occupational functioning, and it's often associated with reduced life expectancy due to comorbid medical conditions. The exact causes of schizophrenia are not fully understood, but research suggests that genetic, environmental, and neurodevelopmental factors play a role in its development.

Broca's aphasia, also known as expressive aphasia or nonfluent aphasia, is a type of language disorder that results from damage to the brain's Broca's area, which is located in the frontal lobe of the dominant hemisphere (usually the left).

Individuals with Broca's aphasia have difficulty producing spoken or written language. They often know what they want to say but have trouble getting the words out, resulting in short and grammatically simplified sentences. Speech may be slow, laborious, and agrammatic, with limited vocabulary and poor sentence structure. Comprehension of language is typically less affected than expression, although individuals with Broca's aphasia may have difficulty understanding complex grammatical structures or following rapid speech.

It's important to note that the severity and specific symptoms of Broca's aphasia can vary depending on the extent and location of the brain damage. Rehabilitation and therapy can help improve language skills in individuals with Broca's aphasia, although recovery may be slow and limited.

The corpus callosum is the largest collection of white matter in the brain, consisting of approximately 200 million nerve fibers. It is a broad, flat band of tissue that connects the two hemispheres of the brain, allowing them to communicate and coordinate information processing. The corpus callosum plays a crucial role in integrating sensory, motor, and cognitive functions between the two sides of the brain. Damage to the corpus callosum can result in various neurological symptoms, including difficulties with movement, speech, memory, and social behavior.

Piracetam is a nootropic drug, which is primarily used in the treatment of cognitive disorders. It is a cyclic derivative of the neurotransmitter GABA (gamma-aminobutyric acid). Piracetam is believed to work by reducing the permeability of cell membranes in the brain, which may enhance communication between neurons and improve memory and learning.

Medically, piracetam is used off-label for a variety of conditions related to cognitive decline or impairment, such as Alzheimer's disease, dementia, and age-related cognitive decline. It has also been studied in the treatment of myoclonus (involuntary muscle jerks), dyslexia, and other neurological disorders.

It is important to note that while piracetam has shown some promise in improving cognitive function in certain populations, its effectiveness is still a subject of ongoing research and debate. Additionally, piracetam is not approved by the U.S. Food and Drug Administration (FDA) for any medical use, although it is available as a dietary supplement in the United States.

As with any medication or supplement, it's important to consult with a healthcare provider before taking piracetam to ensure that it is safe and appropriate for your individual needs.

Criminology is the scientific study of crime, criminals, criminal behavior, and the criminal justice system. It involves the application of various social sciences, including sociology, psychology, and anthropology, to understand and explain these phenomena. The field of criminology also encompasses the development and evaluation of policies and interventions aimed at preventing and controlling crime, as well as understanding the impact of those policies on individuals and communities.

Criminologists may study a wide range of topics related to crime, such as the causes of criminal behavior, the social and economic factors that contribute to crime, the effectiveness of different criminal justice policies and interventions, and the experiences of victims of crime. They may also conduct research on specific types of crime, such as violent crime, property crime, white-collar crime, or cybercrime.

The ultimate goal of criminology is to develop a better understanding of crime and the criminal justice system in order to inform policy and practice, and ultimately reduce crime and improve public safety.

Neuroimaging is a medical term that refers to the use of various techniques to either directly or indirectly image the structure, function, or pharmacology of the nervous system. It includes techniques such as computed tomography (CT), magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and diffusion tensor imaging (DTI). These techniques are used to diagnose and monitor various neurological and psychiatric conditions, as well as to understand the underlying mechanisms of brain function in health and disease.

Aspartic acid is an α-amino acid with the chemical formula HO2CCH(NH2)CO2H. It is one of the twenty standard amino acids, and it is a polar, negatively charged, and hydrophilic amino acid. In proteins, aspartic acid usually occurs in its ionized form, aspartate, which has a single negative charge.

Aspartic acid plays important roles in various biological processes, including metabolism, neurotransmitter synthesis, and energy production. It is also a key component of many enzymes and proteins, where it often contributes to the formation of ionic bonds and helps stabilize protein structure.

In addition to its role as a building block of proteins, aspartic acid is also used in the synthesis of other important biological molecules, such as nucleotides, which are the building blocks of DNA and RNA. It is also a component of the dipeptide aspartame, an artificial sweetener that is widely used in food and beverages.

Like other amino acids, aspartic acid is essential for human health, but it cannot be synthesized by the body and must be obtained through the diet. Foods that are rich in aspartic acid include meat, poultry, fish, dairy products, eggs, legumes, and some fruits and vegetables.

Mental processes, also referred to as cognitive processes, are the ways in which our minds perceive, process, and understand information from the world around us. These processes include:

1. Attention: The ability to focus on specific stimuli while ignoring others.
2. Perception: The way in which we interpret and organize sensory information.
3. Memory: The storage and retrieval of information.
4. Learning: The process of acquiring new knowledge or skills.
5. Language: The ability to understand, produce and communicate using words and symbols.
6. Thinking: The process of processing information, reasoning, problem-solving, and decision making.
7. Intelligence: The capacity to understand, learn, and adapt to new situations.
8. Emotion: The ability to experience and respond to different feelings.
9. Consciousness: The state of being aware of and able to think and perceive one's surroundings, thoughts, and feelings.

These mental processes are interconnected and influence each other in complex ways. They allow us to interact with our environment, make decisions, and communicate with others. Disorders in these mental processes can lead to various neurological and psychiatric conditions.

Malformations of Cortical Development (MCDs) are a group of congenital brain abnormalities that occur during the development and organization of the cerebral cortex, which is the brain region responsible for higher cognitive functions. These malformations result from disruptions in neuronal migration, proliferation, or organization, leading to varying degrees of cortical thickness, folding, and structural integrity.

MCDs can be classified into several subtypes based on their distinct neuroimaging and histopathological features. Some common MCD subtypes include:

1. Lissencephaly (smooth brain): A severe malformation characterized by the absence of normal gyral and sulcal patterns, resulting in a smooth cortical surface. This is caused by defects in neuronal migration during early development.
2. Polymicrogyria (many small folds): A condition where the cortex has an excessive number of small, irregular gyri, leading to thickened and disorganized cortical layers. This can be focal or diffuse and is caused by abnormal neuronal migration or organization during mid to late development.
3. Schizencephaly (cleft brain): A malformation characterized by a linear cleft or gap in the cerebral cortex, extending from the pial surface to the ventricular system. This can be unilateral or bilateral and is caused by disruptions in neuronal migration and/or cortical organization during early development.
4. Heterotopias (misplaced cells): A condition where groups of neurons are abnormally located within the white matter or at the gray-white matter junction, instead of their normal position in the cerebral cortex. This can be focal or diffuse and is caused by defects in neuronal migration during early development.
5. Focal cortical dysplasia (abnormal localized tissue): A condition characterized by abnormal cortical architecture, including disorganized lamination, enlarged neurons, and heterotopic neurons. This can be focal or multifocal and is caused by defects in cortical organization during late development.

MCDs are often associated with neurological symptoms such as epilepsy, intellectual disability, motor deficits, and behavioral abnormalities. The severity of these symptoms depends on the type, location, and extent of the malformation.

Progressive Myoclonic Epilepsies (PME) is a group of rare, genetic disorders characterized by myoclonus (rapid, involuntary muscle jerks), tonic-clonic seizures (also known as grand mal seizures), and progressive neurological deterioration. The term "progressive" refers to the worsening of symptoms over time.

The myoclonic epilepsies are classified as progressive due to the underlying neurodegenerative process that affects the brain, leading to a decline in cognitive abilities, motor skills, and overall functioning. These disorders usually begin in childhood or adolescence and tend to worsen with age.

Examples of PMEs include:

1. Lafora disease: A genetic disorder caused by mutations in the EPM2A or NHLRC1 genes, leading to the accumulation of abnormal protein aggregates called Lafora bodies in neurons. Symptoms typically start between ages 6 and 16 and include myoclonus, seizures, and progressive neurological decline.
2. Unverricht-Lundborg disease: Also known as Baltic myoclonus, this is an autosomal recessive disorder caused by mutations in the CSTB gene. It is characterized by progressive myoclonic epilepsy, ataxia (loss of coordination), and cognitive decline. Symptoms usually begin between ages 6 and 18.
3. Neuronal Ceroid Lipofuscinoses (NCLs): A group of inherited neurodegenerative disorders characterized by the accumulation of lipopigments in neurons. Several types of NCLs can present with progressive myoclonic epilepsy, including CLN2 (late-infantile NCL), CLN3 (juvenile NCL), and CLN6 (early juvenile NCL).
4. Myoclonus Epilepsy Associated with Ragged Red Fibers (MERRF): A mitochondrial disorder caused by mutations in the MT-TK gene, leading to myoclonic epilepsy, ataxia, and ragged red fibers on muscle biopsy.
5. Dentatorubral-Pallidoluysian Atrophy (DRPLA): An autosomal dominant disorder caused by mutations in the ATN1 gene, characterized by myoclonic epilepsy, ataxia, chorea (involuntary movements), and dementia.

These are just a few examples of disorders that can present with progressive myoclonic epilepsy. It is essential to consult a neurologist or epileptologist for proper diagnosis and management.

Sturge-Weber syndrome is a rare neurocutaneous disorder characterized by the combination of a facial port-wine birthmark and neurological abnormalities. The facial birthmark, which is typically located on one side of the face, occurs due to the malformation of small blood vessels (capillaries) in the skin and eye.

Neurological features often include seizures that begin in infancy, muscle weakness or paralysis on one side of the body (hemiparesis), developmental delay, and intellectual disability. These neurological symptoms are caused by abnormal blood vessel formation in the brain (leptomeningeal angiomatosis) leading to increased pressure, reduced blood flow, and potential damage to the brain tissue.

Sturge-Weber syndrome can also affect the eyes, with glaucoma being a common occurrence due to increased pressure within the eye. Early diagnosis and appropriate management of this condition are crucial for improving the quality of life and reducing potential complications.

Alzheimer's disease is a progressive disorder that causes brain cells to waste away (degenerate) and die. It's the most common cause of dementia — a continuous decline in thinking, behavioral and social skills that disrupts a person's ability to function independently.

The early signs of the disease include forgetting recent events or conversations. As the disease progresses, a person with Alzheimer's disease will develop severe memory impairment and lose the ability to carry out everyday tasks.

Currently, there's no cure for Alzheimer's disease. However, treatments can temporarily slow the worsening of dementia symptoms and improve quality of life.

'Lie detection' is not a term that is typically used in medical definitions. However, it is often associated with the use of technologies and techniques to determine whether a person is being truthful or deceptive. The most common method of lie detection is through the use of a polygraph machine, which measures and records several physiological responses such as heart rate, blood pressure, respiration rate, and skin conductivity while a series of questions are asked. It's important to note that the results of a polygraph test are not always accurate and can be influenced by various factors, including the examiner's experience and skill, the subject's emotional state, and the presence of certain medical conditions or medications. Therefore, polygraph tests are generally not admissible as evidence in court proceedings in many jurisdictions.

The "age of onset" is a medical term that refers to the age at which an individual first develops or displays symptoms of a particular disease, disorder, or condition. It can be used to describe various medical conditions, including both physical and mental health disorders. The age of onset can have implications for prognosis, treatment approaches, and potential causes of the condition. In some cases, early onset may indicate a more severe or progressive course of the disease, while late-onset symptoms might be associated with different underlying factors or etiologies. It is essential to provide accurate and precise information regarding the age of onset when discussing a patient's medical history and treatment plan.

Diffusion Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique that uses magnetic fields and radio waves to produce detailed images of the body's internal structures, particularly the brain and nervous system. In diffusion MRI, the movement of water molecules in biological tissues is measured and analyzed to generate contrast in the images based on the microstructural properties of the tissue.

Diffusion MRI is unique because it allows for the measurement of water diffusion in various directions, which can reveal important information about the organization and integrity of nerve fibers in the brain. This technique has been widely used in research and clinical settings to study a variety of neurological conditions, including stroke, traumatic brain injury, multiple sclerosis, and neurodegenerative diseases such as Alzheimer's disease.

In summary, diffusion MRI is a specialized type of MRI that measures the movement of water molecules in biological tissues to generate detailed images of the body's internal structures, particularly the brain and nervous system. It provides valuable information about the microstructural properties of tissues and has important applications in both research and clinical settings.

Speech is the vocalized form of communication using sounds and words to express thoughts, ideas, and feelings. It involves the articulation of sounds through the movement of muscles in the mouth, tongue, and throat, which are controlled by nerves. Speech also requires respiratory support, phonation (vocal cord vibration), and prosody (rhythm, stress, and intonation).

Speech is a complex process that develops over time in children, typically beginning with cooing and babbling sounds in infancy and progressing to the use of words and sentences by around 18-24 months. Speech disorders can affect any aspect of this process, including articulation, fluency, voice, and language.

In a medical context, speech is often evaluated and treated by speech-language pathologists who specialize in diagnosing and managing communication disorders.

I'm sorry for any confusion, but "logic" is a term that is more commonly used in philosophy, mathematics, and computer science rather than in medicine. It refers to the principles of valid reasoning and argument. In the context of medicine, healthcare professionals may use logical thinking and reasoning in making diagnoses, evaluating treatment options, and making decisions about patient care. However, there isn't a specific medical definition for "logic" itself.

I must clarify that I cannot provide a "medical definition" of intelligence, as intelligence is not a concept that is typically defined within the field of medicine. Intelligence is a term used to describe the ability to learn, understand, and make judgments or decisions based on reason, experience, and information. It is often measured through various cognitive abilities such as problem-solving, critical thinking, creativity, and knowledge acquisition.

The concept of intelligence is studied in many fields, including psychology, neuroscience, and education. In medicine, healthcare professionals may assess a person's cognitive abilities to better understand their health status or develop treatment plans. However, there is no specific "medical definition" for intelligence. Instead, it is a multifaceted concept that can be influenced by various genetic, environmental, and experiential factors.

A syndrome, in medical terms, is a set of symptoms that collectively indicate or characterize a disease, disorder, or underlying pathological process. It's essentially a collection of signs and/or symptoms that frequently occur together and can suggest a particular cause or condition, even though the exact physiological mechanisms might not be fully understood.

For example, Down syndrome is characterized by specific physical features, cognitive delays, and other developmental issues resulting from an extra copy of chromosome 21. Similarly, metabolic syndromes like diabetes mellitus type 2 involve a group of risk factors such as obesity, high blood pressure, high blood sugar, and abnormal cholesterol or triglyceride levels that collectively increase the risk of heart disease, stroke, and diabetes.

It's important to note that a syndrome is not a specific diagnosis; rather, it's a pattern of symptoms that can help guide further diagnostic evaluation and management.

Valproic acid is a medication that is primarily used as an anticonvulsant, which means it is used to treat seizure disorders. It works by increasing the amount of gamma-aminobutyric acid (GABA) in the brain, a neurotransmitter that helps to reduce abnormal electrical activity in the brain. In addition to its use as an anticonvulsant, valproic acid may also be used to treat migraines and bipolar disorder. It is available in various forms, including tablets, capsules, and liquid solutions, and is usually taken by mouth. As with any medication, valproic acid can have side effects, and it is important for patients to be aware of these and to discuss them with their healthcare provider.

Visual perception refers to the ability to interpret and organize information that comes from our eyes to recognize and understand what we are seeing. It involves several cognitive processes such as pattern recognition, size estimation, movement detection, and depth perception. Visual perception allows us to identify objects, navigate through space, and interact with our environment. Deficits in visual perception can lead to learning difficulties and disabilities.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Evoked potentials (EPs) are medical tests that measure the electrical activity in the brain or spinal cord in response to specific sensory stimuli, such as sight, sound, or touch. These tests are often used to help diagnose and monitor conditions that affect the nervous system, such as multiple sclerosis, brainstem tumors, and spinal cord injuries.

There are several types of EPs, including:

1. Visual Evoked Potentials (VEPs): These are used to assess the function of the visual pathway from the eyes to the back of the brain. A patient is typically asked to look at a patterned image or flashing light while electrodes placed on the scalp record the electrical responses.
2. Brainstem Auditory Evoked Potentials (BAEPs): These are used to evaluate the function of the auditory nerve and brainstem. Clicking sounds are presented to one or both ears, and electrodes placed on the scalp measure the response.
3. Somatosensory Evoked Potentials (SSEPs): These are used to assess the function of the peripheral nerves and spinal cord. Small electrical shocks are applied to a nerve at the wrist or ankle, and electrodes placed on the scalp record the response as it travels up the spinal cord to the brain.
4. Motor Evoked Potentials (MEPs): These are used to assess the function of the motor pathways in the brain and spinal cord. A magnetic or electrical stimulus is applied to the brain or spinal cord, and electrodes placed on a muscle measure the response as it travels down the motor pathway.

EPs can help identify abnormalities in the nervous system that may not be apparent through other diagnostic tests, such as imaging studies or clinical examinations. They are generally safe, non-invasive procedures with few risks or side effects.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

'Task Performance and Analysis' is not a commonly used medical term, but it can be found in the field of rehabilitation medicine and ergonomics. It refers to the process of evaluating and understanding how a specific task is performed, in order to identify any physical or cognitive demands placed on an individual during the performance of that task. This information can then be used to inform the design of interventions, such as workplace modifications or rehabilitation programs, aimed at improving task performance or reducing the risk of injury.

In a medical context, task performance and analysis may be used in the assessment and treatment of individuals with disabilities or injuries, to help them return to work or other activities of daily living. The analysis involves breaking down the task into its component parts, observing and measuring the physical and cognitive demands of each part, and evaluating the individual's ability to perform those demands. Based on this analysis, recommendations may be made for modifications to the task or the environment, training or education, or assistive devices that can help the individual perform the task more safely and efficiently.

Overall, task performance and analysis is a valuable tool in promoting safe and effective task performance, reducing the risk of injury, and improving functional outcomes for individuals with disabilities or injuries.

Sleep arousal disorders are a category of sleep disorders that involve the partial or complete awakening from sleep, often accompanied by confusion and disorientation. These disorders are characterized by an abnormal arousal process during sleep, which can result in brief periods of wakefulness or full awakenings. The most common types of sleep arousal disorders include sleepwalking (somnambulism), sleep talking (somniloquy), and night terrors (pavor nocturnus).

In sleepwalking, the individual may get out of bed and walk around while still asleep, often with a blank stare and without any memory of the event. Sleep talking can occur in various levels of sleep and may range from simple sounds to complex conversations. Night terrors are episodes of intense fear and agitation during sleep, often accompanied by screams or cries for help, rapid heart rate, and sweating.

These disorders can be caused by a variety of factors, including stress, anxiety, fever, certain medications, alcohol consumption, and underlying medical conditions such as sleep apnea or restless leg syndrome. They can also occur as a result of genetic predisposition. Sleep arousal disorders can have significant impacts on an individual's quality of life, leading to fatigue, daytime sleepiness, impaired cognitive function, and decreased overall well-being. Treatment options may include behavioral therapy, medication, or addressing any underlying medical conditions.

Positron-Emission Tomography (PET) is a type of nuclear medicine imaging that uses small amounts of radioactive material, called a radiotracer, to produce detailed, three-dimensional images. This technique measures metabolic activity within the body, such as sugar metabolism, to help distinguish between healthy and diseased tissue, identify cancerous cells, or examine the function of organs.

During a PET scan, the patient is injected with a radiotracer, typically a sugar-based compound labeled with a positron-emitting radioisotope, such as fluorine-18 (^18^F). The radiotracer accumulates in cells that are metabolically active, like cancer cells. As the radiotracer decays, it emits positrons, which then collide with electrons in nearby tissue, producing gamma rays. A special camera, called a PET scanner, detects these gamma rays and uses this information to create detailed images of the body's internal structures and processes.

PET is often used in conjunction with computed tomography (CT) or magnetic resonance imaging (MRI) to provide both functional and anatomical information, allowing for more accurate diagnosis and treatment planning. Common applications include detecting cancer recurrence, staging and monitoring cancer, evaluating heart function, and assessing brain function in conditions like dementia and epilepsy.

Neurological diagnostic techniques are medical tests and examinations used to identify and diagnose conditions related to the nervous system, which includes the brain, spinal cord, nerves, and muscles. These techniques can be divided into several categories:

1. Clinical Examination: A thorough physical examination, including a neurological evaluation, is often the first step in diagnosing neurological conditions. This may involve assessing a person's mental status, muscle strength, coordination, reflexes, sensation, and gait.

2. Imaging Techniques: These are used to produce detailed images of the brain and nervous system. Common imaging techniques include:

- Computed Tomography (CT): This uses X-rays to create cross-sectional images of the brain and other parts of the body.
- Magnetic Resonance Imaging (MRI): This uses a strong magnetic field and radio waves to produce detailed images of the brain and other internal structures.
- Functional MRI (fMRI): This is a type of MRI that measures brain activity by detecting changes in blood flow.
- Positron Emission Tomography (PET): This uses small amounts of radioactive material to produce detailed images of brain function.
- Single Photon Emission Computed Tomography (SPECT): This is a type of nuclear medicine imaging that uses a gamma camera and a computer to produce detailed images of brain function.

3. Electrophysiological Tests: These are used to measure the electrical activity of the brain and nervous system. Common electrophysiological tests include:

- Electroencephalography (EEG): This measures the electrical activity of the brain.
- Evoked Potentials (EPs): These measure the electrical response of the brain and nervous system to sensory stimuli, such as sound or light.
- Nerve Conduction Studies (NCS): These measure the speed and strength of nerve impulses.
- Electromyography (EMG): This measures the electrical activity of muscles.

4. Laboratory Tests: These are used to analyze blood, cerebrospinal fluid, and other bodily fluids for signs of neurological conditions. Common laboratory tests include:

- Complete Blood Count (CBC): This measures the number and type of white and red blood cells in the body.
- Blood Chemistry Tests: These measure the levels of various chemicals in the blood.
- Lumbar Puncture (Spinal Tap): This is used to collect cerebrospinal fluid for analysis.
- Genetic Testing: This is used to identify genetic mutations associated with neurological conditions.

5. Imaging Studies: These are used to produce detailed images of the brain and nervous system. Common imaging studies include:

- Magnetic Resonance Imaging (MRI): This uses a strong magnetic field and radio waves to produce detailed images of the brain and nervous system.
- Computed Tomography (CT): This uses X-rays to produce detailed images of the brain and nervous system.
- Functional MRI (fMRI): This measures changes in blood flow in the brain during cognitive tasks.
- Diffusion Tensor Imaging (DTI): This is used to assess white matter integrity in the brain.
- Magnetic Resonance Spectroscopy (MRS): This is used to measure chemical levels in the brain.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

Language disorders, also known as communication disorders, refer to a group of conditions that affect an individual's ability to understand or produce spoken, written, or other symbolic language. These disorders can be receptive (difficulty understanding language), expressive (difficulty producing language), or mixed (a combination of both).

Language disorders can manifest as difficulties with grammar, vocabulary, sentence structure, and coherence in communication. They can also affect social communication skills such as taking turns in conversation, understanding nonverbal cues, and interpreting tone of voice.

Language disorders can be developmental, meaning they are present from birth or early childhood, or acquired, meaning they develop later in life due to injury, illness, or trauma. Examples of acquired language disorders include aphasia, which can result from stroke or brain injury, and dysarthria, which can result from neurological conditions affecting speech muscles.

Language disorders can have significant impacts on an individual's academic, social, and vocational functioning, making it important to diagnose and treat them as early as possible. Treatment typically involves speech-language therapy to help individuals develop and improve their language skills.

A saccade is a quick, rapid, and ballistic conjugate eye movement that shifts the point of fixation from one target to another. It helps in rapidly repositioning the fovea (the central part of the retina with the highest visual acuity) to focus on different targets of interest in the visual scene. Saccades are essential for efficient scanning and exploration of our environment, allowing us to direct our high-resolution vision towards various points of interest. They typically take only about 20-200 milliseconds to complete and can reach peak velocities of up to 500 degrees per second or more, depending on the amplitude of the movement. Saccades are a critical component of normal visual function and are often studied in fields such as ophthalmology, neurology, and neuroscience.

Sudden death is a term used to describe a situation where a person dies abruptly and unexpectedly, often within minutes to hours of the onset of symptoms. It is typically caused by cardiac or respiratory arrest, which can be brought on by various medical conditions such as heart disease, stroke, severe infections, drug overdose, or trauma. In some cases, the exact cause of sudden death may remain unknown even after a thorough post-mortem examination.

It is important to note that sudden death should not be confused with "sudden cardiac death," which specifically refers to deaths caused by the abrupt loss of heart function (cardiac arrest). Sudden cardiac death is often related to underlying heart conditions such as coronary artery disease, cardiomyopathy, or electrical abnormalities in the heart.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

I'm sorry for any confusion, but "semantics" is not a term that has a specific medical definition. Semantics is actually a branch of linguistics that deals with the study of meaning, reference, and the interpretation of signs and symbols, either individually or in combination. It is used in various fields including computer science, anthropology, psychology, and philosophy.

However, if you have any medical terms or concepts that you would like me to explain, I'd be happy to help!

Aphasia is a medical condition that affects a person's ability to communicate. It is caused by damage to the language areas of the brain, most commonly as a result of a stroke or head injury. Aphasia can affect both spoken and written language, making it difficult for individuals to express their thoughts, understand speech, read, or write.

There are several types of aphasia, including:

1. Expressive aphasia (also called Broca's aphasia): This type of aphasia affects a person's ability to speak and write clearly. Individuals with expressive aphasia know what they want to say but have difficulty forming the words or sentences to communicate their thoughts.
2. Receptive aphasia (also called Wernicke's aphasia): This type of aphasia affects a person's ability to understand spoken or written language. Individuals with receptive aphasia may struggle to follow conversations, comprehend written texts, or make sense of the words they hear or read.
3. Global aphasia: This is the most severe form of aphasia and results from extensive damage to the language areas of the brain. People with global aphasia have significant impairments in both their ability to express themselves and understand language.
4. Anomic aphasia: This type of aphasia affects a person's ability to recall the names of objects, people, or places. Individuals with anomic aphasia can speak in complete sentences but often struggle to find the right words to convey their thoughts.

Treatment for aphasia typically involves speech and language therapy, which aims to help individuals regain as much communication ability as possible. The success of treatment depends on various factors, such as the severity and location of the brain injury, the individual's motivation and effort, and the availability of support from family members and caregivers.

There is no specific medical definition for "Wit and Humor as Topic." However, in the context of medicine and healthcare, wit and humor can be defined as the use of clever or amusing words, ideas, or actions to communicate, entertain, or cope with difficult situations.

Humor has been shown to have various positive effects on health and well-being, such as reducing stress, improving mood, enhancing social connections, and boosting immune function. In healthcare settings, humor can help patients and healthcare providers to build rapport, reduce anxiety, and improve communication. Wit and humor can also be used in medical education to engage learners, facilitate learning, and promote critical thinking.

However, it is important to use wit and humor appropriately and sensitively in medical contexts, taking into account factors such as cultural differences, individual preferences, and the severity of the situation. Inappropriate or insensitive use of humor can cause offense, harm relationships, and undermine trust.

Speech disorders refer to a group of conditions in which a person has difficulty producing or articulating sounds, words, or sentences in a way that is understandable to others. These disorders can be caused by various factors such as developmental delays, neurological conditions, hearing loss, structural abnormalities, or emotional issues.

Speech disorders may include difficulties with:

* Articulation: the ability to produce sounds correctly and clearly.
* Phonology: the sound system of language, including the rules that govern how sounds are combined and used in words.
* Fluency: the smoothness and flow of speech, including issues such as stuttering or cluttering.
* Voice: the quality, pitch, and volume of the spoken voice.
* Resonance: the way sound is produced and carried through the vocal tract, which can affect the clarity and quality of speech.

Speech disorders can impact a person's ability to communicate effectively, leading to difficulties in social situations, academic performance, and even employment opportunities. Speech-language pathologists are trained to evaluate and treat speech disorders using various evidence-based techniques and interventions.

"Mental recall," also known as "memory recall," refers to the ability to retrieve or bring information from your memory storage into your conscious mind, so you can think about, use, or apply it. This process involves accessing and retrieving stored memories in response to certain cues or prompts. It is a fundamental cognitive function that allows individuals to remember and recognize people, places, events, facts, and experiences.

In the context of medical terminology, mental recall may be used to assess an individual's cognitive abilities, particularly in relation to memory function. Impairments in memory recall can be indicative of various neurological or psychological conditions, such as dementia, Alzheimer's disease, or amnesia.

A neurological examination is a series of tests used to evaluate the functioning of the nervous system, including both the central nervous system (the brain and spinal cord) and peripheral nervous system (the nerves that extend from the brain and spinal cord to the rest of the body). It is typically performed by a healthcare professional such as a neurologist or a primary care physician with specialized training in neurology.

During a neurological examination, the healthcare provider will assess various aspects of neurological function, including:

1. Mental status: This involves evaluating a person's level of consciousness, orientation, memory, and cognitive abilities.
2. Cranial nerves: There are 12 cranial nerves that control functions such as vision, hearing, smell, taste, and movement of the face and neck. The healthcare provider will test each of these nerves to ensure they are functioning properly.
3. Motor function: This involves assessing muscle strength, tone, coordination, and reflexes. The healthcare provider may ask the person to perform certain movements or tasks to evaluate these functions.
4. Sensory function: The healthcare provider will test a person's ability to feel different types of sensations, such as touch, pain, temperature, vibration, and proprioception (the sense of where your body is in space).
5. Coordination and balance: The healthcare provider may assess a person's ability to perform coordinated movements, such as touching their finger to their nose or walking heel-to-toe.
6. Reflexes: The healthcare provider will test various reflexes throughout the body using a reflex hammer.

The results of a neurological examination can help healthcare providers diagnose and monitor conditions that affect the nervous system, such as stroke, multiple sclerosis, Parkinson's disease, or peripheral neuropathy.

Choline is an essential nutrient that is vital for the normal functioning of all cells, particularly those in the brain and liver. It is a water-soluble compound that is neither a vitamin nor a mineral, but is often grouped with vitamins because it has many similar functions. Choline is a precursor to the neurotransmitter acetylcholine, which plays an important role in memory, mood, and other cognitive processes. It also helps to maintain the structural integrity of cell membranes and is involved in the transport and metabolism of fats.

Choline can be synthesized by the body in small amounts, but it is also found in a variety of foods such as eggs, meat, fish, nuts, and cruciferous vegetables. Some people may require additional choline through supplementation, particularly if they follow a vegetarian or vegan diet, are pregnant or breastfeeding, or have certain medical conditions that affect choline metabolism.

Deficiency in choline can lead to a variety of health problems, including liver disease, muscle damage, and neurological disorders. On the other hand, excessive intake of choline can cause fishy body odor, sweating, and gastrointestinal symptoms such as diarrhea and vomiting. It is important to maintain adequate levels of choline through a balanced diet and, if necessary, supplementation under the guidance of a healthcare professional.

The limbic system is a complex set of structures in the brain that includes the hippocampus, amygdala, fornix, cingulate gyrus, and other nearby areas. It's associated with emotional responses, instinctual behaviors, motivation, long-term memory formation, and olfaction (smell). The limbic system is also involved in the modulation of visceral functions and drives, such as hunger, thirst, and sexual drive.

The structures within the limbic system communicate with each other and with other parts of the brain, particularly the hypothalamus and the cortex, to regulate various physiological and psychological processes. Dysfunctions in the limbic system can lead to a range of neurological and psychiatric conditions, including depression, anxiety disorders, post-traumatic stress disorder (PTSD), and certain types of memory impairment.

Computer-assisted image interpretation is the use of computer algorithms and software to assist healthcare professionals in analyzing and interpreting medical images. These systems use various techniques such as pattern recognition, machine learning, and artificial intelligence to help identify and highlight abnormalities or patterns within imaging data, such as X-rays, CT scans, MRI, and ultrasound images. The goal is to increase the accuracy, consistency, and efficiency of image interpretation, while also reducing the potential for human error. It's important to note that these systems are intended to assist healthcare professionals in their decision making process and not to replace them.

The cerebellum is a part of the brain that lies behind the brainstem and is involved in the regulation of motor movements, balance, and coordination. It contains two hemispheres and a central portion called the vermis. The cerebellum receives input from sensory systems and other areas of the brain and spinal cord and sends output to motor areas of the brain. Damage to the cerebellum can result in problems with movement, balance, and coordination.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Ganglioglioma is a rare, typically slow-growing tumor that occurs in the brain or spinal cord. It is composed of both neuronal (ganglion cell) and glial elements. These tumors most commonly occur in the temporal lobe of the brain and are usually found in children and young adults.

Gangliogliomas can be benign or malignant, with the majority being low-grade (benign). Symptoms vary depending on the location of the tumor but may include seizures, headaches, changes in behavior or cognition, and motor weakness or paralysis. Treatment typically involves surgical removal of the tumor, and in some cases, radiation therapy or chemotherapy may be recommended.

It's important to note that while I strive to provide accurate information, my responses should not be used as a substitute for professional medical advice, diagnosis, or treatment. Always consult with a qualified healthcare provider for any medical concerns.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Frontotemporal dementia (FTD) is a group of disorders caused by progressive degeneration of the frontal and temporal lobes of the brain. These areas of the brain are associated with personality, behavior, and language.

There are three main types of FTD:

1. Behavioral variant FTD (bvFTD): This type is characterized by changes in personality, behavior, and judgment. Individuals may become socially inappropriate, emotionally indifferent, or impulsive. They may lose interest in things they used to enjoy and have difficulty with tasks that require planning and organization.

2. Primary progressive aphasia (PPA): This type affects language abilities. There are two main subtypes of PPA: semantic dementia and progressive nonfluent aphasia. Semantic dementia is characterized by difficulty understanding words and objects, while progressive nonfluent aphasia is characterized by problems with speech production and articulation.

3. Motor neuron disease (MND) associated FTD: Some individuals with FTD may also develop motor neuron disease, which affects the nerves that control muscle movement. This can lead to weakness, stiffness, and wasting of muscles, as well as difficulty swallowing and speaking.

FTD is a degenerative disorder, meaning that symptoms get worse over time. There is no cure for FTD, but there are treatments available to help manage symptoms and improve quality of life. The exact cause of FTD is not known, but it is believed to be related to abnormalities in certain proteins in the brain. In some cases, FTD may run in families and be caused by genetic mutations.

Oximes are a class of chemical compounds that contain the functional group =N-O-, where two organic groups are attached to the nitrogen atom. In a clinical context, oximes are used as antidotes for nerve agent and pesticide poisoning. The most commonly used oxime in medicine is pralidoxime (2-PAM), which is used to reactivate acetylcholinesterase that has been inhibited by organophosphorus compounds, such as nerve agents and certain pesticides. These compounds work by forming a bond with the phosphoryl group of the inhibited enzyme, allowing for its reactivation and restoration of normal neuromuscular function.

The cerebrum is the largest part of the brain, located in the frontal part of the skull. It is divided into two hemispheres, right and left, which are connected by a band of nerve fibers called the corpus callosum. The cerebrum is responsible for higher cognitive functions such as thinking, learning, memory, language, perception, and consciousness.

The outer layer of the cerebrum is called the cerebral cortex, which is made up of gray matter containing billions of neurons. This region is responsible for processing sensory information, generating motor commands, and performing higher-level cognitive functions. The cerebrum also contains several subcortical structures such as the thalamus, hypothalamus, hippocampus, and amygdala, which play important roles in various brain functions.

Damage to different parts of the cerebrum can result in a range of neurological symptoms, depending on the location and severity of the injury. For example, damage to the left hemisphere may affect language function, while damage to the right hemisphere may affect spatial perception and visual-spatial skills.

Three-dimensional (3D) imaging in medicine refers to the use of technologies and techniques that generate a 3D representation of internal body structures, organs, or tissues. This is achieved by acquiring and processing data from various imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, or confocal microscopy. The resulting 3D images offer a more detailed visualization of the anatomy and pathology compared to traditional 2D imaging techniques, allowing for improved diagnostic accuracy, surgical planning, and minimally invasive interventions.

In 3D imaging, specialized software is used to reconstruct the acquired data into a volumetric model, which can be manipulated and viewed from different angles and perspectives. This enables healthcare professionals to better understand complex anatomical relationships, detect abnormalities, assess disease progression, and monitor treatment response. Common applications of 3D imaging include neuroimaging, orthopedic surgery planning, cancer staging, dental and maxillofacial reconstruction, and interventional radiology procedures.

A "delta rhythm" is a term used in electroencephalography (EEG) to describe a pattern of brain waves that are typically seen in the delta frequency range (0.5-4 Hz) and are maximal over the posterior regions of the head. This rhythm is often observed during deep sleep stages, specifically stage 3 and stage 4 of non-rapid eye movement (NREM) sleep, also known as slow-wave sleep.

Delta waves are characterized by their high amplitude and slow frequency, making them easily distinguishable from other brain wave patterns. The presence of a robust delta rhythm during sleep is thought to reflect the restorative processes that occur during this stage of sleep, including memory consolidation and physical restoration.

However, it's important to note that abnormal delta rhythms can also be observed in certain neurological conditions, such as epilepsy or encephalopathy, where they may indicate underlying brain dysfunction or injury. In these cases, the presence of delta rhythm may have different clinical implications and require further evaluation by a medical professional.

Apraxia is a motor disorder characterized by the inability to perform learned, purposeful movements despite having the physical ability and mental understanding to do so. It is not caused by weakness, paralysis, or sensory loss, and it is not due to poor comprehension or motivation.

There are several types of apraxias, including:

1. Limb-Kinematic Apraxia: This type affects the ability to make precise movements with the limbs, such as using tools or performing complex gestures.
2. Ideomotor Apraxia: In this form, individuals have difficulty executing learned motor actions in response to verbal commands or visual cues, but they can still perform the same action when given the actual object to use.
3. Ideational Apraxia: This type affects the ability to sequence and coordinate multiple steps of a complex action, such as dressing oneself or making coffee.
4. Oral Apraxia: Also known as verbal apraxia, this form affects the ability to plan and execute speech movements, leading to difficulties with articulation and speech production.
5. Constructional Apraxia: This type impairs the ability to draw, copy, or construct geometric forms and shapes, often due to visuospatial processing issues.

Apraxias can result from various neurological conditions, such as stroke, brain injury, dementia, or neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Treatment typically involves rehabilitation and therapy focused on retraining the affected movements and compensating for any residual deficits.

Amnesia is a condition characterized by memory loss, which can be temporary or permanent. It may result from brain damage or disease, and it can affect various aspects of memory, such as the ability to recall past events (retrograde amnesia), the ability to form new memories (anterograde amnesia), or both. Amnesia can also affect a person's sense of identity and their ability to learn new skills.

There are several types of amnesia, including:

1. Anterograde amnesia: This type of amnesia affects the ability to form new memories after an injury or trauma. People with anterograde amnesia may have difficulty learning new information and remembering recent events.
2. Retrograde amnesia: Retrograde amnesia affects the ability to recall memories that were formed before an injury or trauma. People with retrograde amnesia may have trouble remembering events, people, or facts from their past.
3. Transient global amnesia: This is a temporary form of amnesia that usually lasts for less than 24 hours. It is often caused by a lack of blood flow to the brain, and it can be triggered by emotional stress, physical exertion, or other factors.
4. Korsakoff's syndrome: This is a type of amnesia that is caused by alcohol abuse and malnutrition. It is characterized by severe memory loss, confusion, and disorientation.
5. Dissociative amnesia: This type of amnesia is caused by psychological factors, such as trauma or stress. People with dissociative amnesia may have trouble remembering important personal information or events that are emotionally charged.

The treatment for amnesia depends on the underlying cause. In some cases, memory may improve over time, while in other cases, it may be permanent. Treatment may involve medication, therapy, or rehabilitation to help people with amnesia cope with their memory loss and develop new skills to compensate for their memory impairments.

Nervous system malformations, also known as nervous system dysplasias or developmental anomalies, refer to structural abnormalities or defects in the development of the nervous system. These malformations can occur during fetal development and can affect various parts of the nervous system, including the brain, spinal cord, and peripheral nerves.

Nervous system malformations can result from genetic mutations, environmental factors, or a combination of both. They can range from mild to severe and may cause a wide variety of symptoms, depending on the specific type and location of the malformation. Some common examples of nervous system malformations include:

* Spina bifida: a defect in the closure of the spinal cord and surrounding bones, which can lead to neurological problems such as paralysis, bladder and bowel dysfunction, and hydrocephalus.
* Anencephaly: a severe malformation where the brain and skull do not develop properly, resulting in stillbirth or death shortly after birth.
* Chiari malformation: a structural defect in the cerebellum, the part of the brain that controls balance and coordination, which can cause headaches, neck pain, and difficulty swallowing.
* Microcephaly: a condition where the head is smaller than normal due to abnormal development of the brain, which can lead to intellectual disability and developmental delays.
* Hydrocephalus: a buildup of fluid in the brain that can cause pressure on the brain and lead to cognitive impairment, vision problems, and other neurological symptoms.

Treatment for nervous system malformations depends on the specific type and severity of the condition and may include surgery, medication, physical therapy, or a combination of these approaches.

Near-infrared spectroscopy (NIRS) is a non-invasive optical technique that uses the near-infrared region of the electromagnetic spectrum (approximately 700-2500 nanometers) to analyze various chemical and physical properties of materials, primarily in the fields of biomedical research and industry. In medicine, NIRS is often used to measure tissue oxygenation, hemodynamics, and metabolism, providing valuable information about organ function and physiology. This technique is based on the principle that different molecules absorb and scatter near-infrared light differently, allowing for the identification and quantification of specific chromophores, such as oxyhemoglobin, deoxyhemoglobin, and cytochrome c oxidase. NIRS can be employed in a variety of clinical settings, including monitoring cerebral or muscle oxygenation during surgery, assessing tissue viability in wound healing, and studying brain function in neuroscience research.

Kindling, in the context of neurology, refers to a process of neural sensitization where repeated exposure to sub-convulsive stimuli below the threshold for triggering a seizure can eventually lower this threshold, leading to an increased susceptibility to develop seizures. This concept is often applied in the study of epilepsy and other neuropsychiatric disorders.

The term "kindling" was first introduced by Racine in 1972 to describe the progressive increase in the severity and duration of behavioral responses following repeated electrical stimulation of the brain in animal models. The kindling process can occur in response to various types of stimuli, including electrical, chemical, or even environmental stimuli, leading to changes in neuronal excitability and synaptic plasticity in certain brain regions, particularly the limbic system.

Over time, repeated stimulation results in a permanent increase in neural hypersensitivity, making it easier to induce seizures with weaker stimuli. This phenomenon has been implicated in the development and progression of some forms of epilepsy, as well as in the underlying mechanisms of certain mood disorders and other neurological conditions.

Microcephaly is a medical condition where an individual has a smaller than average head size. The circumference of the head is significantly below the normal range for age and sex. This condition is typically caused by abnormal brain development, which can be due to genetic factors or environmental influences such as infections or exposure to harmful substances during pregnancy.

Microcephaly can be present at birth (congenital) or develop in the first few years of life. People with microcephaly often have intellectual disabilities, delayed development, and other neurological problems. However, the severity of these issues can vary widely, ranging from mild to severe. It is important to note that not all individuals with microcephaly will experience significant impairments or challenges.

The motor cortex is a region in the frontal lobe of the brain that is responsible for controlling voluntary movements. It is involved in planning, initiating, and executing movements of the limbs, body, and face. The motor cortex contains neurons called Betz cells, which have large cell bodies and are responsible for transmitting signals to the spinal cord to activate muscles. Damage to the motor cortex can result in various movement disorders such as hemiplegia or paralysis on one side of the body.

The amygdala is an almond-shaped group of nuclei located deep within the temporal lobe of the brain, specifically in the anterior portion of the temporal lobes and near the hippocampus. It forms a key component of the limbic system and plays a crucial role in processing emotions, particularly fear and anxiety. The amygdala is involved in the integration of sensory information with emotional responses, memory formation, and decision-making processes.

In response to emotionally charged stimuli, the amygdala can modulate various physiological functions, such as heart rate, blood pressure, and stress hormone release, via its connections to the hypothalamus and brainstem. Additionally, it contributes to social behaviors, including recognizing emotional facial expressions and responding appropriately to social cues. Dysfunctions in amygdala function have been implicated in several psychiatric and neurological conditions, such as anxiety disorders, depression, post-traumatic stress disorder (PTSD), and autism spectrum disorder (ASD).

The Stroop Test is a neuropsychological test that measures the ability to inhibit cognitive interference, or the ability to selectively focus on one task while suppressing irrelevant information. It was developed by John Ridley Stroop in 1935.

In this test, individuals are presented with three cards in each trial:

1. The first card displays a list of color names (e.g., "red," "green," "blue") printed in black ink.
2. The second card shows rectangles filled with different colors (e.g., red rectangle, green rectangle, blue rectangle).
3. The third card has words from the first card, but each word is written in a color that does not match its name (e.g., "red" may be printed in green ink, "green" in blue ink, and "blue" in red ink).

Participants are asked to name the color of the ink for each word on the third card as quickly and accurately as possible while ignoring the written word itself. The time it takes to complete this task is compared to the time taken to perform a control task (e.g., reading the words on the first card or naming the colors on the second card).

The difference in reaction times between these tasks reflects cognitive interference, which occurs when there is a conflict between two simultaneously competing mental processes. The Stroop Test has been widely used in both clinical and research settings to assess various aspects of cognition, including attention, executive function, and processing speed.

"Macaca mulatta" is the scientific name for the Rhesus macaque, a species of monkey that is native to South, Central, and Southeast Asia. They are often used in biomedical research due to their genetic similarity to humans.

Wheat Germ Agglutinin (WGA) is a lectin protein found in wheat germ, which binds specifically to certain sugars on the surface of cells. Horseradish Peroxidase (HRP) is an enzyme derived from horseradish that catalyzes the conversion of certain substrates, producing a chemiluminescent or colorimetric signal.

A WGA-HRP conjugate refers to the formation of a covalent bond between WGA and HRP, creating an immunoconjugate. This complex is often used as a detection tool in various assays, such as ELISA (Enzyme-Linked Immunosorbent Assay) or Western blotting, where it can bind to specific carbohydrates on the target molecule and catalyze a colorimetric or chemiluminescent reaction, allowing for the visualization of the target.

Benign neonatal epilepsy is a rare and specific type of epilepsy that affects newborns within the first few days of life. The term "benign" in this context refers to the relatively favorable prognosis compared to other forms of neonatal epilepsy, rather than the severity of the seizures themselves.

The condition is typically characterized by the presence of brief, recurrent seizures that may appear as repetitive jerking movements, staring spells, or subtle changes in muscle tone or behavior. These seizures are often triggered by routine handling or stimulation and can be difficult to distinguish from normal newborn behaviors, making diagnosis challenging.

Benign neonatal epilepsy is typically associated with specific genetic mutations that affect the electrical activity of brain cells. The most common form of this condition, known as Benign Familial Neonatal Epilepsy (BFNE), is caused by mutations in genes such as KCNQ2 or KCNQ3, which encode potassium channels in neurons.

While the seizures associated with benign neonatal epilepsy can be alarming, they are generally not harmful to the developing brain and tend to resolve on their own within a few months. Treatment is often focused on managing the seizures with antiepileptic medications to reduce their frequency and severity, although some infants may require no treatment at all.

Overall, while benign neonatal epilepsy can be a concerning condition for parents and caregivers, its favorable prognosis and relatively mild impact on long-term neurological development make it one of the more manageable forms of neonatal epilepsy.

Aging is a complex, progressive and inevitable process of bodily changes over time, characterized by the accumulation of cellular damage and degenerative changes that eventually lead to increased vulnerability to disease and death. It involves various biological, genetic, environmental, and lifestyle factors that contribute to the decline in physical and mental functions. The medical field studies aging through the discipline of gerontology, which aims to understand the underlying mechanisms of aging and develop interventions to promote healthy aging and extend the human healthspan.

Organotechnetium compounds are chemical substances that contain carbon-technetium bonds, where technetium is an element with the symbol Tc and atomic number 43. These types of compounds are primarily used in medical imaging as radioactive tracers due to the ability of technetium-99m to emit gamma rays. The organotechnetium compounds help in localizing specific organs, tissues, or functions within the body, making them useful for diagnostic purposes in nuclear medicine.

It is important to note that most organotechnetium compounds are synthesized from technetium-99m, which is generated from the decay of molybdenum-99. The use of these compounds requires proper handling and administration by trained medical professionals due to their radioactive nature.

Concept formation in the medical context refers to the cognitive process of forming a concept or mental representation about a specific medical condition, treatment, or phenomenon. This involves identifying and integrating common characteristics, patterns, or features to create a coherent understanding. It's a critical skill for healthcare professionals, as it enables them to make accurate diagnoses, develop effective treatment plans, and conduct research.

In psychology, concept formation is often studied using tasks such as categorization, where participants are asked to sort objects or concepts into different groups based on shared features. This helps researchers understand how people form and use concepts in their thinking and decision-making processes.

A ketogenic diet is a type of diet that is characterized by a significant reduction in carbohydrate intake and an increase in fat intake, with the goal of inducing a metabolic state called ketosis. In ketosis, the body shifts from using glucose (carbohydrates) as its primary source of energy to using ketones, which are produced by the liver from fatty acids.

The typical ketogenic diet consists of a daily intake of less than 50 grams of carbohydrates, with protein intake moderated and fat intake increased to make up the majority of calories. This can result in a rapid decrease in blood sugar and insulin levels, which can have various health benefits for some individuals, such as weight loss, improved blood sugar control, and reduced risk factors for heart disease.

However, it is important to note that a ketogenic diet may not be suitable for everyone, particularly those with certain medical conditions or who are taking certain medications. It is always recommended to consult with a healthcare provider before starting any new diet plan.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Creativity is not a term that is typically defined in a medical context, as it is more commonly associated with the arts, humanities, and certain fields of psychology. However, creativity can be generally described as the ability to generate ideas, solutions, or expressions that are both original and valuable. It involves the use of imagination, innovation, and inventiveness, and often requires the ability to think outside of the box and make connections between seemingly unrelated concepts or ideas.

In a medical context, creativity may be discussed in relation to its potential impact on health outcomes, such as its role in promoting mental well-being, reducing stress, and enhancing cognitive function. Some research has suggested that engaging in creative activities can have positive effects on physical health as well, such as by boosting the immune system and reducing the risk of chronic diseases.

It's worth noting that while creativity is often associated with artistic or intellectual pursuits, it can manifest in many different forms and contexts, from problem-solving and innovation in the workplace to everyday decision-making and social interactions.

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

Dysarthria is a motor speech disorder that results from damage to the nervous system, particularly the brainstem or cerebellum. It affects the muscles used for speaking, causing slurred, slow, or difficult speech. The specific symptoms can vary depending on the underlying cause and the extent of nerve damage. Treatment typically involves speech therapy to improve communication abilities.

A brain abscess is a localized collection of pus in the brain that is caused by an infection. It can develop as a result of a bacterial, fungal, or parasitic infection that spreads to the brain from another part of the body or from an infection that starts in the brain itself (such as from a head injury or surgery).

The symptoms of a brain abscess may include headache, fever, confusion, seizures, weakness or numbness on one side of the body, and changes in vision, speech, or behavior. Treatment typically involves antibiotics to treat the infection, as well as surgical drainage of the abscess to relieve pressure on the brain.

It is a serious medical condition that requires prompt diagnosis and treatment to prevent potentially life-threatening complications such as brain herniation or permanent neurological damage.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Brain chemistry refers to the chemical processes that occur within the brain, particularly those involving neurotransmitters, neuromodulators, and neuropeptides. These chemicals are responsible for transmitting signals between neurons (nerve cells) in the brain, allowing for various cognitive, emotional, and physical functions.

Neurotransmitters are chemical messengers that transmit signals across the synapse (the tiny gap between two neurons). Examples of neurotransmitters include dopamine, serotonin, norepinephrine, GABA (gamma-aminobutyric acid), and glutamate. Each neurotransmitter has a specific role in brain function, such as regulating mood, motivation, attention, memory, and movement.

Neuromodulators are chemicals that modify the effects of neurotransmitters on neurons. They can enhance or inhibit the transmission of signals between neurons, thereby modulating brain activity. Examples of neuromodulators include acetylcholine, histamine, and substance P.

Neuropeptides are small protein-like molecules that act as neurotransmitters or neuromodulators. They play a role in various physiological functions, such as pain perception, stress response, and reward processing. Examples of neuropeptides include endorphins, enkephalins, and oxytocin.

Abnormalities in brain chemistry can lead to various neurological and psychiatric conditions, such as depression, anxiety disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. Understanding brain chemistry is crucial for developing effective treatments for these conditions.

Psychiatric Status Rating Scales are standardized assessment tools used by mental health professionals to evaluate and rate the severity of a person's psychiatric symptoms and functioning. These scales provide a systematic and structured approach to measuring various aspects of an individual's mental health, such as mood, anxiety, psychosis, behavior, and cognitive abilities.

The purpose of using Psychiatric Status Rating Scales is to:

1. Assess the severity and improvement of psychiatric symptoms over time.
2. Aid in diagnostic decision-making and treatment planning.
3. Monitor treatment response and adjust interventions accordingly.
4. Facilitate communication among mental health professionals about a patient's status.
5. Provide an objective basis for research and epidemiological studies.

Examples of Psychiatric Status Rating Scales include:

1. Clinical Global Impression (CGI): A brief, subjective rating scale that measures overall illness severity, treatment response, and improvement.
2. Positive and Negative Syndrome Scale (PANSS): A comprehensive scale used to assess the symptoms of psychosis, including positive, negative, and general psychopathology domains.
3. Hamilton Rating Scale for Depression (HRSD) or Montgomery-Ã…sberg Depression Rating Scale (MADRS): Scales used to evaluate the severity of depressive symptoms.
4. Young Mania Rating Scale (YMRS): A scale used to assess the severity of manic or hypomanic symptoms.
5. Brief Psychiatric Rating Scale (BPRS) or Symptom Checklist-90 Revised (SCL-90-R): Scales that measure a broad range of psychiatric symptoms and psychopathology.
6. Global Assessment of Functioning (GAF): A scale used to rate an individual's overall psychological, social, and occupational functioning on a hypothetical continuum of mental health-illness.

It is important to note that Psychiatric Status Rating Scales should be administered by trained mental health professionals to ensure accurate and reliable results.

Leukoencephalopathies are a group of medical conditions that primarily affect the white matter of the brain, which consists mainly of nerve fibers covered by myelin sheaths. These conditions are characterized by abnormalities in the structure and function of the white matter, leading to various neurological symptoms such as cognitive decline, motor impairment, seizures, and behavioral changes.

The term "leukoencephalopathy" is derived from two Greek words: "leukos," meaning white, and "enkephalos," meaning brain. The suffix "-pathy" refers to a disease or suffering. Therefore, leukoencephalopathies refer specifically to diseases that affect the white matter of the brain.

There are various types of leukoencephalopathies, including genetic, metabolic, infectious, toxic, and immune-mediated forms. Some examples include multiple sclerosis, adrenoleukodystrophy, Alexander disease, Canavan disease, and Marchiafava-Bignami disease. The diagnosis of leukoencephalopathies typically involves a combination of clinical evaluation, imaging studies such as MRI, and sometimes genetic or laboratory testing to identify the underlying cause. Treatment depends on the specific type and severity of the condition and may include medications, dietary modifications, physical therapy, or supportive care.

Vagus nerve stimulation (VNS) is a medical treatment that involves the use of a device to send electrical signals to the vagus nerve, which is a key part of the body's autonomic nervous system. The autonomic nervous system controls various automatic functions of the body, such as heart rate and digestion.

In VNS, a small generator is implanted in the chest, and thin wires are routed under the skin to the vagus nerve in the neck. The generator is programmed to send electrical signals to the vagus nerve at regular intervals. These signals can help regulate certain body functions and have been found to be effective in treating a number of conditions, including epilepsy and depression.

The exact mechanism by which VNS works is not fully understood, but it is thought to affect the release of neurotransmitters, chemicals that transmit signals in the brain. This can help reduce seizure activity in people with epilepsy and improve mood and other symptoms in people with depression.

VNS is typically used as a last resort for people who have not responded to other treatments. It is generally considered safe, but like any medical procedure, it does carry some risks, such as infection, bleeding, and damage to the vagus nerve or surrounding tissues.

A hallucination is a perception in the absence of external stimuli. They are sensory experiences that feel real, but are generated from inside the mind rather than by external reality. Hallucinations can occur in any of the senses, causing individuals to hear sounds, see visions, or smell odors that aren't actually present. They can range from relatively simple experiences, such as seeing flashes of light, to complex experiences like seeing and interacting with people or objects that aren't there. Hallucinations are often associated with certain medical conditions, mental health disorders, or the use of certain substances.

Progressive Supranuclear Palsy (PSP) is a rare neurological disorder characterized by the progressive degeneration of brain cells that regulate movement, thoughts, behavior, and eye movements. The term "supranuclear" refers to the location of the damage in the brain, specifically above the level of the "nuclei" which are clusters of nerve cells that control voluntary movements.

The most common early symptom of PSP is a loss of balance and difficulty coordinating eye movements, particularly vertical gaze. Other symptoms may include stiffness or rigidity of muscles, slowness of movement, difficulty swallowing, changes in speech and writing, and cognitive decline leading to dementia.

PSP typically affects people over the age of 60, and its progression can vary from person to person. Currently, there is no cure for PSP, and treatment is focused on managing symptoms and maintaining quality of life.

Hemianopsia is a medical term that refers to a loss of vision in half of the visual field in one or both eyes. It can be either homonymous (the same side in both eyes) or heteronymous (different sides in each eye). Hemianopsia usually results from damage to the optic radiations or occipital cortex in the brain, often due to stroke, trauma, tumor, or other neurological conditions. It can significantly impact a person's daily functioning and may require visual rehabilitation to help compensate for the vision loss.

Computer-assisted signal processing is a medical term that refers to the use of computer algorithms and software to analyze, interpret, and extract meaningful information from biological signals. These signals can include physiological data such as electrocardiogram (ECG) waves, electromyography (EMG) signals, electroencephalography (EEG) readings, or medical images.

The goal of computer-assisted signal processing is to automate the analysis of these complex signals and extract relevant features that can be used for diagnostic, monitoring, or therapeutic purposes. This process typically involves several steps, including:

1. Signal acquisition: Collecting raw data from sensors or medical devices.
2. Preprocessing: Cleaning and filtering the data to remove noise and artifacts.
3. Feature extraction: Identifying and quantifying relevant features in the signal, such as peaks, troughs, or patterns.
4. Analysis: Applying statistical or machine learning algorithms to interpret the extracted features and make predictions about the underlying physiological state.
5. Visualization: Presenting the results in a clear and intuitive way for clinicians to review and use.

Computer-assisted signal processing has numerous applications in healthcare, including:

* Diagnosing and monitoring cardiac arrhythmias or other heart conditions using ECG signals.
* Assessing muscle activity and function using EMG signals.
* Monitoring brain activity and diagnosing neurological disorders using EEG readings.
* Analyzing medical images to detect abnormalities, such as tumors or fractures.

Overall, computer-assisted signal processing is a powerful tool for improving the accuracy and efficiency of medical diagnosis and monitoring, enabling clinicians to make more informed decisions about patient care.

Neurological models are simplified representations or simulations of various aspects of the nervous system, including its structure, function, and processes. These models can be theoretical, computational, or physical and are used to understand, explain, and predict neurological phenomena. They may focus on specific neurological diseases, disorders, or functions, such as memory, learning, or movement. The goal of these models is to provide insights into the complex workings of the nervous system that cannot be easily observed or understood through direct examination alone.

A meningioma is a type of slow-growing tumor that forms on the membranes (meninges) surrounding the brain and spinal cord. It's usually benign, meaning it doesn't spread to other parts of the body, but it can still cause serious problems if it grows and presses on nearby tissues.

Meningiomas most commonly occur in adults, and are more common in women than men. They can cause various symptoms depending on their location and size, including headaches, seizures, vision or hearing problems, memory loss, and changes in personality or behavior. In some cases, they may not cause any symptoms at all and are discovered only during imaging tests for other conditions.

Treatment options for meningiomas include monitoring with regular imaging scans, surgery to remove the tumor, and radiation therapy to shrink or kill the tumor cells. The best treatment approach depends on factors such as the size and location of the tumor, the patient's age and overall health, and their personal preferences.

Space perception, in the context of neuroscience and psychology, refers to the ability to perceive and understand the spatial arrangement of objects and their relationship to oneself. It involves integrating various sensory inputs such as visual, auditory, tactile, and proprioceptive information to create a coherent three-dimensional representation of our environment.

This cognitive process enables us to judge distances, sizes, shapes, and movements of objects around us. It also helps us navigate through space, reach for objects, avoid obstacles, and maintain balance. Disorders in space perception can lead to difficulties in performing everyday activities and may be associated with neurological conditions such as stroke, brain injury, or neurodevelopmental disorders like autism.

Frontotemporal lobar degeneration (FTLD) is a group of disorders characterized by the progressive degeneration of the frontal and temporal lobes of the brain. These areas of the brain are involved in decision-making, behavior, emotion, and language. FTLD can be divided into several subtypes based on the specific clinical features and the underlying protein abnormalities.

The three main subtypes of FTLD are:

1. Behavioral variant frontotemporal dementia (bvFTD): This subtype is characterized by changes in personality, behavior, and judgment. People with bvFTD may lose their social inhibitions, become impulsive, or develop compulsive behaviors. They may also have difficulty with emotional processing and empathy.
2. Primary progressive aphasia (PPA): This subtype is characterized by the gradual deterioration of language skills. People with PPA may have difficulty speaking, understanding spoken or written language, or both. There are three subtypes of PPA: nonfluent/agrammatic variant, semantic variant, and logopenic variant.
3. Motor neuron disease (MND) with FTLD: This subtype is characterized by the degeneration of motor neurons, which are the nerve cells responsible for controlling voluntary muscle movements. People with MND with FTLD may develop symptoms of amyotrophic lateral sclerosis (ALS), such as muscle weakness, stiffness, and twitching, as well as cognitive and behavioral changes associated with FTLD.

The underlying protein abnormalities in FTLD include:

1. Tau protein: In some forms of FTLD, the tau protein accumulates and forms clumps called tangles inside nerve cells. This is also seen in Alzheimer's disease.
2. TDP-43 protein: In other forms of FTLD, the TDP-43 protein accumulates and forms clumps inside nerve cells.
3. Fused in sarcoma (FUS) protein: In a small number of cases, the FUS protein accumulates and forms clumps inside nerve cells.

FTLD is typically a progressive disorder, meaning that symptoms worsen over time. There is currently no cure for FTLD, but there are treatments available to help manage symptoms and improve quality of life.

Autistic Disorder, also known as Autism or Classic Autism, is a neurodevelopmental disorder that affects communication and behavior. It is characterized by:

1. Persistent deficits in social communication and social interaction across multiple contexts, including:
* Deficits in social-emotional reciprocity;
* Deficits in nonverbal communicative behaviors used for social interaction;
* Deficits in developing, maintaining, and understanding relationships.
2. Restricted, repetitive patterns of behavior, interests, or activities, as manifested by at least two of the following:
* Stereotyped or repetitive motor movements, use of objects, or speech;
* Insistence on sameness, inflexible adherence to routines, or ritualized patterns of verbal or nonverbal behavior;
* Highly restricted, fixated interests that are abnormal in intensity or focus;
* Hyper- or hyporeactivity to sensory input or unusual interest in sensory aspects of the environment.
3. Symptoms must be present in the early developmental period (but may not become fully manifest until social demands exceed limited capacities) and limit or impair everyday functioning.
4. Symptoms do not occur exclusively during the course of a schizophrenia spectrum disorder or other psychotic disorders.

Autistic Disorder is part of the autism spectrum disorders (ASDs), which also include Asperger's Syndrome and Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS). The current diagnostic term for this category of conditions, according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), is Autism Spectrum Disorder.

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

Phenytoin is an anticonvulsant drug, primarily used in the treatment of seizures and prevention of seizure recurrence. It works by reducing the spread of seizure activity in the brain and stabilizing the electrical activity of neurons. Phenytoin is also known to have anti-arrhythmic properties and is occasionally used in the management of certain cardiac arrhythmias.

The drug is available in various forms, including immediate-release tablets, extended-release capsules, and a liquid formulation. Common side effects of phenytoin include dizziness, drowsiness, headache, nausea, vomiting, and unsteady gait. Regular monitoring of blood levels is necessary to ensure that the drug remains within the therapeutic range, as both low and high levels can lead to adverse effects.

It's important to note that phenytoin has several potential drug-drug interactions, particularly with other anticonvulsant medications, certain antibiotics, and oral contraceptives. Therefore, it is crucial to inform healthcare providers about all the medications being taken to minimize the risk of interactions and optimize treatment outcomes.

Statistics, as a topic in the context of medicine and healthcare, refers to the scientific discipline that involves the collection, analysis, interpretation, and presentation of numerical data or quantifiable data in a meaningful and organized manner. It employs mathematical theories and models to draw conclusions, make predictions, and support evidence-based decision-making in various areas of medical research and practice.

Some key concepts and methods in medical statistics include:

1. Descriptive Statistics: Summarizing and visualizing data through measures of central tendency (mean, median, mode) and dispersion (range, variance, standard deviation).
2. Inferential Statistics: Drawing conclusions about a population based on a sample using hypothesis testing, confidence intervals, and statistical modeling.
3. Probability Theory: Quantifying the likelihood of events or outcomes in medical scenarios, such as diagnostic tests' sensitivity and specificity.
4. Study Designs: Planning and implementing various research study designs, including randomized controlled trials (RCTs), cohort studies, case-control studies, and cross-sectional surveys.
5. Sampling Methods: Selecting a representative sample from a population to ensure the validity and generalizability of research findings.
6. Multivariate Analysis: Examining the relationships between multiple variables simultaneously using techniques like regression analysis, factor analysis, or cluster analysis.
7. Survival Analysis: Analyzing time-to-event data, such as survival rates in clinical trials or disease progression.
8. Meta-Analysis: Systematically synthesizing and summarizing the results of multiple studies to provide a comprehensive understanding of a research question.
9. Biostatistics: A subfield of statistics that focuses on applying statistical methods to biological data, including medical research.
10. Epidemiology: The study of disease patterns in populations, which often relies on statistical methods for data analysis and interpretation.

Medical statistics is essential for evidence-based medicine, clinical decision-making, public health policy, and healthcare management. It helps researchers and practitioners evaluate the effectiveness and safety of medical interventions, assess risk factors and outcomes associated with diseases or treatments, and monitor trends in population health.

Convulsants are substances or agents that can cause seizures or convulsions. These can be medications, toxins, or illnesses that lower the seizure threshold and lead to abnormal electrical activity in the brain, resulting in uncontrolled muscle contractions and relaxation. Examples of convulsants include bromides, strychnine, organophosphate pesticides, certain antibiotics (such as penicillin or cephalosporins), and alcohol withdrawal. It is important to note that some medications used to treat seizures can also have convulsant properties at higher doses or in overdose situations.

Emotions are complex psychological states that involve three distinct components: a subjective experience, a physiological response, and a behavioral or expressive response. Emotions can be short-lived, such as a flash of anger, or more long-lasting, such as enduring sadness. They can also vary in intensity, from mild irritation to intense joy or fear.

Emotions are often distinguished from other psychological states, such as moods and temperament, which may be less specific and more enduring. Emotions are typically thought to have a clear cause or object, such as feeling happy when you receive good news or feeling anxious before a job interview.

There are many different emotions that people can experience, including happiness, sadness, anger, fear, surprise, disgust, and shame. These emotions are often thought to serve important adaptive functions, helping individuals respond to challenges and opportunities in their environment.

In medical contexts, emotions may be relevant to the diagnosis and treatment of various mental health conditions, such as depression, anxiety disorders, and bipolar disorder. Abnormalities in emotional processing and regulation have been implicated in many psychiatric illnesses, and therapies that target these processes may be effective in treating these conditions.

In the context of medicine, "cues" generally refer to specific pieces of information or signals that can help healthcare professionals recognize and respond to a particular situation or condition. These cues can come in various forms, such as:

1. Physical examination findings: For example, a patient's abnormal heart rate or blood pressure reading during a physical exam may serve as a cue for the healthcare professional to investigate further.
2. Patient symptoms: A patient reporting chest pain, shortness of breath, or other concerning symptoms can act as a cue for a healthcare provider to consider potential diagnoses and develop an appropriate treatment plan.
3. Laboratory test results: Abnormal findings on laboratory tests, such as elevated blood glucose levels or abnormal liver function tests, may serve as cues for further evaluation and diagnosis.
4. Medical history information: A patient's medical history can provide valuable cues for healthcare professionals when assessing their current health status. For example, a history of smoking may increase the suspicion for chronic obstructive pulmonary disease (COPD) in a patient presenting with respiratory symptoms.
5. Behavioral or environmental cues: In some cases, behavioral or environmental factors can serve as cues for healthcare professionals to consider potential health risks. For instance, exposure to secondhand smoke or living in an area with high air pollution levels may increase the risk of developing respiratory conditions.

Overall, "cues" in a medical context are essential pieces of information that help healthcare professionals make informed decisions about patient care and treatment.

Verbal learning is a type of learning that involves the acquisition, processing, and retrieval of information presented in a verbal or written form. It is often assessed through tasks such as list learning, where an individual is asked to remember a list of words or sentences after a single presentation or multiple repetitions. Verbal learning is an important aspect of cognitive functioning and is commonly evaluated in neuropsychological assessments to help identify any memory or learning impairments.

Infantile spasms, also known as West syndrome, is a rare but serious type of epilepsy that affects infants typically between 4-8 months of age. The spasms are characterized by sudden, brief, and frequent muscle jerks or contractions, often involving the neck, trunk, and arms. These spasms usually occur in clusters and may cause the infant to bend forward or stretch out. Infantile spasms can be a symptom of various underlying neurological conditions and are often associated with developmental delays and regression. Early recognition and treatment are crucial for improving outcomes.

Acoustic stimulation refers to the use of sound waves or vibrations to elicit a response in an individual, typically for the purpose of assessing or treating hearing, balance, or neurological disorders. In a medical context, acoustic stimulation may involve presenting pure tones, speech sounds, or other types of auditory signals through headphones, speakers, or specialized devices such as bone conduction transducers.

The response to acoustic stimulation can be measured using various techniques, including electrophysiological tests like auditory brainstem responses (ABRs) or otoacoustic emissions (OAEs), behavioral observations, or functional imaging methods like fMRI. Acoustic stimulation is also used in therapeutic settings, such as auditory training programs for hearing impairment or vestibular rehabilitation for balance disorders.

It's important to note that acoustic stimulation should be administered under the guidance of a qualified healthcare professional to ensure safety and effectiveness.

Vigabatrin is an anticonvulsant medication used to treat certain types of seizures in adults and children. It works by reducing the abnormal excitement in the brain. The medical definition of Vigabatrin is: a irreversible inhibitor of GABA transaminase, which results in increased levels of gamma-aminobutyric acid (GABA) in the central nervous system. This medication is used as an adjunctive treatment for complex partial seizures and is available in oral form for administration.

It's important to note that Vigabatrin can cause serious side effects, including permanent vision loss, and its use should be closely monitored by a healthcare professional. It is also classified as a pregnancy category C medication, which means it may harm an unborn baby and should only be used during pregnancy if the potential benefit justifies the potential risk to the fetus.

Neurosurgery, also known as neurological surgery, is a medical specialty that involves the diagnosis, surgical treatment, and rehabilitation of disorders of the nervous system. This includes the brain, spinal cord, peripheral nerves, and extra-cranial cerebrovascular system. Neurosurgeons use both traditional open and minimally invasive techniques to treat various conditions such as tumors, trauma, vascular disorders, infections, stroke, epilepsy, pain, and congenital anomalies. They work closely with other healthcare professionals including neurologists, radiologists, oncologists, and critical care specialists to provide comprehensive patient care.

In medical terms, the orbit refers to the bony cavity or socket in the skull that contains and protects the eye (eyeball) and its associated structures, including muscles, nerves, blood vessels, fat, and the lacrimal gland. The orbit is made up of several bones: the frontal bone, sphenoid bone, zygomatic bone, maxilla bone, and palatine bone. These bones form a pyramid-like shape that provides protection for the eye while also allowing for a range of movements.

A basal ganglia hemorrhage is a type of intracranial hemorrhage, which is defined as bleeding within the skull or brain. Specifically, a basal ganglia hemorrhage involves bleeding into the basal ganglia, which are clusters of neurons located deep within the forebrain and are involved in regulating movement, cognition, and emotion.

Basal ganglia hemorrhages can result from various factors, including hypertension (high blood pressure), cerebral amyloid angiopathy, illicit drug use (such as cocaine or amphetamines), and head trauma. Symptoms of a basal ganglia hemorrhage may include sudden onset of severe headache, altered consciousness, weakness or paralysis on one side of the body, difficulty speaking or understanding speech, and visual disturbances.

Diagnosis of a basal ganglia hemorrhage typically involves imaging studies such as computed tomography (CT) or magnetic resonance imaging (MRI). Treatment may include supportive care, medications to control symptoms, and surgical intervention in some cases. The prognosis for individuals with a basal ganglia hemorrhage varies depending on the severity of the bleed, the presence of underlying medical conditions, and the timeliness and effectiveness of treatment.

A delusion is a fixed, false belief that is firmly held despite evidence to the contrary and is not shared by others who hold similar cultural or religious beliefs. Delusions are a key symptom of certain psychiatric disorders, such as schizophrenia and delusional disorder. They can also be seen in other medical conditions, such as dementia, brain injury, or substance abuse.

Delusions can take many forms, but some common types include:

* Persecutory delusions: the belief that one is being targeted or harmed by others
* Grandiose delusions: the belief that one has special powers, talents, or importance
* Erotomanic delusions: the belief that someone, often of higher social status, is in love with the individual
* Somatic delusions: the belief that one's body is abnormal or has been altered in some way
* Religious or spiritual delusions: the belief that one has a special relationship with a deity or religious figure

Delusions should not be confused with overvalued ideas, which are strongly held beliefs based on subjective interpretation of experiences or evidence. Overvalued ideas may be shared by others and can sometimes develop into delusions if they become fixed and firmly held despite contradictory evidence.

Electric stimulation, also known as electrical nerve stimulation or neuromuscular electrical stimulation, is a therapeutic treatment that uses low-voltage electrical currents to stimulate nerves and muscles. It is often used to help manage pain, promote healing, and improve muscle strength and mobility. The electrical impulses can be delivered through electrodes placed on the skin or directly implanted into the body.

In a medical context, electric stimulation may be used for various purposes such as:

1. Pain management: Electric stimulation can help to block pain signals from reaching the brain and promote the release of endorphins, which are natural painkillers produced by the body.
2. Muscle rehabilitation: Electric stimulation can help to strengthen muscles that have become weak due to injury, illness, or surgery. It can also help to prevent muscle atrophy and improve range of motion.
3. Wound healing: Electric stimulation can promote tissue growth and help to speed up the healing process in wounds, ulcers, and other types of injuries.
4. Urinary incontinence: Electric stimulation can be used to strengthen the muscles that control urination and reduce symptoms of urinary incontinence.
5. Migraine prevention: Electric stimulation can be used as a preventive treatment for migraines by applying electrical impulses to specific nerves in the head and neck.

It is important to note that electric stimulation should only be administered under the guidance of a qualified healthcare professional, as improper use can cause harm or discomfort.

Intelligence tests are standardized procedures used to assess various aspects of an individual's cognitive abilities, such as their problem-solving skills, logical reasoning, verbal comprehension, and spatial relations. These tests provide a quantitative measurement of intelligence, often reported as an Intelligence Quotient (IQ) score. It is important to note that intelligence is a multifaceted concept, and intelligence tests measure only certain aspects of it. They should not be considered the sole determinant of an individual's overall intellectual capabilities or potential.

The Wechsler Scales are a series of intelligence and neuropsychological tests used to assess various aspects of cognitive functioning in individuals across the lifespan. The scales include:

1. Wechsler Preschool and Primary Scale of Intelligence (WPPSI): Designed for children aged 2 years 6 months to 7 years 3 months, it measures verbal (e.g., vocabulary, comprehension) and performance (e.g., visual-motor integration, spatial reasoning) abilities.
2. Wechsler Intelligence Scale for Children (WISC): Developed for children aged 6 to 16 years, it evaluates verbal comprehension, perceptual reasoning, working memory, and processing speed.
3. Wechsler Adult Intelligence Scale (WAIS): Created for adults aged 16 to 90 years, it assesses similar domains as the WISC but with more complex tasks.
4. Wechsler Memory Scale (WMS): Designed to measure various aspects of memory functioning in individuals aged 16 to 89 years, including visual and auditory immediate and delayed recall, working memory, and attention.
5. Wechsler Abbreviated Scale of Intelligence (WASI): A brief version of the WAIS used for quicker intelligence screening in individuals aged 6 to 89 years.

These scales are widely used in clinical, educational, and research settings to identify strengths and weaknesses in cognitive abilities, diagnose learning disabilities and other neurodevelopmental disorders, monitor treatment progress, and provide recommendations for interventions and accommodations.

"Cebus" is a genus of New World monkeys, also known as capuchin monkeys. They are small to medium-sized primates that are native to Central and South America. Capuchin monkeys are named after the Order of Friars Minor Capuchin, because of their similarity in color to the robes worn by the friars.

Capuchin monkeys are highly intelligent and social animals, living in groups of up to 30 individuals. They have a diverse diet that includes fruits, nuts, seeds, insects, and small vertebrates. Capuchin monkeys are known for their problem-solving abilities and have been observed using tools in the wild.

There are several species of capuchin monkeys, including the white-fronted capuchin (Cebus albifrons), the tufted capuchin (Cebus apella), and the weeper capuchin (Cebus olivaceus). They vary in size, coloration, and behavior, but all share the characteristic cap of hair on their heads that gives them their name.

Choice behavior refers to the selection or decision-making process in which an individual consciously or unconsciously chooses one option over others based on their preferences, values, experiences, and motivations. In a medical context, choice behavior may relate to patients' decisions about their healthcare, such as selecting a treatment option, choosing a healthcare provider, or adhering to a prescribed medication regimen. Understanding choice behavior is essential in shaping health policies, developing patient-centered care models, and improving overall health outcomes.

Fluorodeoxyglucose F18 (FDG-18) is not a medical condition, but a radiopharmaceutical used in medical imaging. It is a type of glucose (a simple sugar) that has been chemically combined with a small amount of a radioactive isotope called fluorine-18.

FDG-18 is used in positron emission tomography (PET) scans to help identify areas of the body where cells are using more energy than normal, such as cancerous tumors. The FDG-18 is injected into the patient's vein and travels throughout the body. Because cancer cells often use more glucose than normal cells, they tend to absorb more FDG-18.

Once inside the body, the FDG-18 emits positrons, which interact with electrons in nearby tissue, producing gamma rays that can be detected by a PET scanner. The resulting images can help doctors locate and assess the size and activity of cancerous tumors, as well as monitor the effectiveness of treatment.

In the context of medicine and healthcare, learning is often discussed in relation to learning abilities or disabilities that may impact an individual's capacity to acquire, process, retain, and apply new information or skills. Learning can be defined as the process of acquiring knowledge, understanding, behaviors, and skills through experience, instruction, or observation.

Learning disorders, also known as learning disabilities, are a type of neurodevelopmental disorder that affects an individual's ability to learn and process information in one or more areas, such as reading, writing, mathematics, or reasoning. These disorders are not related to intelligence or motivation but rather result from differences in the way the brain processes information.

It is important to note that learning can also be influenced by various factors, including age, cognitive abilities, physical and mental health status, cultural background, and educational experiences. Therefore, a comprehensive assessment of an individual's learning abilities and needs should take into account these various factors to provide appropriate support and interventions.

Cerebral infarction, also known as a "stroke" or "brain attack," is the sudden death of brain cells caused by the interruption of their blood supply. It is most commonly caused by a blockage in one of the blood vessels supplying the brain (an ischemic stroke), but can also result from a hemorrhage in or around the brain (a hemorrhagic stroke).

Ischemic strokes occur when a blood clot or other particle blocks a cerebral artery, cutting off blood flow to a part of the brain. The lack of oxygen and nutrients causes nearby brain cells to die. Hemorrhagic strokes occur when a weakened blood vessel ruptures, causing bleeding within or around the brain. This bleeding can put pressure on surrounding brain tissues, leading to cell death.

Symptoms of cerebral infarction depend on the location and extent of the affected brain tissue but may include sudden weakness or numbness in the face, arm, or leg; difficulty speaking or understanding speech; vision problems; loss of balance or coordination; and severe headache with no known cause. Immediate medical attention is crucial for proper diagnosis and treatment to minimize potential long-term damage or disability.

Intellectual disability (ID) is a term used when there are significant limitations in both intellectual functioning and adaptive behavior, which covers many everyday social and practical skills. This disability originates before the age of 18.

Intellectual functioning, also known as intelligence, refers to general mental capacity, such as learning, reasoning, problem-solving, and other cognitive skills. Adaptive behavior includes skills needed for day-to-day life, such as communication, self-care, social skills, safety judgement, and basic academic skills.

Intellectual disability is characterized by below-average intelligence or mental ability and a lack of skills necessary for day-to-day living. It can be mild, moderate, severe, or profound, depending on the degree of limitation in intellectual functioning and adaptive behavior.

It's important to note that people with intellectual disabilities have unique strengths and limitations, just like everyone else. With appropriate support and education, they can lead fulfilling lives and contribute to their communities in many ways.

Radiopharmaceuticals are defined as pharmaceutical preparations that contain radioactive isotopes and are used for diagnosis or therapy in nuclear medicine. These compounds are designed to interact specifically with certain biological targets, such as cells, tissues, or organs, and emit radiation that can be detected and measured to provide diagnostic information or used to destroy abnormal cells or tissue in therapeutic applications.

The radioactive isotopes used in radiopharmaceuticals have carefully controlled half-lives, which determine how long they remain radioactive and how long the pharmaceutical preparation remains effective. The choice of radioisotope depends on the intended use of the radiopharmaceutical, as well as factors such as its energy, range of emission, and chemical properties.

Radiopharmaceuticals are used in a wide range of medical applications, including imaging, cancer therapy, and treatment of other diseases and conditions. Examples of radiopharmaceuticals include technetium-99m for imaging the heart, lungs, and bones; iodine-131 for treating thyroid cancer; and samarium-153 for palliative treatment of bone metastases.

The use of radiopharmaceuticals requires specialized training and expertise in nuclear medicine, as well as strict adherence to safety protocols to minimize radiation exposure to patients and healthcare workers.

A cerebral hemorrhage, also known as an intracranial hemorrhage or intracerebral hemorrhage, is a type of stroke that results from bleeding within the brain tissue. It occurs when a weakened blood vessel bursts and causes localized bleeding in the brain. This bleeding can increase pressure in the skull, damage nearby brain cells, and release toxic substances that further harm brain tissues.

Cerebral hemorrhages are often caused by chronic conditions like hypertension (high blood pressure) or cerebral amyloid angiopathy, which weakens the walls of blood vessels over time. Other potential causes include trauma, aneurysms, arteriovenous malformations, illicit drug use, and brain tumors. Symptoms may include sudden headache, weakness, numbness, difficulty speaking or understanding speech, vision problems, loss of balance, and altered level of consciousness. Immediate medical attention is required to diagnose and manage cerebral hemorrhage through imaging techniques, supportive care, and possible surgical interventions.

Diffuse axonal injury (DAI) is a type of traumatic brain injury that occurs when there is extensive damage to the nerve fibers (axons) in the brain. It is often caused by rapid acceleration or deceleration forces, such as those experienced during motor vehicle accidents or falls. In DAI, the axons are stretched and damaged, leading to disruption of communication between different parts of the brain. This can result in a wide range of symptoms, including cognitive impairment, loss of consciousness, and motor dysfunction. DAI is often difficult to diagnose and can have long-term consequences, making it an important area of study in traumatic brain injury research.

A fatal outcome is a term used in medical context to describe a situation where a disease, injury, or illness results in the death of an individual. It is the most severe and unfortunate possible outcome of any medical condition, and is often used as a measure of the severity and prognosis of various diseases and injuries. In clinical trials and research, fatal outcome may be used as an endpoint to evaluate the effectiveness and safety of different treatments or interventions.

Triazines are not a medical term, but a class of chemical compounds. They have a six-membered ring containing three nitrogen atoms and three carbon atoms. Some triazine derivatives are used in medicine as herbicides, antimicrobials, and antitumor agents.

Brain waves, also known as electroencephalography (EEG) waves, are the rhythmic electrical activity produced by the brain's neurons. These waves are detected by placing electrodes on the scalp and can be visualized using an EEG machine. Brain waves are typically categorized into different frequency bands, including:

1. Delta waves (0.5-4 Hz): Slow waves that are typically seen during deep sleep or in pathological states such as coma.
2. Theta waves (4-8 Hz): Slower waves that are associated with drowsiness, meditation, and creative thinking.
3. Alpha waves (8-13 Hz): These waves are present during relaxed wakefulness and can be seen during eyes-closed rest.
4. Beta waves (13-30 Hz): Faster waves that are associated with active thinking, focus, and alertness.
5. Gamma waves (30-100 Hz): The fastest waves, which are associated with higher cognitive functions such as attention, perception, and problem-solving.

Abnormalities in brain wave patterns can be indicative of various neurological conditions, including epilepsy, sleep disorders, brain injuries, and neurodegenerative diseases.

Sleep stages are distinct patterns of brain activity that occur during sleep, as measured by an electroencephalogram (EEG). They are part of the sleep cycle and are used to describe the different types of sleep that humans go through during a normal night's rest. The sleep cycle includes several repeating stages:

1. Stage 1 (N1): This is the lightest stage of sleep, where you transition from wakefulness to sleep. During this stage, muscle activity and brain waves begin to slow down.
2. Stage 2 (N2): In this stage, your heart rate slows, body temperature decreases, and eye movements stop. Brain wave activity becomes slower, with occasional bursts of electrical activity called sleep spindles.
3. Stage 3 (N3): Also known as deep non-REM sleep, this stage is characterized by slow delta waves. It is during this stage that the body undergoes restorative processes such as tissue repair, growth, and immune function enhancement.
4. REM (Rapid Eye Movement) sleep: This is the stage where dreaming typically occurs. Your eyes move rapidly beneath closed eyelids, heart rate and respiration become irregular, and brain wave activity increases to levels similar to wakefulness. REM sleep is important for memory consolidation and learning.

The sleep cycle progresses through these stages multiple times during the night, with REM sleep periods becoming longer towards morning. Understanding sleep stages is crucial in diagnosing and treating various sleep disorders.

The dentate gyrus is a region of the brain that is located in the hippocampal formation, which is a part of the limbic system and plays a crucial role in learning, memory, and spatial navigation. It is characterized by the presence of densely packed granule cells, which are a type of neuron. The dentate gyrus is involved in the formation of new memories and the integration of information from different brain regions. It is also one of the few areas of the adult brain where new neurons can be generated throughout life, a process known as neurogenesis. Damage to the dentate gyrus has been linked to memory impairments, cognitive decline, and neurological disorders such as Alzheimer's disease and epilepsy.

Decision-making is the cognitive process of selecting a course of action from among multiple alternatives. In a medical context, decision-making refers to the process by which healthcare professionals and patients make choices about medical tests, treatments, or management options based on a thorough evaluation of available information, including the patient's preferences, values, and circumstances.

The decision-making process in medicine typically involves several steps:

1. Identifying the problem or issue that requires a decision.
2. Gathering relevant information about the patient's medical history, current condition, diagnostic test results, treatment options, and potential outcomes.
3. Considering the benefits, risks, and uncertainties associated with each option.
4. Evaluating the patient's preferences, values, and goals.
5. Selecting the most appropriate course of action based on a careful weighing of the available evidence and the patient's individual needs and circumstances.
6. Communicating the decision to the patient and ensuring that they understand the rationale behind it, as well as any potential risks or benefits.
7. Monitoring the outcomes of the decision and adjusting the course of action as needed based on ongoing evaluation and feedback.

Effective decision-making in medicine requires a thorough understanding of medical evidence, clinical expertise, and patient preferences. It also involves careful consideration of ethical principles, such as respect for autonomy, non-maleficence, beneficence, and justice. Ultimately, the goal of decision-making in healthcare is to promote the best possible outcomes for patients while minimizing harm and respecting their individual needs and values.

Epilepsy, partial, motor is a type of focal epilepsy, which means that the seizures originate from a specific area in one hemisphere of the brain. In this case, the area affected is the motor cortex, which is responsible for controlling voluntary muscle movements. As a result, partial motor seizures typically cause abnormal movements or altered sensations on one side of the body.

There are two types of partial motor seizures: simple and complex. Simple partial motor seizures involve involuntary contractions or twitching of specific muscles, while complex partial motor seizures may also include impaired consciousness or awareness, along with involuntary movements. The symptoms of a partial motor seizure can vary depending on the location and extent of the brain tissue involved.

It's important to note that partial motor seizures are just one type of epilepsy, and there are many other forms of the condition that can affect different areas of the brain and cause varying symptoms. If you or someone else is experiencing symptoms that may be related to epilepsy, it's important to seek medical attention from a qualified healthcare professional for proper diagnosis and treatment.

I'm sorry for any confusion, but "reading" is not a term that has a specific medical definition. Reading is the activity or process of deciphering and understanding written words or text. It is a fundamental skill in language acquisition and communication, and is not typically used in a medical context unless there is a concern related to reading difficulties or disorders, such as dyslexia. If you have any questions related to medical terminology or health concerns, I'd be happy to try to help answer those for you!

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Kainic acid is not a medical term per se, but it is a compound that has been widely used in scientific research, particularly in neuroscience. It is a type of excitatory amino acid that acts as an agonist at certain types of receptors in the brain, specifically the AMPA and kainate receptors.

Kainic acid is often used in research to study the effects of excitotoxicity, which is a process that occurs when nerve cells are exposed to excessive amounts of glutamate or other excitatory neurotransmitters, leading to cell damage or death. Kainic acid can induce seizures and other neurological symptoms in animals, making it a valuable tool for studying epilepsy and related disorders.

While kainic acid itself is not a medical treatment or diagnosis, understanding its effects on the brain has contributed to our knowledge of neurological diseases and potential targets for therapy.

Basal ganglia diseases are a group of neurological disorders that affect the function of the basal ganglia, which are clusters of nerve cells located deep within the brain. The basal ganglia play a crucial role in controlling movement and coordination. When they are damaged or degenerate, it can result in various motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and difficulty with balance and walking.

Some examples of basal ganglia diseases include:

1. Parkinson's disease - a progressive disorder that affects movement due to the death of dopamine-producing cells in the basal ganglia.
2. Huntington's disease - an inherited neurodegenerative disorder that causes uncontrolled movements, emotional problems, and cognitive decline.
3. Dystonia - a movement disorder characterized by sustained or intermittent muscle contractions that cause twisting and repetitive movements or abnormal postures.
4. Wilson's disease - a rare genetic disorder that causes excessive copper accumulation in the liver and brain, leading to neurological and psychiatric symptoms.
5. Progressive supranuclear palsy (PSP) - a rare brain disorder that affects movement, gait, and balance, as well as speech and swallowing.
6. Corticobasal degeneration (CBD) - a rare neurological disorder characterized by progressive loss of nerve cells in the cerebral cortex and basal ganglia, leading to stiffness, rigidity, and difficulty with movement and coordination.

Treatment for basal ganglia diseases varies depending on the specific diagnosis and symptoms but may include medication, surgery, physical therapy, or a combination of these approaches.

The neocortex, also known as the isocortex, is the most recently evolved and outermost layer of the cerebral cortex in mammalian brains. It plays a crucial role in higher cognitive functions such as sensory perception, spatial reasoning, conscious thought, language, and memory. The neocortex is characterized by its six-layered structure and is divided into several functional regions, including the primary motor, somatosensory, and visual cortices. It is highly expanded in humans and other primates, reflecting our advanced cognitive abilities compared to other animals.

Auditory evoked potentials (AEP) are medical tests that measure the electrical activity in the brain in response to sound stimuli. These tests are often used to assess hearing function and neural processing in individuals, particularly those who cannot perform traditional behavioral hearing tests.

There are several types of AEP tests, including:

1. Brainstem Auditory Evoked Response (BAER) or Brainstem Auditory Evoked Potentials (BAEP): This test measures the electrical activity generated by the brainstem in response to a click or tone stimulus. It is often used to assess the integrity of the auditory nerve and brainstem pathways, and can help diagnose conditions such as auditory neuropathy and retrocochlear lesions.
2. Middle Latency Auditory Evoked Potentials (MLAEP): This test measures the electrical activity generated by the cortical auditory areas of the brain in response to a click or tone stimulus. It is often used to assess higher-level auditory processing, and can help diagnose conditions such as auditory processing disorders and central auditory dysfunction.
3. Long Latency Auditory Evoked Potentials (LLAEP): This test measures the electrical activity generated by the cortical auditory areas of the brain in response to a complex stimulus, such as speech. It is often used to assess language processing and cognitive function, and can help diagnose conditions such as learning disabilities and dementia.

Overall, AEP tests are valuable tools for assessing hearing and neural function in individuals who cannot perform traditional behavioral hearing tests or who have complex neurological conditions.

The ventral thalamic nuclei are a group of nuclei located in the ventral part of the thalamus, a region of the diencephalon in the brain. These nuclei play a crucial role in sensory and motor functions, as well as cognitive processes such as attention and memory. They include several subnuclei, such as the ventral anterior (VA), ventral lateral (VL), ventral medial (VM), and ventral posterior (VP) nuclei.

The ventral anterior and ventral lateral nuclei are involved in motor control and receive inputs from the basal ganglia, cerebellum, and cortex. They project to the premotor and motor areas of the cortex, contributing to the planning, initiation, and execution of movements.

The ventral medial nucleus is associated with emotional processing and receives inputs from the limbic system, including the amygdala and hippocampus. It projects to the prefrontal cortex and cingulate gyrus, contributing to the regulation of emotions and motivation.

The ventral posterior nuclei are involved in sensory processing, particularly for tactile and proprioceptive information. They receive inputs from the spinal cord and brainstem and project to the primary somatosensory cortex, where they contribute to the perception of touch, pressure, temperature, and body position.

Overall, the ventral thalamic nuclei are an essential component of the neural circuits involved in sensory, motor, and cognitive functions, and their dysfunction has been implicated in various neurological and psychiatric disorders.

I'm sorry for any confusion, but "thinking" is not a term that has a specific medical definition. It is a cognitive process, which is a general term used to describe various mental activities related to perception, reasoning, memory, attention, language use, learning, and problem-solving. These processes are studied across many fields, including psychology, neuroscience, philosophy, and linguistics.

If you're looking for medical definitions of cognitive processes or conditions that affect cognition, I'd be happy to help! Please provide more details.

A cavernous hemangioma is a type of benign vascular tumor that is made up of large, dilated blood vessels. It is characterized by the presence of large, "cavernous" spaces or sacs filled with blood. These lesions can occur in various parts of the body, but when they occur in the skin or mucous membranes, they appear as well-circumscribed rubbery masses that are compressible and blanchable (turn pale when pressed).

Cavernous hemangiomas are most commonly found on the face and neck, but they can also occur in other parts of the body such as the liver. They typically grow slowly during infancy or early childhood and then stabilize or even regress spontaneously over time. However, if they are located in critical areas such as the airway or near vital organs, they may require treatment to prevent complications.

Histologically, cavernous hemangiomas are composed of large, irregularly shaped vascular spaces lined by a single layer of endothelial cells and surrounded by fibrous tissue. Treatment options for cavernous hemangiomas include observation, compression therapy, laser therapy, surgical excision, or embolization.

The parahippocampal gyrus is a region within the brain's temporal lobe that plays a significant role in memory encoding and retrieval, as well as in the processing of spatial navigation and visual perception. It is located next to the hippocampus, which is another crucial structure for long-term memory formation. The parahippocampal gyrus contains several subregions, including the entorhinal cortex, perirhinal cortex, and the posterior cingulate cortex, all of which contribute to various aspects of learning and memory. Damage to this area can lead to memory impairments, particularly in the context of recognizing places or objects (source: Nieuwenhuis & De Dreu, 2016).

A hematoma is defined as a localized accumulation of blood in a tissue, organ, or body space caused by a break in the wall of a blood vessel. This can result from various causes such as trauma, surgery, or certain medical conditions that affect coagulation. The severity and size of a hematoma may vary depending on the location and extent of the bleeding. Symptoms can include swelling, pain, bruising, and decreased mobility in the affected area. Treatment options depend on the size and location of the hematoma but may include observation, compression, ice, elevation, or in some cases, surgical intervention.

Visual pattern recognition is the ability to identify and interpret patterns in visual information. In a medical context, it often refers to the process by which healthcare professionals recognize and diagnose medical conditions based on visible signs or symptoms. This can involve recognizing the characteristic appearance of a rash, wound, or other physical feature associated with a particular disease or condition. It may also involve recognizing patterns in medical images such as X-rays, CT scans, or MRIs.

In the field of radiology, for example, visual pattern recognition is a critical skill. Radiologists are trained to recognize the typical appearances of various diseases and conditions in medical images. This allows them to make accurate diagnoses based on the patterns they see. Similarly, dermatologists use visual pattern recognition to identify skin abnormalities and diseases based on the appearance of rashes, lesions, or other skin changes.

Overall, visual pattern recognition is an essential skill in many areas of medicine, allowing healthcare professionals to quickly and accurately diagnose medical conditions based on visible signs and symptoms.

I must clarify that there is no such thing as "Schizophrenic Psychology." The term schizophrenia is used to describe a specific and serious mental disorder that affects how a person thinks, feels, and behaves. It's important not to use the term casually or inaccurately, as it can perpetuate stigma and misunderstanding about the condition.

Schizophrenia is characterized by symptoms such as hallucinations (hearing or seeing things that aren't there), delusions (false beliefs that are not based on reality), disorganized speech, and grossly disorganized or catatonic behavior. These symptoms can impair a person's ability to function in daily life, maintain relationships, and experience emotions appropriately.

If you have any questions related to mental health conditions or psychology, I would be happy to provide accurate information and definitions.

Meningeal neoplasms, also known as malignant meningitis or leptomeningeal carcinomatosis, refer to cancerous tumors that originate in the meninges, which are the membranes covering the brain and spinal cord. These tumors can arise primarily from the meningeal cells themselves, although they more commonly result from the spread (metastasis) of cancer cells from other parts of the body, such as breast, lung, or melanoma.

Meningeal neoplasms can cause a variety of symptoms, including headaches, nausea and vomiting, mental status changes, seizures, and focal neurological deficits. Diagnosis typically involves imaging studies (such as MRI) and analysis of cerebrospinal fluid obtained through a spinal tap. Treatment options may include radiation therapy, chemotherapy, or surgery, depending on the type and extent of the tumor. The prognosis for patients with meningeal neoplasms is generally poor, with a median survival time of several months to a year.

Nicotinic receptors are a type of ligand-gated ion channel receptor that are activated by the neurotransmitter acetylcholine and the alkaloid nicotine. They are widely distributed throughout the nervous system and play important roles in various physiological processes, including neuronal excitability, neurotransmitter release, and cognitive functions such as learning and memory. Nicotinic receptors are composed of five subunits that form a ion channel pore, which opens to allow the flow of cations (positively charged ions) when the receptor is activated by acetylcholine or nicotine. There are several subtypes of nicotinic receptors, which differ in their subunit composition and functional properties. These receptors have been implicated in various neurological disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia.

Agnosia is a medical term that refers to the inability to recognize or comprehend the meaning or significance of sensory stimuli, even though the specific senses themselves are intact. It is a higher-level cognitive disorder, caused by damage to certain areas of the brain that are responsible for processing and interpreting information from our senses.

There are different types of agnosia, depending on which sense is affected:

* Visual agnosia: The inability to recognize or identify objects, faces, or shapes based on visual input.
* Auditory agnosia: The inability to understand spoken language or recognize sounds, even though hearing is intact.
* Tactile agnosia: The inability to recognize objects by touch, despite normal tactile sensation.
* Olfactory and gustatory agnosia: The inability to identify smells or tastes, respectively, even though the senses of smell and taste are functioning normally.

Agnosia can result from various causes, including stroke, brain injury, infection, degenerative diseases, or tumors that damage specific areas of the brain involved in sensory processing and interpretation. Treatment for agnosia typically focuses on rehabilitation and compensation strategies to help individuals adapt to their deficits and improve their quality of life.

The cerebral ventricles are a system of interconnected fluid-filled cavities within the brain. They are located in the center of the brain and are filled with cerebrospinal fluid (CSF), which provides protection to the brain by cushioning it from impacts and helping to maintain its stability within the skull.

There are four ventricles in total: two lateral ventricles, one third ventricle, and one fourth ventricle. The lateral ventricles are located in each cerebral hemisphere, while the third ventricle is located between the thalami of the two hemispheres. The fourth ventricle is located at the base of the brain, above the spinal cord.

CSF flows from the lateral ventricles into the third ventricle through narrow passageways called the interventricular foramen. From there, it flows into the fourth ventricle through another narrow passageway called the cerebral aqueduct. CSF then leaves the fourth ventricle and enters the subarachnoid space surrounding the brain and spinal cord, where it can be absorbed into the bloodstream.

Abnormalities in the size or shape of the cerebral ventricles can indicate underlying neurological conditions, such as hydrocephalus (excessive accumulation of CSF) or atrophy (shrinkage) of brain tissue. Imaging techniques, such as computed tomography (CT) or magnetic resonance imaging (MRI), are often used to assess the size and shape of the cerebral ventricles in clinical settings.

A headache is defined as pain or discomfort in the head, scalp, or neck. It can be a symptom of various underlying conditions such as stress, sinus congestion, migraine, or more serious issues like meningitis or concussion. Headaches can vary in intensity, ranging from mild to severe, and may be accompanied by other symptoms such as nausea, vomiting, or sensitivity to light and sound. There are over 150 different types of headaches, including tension headaches, cluster headaches, and sinus headaches, each with their own specific characteristics and causes.

The corpus striatum is a part of the brain that plays a crucial role in movement, learning, and cognition. It consists of two structures called the caudate nucleus and the putamen, which are surrounded by the external and internal segments of the globus pallidus. Together, these structures form the basal ganglia, a group of interconnected neurons that help regulate voluntary movement.

The corpus striatum receives input from various parts of the brain, including the cerebral cortex, thalamus, and other brainstem nuclei. It processes this information and sends output to the globus pallidus and substantia nigra, which then project to the thalamus and back to the cerebral cortex. This feedback loop helps coordinate and fine-tune movements, allowing for smooth and coordinated actions.

Damage to the corpus striatum can result in movement disorders such as Parkinson's disease, Huntington's disease, and dystonia. These conditions are characterized by abnormal involuntary movements, muscle stiffness, and difficulty initiating or controlling voluntary movements.

The Medical Definition of 'Mental Status Schedule' is:

A standardized interview and examination tool used by mental health professionals to assess an individual's cognitive, behavioral, and emotional status. The schedule typically covers areas such as orientation, attention, memory, language, visuospatial abilities, executive functions, and mood and affect. It is often used in research, clinical settings, and epidemiological studies to evaluate psychiatric and neurological conditions, as well as the effects of treatments or interventions. The specific version of the Mental Status Schedule may vary, but it generally includes a structured format with clear questions and response options to ensure standardization and reliability in the assessment process.

"Age factors" refer to the effects, changes, or differences that age can have on various aspects of health, disease, and medical care. These factors can encompass a wide range of issues, including:

1. Physiological changes: As people age, their bodies undergo numerous physical changes that can affect how they respond to medications, illnesses, and medical procedures. For example, older adults may be more sensitive to certain drugs or have weaker immune systems, making them more susceptible to infections.
2. Chronic conditions: Age is a significant risk factor for many chronic diseases, such as heart disease, diabetes, cancer, and arthritis. As a result, age-related medical issues are common and can impact treatment decisions and outcomes.
3. Cognitive decline: Aging can also lead to cognitive changes, including memory loss and decreased decision-making abilities. These changes can affect a person's ability to understand and comply with medical instructions, leading to potential complications in their care.
4. Functional limitations: Older adults may experience physical limitations that impact their mobility, strength, and balance, increasing the risk of falls and other injuries. These limitations can also make it more challenging for them to perform daily activities, such as bathing, dressing, or cooking.
5. Social determinants: Age-related factors, such as social isolation, poverty, and lack of access to transportation, can impact a person's ability to obtain necessary medical care and affect their overall health outcomes.

Understanding age factors is critical for healthcare providers to deliver high-quality, patient-centered care that addresses the unique needs and challenges of older adults. By taking these factors into account, healthcare providers can develop personalized treatment plans that consider a person's age, physical condition, cognitive abilities, and social circumstances.

Social behavior disorders are a category of mental health conditions that are characterized by significant and persistent patterns of socially disruptive behavior. These behaviors may include aggression, impulsivity, defiance, and opposition to authority, which can interfere with an individual's ability to function in social, academic, or occupational settings.

Social behavior disorders can manifest in a variety of ways, depending on the age and developmental level of the individual. In children and adolescents, common examples include oppositional defiant disorder (ODD), conduct disorder (CD), and disruptive mood dysregulation disorder (DMDD). Adults with social behavior disorders may exhibit antisocial personality disorder or other related conditions.

It is important to note that social behavior disorders are not the result of poor parenting or a lack of discipline, but rather are thought to be caused by a combination of genetic, environmental, and neurobiological factors. Treatment for social behavior disorders typically involves a combination of behavioral therapy, medication, and social skills training.

Automatism is a medical and legal term that refers to unconscious or involuntary behavior or actions that are performed without conscious awareness or control. In medicine, automatisms can occur in various neurological or psychiatric conditions, such as epilepsy, sleepwalking, or certain mental disorders. During an automatism episode, a person may appear to be awake and functioning, but they are not fully aware of their actions and may not remember them later.

In the legal context, automatism is often used as a defense in criminal cases, where it is argued that the defendant was not mentally responsible for their actions due to an involuntary automatism episode. However, the definition and application of automatism as a legal defense can vary depending on the jurisdiction and the specific circumstances of the case.

'Animal behavior' refers to the actions or responses of animals to various stimuli, including their interactions with the environment and other individuals. It is the study of the actions of animals, whether they are instinctual, learned, or a combination of both. Animal behavior includes communication, mating, foraging, predator avoidance, and social organization, among other things. The scientific study of animal behavior is called ethology. This field seeks to understand the evolutionary basis for behaviors as well as their physiological and psychological mechanisms.

Regression analysis is a statistical technique used in medicine, as well as in other fields, to examine the relationship between one or more independent variables (predictors) and a dependent variable (outcome). It allows for the estimation of the average change in the outcome variable associated with a one-unit change in an independent variable, while controlling for the effects of other independent variables. This technique is often used to identify risk factors for diseases or to evaluate the effectiveness of medical interventions. In medical research, regression analysis can be used to adjust for potential confounding variables and to quantify the relationship between exposures and health outcomes. It can also be used in predictive modeling to estimate the probability of a particular outcome based on multiple predictors.

Anterior cerebral artery infarction refers to the death of brain tissue (also known as an infarct) in the territory supplied by the anterior cerebral artery (ACA) due to insufficient blood flow. The ACA supplies oxygenated blood to the frontal lobes of the brain, which are responsible for higher cognitive functions such as reasoning, problem-solving, and decision-making, as well as motor control of the lower extremities.

An infarction in this territory can result from various causes, including atherosclerosis, embolism, thrombosis, or vasospasm. Symptoms of an ACA infarction may include weakness or paralysis on one side of the body (usually the lower extremities), difficulty with coordination and balance, urinary incontinence, changes in personality or behavior, and impaired cognitive function. The severity of symptoms depends on the extent and location of the infarct. Immediate medical attention is necessary to prevent further damage and improve the chances of recovery.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Social perception, in the context of psychology and social sciences, refers to the ability to interpret and understand other people's behavior, emotions, and intentions. It is the process by which we make sense of the social world around us, by observing and interpreting cues such as facial expressions, body language, tone of voice, and situational context.

In medical terminology, social perception is not a specific diagnosis or condition, but rather a cognitive skill that can be affected in various mental and neurological disorders, such as autism spectrum disorder, schizophrenia, and dementia. For example, individuals with autism may have difficulty interpreting social cues and understanding other people's emotions and intentions, while those with schizophrenia may have distorted perceptions of social situations and interactions.

Healthcare professionals who work with patients with cognitive or neurological disorders may assess their social perception skills as part of a comprehensive evaluation, in order to develop appropriate interventions and support strategies.

Oligodendroglioma is a type of brain tumor that originates from the glial cells, specifically the oligodendrocytes, which normally provide support and protection for the nerve cells (neurons) within the brain. This type of tumor is typically slow-growing and located in the cerebrum, particularly in the frontal or temporal lobes.

Oligodendrogliomas are characterized by their distinct appearance under a microscope, where the tumor cells have a round nucleus with a clear halo around it, resembling a "fried egg." They often contain calcifications and have a tendency to infiltrate the brain tissue, making them difficult to completely remove through surgery.

Oligodendrogliomas are classified based on their genetic profile, which includes the presence or absence of certain chromosomal abnormalities like 1p/19q co-deletion. This genetic information can help predict the tumor's behavior and response to specific treatments. Overall, oligodendrogliomas tend to have a better prognosis compared to other types of brain tumors, but their treatment and management depend on various factors, including the patient's age, overall health, and the extent of the tumor.

Amobarbital is a barbiturate drug that is primarily used as a sedative and sleep aid. It works by depressing the central nervous system, which can lead to relaxation, drowsiness, and reduced anxiety. Amobarbital is also sometimes used as an anticonvulsant to help control seizures.

Like other barbiturates, amobarbital has a high potential for abuse and addiction, and it can be dangerous or even fatal when taken in large doses or mixed with alcohol or other drugs. It is typically prescribed only for short-term use due to the risk of tolerance and dependence.

It's important to note that the use of barbiturates like amobarbital has declined in recent years due to the development of safer and more effective alternatives, such as benzodiazepines and non-benzodiazepine sleep aids.

I must clarify that the term "pedigree" is not typically used in medical definitions. Instead, it is often employed in genetics and breeding, where it refers to the recorded ancestry of an individual or a family, tracing the inheritance of specific traits or diseases. In human genetics, a pedigree can help illustrate the pattern of genetic inheritance in families over multiple generations. However, it is not a medical term with a specific clinical definition.

Nonparametric statistics is a branch of statistics that does not rely on assumptions about the distribution of variables in the population from which the sample is drawn. In contrast to parametric methods, nonparametric techniques make fewer assumptions about the data and are therefore more flexible in their application. Nonparametric tests are often used when the data do not meet the assumptions required for parametric tests, such as normality or equal variances.

Nonparametric statistical methods include tests such as the Wilcoxon rank-sum test (also known as the Mann-Whitney U test) for comparing two independent groups, the Wilcoxon signed-rank test for comparing two related groups, and the Kruskal-Wallis test for comparing more than two independent groups. These tests use the ranks of the data rather than the actual values to make comparisons, which allows them to be used with ordinal or continuous data that do not meet the assumptions of parametric tests.

Overall, nonparametric statistics provide a useful set of tools for analyzing data in situations where the assumptions of parametric methods are not met, and can help researchers draw valid conclusions from their data even when the data are not normally distributed or have other characteristics that violate the assumptions of parametric tests.

Neurocysticercosis is a neurological disorder caused by the infection of the brain's tissue with larval stages of the parasitic tapeworm, Taenia solium. The larvae, called cysticerci, can invade various parts of the body including the brain and the central nervous system, leading to a range of symptoms such as seizures, headaches, cognitive impairment, and psychiatric disorders.

The infection typically occurs when a person ingests tapeworm eggs through contaminated food or water, and the larvae hatch and migrate to various tissues in the body. In neurocysticercosis, the cysticerci can cause inflammation, swelling, and damage to brain tissue, leading to neurological symptoms that can vary depending on the location and number of cysts in the brain.

Diagnosis of neurocysticercosis typically involves a combination of imaging techniques such as MRI or CT scans, blood tests, and sometimes lumbar puncture (spinal tap) to examine cerebrospinal fluid. Treatment may involve anti-parasitic medications to eliminate the cysts, anti-inflammatory drugs to manage swelling and inflammation, and symptomatic treatment for seizures or other neurological symptoms.

In a medical or physiological context, "arousal" refers to the state of being awake and responsive to stimuli. It involves the activation of the nervous system, particularly the autonomic nervous system, which prepares the body for action. Arousal levels can vary from low (such as during sleep) to high (such as during states of excitement or stress). In clinical settings, changes in arousal may be assessed to help diagnose conditions such as coma, brain injury, or sleep disorders. It is also used in the context of sexual response, where it refers to the level of physical and mental awareness and readiness for sexual activity.

A Nurse Clinician, also known as Clinical Nurse Specialist (CNS), is an advanced practice registered nurse who has completed a master's or doctoral degree in nursing with a focus on clinical expertise. They are experts in their specific clinical specialty area, such as pediatrics, gerontology, critical care, or oncology.

Nurse Clinicians demonstrate advanced levels of knowledge and skills in assessment, diagnosis, and treatment of patients' health conditions. They provide direct patient care, consult with other healthcare professionals, coordinate care, and often serve in leadership and education roles within their healthcare organizations. Their work includes developing and implementing evidence-based practice guidelines, participating in quality improvement initiatives, and mentoring staff nurses.

Nurse Clinicians play a critical role in improving patient outcomes, enhancing the quality of care, and promoting cost-effective care delivery. They are licensed and regulated by their state's Board of Nursing and may hold national certification in their clinical specialty area.

Auditory perception refers to the process by which the brain interprets and makes sense of the sounds we hear. It involves the recognition and interpretation of different frequencies, intensities, and patterns of sound waves that reach our ears through the process of hearing. This allows us to identify and distinguish various sounds such as speech, music, and environmental noises.

The auditory system includes the outer ear, middle ear, inner ear, and the auditory nerve, which transmits electrical signals to the brain's auditory cortex for processing and interpretation. Auditory perception is a complex process that involves multiple areas of the brain working together to identify and make sense of sounds in our environment.

Disorders or impairments in auditory perception can result in difficulties with hearing, understanding speech, and identifying environmental sounds, which can significantly impact communication, learning, and daily functioning.

Psychotic disorders are a group of severe mental health conditions characterized by distorted perceptions, thoughts, and emotions that lead to an inability to recognize reality. The two most common symptoms of psychotic disorders are hallucinations and delusions. Hallucinations are when a person sees, hears, or feels things that aren't there, while delusions are fixed, false beliefs that are not based on reality.

Other symptoms may include disorganized speech, disorganized behavior, catatonic behavior, and negative symptoms such as apathy and lack of emotional expression. Schizophrenia is the most well-known psychotic disorder, but other types include schizoaffective disorder, delusional disorder, brief psychotic disorder, shared psychotic disorder, and substance-induced psychotic disorder.

Psychotic disorders can be caused by a variety of factors, including genetics, brain chemistry imbalances, trauma, and substance abuse. Treatment typically involves a combination of medication, therapy, and support services to help manage symptoms and improve quality of life.

Statistical data interpretation involves analyzing and interpreting numerical data in order to identify trends, patterns, and relationships. This process often involves the use of statistical methods and tools to organize, summarize, and draw conclusions from the data. The goal is to extract meaningful insights that can inform decision-making, hypothesis testing, or further research.

In medical contexts, statistical data interpretation is used to analyze and make sense of large sets of clinical data, such as patient outcomes, treatment effectiveness, or disease prevalence. This information can help healthcare professionals and researchers better understand the relationships between various factors that impact health outcomes, develop more effective treatments, and identify areas for further study.

Some common statistical methods used in data interpretation include descriptive statistics (e.g., mean, median, mode), inferential statistics (e.g., hypothesis testing, confidence intervals), and regression analysis (e.g., linear, logistic). These methods can help medical professionals identify patterns and trends in the data, assess the significance of their findings, and make evidence-based recommendations for patient care or public health policy.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

The Anterior Cerebral Artery (ACA) is a paired set of arteries that originate from the internal carotid artery or its branch, the posterior communicating artery. They supply oxygenated blood to the frontal lobes and parts of the parietal lobes of the brain.

The ACA runs along the medial side of each hemisphere, anterior to the corpus callosum, which is the largest bundle of nerve fibers connecting the two hemispheres of the brain. It gives off branches that supply the motor and sensory areas of the lower extremities, as well as the areas responsible for higher cognitive functions such as language, memory, and emotion.

The ACA is divided into several segments: A1, A2, A3, and A4. The A1 segment runs from its origin at the internal carotid artery to the anterior communicating artery, which connects the two ACAs. The A2 segment extends from the anterior communicating artery to the bifurcation of the ACA into its terminal branches. The A3 and A4 segments are the distal branches that supply the frontal and parietal lobes.

Interruptions or blockages in the flow of blood through the ACA can lead to various neurological deficits, including weakness or paralysis of the lower extremities, language impairment, and changes in cognitive function.

Inositol is not considered a true "vitamin" because it can be created by the body from glucose. However, it is an important nutrient and is sometimes referred to as vitamin B8. It is a type of sugar alcohol that is found in both animals and plants. Inositol is involved in various biological processes, including:

1. Signal transduction: Inositol phospholipids are key components of cell membranes and play a crucial role in intracellular signaling pathways. They act as secondary messengers in response to hormones, neurotransmitters, and growth factors.
2. Insulin sensitivity: Inositol and its derivatives, such as myo-inositol and D-chiro-inositol, are involved in insulin signal transduction. Abnormalities in inositol metabolism have been linked to insulin resistance and conditions like polycystic ovary syndrome (PCOS).
3. Cerebral and ocular functions: Inositol is essential for the proper functioning of neurons and has been implicated in various neurological and psychiatric disorders, such as depression, anxiety, and bipolar disorder. It also plays a role in maintaining eye health.
4. Lipid metabolism: Inositol participates in the breakdown and transport of fats within the body.
5. Gene expression: Inositol and its derivatives are involved in regulating gene expression through epigenetic modifications.

Inositol can be found in various foods, including fruits, beans, grains, nuts, and vegetables. It is also available as a dietary supplement for those who wish to increase their intake.

Reversal learning is a neuropsychological concept that refers to the ability to adjust behavioral responses when reward contingencies are changed or reversed. In other words, it is the capacity to learn and adapt to new rules when the previous ones no longer apply or are no longer reinforced. This cognitive process is often studied in animal models and human subjects using various learning paradigms, such as classical or operant conditioning tasks.

In a typical reversal learning task, a subject is initially trained to associate a particular stimulus (e.g., visual cue, sound, or action) with a reward (e.g., food or water). Once the subject has learned this association and responds consistently to the stimulus, the reinforcement contingency is reversed, so that the previously reinforced stimulus is now unreinforced, and the previously unreinforced stimulus is now reinforced. The subject must then learn and adapt to this new reward contingency.

Reversal learning involves several cognitive processes, including attention, memory, motivation, and executive functions. It requires the ability to inhibit a previously learned response, update working memory with new information, and flexibly adjust behavior based on changing environmental demands. Deficits in reversal learning have been observed in various neurological and psychiatric conditions, such as Parkinson's disease, Huntington's disease, schizophrenia, and substance use disorders, suggesting that this cognitive process may be a useful marker of brain dysfunction in these conditions.

Encephalitis is defined as inflammation of the brain parenchyma, which is often caused by viral infections but can also be due to bacterial, fungal, or parasitic infections, autoimmune disorders, or exposure to toxins. The infection or inflammation can cause various symptoms such as headache, fever, confusion, seizures, and altered consciousness, ranging from mild symptoms to severe cases that can lead to brain damage, long-term disabilities, or even death.

The diagnosis of encephalitis typically involves a combination of clinical evaluation, imaging studies (such as MRI or CT scans), and laboratory tests (such as cerebrospinal fluid analysis). Treatment may include antiviral medications, corticosteroids, immunoglobulins, and supportive care to manage symptoms and prevent complications.

Ethosuximide is a medication that belongs to a class of drugs called anticonvulsants or anti-seizure medications. It is primarily used to treat absence seizures, also known as petit mal seizures, which are a type of seizure characterized by brief, sudden lapses in consciousness.

Ethosuximide works by reducing the abnormal electrical activity in the brain that leads to seizures. It does this by inhibiting the formation of sodium channels in the brain, which helps to stabilize the electrical impulses and reduce the likelihood of seizure activity.

Like all medications, ethosuximide can have side effects, including stomach upset, dizziness, headache, and sleepiness. It is important for patients to follow their doctor's instructions carefully when taking this medication and to report any bothersome or persistent side effects promptly. Ethosuximide may also interact with other medications, so it is important to inform your healthcare provider of all medications you are taking before starting ethosuximide therapy.

In the context of medicine, particularly in behavioral neuroscience and psychology, "reward" is not typically used as a definitive medical term. However, it generally refers to a positive outcome or incentive that reinforces certain behaviors, making them more likely to be repeated in the future. This can involve various stimuli such as food, water, sexual activity, social interaction, or drug use, among others.

In the brain, rewards are associated with the activation of the reward system, primarily the mesolimbic dopamine pathway, which includes the ventral tegmental area (VTA) and the nucleus accumbens (NAcc). The release of dopamine in these areas is thought to reinforce and motivate behavior linked to rewards.

It's important to note that while "reward" has a specific meaning in this context, it is not a formal medical diagnosis or condition. Instead, it is a concept used to understand the neural and psychological mechanisms underlying motivation, learning, and addiction.

The anterior cranial fossa is a term used in anatomy to refer to the portion of the skull that forms the upper part of the orbits (eye sockets) and the roof of the nasal cavity. It is located at the front of the skull, and is formed by several bones including the frontal bone, sphenoid bone, and ethmoid bone.

The anterior cranial fossa contains several important structures, including the olfactory bulbs (which are responsible for our sense of smell), as well as the optic nerves and parts of the pituitary gland. This region of the skull also provides protection for the brain, particularly the frontal lobes, which are involved in higher cognitive functions such as decision-making, problem-solving, and emotional regulation.

Abnormalities or injuries to the anterior cranial fossa can have serious consequences, including damage to the olfactory bulbs, optic nerves, and pituitary gland, as well as potential injury to the frontal lobes of the brain.

In the context of medicine and healthcare, "movement" refers to the act or process of changing physical location or position. It involves the contraction and relaxation of muscles, which allows for the joints to move and the body to be in motion. Movement can also refer to the ability of a patient to move a specific body part or limb, which is assessed during physical examinations. Additionally, "movement" can describe the progression or spread of a disease within the body.

Speech perception is the process by which the brain interprets and understands spoken language. It involves recognizing and discriminating speech sounds (phonemes), organizing them into words, and attaching meaning to those words in order to comprehend spoken language. This process requires the integration of auditory information with prior knowledge and context. Factors such as hearing ability, cognitive function, and language experience can all impact speech perception.

Sleep is a complex physiological process characterized by altered consciousness, relatively inhibited sensory activity, reduced voluntary muscle activity, and decreased interaction with the environment. It's typically associated with specific stages that can be identified through electroencephalography (EEG) patterns. These stages include rapid eye movement (REM) sleep, associated with dreaming, and non-rapid eye movement (NREM) sleep, which is further divided into three stages.

Sleep serves a variety of functions, including restoration and strengthening of the immune system, support for growth and development in children and adolescents, consolidation of memory, learning, and emotional regulation. The lack of sufficient sleep or poor quality sleep can lead to significant health problems, such as obesity, diabetes, cardiovascular disease, and even cognitive decline.

The American Academy of Sleep Medicine (AASM) defines sleep as "a period of daily recurring natural rest during which consciousness is suspended and metabolic processes are reduced." However, it's important to note that the exact mechanisms and purposes of sleep are still being researched and debated among scientists.

Echoencephalography (EEG) is a type of neurosonology technique that uses ultrasound to assess the structures of the brain and detect any abnormalities. It is also known as brain ultrasound or transcranial Doppler ultrasound. This non-invasive procedure involves placing a small ultrasound probe on the skull, which emits sound waves that travel through the skull and bounce back (echo) when they reach the brain tissue. The resulting echoes are then analyzed to create images of the brain's structures, including the ventricles, cerebral arteries, and other blood vessels.

EEG is often used in infants and young children, as their skulls are still thin enough to allow for clear ultrasound imaging. It can help diagnose conditions such as hydrocephalus (fluid buildup in the brain), intracranial hemorrhage (bleeding in the brain), stroke, and other neurological disorders. EEG is a safe and painless procedure that does not require any radiation or contrast agents, making it an attractive alternative to other imaging techniques such as CT or MRI scans. However, its use is limited in older children and adults due to the thickening of the skull bones, which can make it difficult to obtain clear images.

Cerebral angiography is a medical procedure that involves taking X-ray images of the blood vessels in the brain after injecting a contrast dye into them. This procedure helps doctors to diagnose and treat various conditions affecting the blood vessels in the brain, such as aneurysms, arteriovenous malformations, and stenosis (narrowing of the blood vessels).

During the procedure, a catheter is inserted into an artery in the leg and threaded through the body to the blood vessels in the neck or brain. The contrast dye is then injected through the catheter, and X-ray images are taken to visualize the blood flow through the brain's blood vessels.

Cerebral angiography provides detailed images of the blood vessels in the brain, allowing doctors to identify any abnormalities or blockages that may be causing symptoms or increasing the risk of stroke. Based on the results of the cerebral angiography, doctors can develop a treatment plan to address these issues and prevent further complications.

Gamma-Aminobutyric Acid (GABA) is a major inhibitory neurotransmitter in the mammalian central nervous system. It plays a crucial role in regulating neuronal excitability and preventing excessive neuronal firing, which helps to maintain neural homeostasis and reduce the risk of seizures. GABA functions by binding to specific receptors (GABA-A, GABA-B, and GABA-C) on the postsynaptic membrane, leading to hyperpolarization of the neuronal membrane and reduced neurotransmitter release from presynaptic terminals.

In addition to its role in the central nervous system, GABA has also been identified as a neurotransmitter in the peripheral nervous system, where it is involved in regulating various physiological processes such as muscle relaxation, hormone secretion, and immune function.

GABA can be synthesized in neurons from glutamate, an excitatory neurotransmitter, through the action of the enzyme glutamic acid decarboxylase (GAD). Once synthesized, GABA is stored in synaptic vesicles and released into the synapse upon neuronal activation. After release, GABA can be taken up by surrounding glial cells or degraded by the enzyme GABA transaminase (GABA-T) into succinic semialdehyde, which is further metabolized to form succinate and enter the Krebs cycle for energy production.

Dysregulation of GABAergic neurotransmission has been implicated in various neurological and psychiatric disorders, including epilepsy, anxiety, depression, and sleep disturbances. Therefore, modulating GABAergic signaling through pharmacological interventions or other therapeutic approaches may offer potential benefits for the treatment of these conditions.

Parkinson's disease is a progressive neurodegenerative disorder that affects movement. It is characterized by the death of dopamine-producing cells in the brain, specifically in an area called the substantia nigra. The loss of these cells leads to a decrease in dopamine levels, which results in the motor symptoms associated with Parkinson's disease. These symptoms can include tremors at rest, stiffness or rigidity of the limbs and trunk, bradykinesia (slowness of movement), and postural instability (impaired balance and coordination). In addition to these motor symptoms, non-motor symptoms such as cognitive impairment, depression, anxiety, and sleep disturbances are also common in people with Parkinson's disease. The exact cause of Parkinson's disease is unknown, but it is thought to be a combination of genetic and environmental factors. There is currently no cure for Parkinson's disease, but medications and therapies can help manage the symptoms and improve quality of life.

Antipsychotic agents are a class of medications used to manage and treat psychosis, which includes symptoms such as delusions, hallucinations, paranoia, disordered thought processes, and agitated behavior. These drugs work by blocking the action of dopamine, a neurotransmitter in the brain that is believed to play a role in the development of psychotic symptoms. Antipsychotics can be broadly divided into two categories: first-generation antipsychotics (also known as typical antipsychotics) and second-generation antipsychotics (also known as atypical antipsychotics).

First-generation antipsychotics, such as chlorpromazine, haloperidol, and fluphenazine, were developed in the 1950s and have been widely used for several decades. They are generally effective in reducing positive symptoms of psychosis (such as hallucinations and delusions) but can cause significant side effects, including extrapyramidal symptoms (EPS), such as rigidity, tremors, and involuntary movements, as well as weight gain, sedation, and orthostatic hypotension.

Second-generation antipsychotics, such as clozapine, risperidone, olanzapine, quetiapine, and aripiprazole, were developed more recently and are considered to have a more favorable side effect profile than first-generation antipsychotics. They are generally effective in reducing both positive and negative symptoms of psychosis (such as apathy, anhedonia, and social withdrawal) and cause fewer EPS. However, they can still cause significant weight gain, metabolic disturbances, and sedation.

Antipsychotic agents are used to treat various psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder with psychotic features, delusional disorder, and other conditions that involve psychosis or agitation. They can be administered orally, intramuscularly, or via long-acting injectable formulations. The choice of antipsychotic agent depends on the individual patient's needs, preferences, and response to treatment, as well as the potential for side effects. Regular monitoring of patients taking antipsychotics is essential to ensure their safety and effectiveness.

Postoperative complications refer to any unfavorable condition or event that occurs during the recovery period after a surgical procedure. These complications can vary in severity and may include, but are not limited to:

1. Infection: This can occur at the site of the incision or inside the body, such as pneumonia or urinary tract infection.
2. Bleeding: Excessive bleeding (hemorrhage) can lead to a drop in blood pressure and may require further surgical intervention.
3. Blood clots: These can form in the deep veins of the legs (deep vein thrombosis) and can potentially travel to the lungs (pulmonary embolism).
4. Wound dehiscence: This is when the surgical wound opens up, which can lead to infection and further complications.
5. Pulmonary issues: These include atelectasis (collapsed lung), pneumonia, or respiratory failure.
6. Cardiovascular problems: These include abnormal heart rhythms (arrhythmias), heart attack, or stroke.
7. Renal failure: This can occur due to various reasons such as dehydration, blood loss, or the use of certain medications.
8. Pain management issues: Inadequate pain control can lead to increased stress, anxiety, and decreased mobility.
9. Nausea and vomiting: These can be caused by anesthesia, opioid pain medication, or other factors.
10. Delirium: This is a state of confusion and disorientation that can occur in the elderly or those with certain medical conditions.

Prompt identification and management of these complications are crucial to ensure the best possible outcome for the patient.

I'm sorry for any confusion, but "Macaca" is not a medical term. It is the name of a genus that includes several species of monkeys, commonly known as macaques. These primates are often used in biomedical research due to their similarities with humans in terms of genetics and physiology. If you have any questions related to medicine or health, I would be happy to try to help answer them.

Stereotaxic techniques are minimally invasive surgical procedures used in neuroscience and neurology that allow for precise targeting and manipulation of structures within the brain. These methods use a stereotactic frame, which is attached to the skull and provides a three-dimensional coordinate system to guide the placement of instruments such as electrodes, cannulas, or radiation sources. The main goal is to reach specific brain areas with high precision and accuracy, minimizing damage to surrounding tissues. Stereotaxic techniques are widely used in research, diagnosis, and treatment of various neurological disorders, including movement disorders, pain management, epilepsy, and psychiatric conditions.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

I'm sorry for any confusion, but "Famous Persons" is not a medical term or concept. It refers to individuals who are widely known and recognized in the public sphere due to their achievements, contributions, or notoriety in various fields such as entertainment, politics, science, sports, and arts. If you have any questions related to medicine or health, I would be happy to try to help answer them!

Pentylenetetrazole (PTZ) is not primarily considered a medical treatment, but rather a research compound used in neuroscience and neurology to study seizure activity and chemically induce seizures in animals for experimental purposes. It is classified as a proconvulsant agent. Medically, it has been used in the past as a medication to treat epilepsy, but its use is now largely historical due to the availability of safer and more effective anticonvulsant drugs.

In a medical or scientific context, Pentylenetetrazole can be defined as:

A chemical compound with the formula C6H5N5O2, which is used in research to investigate seizure activity and induce convulsions in animals. It acts as a non-competitive GABAA receptor antagonist and can lower the seizure threshold. Historically, it has been used as a medication to treat epilepsy, but its use for this purpose is now limited due to the development of safer and more effective anticonvulsant drugs.

Mossy fibers in the hippocampus are a type of axon that originates from granule cells located in the dentate gyrus, which is the first part of the hippocampus. These fibers have a distinctive appearance and earn their name from the numerous small branches or "spines" that cover their surface, giving them a bushy or "mossy" appearance.

Mossy fibers form excitatory synapses with pyramidal cells in the CA3 region of the hippocampus, which is involved in memory and spatial navigation. These synapses are unique because they have a high degree of plasticity, meaning that they can change their strength in response to experience or learning. This plasticity is thought to be important for the formation and storage of memories.

Mossy fibers also release neurotransmitters such as glutamate and contribute to the regulation of hippocampal excitability. Dysfunction in mossy fiber function has been implicated in several neurological disorders, including epilepsy and Alzheimer's disease.

GABA-A receptors are ligand-gated ion channels in the membrane of neuronal cells. They are the primary mediators of fast inhibitory synaptic transmission in the central nervous system. When the neurotransmitter gamma-aminobutyric acid (GABA) binds to these receptors, it opens an ion channel that allows chloride ions to flow into the neuron, resulting in hyperpolarization of the membrane and decreased excitability of the neuron. This inhibitory effect helps to regulate neural activity and maintain a balance between excitation and inhibition in the nervous system. GABA-A receptors are composed of multiple subunits, and the specific combination of subunits can determine the receptor's properties, such as its sensitivity to different drugs or neurotransmitters.

Vascular dementia is a type of dementia that is caused by damage to the blood vessels that supply blood to the brain. This damage can result from conditions such as stroke, chronic high blood pressure, diabetes, or other diseases that affect the circulatory system. The interruption in blood flow to the brain can lead to damaged or dead brain cells, which can impair cognitive function and cause symptoms similar to those seen in other types of dementia, such as Alzheimer's disease.

The symptoms of vascular dementia can vary depending on the severity and location of the damage to the blood vessels. However, common symptoms include difficulties with memory, attention, and decision-making; problems with language and speech; changes in mood or behavior; and difficulty walking or performing other physical tasks. Vascular dementia is typically a progressive condition, meaning that the symptoms tend to worsen over time.

It's important to note that vascular dementia can coexist with other types of dementia, such as Alzheimer's disease, and this is known as mixed dementia. Proper diagnosis and management of underlying medical conditions that contribute to vascular dementia can help slow down the progression of cognitive decline and improve quality of life for individuals living with this condition.

The Predictive Value of Tests, specifically the Positive Predictive Value (PPV) and Negative Predictive Value (NPV), are measures used in diagnostic tests to determine the probability that a positive or negative test result is correct.

Positive Predictive Value (PPV) is the proportion of patients with a positive test result who actually have the disease. It is calculated as the number of true positives divided by the total number of positive results (true positives + false positives). A higher PPV indicates that a positive test result is more likely to be a true positive, and therefore the disease is more likely to be present.

Negative Predictive Value (NPV) is the proportion of patients with a negative test result who do not have the disease. It is calculated as the number of true negatives divided by the total number of negative results (true negatives + false negatives). A higher NPV indicates that a negative test result is more likely to be a true negative, and therefore the disease is less likely to be present.

The predictive value of tests depends on the prevalence of the disease in the population being tested, as well as the sensitivity and specificity of the test. A test with high sensitivity and specificity will generally have higher predictive values than a test with low sensitivity and specificity. However, even a highly sensitive and specific test can have low predictive values if the prevalence of the disease is low in the population being tested.

Social behavior, in the context of medicine and psychology, refers to the ways in which individuals interact and engage with others within their social environment. It involves various actions, communications, and responses that are influenced by cultural norms, personal values, emotional states, and cognitive processes. These behaviors can include but are not limited to communication, cooperation, competition, empathy, altruism, aggression, and conformity.

Abnormalities in social behavior may indicate underlying mental health conditions such as autism spectrum disorder, schizophrenia, or personality disorders. Therefore, understanding and analyzing social behavior is an essential aspect of diagnosing and treating various psychological and psychiatric conditions.

Echo-Planar Imaging (EPI) is a type of magnetic resonance imaging (MRI) technique that uses rapidly alternating magnetic field gradients and radiofrequency pulses to acquire multiple images in a very short period of time. This technique allows for the rapid acquisition of images, making it useful for functional MRI (fMRI) studies, diffusion-weighted imaging, and other applications where motion artifacts can be a problem.

In EPI, a single excitation pulse is followed by a series of gradient echoes that are acquired in a rapid succession, with each echo providing information about a different slice or plane of the object being imaged. The resulting images can then be combined to create a 3D representation of the object.

One of the key advantages of EPI is its speed, as it can acquire an entire brain volume in as little as 50 milliseconds. This makes it possible to capture rapid changes in the brain, such as those that occur during cognitive tasks or in response to neural activation. However, the technique can be susceptible to distortions and artifacts, particularly at higher field strengths, which can affect image quality and accuracy.

Channelopathies are genetic disorders that are caused by mutations in the genes that encode for ion channels. Ion channels are specialized proteins that regulate the flow of ions, such as sodium, potassium, and calcium, across cell membranes. These ion channels play a crucial role in various physiological processes, including the generation and transmission of electrical signals in the body.

Channelopathies can affect various organs and systems in the body, depending on the type of ion channel that is affected. For example, mutations in sodium channel genes can cause neuromuscular disorders such as epilepsy, migraine, and periodic paralysis. Mutations in potassium channel genes can cause cardiac arrhythmias, while mutations in calcium channel genes can cause neurological disorders such as episodic ataxia and hemiplegic migraine.

The symptoms of channelopathies can vary widely depending on the specific disorder and the severity of the mutation. Treatment typically involves managing the symptoms and may include medications, lifestyle modifications, or in some cases, surgery.

An intracranial aneurysm is a localized, blood-filled dilation or bulging in the wall of a cerebral artery within the skull (intracranial). These aneurysms typically occur at weak points in the arterial walls, often at branching points where the vessel divides into smaller branches. Over time, the repeated pressure from blood flow can cause the vessel wall to weaken and balloon out, forming a sac-like structure. Intracranial aneurysms can vary in size, ranging from a few millimeters to several centimeters in diameter.

There are three main types of intracranial aneurysms:

1. Saccular (berry) aneurysm: This is the most common type, characterized by a round or oval shape with a narrow neck and a bulging sac. They usually develop at branching points in the arteries due to congenital weaknesses in the vessel wall.
2. Fusiform aneurysm: These aneurysms have a dilated segment along the length of the artery, forming a cigar-shaped or spindle-like structure. They are often caused by atherosclerosis and can affect any part of the cerebral arteries.
3. Dissecting aneurysm: This type occurs when there is a tear in the inner lining (intima) of the artery, allowing blood to flow between the layers of the vessel wall. It can lead to narrowing or complete blockage of the affected artery and may cause subarachnoid hemorrhage if it ruptures.

Intracranial aneurysms can be asymptomatic and discovered incidentally during imaging studies for other conditions. However, when they grow larger or rupture, they can lead to severe complications such as subarachnoid hemorrhage, stroke, or even death. Treatment options include surgical clipping, endovascular coiling, or flow diversion techniques to prevent further growth and potential rupture of the aneurysm.

A newborn infant is a baby who is within the first 28 days of life. This period is also referred to as the neonatal period. Newborns require specialized care and attention due to their immature bodily systems and increased vulnerability to various health issues. They are closely monitored for signs of well-being, growth, and development during this critical time.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

Astrocytoma is a type of brain tumor that arises from astrocytes, which are star-shaped glial cells in the brain. These tumors can occur in various parts of the brain and can have different grades of malignancy, ranging from low-grade (I or II) to high-grade (III or IV). Low-grade astrocytomas tend to grow slowly and may not cause any symptoms for a long time, while high-grade astrocytomas are more aggressive and can grow quickly, causing neurological problems.

Symptoms of astrocytoma depend on the location and size of the tumor but may include headaches, seizures, weakness or numbness in the limbs, difficulty speaking or swallowing, changes in vision or behavior, and memory loss. Treatment options for astrocytomas include surgery, radiation therapy, chemotherapy, or a combination of these approaches. The prognosis for astrocytoma varies widely depending on the grade and location of the tumor, as well as the age and overall health of the patient.

In the context of medical terminology, I believe you may be referring to "pursuit" as it relates to neurological tests. A smooth pursuit is a type of eye movement in which the eyes smoothly and slowly follow a moving object. It requires coordination between the extraocular muscles, vestibular system, and visual system. If there are issues with any of these systems, smooth pursuit can be affected, leading to abnormalities such as jerky or saccadic movements.

Therefore, "smooth pursuit" is a medical term used to describe the normal, coordinated movement of the eyes that allows for the tracking of moving objects in a smooth and continuous manner.

Neurology is a branch of medicine that deals with the study and treatment of diseases and disorders of the nervous system, which includes the brain, spinal cord, peripheral nerves, muscles, and autonomic nervous system. Neurologists are medical doctors who specialize in this field, diagnosing and treating conditions such as stroke, Alzheimer's disease, epilepsy, Parkinson's disease, multiple sclerosis, and various types of headaches and pain disorders. They use a variety of diagnostic tests, including imaging studies like MRI and CT scans, electrophysiological tests like EEG and EMG, and laboratory tests to evaluate nerve function and identify any underlying conditions or abnormalities. Treatment options may include medication, surgery, rehabilitation, or lifestyle modifications.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

A learning disorder is a neurodevelopmental disorder that affects an individual's ability to acquire, process, and use information in one or more academic areas despite normal intelligence and adequate instruction. It can manifest as difficulties with reading (dyslexia), writing (dysgraphia), mathematics (dyscalculia), or other academic skills. Learning disorders are not the result of low intelligence, lack of motivation, or environmental factors alone, but rather reflect a significant discrepancy between an individual's cognitive abilities and their academic achievement. They can significantly impact a person's ability to perform in school, at work, and in daily life, making it important to diagnose and manage these disorders effectively.

Drug resistance, also known as antimicrobial resistance, is the ability of a microorganism (such as bacteria, viruses, fungi, or parasites) to withstand the effects of a drug that was originally designed to inhibit or kill it. This occurs when the microorganism undergoes genetic changes that allow it to survive in the presence of the drug. As a result, the drug becomes less effective or even completely ineffective at treating infections caused by these resistant organisms.

Drug resistance can develop through various mechanisms, including mutations in the genes responsible for producing the target protein of the drug, alteration of the drug's target site, modification or destruction of the drug by enzymes produced by the microorganism, and active efflux of the drug from the cell.

The emergence and spread of drug-resistant microorganisms pose significant challenges in medical treatment, as they can lead to increased morbidity, mortality, and healthcare costs. The overuse and misuse of antimicrobial agents, as well as poor infection control practices, contribute to the development and dissemination of drug-resistant strains. To address this issue, it is crucial to promote prudent use of antimicrobials, enhance surveillance and monitoring of resistance patterns, invest in research and development of new antimicrobial agents, and strengthen infection prevention and control measures.

Neuroepithelial neoplasms are a type of tumor that arises from the neuroepithelium, which is the tissue in the developing embryo that gives rise to the nervous system. These tumors can occur anywhere along the nervous system, including the brain and spinal cord (central nervous system) or the peripheral nerves.

Neuroepithelial neoplasms can be benign or malignant, and they can vary widely in their behavior and prognosis. Some common types of neuroepithelial neoplasms include:

1. Astrocytomas: These are tumors that arise from astrocytes, a type of star-shaped glial cell in the brain. Astrocytomas can be low-grade (slow-growing) or high-grade (fast-growing), and they can occur in different parts of the brain.
2. Oligodendrogliomas: These are tumors that arise from oligodendrocytes, a type of glial cell that provides support and insulation to nerve cells in the brain. Oligodendrogliomas are typically low-grade and slow-growing.
3. Ependymomas: These are tumors that arise from the ependyma, which is the tissue that lines the ventricles (fluid-filled spaces) in the brain and the spinal cord canal. Ependymomas can be benign or malignant, and they can occur in the brain or the spinal cord.
4. Medulloblastomas: These are fast-growing tumors that arise from primitive neuroectodermal cells in the cerebellum (the part of the brain that controls balance and coordination). Medulloblastomas are highly malignant and can spread to other parts of the brain and spinal cord.
5. Glioblastomas: These are the most common and aggressive type of primary brain tumor. They arise from astrocytes and can grow rapidly, invading surrounding brain tissue.

Neuroepithelial neoplasms are typically treated with surgery, radiation therapy, and chemotherapy, depending on the type and location of the tumor. The prognosis varies widely depending on the specific type and stage of the tumor.

The subdural space is a potential space between the dura mater, which is the outermost of the three meninges covering the brain and spinal cord, and the arachnoid mater, which is the middle meningeal layer. This space normally contains a thin film of fluid, but when it becomes filled with blood (subdural hematoma) or pus (subdural empyema), it can cause significant neurological problems due to increased pressure on the brain. The subdural space can also become widened in certain conditions such as dementia or hydrocephalus, leading to a condition called subdural hygroma.

Visual fields refer to the total area in which objects can be seen while keeping the eyes focused on a central point. It is the entire area that can be observed using peripheral (side) vision while the eye gazes at a fixed point. A visual field test is used to detect blind spots or gaps (scotomas) in a person's vision, which could indicate various medical conditions such as glaucoma, retinal damage, optic nerve disease, brain tumors, or strokes. The test measures both the central and peripheral vision and maps the entire area that can be seen when focusing on a single point.

Intracranial arteriovenous malformations (AVMs) are abnormal, tangled connections between the arteries and veins in the brain. These connections bypass the capillary system, which can lead to high-flow shunting and potential complications such as hemorrhage, stroke, or neurological deficits. AVMs are congenital conditions, meaning they are present at birth, although symptoms may not appear until later in life. They are relatively rare, affecting approximately 0.1% of the population. Treatment options for AVMs include surgery, radiation therapy, and endovascular embolization, depending on the size, location, and specific characteristics of the malformation.

Electrophysiology is a branch of medicine that deals with the electrical activities of the body, particularly the heart. In a medical context, electrophysiology studies (EPS) are performed to assess abnormal heart rhythms (arrhythmias) and to evaluate the effectiveness of certain treatments, such as medication or pacemakers.

During an EPS, electrode catheters are inserted into the heart through blood vessels in the groin or neck. These catheters can record the electrical activity of the heart and stimulate it to help identify the source of the arrhythmia. The information gathered during the study can help doctors determine the best course of treatment for each patient.

In addition to cardiac electrophysiology, there are also other subspecialties within electrophysiology, such as neuromuscular electrophysiology, which deals with the electrical activity of the nervous system and muscles.

Longitudinal studies are a type of research design where data is collected from the same subjects repeatedly over a period of time, often years or even decades. These studies are used to establish patterns of changes and events over time, and can help researchers identify causal relationships between variables. They are particularly useful in fields such as epidemiology, psychology, and sociology, where the focus is on understanding developmental trends and the long-term effects of various factors on health and behavior.

In medical research, longitudinal studies can be used to track the progression of diseases over time, identify risk factors for certain conditions, and evaluate the effectiveness of treatments or interventions. For example, a longitudinal study might follow a group of individuals over several decades to assess their exposure to certain environmental factors and their subsequent development of chronic diseases such as cancer or heart disease. By comparing data collected at multiple time points, researchers can identify trends and correlations that may not be apparent in shorter-term studies.

Longitudinal studies have several advantages over other research designs, including their ability to establish temporal relationships between variables, track changes over time, and reduce the impact of confounding factors. However, they also have some limitations, such as the potential for attrition (loss of participants over time), which can introduce bias and affect the validity of the results. Additionally, longitudinal studies can be expensive and time-consuming to conduct, requiring significant resources and a long-term commitment from both researchers and study participants.

A cohort study is a type of observational study in which a group of individuals who share a common characteristic or exposure are followed up over time to determine the incidence of a specific outcome or outcomes. The cohort, or group, is defined based on the exposure status (e.g., exposed vs. unexposed) and then monitored prospectively to assess for the development of new health events or conditions.

Cohort studies can be either prospective or retrospective in design. In a prospective cohort study, participants are enrolled and followed forward in time from the beginning of the study. In contrast, in a retrospective cohort study, researchers identify a cohort that has already been assembled through medical records, insurance claims, or other sources and then look back in time to assess exposure status and health outcomes.

Cohort studies are useful for establishing causality between an exposure and an outcome because they allow researchers to observe the temporal relationship between the two. They can also provide information on the incidence of a disease or condition in different populations, which can be used to inform public health policy and interventions. However, cohort studies can be expensive and time-consuming to conduct, and they may be subject to bias if participants are not representative of the population or if there is loss to follow-up.

Attention Deficit Hyperactivity Disorder (ADHD) with hyperactivity is a neurodevelopmental disorder that affects both children and adults. The condition is characterized by symptoms including:

1. Difficulty paying attention or staying focused on a single task
2. Impulsivity, or acting without thinking
3. Hyperactivity, or excessive fidgeting, restlessness, or talking

In order to be diagnosed with ADHD with hyperactivity, an individual must exhibit these symptoms to a degree that is developmentally inappropriate and interferes with their daily functioning. Additionally, the symptoms must have been present for at least six months and be present in multiple settings (e.g., at home, school, work).

It's important to note that ADHD can manifest differently in different people, and some individuals may experience predominantly inattentive or impulsive symptoms rather than hyperactive ones. However, when the hyperactive component is prominent, it is referred to as ADHD with hyperactivity.

Effective treatments for ADHD with hyperactivity include a combination of medication (such as stimulants) and behavioral therapy. With appropriate treatment, individuals with ADHD can learn to manage their symptoms and lead successful, fulfilling lives.

Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is the best understood form of frontal lobe epilepsy but is often ... The frontal lobe has a significant function in attention regulation. Therefore, patients with frontal lobe epilepsy are often ... Research has shown that frontal lobe epilepsy has a greater negative impact than other forms of epilepsy on cognitive ... many different causes of frontal lobe epilepsy ranging from genetics to head trauma that result in lesions in the frontal lobes ...
... is an epileptic disorder that causes frequent violent seizures during sleep ... GeneReviews/NCBI/NIH/UW entry on Autosomal Dominant Nocturnal Frontal Lobe Epilepsy (CS1: long volume value, Articles with ... "Autosomal dominant nocturnal frontal-lobe epilepsy: genetic heterogeneity and evidence for a second locus at 15q24". Am J Hum ... "An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy". Hum Mol Genet. 6 ...
"Postictal mania associated with frontal lobe epilepsy". Epilepsy & Behavior. 6 (1): 102-110. doi:10.1016/j.yebeh.2004.11.009. ...
Wennberg, R; Quesney, F; Olivier, A; Rasmussen, T (1998). "Electrocorticography and outcome in frontal lobe epilepsy". ... Partial epilepsy is the common intractable epilepsy and the partial seizure is difficult to locate.Treatment for such epilepsy ... and Rasmussen demonstrated the presurgical significance of ECoG in frontal lobe epilepsy (FLE) cases. ECoG has recently emerged ... Epilepsy surgery is the cure for partial epilepsy provided that the brain region generating seizure is carefully and accurately ...
... a new cause of nocturnal frontal lobe epilepsy". Annals of Clinical and Translational Neurology. 2 (8): 821-830. doi:10.1002/ ... "Activation of Akt independent of PTEN and CTMP tumor-suppressor gene mutations in epilepsy-associated Taylor-type focal ...
Deficit of preparatory attention in children with frontal lobe epilepsy. Neuropsychologia, 43, 1701-1712. LaBerge, D. (2001). ... Deficit of preparatory attention in frontal- temporal dementia. Brain & Cognition, 55, 444-451. Auclair, L., Jambaque, I., ...
Jerry Pinkus: A professional gamer who had frontal lobe epilepsy. Nicole Swartz: A seemingly innocent beauty with a hidden past ...
Mutations in this gene are associated with autosomal dominant nocturnal frontal lobe epilepsy. It has been discovered that ... 2000). "The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy". Nat. Genet. 26 (3): 275-6. doi: ... 2001). "CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy ... in a representative cohort of Italian probands affected by autosomal dominant nocturnal frontal lobe epilepsy". Epilepsia. 43 ( ...
Mutations in this gene appear to account for a small proportion of the cases of nocturnal frontal lobe epilepsy. It has also ... 1995). "Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q 13.2". Nat. Genet. 10 ( ... Skorupska E, Rózycka A, Trzeciak WH (2002). "[Molecular and genetic basis of idiopathic nocturnal frontal lobe epilepsy]". ... 1999). "A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy". Neurology. 53 (8): 1749 ...
179-183 Ettinger, Alan B. (March 1996). "Reviewed Work: Epilepsy and the Functional Anatomy of the Frontal Lobe. by Herbert H. ...
In autosomal dominant nocturnal frontal lobe epilepsy, K-complexes are almost invariably present at the start of seizures. ... "K-complex-induced seizures in autosomal dominant nocturnal frontal lobe epilepsy". Clin Neurophysiol. 119 (10): 2201-4. doi: ... They are generated in widespread cortical locations though they tend to predominate over the frontal parts of the brain. Both K ... In individuals with idiopathic generalized epilepsy, K-complex induced synchronization can trigger spike-and-wave discharges. ...
... s are closely linked to sleepwalking and frontal lobe epilepsy. Night terrors typically occur in children between ...
Frontal Lobe Seizures and Epilepsies in Children (Mariani Foundation Paediatric Neurology: 11). Montrouge, J. Libbey Eurotext ... "The Causes of Epilepsy. Common and Uncommon Causes in Adults and Children". Cambridge - New York - Melbourne, et al., Cambridge ... Migraine and Epilepsy. Boston - London - Durban, et al., Butterworth 1987 Andermann F, Rasmussen T, eds. Chronic Encephalitis ... Epilepsy and other Neurological Disorders in Coeliac Disease. London - Paris - Rome - Sydney, J. Libbey 1997 Zifkin BG, ...
Hypnogenic paroxysmal dyskinesia is a form of epilepsy affecting the frontal lobe. Single genes have been identified on ... However, the negative synchronous EEG results can be used to prove that PKD is not a sort of reflex epilepsy, but a different ... It is important to note that PED a is sometimes co-diagnosed with epilepsy and young-onset Parkinson's disease. Correlations ... Reports have shown that the ketonic diet protects against seizures in epilepsy. In PED, it is probable that ketones will ...
Stone, Valerie E.; Baron-Cohen, Simon; Knight, Robert T. (1998). "Frontal Lobe Contributions to Theory of Mind" (PDF). Journal ... Temporal lobe epilepsy has been shown to cause bilateral amygdala damage which could result in symptoms similar to social- ... The Neuropsychiatry of Epilepsy. 1st. London: Cambridge University Press, 2002: 110-111. Baron-Cohen, S.; Ring, H.A.; Bullmore ... The amygdala and temporal lobes have been implicated in the pathology of Klüver-Bucy syndrome as well, leading to docility, ...
Gold, JA; Sher, Y; Maldonado, JR (2016). "Frontal Lobe Epilepsy: A Primer for Psychiatrists and a Systematic Review of ... the role of anatomical segregation in the frontal lobes: the role of anatomical segregation in the frontal lobes'. in J Grafman ... The orbitofrontal cortex (OFC) is a prefrontal cortex region in the frontal lobes of the brain which is involved in the ... Stone V.E.; Baron-Cohen S.; Knight R. T. (1998a). "Frontal Lobe Contributions to Theory of Mind". Journal of Medical ...
These seizures damage the frontal lobe's cognitive brain function such as memory and sensory abilities. This can result in ... Febrile infection-related epilepsy syndrome (FIRES), is onset of severe seizures (status epilepticus) following a febrile ... "Febrile infection related epilepsy". www.epilepsydiagnosis.org. Archived from the original on 11 August 2022. Retrieved 9 ... "FEBRILE INFECTION RELATED EPILEPSY". www.epilepsydiagnosis.org. Archived from the original on 11 August 2022. Retrieved 9 ...
... and echopraxia-palipraxia as ictal manifestations in a patient with left frontal lobe epilepsy". Epilepsia. 50 (6): 1616-9. doi ... Echopraxia has also been observed in individuals with epilepsy, dementia and autoimmune disorders; the causes of and the link ... a group of neurons in the inferior frontal gyrus (F5 region) of the brain that may influence imitative behaviors, but no widely ...
Nocturnal frontal lobe epilepsy, often misdiagnosed as nightmares, was considered to be a parasomnia but later identified to be ... Wikiquote has quotations related to Epilepsy. "Epilepsy Basics: An Overview for Behavioral Health Providers". YouTube. Epilepsy ... Bromfield EB (2006). "Basic Mechanisms Underlying Seizures and Epilepsy". An Introduction to Epilepsy. American Epilepsy ... "Parasomnias and nocturnal frontal lobe epilepsy (NFLE): lights and shadows-controversial points in the differential diagnosis ...
... and echopraxia-palipraxia as ictal manifestations in a patient with left frontal lobe epilepsy". Epilepsia. 50 (6): 1616-9. doi ... It is associated with Tourette syndrome and may be associated with epilepsy. Ludolph AG, Roessner V, Münchau A, Müller-Vahl K ( ...
However, 5-20% of people with PNES also have epilepsy. Frontal lobe seizures can be mistaken for PNES, though these tend to ... "Functional seizures are not less important than epilepsy". Epilepsy & Behavior Reports. 16: 100495. doi:10.1016/j.ebr. ... Hystero-epilepsy is a historical term that refers to a condition described by 19th-century French neurologist Jean-Martin ... The most definitive test to distinguish epilepsy from PNES is long term video-EEG monitoring, with the aim of capturing one or ...
... which have been associated as Autosomal Dominant Nocturnal Frontal Lobe Epilepsy (ADNFLE) genes. Both of these nAChR subunits ... CHRNA2 has also been reported as a third candidate for nocturnal frontal lobe seizures. Several studies have reported an ... and the CHRNB2 mutation I312M that seems to cause not only epilepsy but also very specific cognitive deficits, such as deficits ... "The CHRNB2 mutation I312M is associated with epilepsy and distinct memory deficits". Neurobiology of Disease. 20 (3): 799-804. ...
... "frontal lobe damage", "limbic epilepsy personality" and post-lobotomy. Being an organic disorder, differential diagnosis ... Temporal lobe epilepsy is associated with the hyperexcitability of the medial temporal lobe of patients. Patients with OPD show ... OPD is somewhat similar to temporal lobe epilepsy, as patients who have chronic epilepsy may also express aggressive behaviours ... OPD is most often caused by lesions in three brain areas of frontal lobe: traumatic brain injuries in orbitofrontal cortex, ...
... and frontal lobes). The development of prosopometamorphopsia has been recorded to be a manifestation of epilepsy in some cases ... She had a history of epilepsy in childhood and had suffered a concussion several years before having this condition, though no ... A T2-weighted brain MRI revealed an infarction in the right medial temporooccipital lobe including the parahippocampal gyrus ( ... It is attributed to structural brain changes or functional disorders like epilepsy, migraine or eye diseases. Antidepressants ...
Individuals with Broca's aphasia often have right-sided weakness or paralysis of the arm and leg, because the left frontal lobe ... Epilepsy can also include transient aphasia as a prodromal or episodic symptom. However, the repeated seizure activity within ... The herpes simplex virus affects the frontal and temporal lobes, subcortical structures, and the hippocampal tissue, which can ... The accurate fasciculus (AF) connects the right and left superior temporal lobe, premotor regions/posterior inferior frontal ...
Limited growth of the frontal lobes leads to an absence of stimuli for cranial growth, therefore causing premature fusion of ... valproate in epilepsy). The second theory says that synostosis begins when the fetal head gets hindered in the pelvic outlet ... The third theory predominates disturbed brain formation of the two frontal lobes as the main issue behind synostosis. ... forward and fixed only to the frontal process of the zygoma without fixation to the cranium. Lastly, the frontal bone is ...
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is an idiopathic localization-related epilepsy that is an inherited ... Frontal lobe epilepsy, usually a symptomatic or cryptogenic localization-related epilepsy, arises from lesions causing seizures ... Benign centrotemporal lobe epilepsy of childhood or benign Rolandic epilepsy is an idiopathic localization-related epilepsy ... Temporal lobe epilepsy (TLE) is not a classic syndrome but mentioned here because it is the most common epilepsy of adults. It ...
There are four main lobes: the frontal lobe, parietal lobe, temporal lobe, and occipital lobe. The insular cortex is often ... Other diseases of the central nervous system include neurological disorders such as epilepsy, movement disorders, and different ... The four major lobes are the frontal, parietal, occipital and temporal lobes. Other lobes are the limbic lobe, and the insular ... In addition, the cerebral cortex may be classified into four lobes: the frontal lobe, temporal lobe, the parietal lobe, and the ...
... which is a subtype of frontal lobe epilepsy. Solute carrier family GRCh38: Ensembl release 89: ENSG00000102100 - Ensembl, May ... "Frequent SLC35A2 brain mosaicism in mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy ( ... of the SLC35A2 gene haven linked to mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy ( ...
Burckhardt, Gottlieb (1888). "Un cas de tumeur de la couche optique et du lobe temporal (A case of tumor of the optic thalamus ... ISBN 978-0-19-856721-9. Green, Alexander; Astradsson, A.; Stacey, R.J.; Aziz, T.Z. (2010). "Functional and epilepsy ... The operations excised regions of the cerebral cortex, specifically removing sections of the frontal, temporal, and ... Complications consequent to the procedure included epilepsy (in two patients), motor weakness, "word deafness" and sensory ...
... frontal lobe resection, and parietal and occipital lobe resection. Hemispherectomy is a surgical procedure in which one of the ... It is important to identify language regions involved in epilepsy, particularly temporal lobe epilepsy, before surgical ... Epilepsy is classified according to seizure types, epilepsy types, and epilepsy syndromes. The seizure types include focal ... As for the third condition that is a diagnosed epilepsy syndrome. Epilepsy syndromes are notably different than epilepsy types ...
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is the best understood form of frontal lobe epilepsy but is often ... The frontal lobe has a significant function in attention regulation. Therefore, patients with frontal lobe epilepsy are often ... Research has shown that frontal lobe epilepsy has a greater negative impact than other forms of epilepsy on cognitive ... many different causes of frontal lobe epilepsy ranging from genetics to head trauma that result in lesions in the frontal lobes ...
... is an uncommon form of epilepsy that runs in families. Explore symptoms, inheritance, genetics of this condition. ... Autosomal dominant nocturnal frontal lobe epilepsy 1 *Genetic Testing Registry: Autosomal dominant nocturnal frontal lobe ... Autosomal dominant nocturnal frontal lobe epilepsy 3 *Genetic Testing Registry: Autosomal dominant nocturnal frontal lobe ... Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is an uncommon form of epilepsy that runs in families. This ...
Frontal lobe epilepsy is characterized by recurrent seizures arising from the frontal lobes. Frequently, seizure types are ... Frontal lobe epilepsy frequently overlaps with sleep-related hypermotor epilepsy (SHE; formerly known as nocturnal frontal lobe ... encoded search term (Frontal Lobe Epilepsy) and Frontal Lobe Epilepsy What to Read Next on Medscape ... The exact incidence of frontal lobe epilepsy is not known. In most centers, however, frontal lobe epilepsy accounts for 20-30% ...
... is a type of epilepsy in which recurrent seizures arises from the frontal lobes. It is important to characterize frontal lobe e ... Frontal lobe epilepsy (FLE) is a type of epilepsy in which recurrent seizures arises from the frontal lobes. It is important to ... FRONTAL LOBE EPILEPSY THERAPY OF A 2 YEAR OLD CHILD; A CASE REPORT. Ambreen Khan, Nazir T. ... A 2 year old boy was presented in a private hospital, Islamabad, Pakistan with frontal lobe epilepsy. Chief complaint was fever ...
Dive into the research topics of Frontal lobe epilepsy. Together they form a unique fingerprint. ...
The temporal lobe is the most epileptogenic region of the brain. In fact, 90% of patients with temporal interictal epileptiform ... Frontal lobe epilepsy. Frontal lobe complex partial seizures (focal impaired awareness seizures) have certain distinct ... encoded search term (Temporal Lobe Epilepsy) and Temporal Lobe Epilepsy What to Read Next on Medscape ... However, distinguishing frontal lobe complex partial seizures from those of the temporal lobe based solely on clinical features ...
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is an idiopathic epilepsy, with a spectrum of clinical ... Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is an idiopathic epilepsy, with a spectrum of clinical ... Autosomal dominant nocturnal frontal lobe epilepsy : a critical overview. R. Combi;L. Dalpra;M.L. Tenchini. Penultimo. ;L. ... Autosomal dominant nocturnal frontal lobe epilepsy : a critical overview / R. Combi, L. Dalpra, M.L. Tenchini, L. Ferini- ...
Learn what causes frontal lobe epilepsy, how its diagnosed and treated. ... Frontal lobe seizures are a common type of epilepsy. ... What is frontal lobe epilepsy?. Frontal lobe seizures are ... What causes frontal lobe epilepsy?. Frontal lobe seizures may happen for a number of reasons including:. *Unusual brain tissue ... Frontal lobe epilepsy symptoms. Frontal lobe seizures are often very short (lasting less than 30 seconds). You may recover ...
nonlesional frontal lobe epilepsy surgery. Together they form a unique fingerprint. * Frontal Lobe Epilepsy Medicine & Life ... nonlesional frontal lobe epilepsy surgery",. abstract = "Fifty-three seizure focus resections limited to the frontal lobe were ... nonlesional frontal lobe epilepsy surgery. J. R. Smith, M. R. Lee, D. W. King, A. M. Murro, Y. D. Park, G. P. Lee, D. W. Loring ... nonlesional frontal lobe epilepsy surgery. / Smith, J. R.; Lee, M. R.; King, D. W. et al. In: Stereotactic and Functional ...
Choking at Night: A Case of Opercular Nocturnal Frontal Lobe Epilepsy. Geetanjali Rathore , Paul Larsen , ... , Cristina ...
Arousal deregulation in the co-shaping of neuropsychological dysfunction in frontal and mesial temporal lobe epilepsy. ... Our work aims to investigate the role of physiological arousal in the expression of neuropsychological deficits in frontal lobe ... epilepsy (FLE) and mesial temporal lobe epilepsy (mTLE), by drawing on the Lurian theory of brain function. METHODS:. For this ... Frontal seizures; Functional deficit zone; Luria; Neuropsychological deficits; Physiological arousal; Temporolimbic structures ...
A systematic review of posterior middle and posterior cingulate epilepsy cases was conducted to present a summary of current ... authors discuss epilepsy originating from posterior cingulate regions, a challenging entity to diagnose and most likely ... Drug Resistant Epilepsy* / surgery * Electrocorticography * Electroencephalography / methods * Epilepsy, Frontal Lobe* / ... Posterior Cingulate Epilepsy: A Systematic Review J Clin Neurophysiol. 2023 Sep 1;40(6):507-515. doi: 10.1097/WNP. ...
Previous studies of frontal lobe epilepsy (FLE) have documented different impairments of theory of mind (ToM), while the study ... HomeBlogThe understanding of mental states and the cognitive phenotype of frontal lobe epilepsy ... The understanding of mental states and the cognitive phenotype of frontal lobe epilepsy. ... of frontal lobe (FL) lesion without seizures has produced inconsistent results. Given the role played by the FLs in ToM, we ...
Rage and aggressive behaviour in frontal lobe epilepsy: description of a case and review of the mechanisms of aggressive ... behaviour in epilepsy and dementia. Epileptic Disord 2021 Apr 29. pii: epd.2021.1277. doi: 10.1684/epd.2021.1277.. PMID: ...
There are four main types of epilepsy: focal, generalized, combination, and unknown. Learn more. ... Frontal lobe epilepsy is a common condition that causes seizures. Learn more. ... What to know about frontal lobe epilepsy. Medically reviewed by Heidi Moawad, MD ... Learn more about epilepsy in children.. Focal epilepsy. People with focal epilepsy have focal seizures. Unlike generalized ...
EEG results showed a pattern of frontal-lobe epilepsy. MRI results showed hyperintense cortical signals in frontal and left ... We performed a brain biopsy of the left frontal lobe on day 71 to determine the cause of encephalitis by the underlying ... results showed slight abnormalities related to slow frontal activity. The patient recovered fully and was discharged with ...
... is an essential component in the evaluation of epilepsy. The EEG provides important information about background EEG and ... Frontal lobe epilepsy Frontal lobe seizures are more rare and represent about one quarter of focal epilepsies. On EEG, they are ... Temporal lobe epilepsy. Temporal lobe epilepsy (TLE) is the most common focal epilepsy, making up about one third of all ... What are the EEG changes characteristic of frontal lobe epilepsy?. What are the EEG changes characteristic of occipital lobe ...
Epilepsy of infancy with migrating focal seizures (EIFMS) is a rare, early-onset epileptic encephalopathy characterized by ... located at 9q34.3 were identified in familial patients with severe autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE; ... mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat ... Shimada, S., Hirano, Y., Ito, S. et al. A novel KCNT1 mutation in a Japanese patient with epilepsy of infancy with migrating ...
Reduced nodal efficiency in localization-related epilepsy (A), frontal lobe epilepsy (B), and temporal lobe epilepsy (C) in ... Characteristics of patients with epilepsy, including those with frontal lobe epilepsy and temporal lobe epilepsy and controls ... frontal lobe epilepsy. IQ. intelligence quotient. NBS. network-based statistic. TLE. temporal lobe epilepsy. ... Regional efficiency and subnetworks were more impaired in frontal lobe epilepsy than in temporal lobe epilepsy. Future studies ...
Hearing, December 15, 2017, Schaffer: 687-88). So, too, individuals with ADHD have "different frontal lobes." And, epilepsy can ... Schaffer further explained that substance abuse affects the frontal lobe of the brain, and that frontal lobe damage can make it ... Schaffer to conclude that the defendant had sustained frontal lobe damage. She further testified that those three factors - ... Schaffer concluded that the defendant showed "strong evidence of marked frontal lobe dysfunction." She noted that the defendant ...
My beloved son had previously been diagnosed with frontal lobe epilepsy, asymptomatic since on RX. The cavernoma is apparently ...
We review the available evidence for the use of neurostimulation to treat pediatric epilepsy, including vagus nerve stimulation ... Neurostimulation for epilepsy refers to the application of electricity to affect the central nervous system, with the goal of ... modulates epileptiform discharges in patients with frontal lobe epilepsy: A preliminary EEG-TMS study. Int. J. Neural. Syst. ... described 10 patients with intractable temporal lobe epilepsy who subsequently went on to have temporal lobectomies, and were ...
Brain MRI revealed a mass in the left frontal lobe, which was where FLAIR and DWI hyperintensity had been observed in the ... 1f), which was thought to be a secondary change following epilepsy. MR angiography showed no evidence of cerebral aneurysm. ... f Abnormal hyperintensity in the superior frontal gyrus on DWI, which corresponds to the mild hyperintensity in b. g Sanger ... 1e). Hyperintensity in the left superior frontal gyrus was noted on FLAIR (Fig. 1d) and diffusion-weighted images (Fig. ...
Kotagal P, Arunkumar G, Hammel J, Mascha E. Complex partial seizures of frontal lobe onset statistical analysis of ictal ... Temporal Lobe Epilepsy is a progressive Neurologic Disorder: time means Neurons!. Neurology. 2009. 72:1718-1719. [QxMD MEDLINE ... Janszky J, Foqarasi A, Mafalova V. Unilateral hand automatisms in temporal lobe epilepsy. Seizure. 2006. 15(6):393-396. [QxMD ... Surgical Treatment of Epilepsy. Epilepsy surgery is indicated for patients who have frequent, disabling seizures despite ...
p>Meet the team of the Boston Childrens Hospital Epilepsy Genetics Program. ... She credits her background in research in frontal lobe inhibition in ADHD with sparking her interest in neurogenetics. ... Director, Epilepsy Genetics Program/Attending Physician. Ann directs the Epilepsy Genetics Program at Boston Childrens ... Achkar is an attending physician in the Epilepsy Genetics Program and the Division of Epilepsy and Neurophysiology. She is ...
In autosomal dominant frontal lobe epilepsy, interictal EEG is often normal, and ictal EEG unhelpful or non-localising. ... Frontal lobe epilepsy ictal EEG onset patterns are most often generalised or widespread, comprising high frequency activity or ... Interictal discharges in frontal lobe epilepsies are often generalised or non-localised for similar reasons. Ictal EEG changes ... Partial epilepsy syndromes. Mesial temporal lobe epilepsy associated with unilateral hippocampal sclerosis shows anterior/mid ...
Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy. Brain : a Journal of Neurology ... Mk Effect Of Age At Onset And Duration Of Epilepsy On Memory Encoding In Temporal Lobe Epilepsy Journal of Neurology, ... Frontal lobe function and general intelligence: why it matters. Cortex; a Journal Devoted to the Study of the Nervous System ... Cleary R, Stretton J, Winston G, Symms M, Sidhu M, Thompson P, Koepp M, Duncan J, Foong J. Temporal Lobe Epilepsy & Affective ...
2006-2011 "Sleep-related motor diseases (Restless Legs Syndrome, Nocturnal Frontal Lobe Epilepsy, Sleep-related eating ... Nocturnal Frontal Lobe Epilepsy). The publications on this topic are a point of reference for the specific diagnostic criteria ... 2002: "Pathophysiology, genetic transmission and prognosis of frontal lobe seizures", ex 40%; scientific coordinator: Paolo ... and validation of clinical and video-polysomnographic criteria for the differential diagnosis between nocturnal frontal lobe ...
Epilepsy in Pregnancy. Epilepsy-Related Cognitive Dysfunction. Febrile Seizure. Focal Seizures. Frontal Lobe Seizures ... Moderating effect of optimism on emotional distress and seizure control in adults with temporal lobe epilepsy. Epilepsy & ... and side of seizure focus in temporal lobe epilepsy. Epilepsy & behavior : E&B, 5 4, 522-31 ... and side of seizure focus in temporal lobe epilepsy Epilepsy & behavior : E&B, 5 4, 522 ...
... are involved in a familial form of frontal lobe epilepsy, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). In ... is consistent with a focal epilepsy involving the frontal lobe. We also propose that the nAChR density increase in ... However the precise mechanisms by which they contribute to the pathogenesis of a focal epilepsy remain obscure, especially ... Epilepsy, Frontal Lobe / diagnostic imaging * Epilepsy, Frontal Lobe / genetics * Epilepsy, Frontal Lobe / metabolism ...
  • Bioequivalence Between Generic and Branded Lamotrigine in People With Epilepsy: The EQUIGEN Randomized Clinical Trial. (uc.edu)
  • Generic-to-generic lamotrigine switches in people with epilepsy: the randomised controlled EQUIGEN trial. (uc.edu)
  • A structural brain lesion is detectable on MRI in approximately 65% of people with epilepsy. (neurology.org)
  • Extratemporal cortical resection may be an option for people with epilepsy whose seizures are disabling and/or not controlled by medications, or when the side effects of the medication are severe and significantly affect the person's quality of life. (medicinenet.com)
  • There are many different types of seizures and people with epilepsy may experience more than one type. (massgeneral.org)
  • We employed these earlier people with epilepsy published in 2000 showed search dates to ensure that we captured data on that compared to U.S. Census Bureau norms, standard drug treatments, which are likely to be respondents received less education, were less in relatively older literature. (cdc.gov)
  • Trans-middle temporal gyrus selective amygdalohippocampectomy for medically intractable mesial temporal lobe epilepsy in adults: Seizure response rates, complications, and neuropsychological outcomes. (medscape.com)
  • Arousal deregulation in the co-shaping of neuropsychological dysfunction in frontal and mesial temporal lobe epilepsy. (bvsalud.org)
  • Our work aims to investigate the role of physiological arousal in the expression of neuropsychological deficits in frontal lobe epilepsy (FLE) and mesial temporal lobe epilepsy (mTLE), by drawing on the Lurian theory of brain function. (bvsalud.org)
  • Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is an uncommon form of epilepsy that runs in families. (medlineplus.gov)
  • Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is an idiopathic epilepsy, with a spectrum of clinical manifestations, ranging from brief, stereotyped, sudden arousals to more complex dystonic-dyskinetic seizures. (unimi.it)
  • Autosomal dominant nocturnal frontal lobe epilepsy : a critical overview / R. Combi, L. Dalpra', M.L. Tenchini, L. Ferini-Strambi. (unimi.it)
  • Nicotinic acetylcholine receptors (nAChRs) are involved in a familial form of frontal lobe epilepsy, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). (unige.ch)
  • Mutations in this gene cause the early-onset epileptic disorders, malignant migrating partial seizures of infancy and autosomal dominant nocturnal frontal lobe epilepsy. (antikoerper-online.de)
  • In 2005, based upon research involving several large French-Canadian families that presented with temporal lobe epilepsy, an expanded conceptualization of the molecular genetics of the autosomal recessive form NA was attained. (medscape.com)
  • Patients showed disrupted global network connectivity relative to controls, including reduced network strength, increased characteristic path length and reduced global efficiency, and reduced nodal efficiency in the frontal, temporal, and occipital lobes. (ajnr.org)
  • Connectivity in multiple subnetworks was reduced in patients, including the frontal-temporal, insula-temporal, temporal-temporal, frontal-occipital, and temporal-occipital lobes. (ajnr.org)
  • Some types of epileptiform phenomena-3 per second spike wave discharge, hypsarrhythmia, and generalised photoparoxysmal response-are strongly correlated with clinical epilepsy, whereas focal sharp waves in centro-temporal or occipital regions have moderate association with clinically active epilepsy. (bmj.com)
  • Frontal lobe epilepsy is characterized by recurrent seizures arising from the frontal lobes. (medscape.com)
  • Frontal lobe epilepsy (FLE) is a type of epilepsy in which recurrent seizures arises from the frontal lobes. (longdom.org)
  • Epilepsy is a common neurological disorder, characterized by recurrent seizures, that affects nearly 2.5 million people in the United States. (massgeneral.org)
  • Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. (medscape.com)
  • She serves on the International League Against Epilepsy Genetics Commission and chairs the American Epilepsy Society/National Institute of Neurological Disorders and Stroke (NINDS) Benchmarks Stewards Committee. (childrenshospital.org)
  • Some people can receive an epilepsy diagnosis if they have had one seizure and a doctor thinks they have a high likelihood of having another. (medicalnewstoday.com)
  • In contrast, treatment with antiepileptic medication should always be initiated once a diagnosis of epilepsy is made. (medscape.com)
  • EEG continues to play a central role in diagnosis and management of patients with seizure disorders-in conjunction with the now remarkable variety of other diagnostic techniques developed over the last 30 or so years-because it is a convenient and relatively inexpensive way to demonstrate the physiological manifestations of abnormal cortical excitability that underlie epilepsy. (bmj.com)
  • Table 1 lists the areas in epilepsy diagnosis and management for which interictal and ictal EEG are useful, strongly so in some, but in a more limited way in others. (bmj.com)
  • Epileptiform activity is specific, but not sensitive, for diagnosis of epilepsy as the cause of a transient loss of consciousness or other paroxysmal event that is clinically likely to be epilepsy. (bmj.com)
  • These wide ranges can be explained partly by diverse case selection and differences in clinical requirements for diagnosis of epilepsy in population studies of EEG specificity and sensitivity. (bmj.com)
  • Definition and validation of clinical and video-polysomnographic criteria for the differential diagnosis between nocturnal frontal lobe seizures and parasomnias" - prot. (unibo.it)
  • I'm not sure if I should be posting here, as I do not yet have a diagnosis of epilepsy. (coping-with-epilepsy.com)
  • has anyone else been diagnosed with ADD or a personality disorder prior to their EEG/epilepsy diagnosis? (coping-with-epilepsy.com)
  • An epilepsy diagnosis usually occurs after an individual has suffered several unprovoked seizures. (cureepilepsy.org)
  • However, she stayed in the hospital for over a week, steven asked for further tests and was finally able to catch seizures on an EEG, therefore was able to make a diagnosis - Frontal Lobe Epilepsy. (gofundme.com)
  • The clinical diagnosis can be confirmed by abnormalities on the interictal EEG, but these abnormalities could be present in otherwise healthy individuals, and their absence does not exclude the diagnosis of epilepsy. (medscape.com)
  • In this report, we evaluate and synthesize the This evidence report addresses nine key published literature on diagnosis of, and medical research questions encompassing 49 and nonmedical interventions for treatment- technologies, including several service-related resistant epilepsy. (cdc.gov)
  • We waited a week and were then told they thought he had something called benign rolandic epilepsy. (bmj.com)
  • There are many different causes of frontal lobe epilepsy ranging from genetics to head trauma that result in lesions in the frontal lobes. (wikipedia.org)
  • MRI results showed hyperintense cortical signals in frontal and left temporal cortex without hemorrhage lesions and without any signs of cerebral venous thrombosis. (cdc.gov)
  • He was referred to Tokushima University Hospital due to white matter lesions, epilepsy, and a complicated neurological family history that suggested hereditary small-vessel disease. (nature.com)
  • Ann directs the Epilepsy Genetics Program at Boston Children's Hospital as a clinician-scientist, with one hand in the clinic as a pediatric epileptologist and the other hand in the laboratory on a mission to identify the genetic underpinnings of epilepsy. (childrenshospital.org)
  • Ann started the Epilepsy Genetics Program at Boston Children's in 2011 to create a translational infrastructure for clinical and research activities focused on epilepsy genetics. (childrenshospital.org)
  • Ann is a key participant in epilepsy genetics research at the local, national, and international level. (childrenshospital.org)
  • As Co-Director of the Epilepsy Genetics Program, Beth is involved in all aspects of program planning and development. (childrenshospital.org)
  • Beth provides genetic counseling to families seen in our Epilepsy Genetics Clinic, supervises the genetic counseling and clinic/clinical research staff, oversees the implementation of our research efforts, and coordinates our involvement in several collaborative research projects. (childrenshospital.org)
  • She is a founding member and Co-Chair of EpiGC, an international network of genetic counselors who specialize in epilepsy genetics and who are dedicated to the education of both providers and families. (childrenshospital.org)
  • Beth also serves on the Epilepsy Foundation's Professional Advisory Board, and is the Co-Editor of genetics content for the Epilepsy Foundation's website . (childrenshospital.org)
  • In addition to her role in the Epilepsy Genetics Program, Beth is a member of the Advisory Board for the Brandeis University Genetic Counseling Graduate Program, where she served as professor of the practice/co-director of research and professional development from 2005 through June 2014. (childrenshospital.org)
  • Dr. Achkar is an attending physician in the Epilepsy Genetics Program and the Division of Epilepsy and Neurophysiology. (childrenshospital.org)
  • Frontal lobe epilepsy (FLE) is a neurological disorder that is characterized by brief, recurring seizures arising in the frontal lobes of the brain, that often occur during sleep. (wikipedia.org)
  • Due to the lack of knowledge surrounding the functions associated with the frontal lobes, seizures occurring in these regions of the brain may produce unusual symptoms which can often be misdiagnosed as a psychiatric disorder, non-epileptic seizure or a sleep disorder. (wikipedia.org)
  • Familial temporal lobe epilepsy: a common disorder identified in twins. (medscape.com)
  • Epilepsy is a neurological disorder. (medicalnewstoday.com)
  • Symptomatic epilepsy is defined as seizures resulting from an identifiable cerebral disorder. (medscape.com)
  • Epilepsy has been considered a disorder of neural networks, in which activity in one part of the network is influenced by activity elsewhere in the network. (ajnr.org)
  • Secondly, an abnormal EEG demonstrating IED does not in itself indicate that an individual has a seizure disorder, as IED are seen in a small percentage of normal subjects who never develop epilepsy, and IED may also be found in patients with neurological disorders which are not complicated by epilepsy. (bmj.com)
  • Abnormalities of background cerebral rhythms, focal slow activity or regional attenuation are much less specific than epileptiform activity, although they can indicate localised structural pathology underlying the seizure disorder, or diffuse cortical dysfunction as in symptomatic generalised epilepsies. (bmj.com)
  • Comparisons of childhood trauma, alexithymia, and defensive styles in patients with psychogenic non-epileptic seizures vs. epilepsy: Implications for the etiology of conversion disorder. (uc.edu)
  • Frontal cortex, the executive part of the brain is most often compromised in any brain disorder. (futurehealth.org)
  • Imperial College London surgeon Hutan Ashrafian suggests that the royal family may have had an inherited disorder: frontal lobe epilepsy. (biblicalarchaeology.org)
  • Epilepsy is defined as a brain disorder characterized by an enduring predisposition to generate epileptic seizures and by the neurobiologic, cognitive, psychological, and social consequences of this condition. (medscape.com)
  • Epileptic seizures are called a seizure disorder or epilepsy. (msdmanuals.com)
  • This may be associated with autonomic phenomena and anxiety similar to those observed in the simple partial (focal aware) phase of a temporal lobe seizure. (medscape.com)
  • There is no difference between sporadic nocturnal frontal lobe epilepsy (NFLE) and ADNFLE in the clinical and neurophysiological findings. (unimi.it)
  • Fear is associated with temporal and frontal lobe epilepsies, but in FLE the fear is predominantly expressed on the person's face whereas in TLE the fear is subjective and internal, not perceptible to the observer. (wikipedia.org)
  • Electroencephalogram demonstrating polyspike and wave discharges seen in juvenile myoclonic epilepsy. (medscape.com)
  • This type of evaluation is best carried out in a multi-disciplinary center experienced in the investigation and treatment of epilepsy. (massgeneral.org)
  • It is the second most common type of epilepsy after temporal lobe epilepsy (TLE), and is related to the temporal form in that both forms are characterized by partial (focal) seizures. (wikipedia.org)
  • A systematic review of posterior middle and posterior cingulate epilepsy cases was conducted to present a summary of current knowledge about this localization-based type of epilepsy. (nih.gov)
  • Each type of epilepsy affects the brain differently. (medicalnewstoday.com)
  • People with this type of epilepsy have generalized seizures. (medicalnewstoday.com)
  • With temporal lobe epilepsy , which is the most common type of epilepsy in teens and adults, the area where the seizures start -- called the seizure focus -- is located within the temporal lobe. (medicinenet.com)
  • The onset of a seizure may be hard to detect since the frontal lobes contain and regulate many structures and functions about which relatively little is known. (wikipedia.org)
  • Medications such as anti-epileptic drugs can typically control the onset of seizures, however, if medications are ineffective the patient may undergo surgery to have focal areas of the frontal lobe removed. (wikipedia.org)
  • Schooling was the major predictor of ToM, whereas the capacity to exclude inexistent mental states was related to seizure onset age and epilepsy duration. (sen.es)
  • Epilepsy of infancy with migrating focal seizures (EIFMS) is a rare, early-onset epileptic encephalopathy characterized by polymorphous focal seizures. (nature.com)
  • Epilepsy of infancy with migrating focal seizures (EIFMS), first described as migrating partial seizures of infancy (MMPSI) in 1995, is a rare, early-onset epileptic encephalopathy characterized by polymorphous focal seizures that commence within the first 6 months after birth. (nature.com)
  • Network parameters were not significantly associated with intelligence quotient, age at seizure onset, or duration of epilepsy. (ajnr.org)
  • The seizures associated with ADNFLE begin in areas of the brain called the frontal lobes . (medlineplus.gov)
  • It is unclear why mutations in the CHRNA2 , CHRNA4 , and CHRNB2 genes cause seizures in the frontal lobes rather than elsewhere in the brain. (medlineplus.gov)
  • The frontal lobe is the part of the brain that is behind your forehead. (epsyhealth.com)
  • In some cases it is possible to remove the specific part of the brain which is causing the frontal lobe epilepsy symptoms. (epsyhealth.com)
  • Epilepsy involves seizures, which result from bursts of electricity in the brain. (medicalnewstoday.com)
  • However, interictal background EEG frequencies that are slower than normal for age usually suggest a symptomatic epilepsy (ie, epilepsy secondary to brain insult). (medscape.com)
  • We review the available evidence for the use of neurostimulation to treat pediatric epilepsy, including vagus nerve stimulation (VNS), responsive neurostimulation (RNS), deep brain stimulation (DBS), chronic subthreshold cortical stimulation (CSCS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). (mdpi.com)
  • It was through her rich clinical training that she developed research hypotheses that she pursued as a post-doctoral fellow in the laboratory of Christopher A. Walsh, where she received rich training and mentorship in dominant and recessive neurogenetics and pioneered the study of mosaic (post-zygotic) mutation in developmental brain disorders that lead to epilepsy. (childrenshospital.org)
  • Viewing ambiguous social interactions increases functional connectivity between frontal and temporal nodes of the social brain. (neurotree.org)
  • However the precise mechanisms by which they contribute to the pathogenesis of a focal epilepsy remain obscure, especially since α4β2 nAChRs are known to be widely distributed within the entire brain. (unige.ch)
  • Myla is becoming drug intolerant and the only way moving forward is for Myla to have brain surgery to remove the abnormality in the frontal lobe of the brain. (gofundme.com)
  • In epilepsy, an extratemporal cortical resection is an operation to resect, or cut away, brain tissue that contains a seizure focus. (medicinenet.com)
  • Extratemporal means the tissue is located in an area of the brain other than the temporal lobe. (medicinenet.com)
  • In some cases, tissue may be removed from more than one area/lobe of the brain. (medicinenet.com)
  • Bilateral FRONTAL LOBE dysfunction involving the anterior cingulate gyrus and related brain injuries are associated with this condition. (bvsalud.org)
  • Identifying a differential arousal -related neuropsychological affection in FLE and mTLE, among the known deleterious effects of the functional deficit zone and other disease -related variables, may further our understanding of the underlying cognitive-pathophysiological mechanisms in focal epilepsy syndromes . (bvsalud.org)
  • 1 In temporal lobe epilepsy (TLE), the most common pathology is hippocampal sclerosis (HS), 2 with the study of HS-TLE informing TLE's archetypal neuropsychological profile of anterograde memory impairment. (neurology.org)
  • Electroencephalogram demonstrating polyspike and wave discharges, which can be seen in idiopathic generalized epilepsy. (medscape.com)
  • Electroencephalogram demonstrating a run of generalized polyspikes, which are more left predominant and can be seen in idiopathic generalized epilepsies. (medscape.com)
  • Tonic posture and clonic movements are common symptoms among most of the areas of the frontal lobe, therefore the type of seizures associated with frontal lobe epilepsy are commonly called tonic-clonic seizures. (wikipedia.org)
  • Lorenzo Caciagli presented the results of his neuropsychometry and fMRI study of cognitive dysfunction in frontal lobe epilepsy. (acnr.co.uk)
  • AED) strategies, five surgical procedures, and Epilepsy (ILAE) Commission Report from 1997 one nondrug, nonsurgical intervention. (cdc.gov)
  • 1996). The right orbital-frontal area, a gateway between cortex and the limbic system, seems to provide cortical control of emotion. (futurehealth.org)
  • It takes as its point of departure the work presented in the previous volume, which dealt with basal nuclei, connection systems, cerebellum, and mirror neurons, and then focuses on the frontal lobes, the limbic system (hippocampus and amygdala) and visuocognitive systems. (fondazione-mariani.org)
  • Electroencephalography (EEG) is an essential component in the evaluation of epilepsy. (medscape.com)
  • It is crucial to recognise that a normal EEG does not exclude epilepsy, as around 10% of patients with epilepsy never show epileptiform discharges. (bmj.com)
  • Differences in paracingulate connectivity associated with epileptiform discharges and uncontrolled seizures in genetic generalized epilepsy. (uc.edu)
  • The symptoms and clinical manifestations of frontal lobe epilepsy can differ depending on which specific area of the frontal lobe is affected. (wikipedia.org)
  • Due to the massive amount of diversity in both the cognitive and motor functions that occur within the frontal lobes, there is an immense variety in the types of symptoms that can arise from epileptic seizures based on the side and topography of the focal origin. (wikipedia.org)
  • A wide range of more specific symptoms arise when different parts of the frontal cortex are affected. (wikipedia.org)
  • In some types of epilepsy, including ADNFLE, a pattern of neurological symptoms called an aura often precedes a seizure. (medlineplus.gov)
  • Depending on exactly where in the frontal lobe the seizures begin, the symptoms change from one person to the next. (epsyhealth.com)
  • People with unknown epilepsy can have a combination of motor and non-motor symptoms. (medicalnewstoday.com)
  • However, these postictal states are often undetectable and generally do not last as long as the periods of confusion following seizures that occur in the temporal lobes. (wikipedia.org)
  • Cryptogenic epilepsy consists of seizures that occur without an identifiable cause in a patient with cognitive impairment or with neurologic deficits (eg, Lennox-Gastaut syndrome (LGS), infantile spasms [see the first image below], and myoclonic astatic epilepsy of Doose. (medscape.com)
  • Forty-five children with nonlesional localization-related epilepsy and 28 healthy controls underwent DTI. (ajnr.org)
  • Watanabe K, Kadohisa M, Kusunoki M , Buckley MJ , Duncan J . Cycles of goal silencing and reactivation underlie complex problem-solving in primate frontal and parietal cortex. (neurotree.org)
  • Most patients were children and young adults with drug-resistant lesional epilepsy with high seizure burden. (nih.gov)
  • According to the Centers for Disease Control and Prevention (CDC), there are 3.4 million adults and children with epilepsy in the United States. (medicalnewstoday.com)
  • Normal background suggests primary epilepsy (ie, idiopathic or possibly genetic epilepsy). (medscape.com)
  • Treatment of focal impaired awareness seizures may involve pharmacologic therapy and, in certain cases, epilepsy surgery. (medscape.com)
  • The nurse told Lindsay about her personal struggle with epilepsy and how she had been cured with a new, highly specialized surgery. (tmc.edu)
  • Tandon is director of epilepsy surgery at Memorial Hermann Mischer Neuroscience Institute at the Texas Medical Center and associate professor in the Department of Neurosurgery at The University of Texas Health Science Center at Houston (UTHealth) Medical School. (tmc.edu)
  • This guide was written to provide patients with a better understanding of epilepsy surgery and the elements of the presurgical evaluation. (massgeneral.org)
  • In addition to common questions and answers about epilepsy and epilepsy surgery, we have included excerpts from some of our patients who have attended our post-surgical discussion group over many years. (massgeneral.org)
  • Who are candidates for epilepsy surgery? (massgeneral.org)
  • The patient who has failed at least two medications, at sufficient doses, should be referred to an epilepsy center to be evaluated for epilepsy surgery . (medscape.com)
  • Patients may be candidates for surgical treatment of their epilepsy in an attempt to achieve better or complete seizure control. (massgeneral.org)
  • Status epilepticus may be associated more commonly with frontal lobe seizures than with seizures arising from other areas. (medscape.com)
  • It is important to characterize frontal lobe epilepsy and distinguish it from non epileptic seizures. (longdom.org)
  • This can be for epilepsy or for non-epileptic seizures. (cureepilepsy.org)
  • What causes epileptic seizures is often unknown (called idiopathic epilepsy). (msdmanuals.com)
  • Epilepsy syndromes include symptomatic, cryogenic, and idiopathic epilepsy. (medscape.com)
  • EEG characteristics of these specific electroclinical epilepsy syndromes are discussed in this article. (medscape.com)
  • This is an overview on the clinical and genetic aspects of ADNFLE including a discussion of some open questions on the role of the neuronal nicotinic receptor subunit mutations in the pathogenesis of this form of epilepsy. (unimi.it)
  • The aims of this study were to investigate the structural networks in children with localization-related epilepsy and to assess the relation among structural connectivity, intelligence quotient, and clinical parameters. (ajnr.org)
  • Secondly, correlation between different EEG patterns and epilepsy varies, and only IED are associated with seizure disorders at a sufficiently high rate to be of clinical use. (bmj.com)
  • It is sometimes challenging to diagnose frontal lobe seizures because the behavior may look like other psychiatric conditions or sleep disorders. (epsyhealth.com)
  • Her areas of expertise include epilepsy, autism, psychiatric illness and both prenatal and pediatric genetic counseling. (childrenshospital.org)
  • Combined epilepsy is linked to Dravet syndrome, which is a rare, lifelong form of epilepsy. (medicalnewstoday.com)
  • The webinar content is intended for everyone, including persons with epilepsy, their friends and family, and caregivers. (cureepilepsy.org)
  • In addition to the immediate, debilitating the rates of all-cause mortality and cause-specific effects of seizures, epilepsy also interferes with mortality among persons with epilepsy. (cdc.gov)
  • daily activities, and persons with epilepsy may have to contend with the increased possibility of Methodology accidental injury and even death. (cdc.gov)
  • In general, Persons with epilepsy often have impaired literature searches covered the years 1985 to physical, psychological, and social functioning, January 1, 2002. (cdc.gov)
  • Development of new treatment approaches for epilepsy: unmet needs and opportunities. (uc.edu)
  • Advanced targeted gene-therapy approaches for epilepsy. (ilae.org)
  • Structural connectivity has been thought to be a less sensitive measure of network changes relative to functional connectivity in children with localization-related epilepsy. (ajnr.org)
  • Children with localization-related epilepsy, including those with frontal lobe epilepsy (FLE), have demonstrated abnormal resting-state functional connectivity in the default mode network and in other resting-state networks, such as attention, frontal, visual, auditory, and somatosensory networks. (ajnr.org)
  • Partial seizures occurring in the frontal lobes can occur in one of two different forms: either "focal aware", the old term was simple partial seizures (that do not affect awareness or memory) "focal unaware" the old term was complex partial seizures (that affect awareness or memory either before, during or after a seizure). (wikipedia.org)
  • Frontal lobe complex partial seizures (focal impaired awareness seizures) have certain distinct characteristics. (medscape.com)
  • PET scanning is often utilized in the presurgical evaluation of patients with extratemporal epilepsy. (medscape.com)
  • Temporal sampling is also limited, and the relatively short duration of routine interictal EEG recording is one reason why patients with epilepsy may not show interictal epileptiform discharge (IED) in the first EEG study. (bmj.com)
  • The epilepsy team are incredible but we feel there are not enough staff to support the number of patients they have. (gofundme.com)
  • The ROSA stereotactic robot is used to place these electrodes accurately and has been successful in localizing the seizure focus in patients like Lindsay who suffer from severe epilepsy that cannot be treated with medication. (tmc.edu)
  • In our desire to help our patient population, we have devised an approach that allows us to place electrodes with both great precision and speed in this innovative approach that allows us to evaluate patients with epilepsy who we had not been able to help in the past," said Nitin Tandon, M.D., the neurosurgeon who performed Lindsay's operation. (tmc.edu)
  • However, it is estimated that 30 to 40 % of patients with epilepsy are not controlled with currently available medical therapy. (massgeneral.org)
  • Thirteen patients developed epilepsy. (bvsalud.org)
  • In this review, authors discuss epilepsy originating from posterior cingulate regions, a challenging entity to diagnose and most likely underrecognized. (nih.gov)
  • In estimated the prevalence of active epilepsy as 40 addition, we also surveyed the definitions of to 100 in 10,000 and the incidence of treatment-resistant epilepsy in the published unprovoked seizures as 2 to 7 per 10,000. (cdc.gov)