The distal part of the arm beyond the wrist in humans and primates, that includes the palm, fingers, and thumb.
The act of cleansing the hands with water or other liquid, with or without the inclusion of soap or other detergent, for the purpose of destroying infectious microorganisms.
General or unspecified injuries to the hand.
The articulations extending from the WRIST distally to the FINGERS. These include the WRIST JOINT; CARPAL JOINTS; METACARPOPHALANGEAL JOINT; and FINGER JOINT.
Force exerted when gripping or grasping.
Hand dermatoses is a general term referring to various inflammatory skin conditions primarily affecting the hands, such as eczema, psoriasis, and contact dermatitis, characterized by erythema, scaling, vesiculation, fissuring, or lichenification.
Deformities of the hand, or a part of the hand, acquired after birth as the result of injury or disease.
Practices involved in preventing the transmission of diseases by hand.
The CARPAL BONES; METACARPAL BONES; and FINGER PHALANGES. In each hand there are eight carpal bones, five metacarpal bones, and 14 phalanges.
The transference of a complete HAND, as a composite of many tissue types, from one individual to another.
Alterations or deviations from normal shape or size which result in a disfigurement of the hand occurring at or before birth.
A mild, highly infectious viral disease of children, characterized by vesicular lesions in the mouth and on the hands and feet. It is caused by coxsackieviruses A.
Four or five slender jointed digits in humans and primates, attached to each HAND.
Sodium or potassium salts of long chain fatty acids. These detergent substances are obtained by boiling natural oils or fats with caustic alkali. Sodium soaps are harder and are used as topical anti-infectives and vehicles in pills and liniments; potassium soaps are soft, used as vehicles for ointments and also as topical antimicrobials.
The articulation between the head of one phalanx and the base of the one distal to it, in each finger.
The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior.
Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot.
The coordination of a sensory or ideational (cognitive) process and a motor activity.
Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex.
Performance of complex motor acts.
The first digit on the radial side of the hand which in humans lies opposite the other four.
The five cylindrical bones of the METACARPUS, articulating with the CARPAL BONES proximally and the PHALANGES OF FINGERS distally.
The science dealing with the establishment and maintenance of health in the individual and the group. It includes the conditions and practices conducive to health. (Webster, 3d ed)
The region of the upper limb between the metacarpus and the FOREARM.
The articulation between a metacarpal bone and a phalanx.
The joint that is formed by the distal end of the RADIUS, the articular disc of the distal radioulnar joint, and the proximal row of CARPAL BONES; (SCAPHOID BONE; LUNATE BONE; triquetral bone).
Recording of the changes in electric potential of muscle by means of surface or needle electrodes.
Bones that make up the SKELETON of the FINGERS, consisting of two for the THUMB, and three for each of the other fingers.
Calcium-binding motifs composed of two helices (E and F) joined by a loop. Calcium is bound by the loop region. These motifs are found in many proteins that are regulated by calcium.
General or unspecified injuries involving the fingers.
Elements of limited time intervals, contributing to particular results or situations.
The process by which the nature and meaning of tactile stimuli are recognized and interpreted by the brain, such as realizing the characteristics or name of an object being touched.
Sensory functions that transduce stimuli received by proprioceptive receptors in joints, tendons, muscles, and the INNER EAR into neural impulses to be transmitted to the CENTRAL NERVOUS SYSTEM. Proprioception provides sense of stationary positions and movements of one's body parts, and is important in maintaining KINESTHESIA and POSTURAL BALANCE.
Sense of movement of a part of the body, such as movement of fingers, elbows, knees, limbs, or weights.
An apraxia characterized by the affected limb having involuntary, autonomous, and purposeful behaviors that are perceived as being controlled by an external force. Often the affected limb interferes with the actions of the normal limb. Symptoms develop from lesions in the CORPUS CALLOSUM or medial frontal cortex, stroke, infarction, and neurodegenerative diseases (e.g., CREUTZFELDT-JAKOB SYNDROME, corticobasal degeneration).
The transmission of infectious disease or pathogens from health professional or health care worker to patients. It includes transmission via direct or indirect exposure to bacterial, fungal, parasitic, or viral agents.
Prosthetic replacements for arms, legs, and parts thereof.
The misinterpretation of a real external, sensory experience.
Movement of a part of the body for the purpose of communication.
A recurrent contact dermatitis caused by substances found in the work place.
Alterations or deviations from normal shape or size which result in a disfigurement of the foot occurring at or before birth.
The distal extremity of the leg in vertebrates, consisting of the tarsus (ANKLE); METATARSUS; phalanges; and the soft tissues surrounding these bones.
A continuing periodic change in displacement with respect to a fixed reference. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Substances used on humans and other animals that destroy harmful microorganisms or inhibit their activity. They are distinguished from DISINFECTANTS, which are used on inanimate objects.
A major nerve of the upper extremity. In humans, the fibers of the median nerve originate in the lower cervical and upper thoracic spinal cord (usually C6 to T1), travel via the brachial plexus, and supply sensory and motor innervation to parts of the forearm and hand.
The electrical response evoked in a muscle or motor nerve by electrical or magnetic stimulation. Common methods of stimulation are by transcranial electrical and TRANSCRANIAL MAGNETIC STIMULATION. It is often used for monitoring during neurosurgery.
The region of the HAND between the WRIST and the FINGERS.
Acquired and inherited conditions that feature DYSTONIA as a primary manifestation of disease. These disorders are generally divided into generalized dystonias (e.g., dystonia musculorum deformans) and focal dystonias (e.g., writer's cramp). They are also classified by patterns of inheritance and by age of onset.
A major nerve of the upper extremity. In humans, the fibers of the ulnar nerve originate in the lower cervical and upper thoracic spinal cord (usually C7 to T1), travel via the medial cord of the brachial plexus, and supply sensory and motor innervation to parts of the hand and forearm.
Programs of disease surveillance, generally within health care facilities, designed to investigate, prevent, and control the spread of infections and their causative microorganisms.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The properties, processes, and behavior of biological systems under the action of mechanical forces.
Entrapment of the MEDIAN NERVE in the carpal tunnel, which is formed by the flexor retinaculum and the CARPAL BONES. This syndrome may be associated with repetitive occupational trauma (CUMULATIVE TRAUMA DISORDERS); wrist injuries; AMYLOID NEUROPATHIES; rheumatoid arthritis (see ARTHRITIS, RHEUMATOID); ACROMEGALY; PREGNANCY; and other conditions. Symptoms include burning pain and paresthesias involving the ventral surface of the hand and fingers which may radiate proximally. Impairment of sensation in the distribution of the median nerve and thenar muscle atrophy may occur. (Joynt, Clinical Neurology, 1995, Ch51, p45)
Rigid or flexible appliances used to maintain in position a displaced or movable part or to keep in place and protect an injured part. (Dorland, 28th ed)
A pruritic papulovesicular dermatitis occurring as a reaction to many endogenous and exogenous agents (Dorland, 27th ed).
A mechanism of communicating one's own sensory system information about a task, movement or skill.
The articulations between the CARPAL BONES and the METACARPAL BONES.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
Alterations or deviations from normal shape or size which result in a disfigurement of the hand.
The time from the onset of a stimulus until a response is observed.
The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
Force exerted when using the index finger and the thumb. It is a test for determining maximum voluntary contraction force.
A general term referring to a mild to moderate degree of muscular weakness, occasionally used as a synonym for PARALYSIS (severe or complete loss of motor function). In the older literature, paresis often referred specifically to paretic neurosyphilis (see NEUROSYPHILIS). "General paresis" and "general paralysis" may still carry that connotation. Bilateral lower extremity paresis is referred to as PARAPARESIS.
Inflammation of the synovial lining of a tendon sheath. Causes include trauma, tendon stress, bacterial disease (gonorrhea, tuberculosis), rheumatic disease, and gout. Common sites are the hand, wrist, shoulder capsule, hip capsule, hamstring muscles, and Achilles tendon. The tendon sheaths become inflamed and painful, and accumulate fluid. Joint mobility is usually reduced.
A species of ENTEROVIRUS infecting humans and containing 10 serotypes, mostly coxsackieviruses.
Rendering pathogens harmless through the use of heat, antiseptics, antibacterial agents, etc.
The region of the upper limb in animals, extending from the deltoid region to the HAND, and including the ARM; AXILLA; and SHOULDER.
Injuries to the wrist or the wrist joint.

Cerebellar Purkinje cell simple spike discharge encodes movement velocity in primates during visuomotor arm tracking. (1/3335)

Pathophysiological, lesion, and electrophysiological studies suggest that the cerebellar cortex is important for controlling the direction and speed of movement. The relationship of cerebellar Purkinje cell discharge to the control of arm movement parameters, however, remains unclear. The goal of this study was to examine how movement direction and speed and their interaction-velocity-modulate Purkinje cell simple spike discharge in an arm movement task in which direction and speed were independently controlled. The simple spike discharge of 154 Purkinje cells was recorded in two monkeys during the performance of two visuomotor tasks that required the animals to track targets that moved in one of eight directions and at one of four speeds. Single-parameter regression analyses revealed that a large proportion of cells had discharge modulation related to movement direction and speed. Most cells with significant directional tuning, however, were modulated at one speed, and most cells with speed-related discharge were modulated along one direction; this suggested that the patterns of simple spike discharge were not adequately described by single-parameter models. Therefore, a regression surface was fitted to the data, which showed that the discharge could be tuned to specific direction-speed combinations (preferred velocities). The overall variability in simple spike discharge was well described by the surface model, and the velocities corresponding to maximal and minimal discharge rates were distributed uniformly throughout the workspace. Simple spike discharge therefore appears to integrate information about both the direction and speed of arm movements, thereby encoding movement velocity.  (+info)

Wasting of the small hand muscles in upper and mid-cervical cord lesions. (2/3335)

Four patients are described with destructive rheumatoid arthritis of the cervical spine and neurogenic wasting of forearm and hand muscles. The pathological connection is not immediately obvious, but a relationship between these two observations is described here with clinical, radiological, electrophysiological and necropsy findings. Compression of the anterior spinal artery at upper and mid-cervical levels is demonstrated to be the likely cause of changes lower in the spinal cord. These are shown to be due to the resulting ischaemia of the anterior part of the lower cervical spinal cord, with degeneration of the neurones innervating the forearm and hand muscles. These findings favour external compression of the anterior spinal artery leading to ischaemia in a watershed area as the likeliest explanation for this otherwise inappropriate and bizarre phenomenon.  (+info)

Endothelial function in Marfan syndrome: selective impairment of flow-mediated vasodilation. (3/3335)

BACKGROUND: The cardiovascular complications of Marfan syndrome arise due to alterations in the structural and functional properties of fibrillin, a constituent of vascular connective tissues. Fibrillin-containing microfibrils are closely associated with arterial endothelial cells, indicating a possible functional role for fibrillin in the endothelium. Plasma concentrations of endothelial cell products are elevated in Marfan subjects, which indirectly indicates endothelial dysfunction. This study directly assessed flow- and agonist-mediated endothelium-dependent brachial artery reactivity in Marfan subjects. METHODS AND RESULTS: In 20 Marfan and 20 control subjects, brachial artery diameter, blood flow, and blood pressure were measured by ultrasonic wall tracking, Doppler ultrasound, and photoplethysmography, respectively. Measurements were taken during hand hyperemia (a stimulus for endothelium-derived nitric oxide [NO] release in the upstream brachial artery) and after sublingual administration of the endothelium-independent vasodilator nitroglycerin. In 9 Marfan and 6 control subjects, the above parameters were also assessed during intra-arterial infusions of acetylcholine and bradykinin (agonists that stimulate NO production) and NG-monomethyl-L-arginine (L-NMMA, an inhibitor of NO production). Flow-mediated responses differed markedly between Marfan and control subjects (-1.6+/-3.5% versus 6. 50+/-4.1%, respectively; P<0.0001), whereas nitroglycerin produced similar vasodilation (14.2+/-5.7% versus 15.2+/-7.8%; P=NS). Agonist-induced vasodilation to incremental intra-arterial infusions of acetylcholine and bradykinin were not significantly different between Marfan and control subjects, and intra-arterial L-NMMA produced similar reductions in brachial artery diameter in both groups. CONCLUSIONS: These data demonstrate impaired flow-mediated but preserved agonist-mediated endothelium-dependent vasodilation in Marfan subjects and suggest preservation of basal NO release. Selective loss of flow-mediated dilation suggests a role for fibrillin in endothelial cell mechanotransduction.  (+info)

Neuronal activity in somatosensory cortex of monkeys using a precision grip. I. Receptive fields and discharge patterns. (4/3335)

Three adolescent Macaca fascicularis monkeys weighing between 3.5 and 4 kg were trained to use a precision grip to grasp a metal tab mounted on a low friction vertical track and to lift and hold it in a 12- to 25-mm position window for 1 s. The surface texture of the metal tab in contact with the fingers and the weight of the object could be varied. The activity of 386 single cells with cutaneous receptive fields contacting the metal tab were recorded in Brodmann's areas 3b, 1, 2, 5, and 7 of the somatosensory cortex. In this first of a series of papers, we describe three types of discharge pattern, the receptive-field properties, and the anatomic distribution of the neurons. The majority of the receptive fields were cutaneous and covered less than one digit, and a chi2 test did not reveal any significant differences in the Brodmann's areas representing the thumb and index finger. Two broad categories of discharge pattern cells were identified. The first category, dynamic cells, showed a brief increase in activity beginning near grip onset, which quickly subsided despite continued pressure applied to the receptive field. Some of the dynamic neurons responded to both skin indentation and release. The second category, static cells, had higher activity during the stationary holding phase of the task. These static neurons demonstrated varying degrees of sensitivity to rates of pressure change on the skin. The percentage of dynamic versus static cells was about equal for areas 3b, 2, 5, and 7. Only area 1 had a higher proportion of dynamic cells (76%). A third category was identified that contained cells with significant pregrip activity and included cortical cells with both dynamic or static discharge patterns. Cells in this category showed activity increases before movement in the absence of receptive-field stimulation, suggesting that, in addition to peripheral cutaneous input, these cells also receive strong excitation from movement-related regions of the brain.  (+info)

Neuronal activity in somatosensory cortex of monkeys using a precision grip. II. Responses To object texture and weights. (5/3335)

Three monkeys were trained to lift and hold a test object within a 12- to 25-mm position window for 1 s. The activity of single neurons was recorded during performance of the task in which both the weight and surface texture of the object were systematically varied. Whenever possible, each cell was tested with three weights (15, 65, and 115 g) and three textures (smooth metal, fine 200 grit sandpaper, and rough 60 grit sandpaper). Of 386 cells recorded in 3 monkeys, 45 cells had cutaneous receptive fields on the index or thumb or part of the thenar eminence and were held long enough to be tested in all 9 combinations of texture and weight. Recordings were made for the entire anterior-posterior extent of the thumb and index finger areas in somatosensory cortex including area 7b. However, the statistical analysis required a selection of only those cells for which nine complete recording conditions were available limiting the sample to cells in areas 2, 5, and 7b. Significant differences in the grip force accompanied 98% of the changes in texture and 78% of the changes in weight. Increasing the object weight also increased the force tangential to the skin surface as measured by the load or lifting force. The peak discharge during lifting was judged to be the most sensitive index of cell activity and was analyzed with a two-way analysis of variance (ANOVA). In addition, peak cell discharge was normalized to allow comparisons among different combinations of texture and weight as well as comparisons among different neurons. Overall, the peak firing frequency of 87% of the cells was significantly modulated by changes in object texture, but changes in object weight affected the peak activity of only 58% of the cells. Almost all (17/18, 94%) of the static cells were influenced by the object texture, and 81% of the dynamic cells that were active only briefly at grip and lift onset were modulated by texture. For some cells, surface texture had a significant effect on neuronal discharge that was independent of the object weight. In contrast, weight-related responses were never simple main effects of the weight alone and appeared instead as significant interactions between texture and weight. Four neurons either increased or decreased activity in a graded fashion with surface structure (roughness) regardless of the object weight (P < 0.05). Ten other neurons showed increases or decreases in response to one or two textures, which might represent either a graded response or a tuning preference for a specific texture. The firing frequency of the majority (31/45) of neurons reflected an interaction of both texture and weight. The cells with texture-related but weight-independent activities were thought to encode surface characteristics that are largely independent of the grip and lifting forces used to manipulate the object. Such constancies could be used to construct internal representations or mental models for planning and controlling object manipulation.  (+info)

Modulation of the thermoregulatory sweating response to mild hyperthermia during activation of the muscle metaboreflex in humans. (6/3335)

1. To investigate the effect of the muscle metaboreflex on the thermoregulatory sweating response in humans, eight healthy male subjects performed sustained isometric handgrip exercise in an environmental chamber (35 C and 50 % relative humidity) at 30 or 45 % maximal voluntary contraction (MVC), at the end of which the blood circulation to the forearm was occluded for 120 s. The environmental conditions were such as to produce sweating by increase in skin temperature without a marked change in oesophageal temperature. 2. During circulatory occlusion after handgrip exercise at 30 % MVC for 120 s or at 45 % MVC for 60 s, the sweating rate (SR) on the chest and forearm (hairy regions), and the mean arterial blood pressure were significantly above baseline values (P < 0.05). There were no changes from baseline values in the oesophageal temperature, mean skin temperature, or SR on the palm (hairless regions). 3. During the occlusion after handgrip exercise at 30 % MVC for 60 s and during the occlusion alone, none of the measured parameters differed from baseline values. 4. It is concluded that, under mildly hyperthermic conditions, the thermoregulatory sweating response on the hairy regions is modulated by afferent signals from muscle metaboreceptors.  (+info)

Effects of muscle perfusion pressure on fatigue and systemic arterial pressure in human subjects. (7/3335)

The effects of changes in arterial perfusion across the physiological range on the fatigue of a working human hand muscle were studied in seven normal subjects. With the hand above heart level, subjects made repeated isometric contractions of the adductor pollicis muscle at 50% of maximal voluntary contraction in a 6-s on, 4-s off cycle. To assess fatigue, a maximal isometric twitch was elicited in each "off" period by electrical stimulation of the ulnar nerve. The experiment was repeated at least 2 days later with the hand at heart level. Five subjects showed faster fatigue with the arm elevated, and two subjects showed little difference in fatigue for the two conditions. Central blood pressure rose in proportion to fatigue for the subjects overall and returned quickly to its initial level afterwards. We conclude that human muscle fatigue can be increased by physiological reductions in perfusion pressure. Central blood pressure increases as the muscle fatigues, a response that may partially offset declining muscle performance.  (+info)

Endothelial function is impaired in fit young adults of low birth weight. (8/3335)

OBJECTIVE: Non-insulin-dependent diabetes, hypertension and ischaemic heart disease, with insulin resistance, are associated with low birth weight (the 'Small Baby Syndrome'). Common to these adult clinical conditions is endothelial dysfunction. We tested the hypothesis that endothelial dysfunction could precede their development in those of low birth weight. METHODS: Endothelial function was measured by ultrasonic 'wall-tracking' of flow-related brachial artery dilatation in fit 19-20 year old subjects randomly selected (blind to the investigators throughout the study) from low (< 2.5 kg) and normal (3.0-3.8 kg) birth weight subjects in the 1975-7 cohort of the Cardiff Births Survey and with no known cause for endothelial dysfunction. RESULTS: Flow-related dilatation was impaired in low birth weight relative to normal birth weight subjects (median 0.04 mm [1.5%] [n = 22] cf. 0.11 mm [4.1%] [n = 17], p < 0.05; 0.04 mm [1.5%] [n = 15] cf. 0.12 mm [4.4%] [n = 12], p < 0.05 after exclusion of inadvertently included ever-smokers). CONCLUSION: The findings suggest that endothelial dysfunction is a consequence of foetal malnutrition, consistent with contributing to the clinical features of the 'Small Baby Syndrome' in later adult life.  (+info)

In medical terms, a hand is the part of the human body that is attached to the forearm and consists of the carpus (wrist), metacarpus, and phalanges. It is made up of 27 bones, along with muscles, tendons, ligaments, and other soft tissues. The hand is a highly specialized organ that is capable of performing a wide range of complex movements and functions, including grasping, holding, manipulating objects, and communicating through gestures. It is also richly innervated with sensory receptors that provide information about touch, temperature, pain, and proprioception (the sense of the position and movement of body parts).

Hand disinfection is the process of eliminating or reducing harmful microorganisms on the hands, using a medically approved product such as an alcohol-based hand sanitizer or soap and water. The goal of hand disinfection is to prevent the spread of infections and maintain a clean and hygienic environment, particularly in healthcare settings. It is an essential component of standard precautions to prevent the transmission of pathogens and ensure patient safety. Proper hand disinfection techniques include applying enough product to cover all surfaces of the hands, rubbing the product over all areas for at least 20-30 seconds, and allowing the product to dry completely before touching anything else.

Hand injuries refer to any damage or harm caused to the structures of the hand, including the bones, joints, muscles, tendons, ligaments, nerves, blood vessels, and skin. These injuries can result from various causes such as trauma, overuse, or degenerative conditions. Examples of hand injuries include fractures, dislocations, sprains, strains, cuts, burns, and insect bites. Symptoms may vary depending on the type and severity of the injury, but they often include pain, swelling, stiffness, numbness, weakness, or loss of function in the hand. Proper diagnosis and treatment are crucial to ensure optimal recovery and prevent long-term complications.

A hand joint, also known as an articulation, is the location at which two or more bones connect. Specifically, in the context of the hand, there are several types of joints:

1. **Metacarpophalangeal (MCP) Joints:** These are the joints located between the metacarpal bones of the hand and the proximal phalanges of the fingers. The MCP joints allow for flexion, extension, abduction, adduction, and circumduction movements.
2. **Proximal Interphalangeal (PIP) Joints:** These are the joints located between the proximal and middle phalanges of the fingers. The PIP joints allow for flexion, extension, and a limited amount of abduction and adduction movements.
3. **Distal Interphalangeal (DIP) Joints:** These are the joints located between the middle and distal phalanges of the fingers. The DIP joints mainly allow for flexion and extension movements.
4. **Carpometacarpal (CMC) Joints:** These are the joints located between the carpal bones of the wrist and the metacarpal bones of the hand. The CMC joints, particularly the first CMC joint at the base of the thumb, allow for a wide range of movements, including flexion, extension, abduction, adduction, and opposition (the ability to touch the tip of the thumb to each of the other fingers).

These hand joints are supported by various structures such as ligaments, tendons, muscles, and cartilage, which provide stability, enable movement, and absorb shock during daily activities.

Hand strength refers to the measure of force or power that an individual can generate using the muscles of the hand and forearm. It is often assessed through various tests, such as grip strength dynamometry, which measures the maximum force exerted by the hand when squeezing a device called a handgrip dynanometer. Hand strength is important for performing daily activities, maintaining independence, and can be indicative of overall health and well-being. Reduced hand strength may be associated with conditions such as neuromuscular disorders, arthritis, or injuries.

Hand dermatoses is a general term used to describe various inflammatory skin conditions that affect the hands. These conditions can cause symptoms such as redness, swelling, itching, blistering, scaling, and cracking of the skin on the hands. Common examples of hand dermatoses include:

1. Irritant contact dermatitis: A reaction that occurs when the skin comes into contact with irritants such as chemicals, soaps, or detergents.
2. Allergic contact dermatitis: A reaction that occurs when the skin comes into contact with allergens, such as nickel, rubber, or poison ivy.
3. Atopic dermatitis (eczema): A chronic skin condition characterized by dry, itchy, and inflamed skin.
4. Psoriasis: A chronic skin condition characterized by red, scaly patches that can occur anywhere on the body, including the hands.
5. Dyshidrotic eczema: A type of eczema that causes small blisters to form on the sides of the fingers, palms, and soles of the feet.
6. Lichen planus: An inflammatory skin condition that can cause purple or white patches to form on the hands and other parts of the body.
7. Scabies: A contagious skin condition caused by mites that burrow into the skin and lay eggs, causing intense itching and a rash.

Treatment for hand dermatoses depends on the specific diagnosis and may include topical creams or ointments, oral medications, phototherapy, or avoidance of triggers.

Acquired hand deformities refer to structural changes in the hand or fingers that occur after birth, as a result of injury, illness, or other external factors. These deformities can affect any part of the hand, including the bones, joints, muscles, tendons, ligaments, and nerves. Common causes of acquired hand deformities include trauma, infection, degenerative diseases such as arthritis, tumors, and neurological conditions.

The symptoms of acquired hand deformities can vary depending on the severity and location of the deformity. They may include pain, stiffness, swelling, decreased range of motion, loss of function, and changes in appearance. Treatment for acquired hand deformities may involve a combination of medical interventions, such as medication, physical therapy, or splinting, as well as surgical procedures to correct the underlying structural problem. The goal of treatment is to relieve symptoms, improve function, and restore normal appearance and movement to the hand.

Hand hygiene refers to the practices of cleaning hands for the purpose of removing pathogens (disease-causing microorganisms) and preventing their spread. It is an important component of infection prevention and control in healthcare settings as well as in everyday life. The two main techniques for hand hygiene are handwashing with soap and water, and using alcohol-based hand sanitizers. Proper hand hygiene can help prevent the transmission of respiratory and gastrointestinal illnesses, as well as various healthcare-associated infections.

The term "hand bones" refers to the skeletal components that make up the human hand. These bones are divided into three categories: carpals, metacarpals, and phalanges.

1. Carpals: There are eight carpal bones arranged in two rows in the wrist region. The proximal row consists of the scaphoid, lunate, triquetral, and pisiform bones, while the distal row includes the trapezium, trapezoid, capitate, and hamate bones.

2. Metacarpals: There are five metacarpal bones, one for each finger, located in the middle part of the hand between the carpals and phalanges. They are numbered 1 to 5 from the thumb side to the little finger side.

3. Phalanges: These are the bones found in the fingers and thumb. Each finger has three phalanges (proximal, middle, and distal), while the thumb only has two (proximal and distal). In total, there are 14 phalangeal bones in the hand.

Together, these hand bones provide structure, support, and mobility to the hand, enabling various complex movements essential for daily activities.

Hand transplantation is a surgical procedure that involves the attachment of a donor's hand or hands to a recipient who has lost their hand(s) due to trauma, illness, or congenital conditions. The procedure involves meticulous microvascular and nerve reconstruction to reconnect bones, tendons, nerves, and blood vessels, allowing for the recovery of sensory and motor functions in the transplanted hand. It is an advanced reconstructive option that requires a careful selection of candidates, rigorous postoperative care, and immunosuppressive therapy to prevent rejection of the transplanted organ.

Congenital hand deformities refer to physical abnormalities or malformations of the hand, wrist, and/or digits (fingers) that are present at birth. These deformities can result from genetic factors, environmental influences during pregnancy, or a combination of both. They may affect the bones, muscles, tendons, joints, and other structures in the hand, leading to varying degrees of impairment in function and appearance.

There are numerous types of congenital hand deformities, some of which include:

1. Polydactyly: The presence of extra digits on the hand, which can be fully formed or rudimentary.
2. Syndactyly: Webbing or fusion of two or more fingers, which may involve soft tissue only or bone as well.
3. Clinodactyly: A curved finger due to a sideways deviation of the fingertip, often affecting the little finger.
4. Camptodactyly: Permanent flexion or bending of one or more fingers, typically involving the proximal interphalangeal joint.
5. Trigger Finger/Thumb: A condition where a finger or thumb becomes locked in a bent position due to thickening and narrowing of the tendon sheath.
6. Radial Club Hand (Radial Ray Deficiency): Underdevelopment or absence of the radius bone, resulting in a short, curved forearm and hand deformity.
7. Ulnar Club Hand (Ulnar Ray Deficiency): Underdevelopment or absence of the ulna bone, leading to a short, curved forearm and hand deformity.
8. Cleidocranial Dysplasia: A genetic disorder affecting bone growth, resulting in underdeveloped or absent collarbones, dental abnormalities, and occasionally hand deformities.
9. Apert Syndrome: A rare genetic disorder characterized by the fusion of fingers and toes (syndactyly) and other skeletal abnormalities.
10. Holt-Oram Syndrome: A genetic disorder involving heart defects and upper limb deformities, such as radial ray deficiency or thumb anomalies.

Treatment for hand deformities varies depending on the specific condition and severity. Options may include physical therapy, bracing, splinting, medications, or surgical intervention.

Hand, foot, and mouth disease (HFMD) is a mild, contagious viral infection common in infants and children but can sometimes occur in adults. The disease is often caused by coxsackievirus A16 or enterovirus 71.

The name "hand, foot and mouth" comes from the fact that blister-like sores usually appear in the mouth (and occasionally on the buttocks and legs) along with a rash on the hands and feet. The disease is not related to foot-and-mouth disease (also called hoof-and-mouth disease), which affects cattle, sheep, and swine.

HFMD is spread through close personal contact, such as hugging and kissing, or through the air when an infected person coughs or sneezes. It can also be spread by touching objects and surfaces that have the virus on them and then touching the face. People with HFMD are most contagious during the first week of their illness but can still be contagious for weeks after symptoms go away.

There is no specific treatment for HFMD, and it usually resolves on its own within 7-10 days. However, over-the-counter pain relievers and fever reducers may help alleviate symptoms. It's important to encourage good hygiene practices, such as handwashing and covering the mouth and nose when coughing or sneezing, to prevent the spread of HFMD.

In medical terms, fingers are not specifically defined as they are common anatomical structures. However, I can provide you with a general anatomy definition:

Fingers are the terminal parts of the upper limb in primates, including humans, consisting of four digits (thumb, index, middle, and ring fingers) and one opposable thumb. They contain bones called phalanges, connected by joints that allow for movement and flexibility. Each finger has a nail, nerve endings for sensation, and blood vessels to supply nutrients and oxygen. Fingers are crucial for various activities such as grasping, manipulating objects, and tactile exploration of the environment.

I believe there may be some confusion in your question. "Soaps" is not a medical term, but rather refers to cleaning agents that are widely used in daily life for personal and household hygiene.

However, if you're referring to "saponification," it is a chemical process that occurs when fats or oils react with an alkali, resulting in the formation of soap and glycerin. This term can be relevant in medical contexts, such as in the production of medicated soaps used for various skin conditions.

If you meant something else by "Soaps," please clarify your question, and I will do my best to provide an accurate answer.

A finger joint, also known as an articulation, is the point where two bones in a finger connect and allow for movement. The majority of finger joints are classified as hinge joints, permitting flexion and extension movements. These joints consist of several components:

1. Articular cartilage: Smooth tissue that covers the ends of the bones, enabling smooth movement and protecting the bones from friction.
2. Joint capsule: A fibrous sac enclosing the joint, providing stability and producing synovial fluid for lubrication.
3. Synovial membrane: Lines the inner surface of the joint capsule and produces synovial fluid to lubricate the joint.
4. Volar plate (palmar ligament): A strong band of tissue located on the palm side of the joint, preventing excessive extension and maintaining alignment.
5. Collateral ligaments: Two bands of tissue located on each side of the joint, providing lateral stability and limiting radial and ulnar deviation.
6. Flexor tendons: Tendons that attach to the bones on the palmar side of the finger joints, facilitating flexion movements.
7. Extensor tendons: Tendons that attach to the bones on the dorsal side of the finger joints, enabling extension movements.

Finger joints are essential for hand function and enable activities such as grasping, holding, writing, and manipulating objects.

In the context of medicine and healthcare, "movement" refers to the act or process of changing physical location or position. It involves the contraction and relaxation of muscles, which allows for the joints to move and the body to be in motion. Movement can also refer to the ability of a patient to move a specific body part or limb, which is assessed during physical examinations. Additionally, "movement" can describe the progression or spread of a disease within the body.

Functional laterality, in a medical context, refers to the preferential use or performance of one side of the body over the other for specific functions. This is often demonstrated in hand dominance, where an individual may be right-handed or left-handed, meaning they primarily use their right or left hand for tasks such as writing, eating, or throwing.

However, functional laterality can also apply to other bodily functions and structures, including the eyes (ocular dominance), ears (auditory dominance), or legs. It's important to note that functional laterality is not a strict binary concept; some individuals may exhibit mixed dominance or no strong preference for one side over the other.

In clinical settings, assessing functional laterality can be useful in diagnosing and treating various neurological conditions, such as stroke or traumatic brain injury, where understanding any resulting lateralized impairments can inform rehabilitation strategies.

Psychomotor performance refers to the integration and coordination of mental processes (cognitive functions) with physical movements. It involves the ability to perform complex tasks that require both cognitive skills, such as thinking, remembering, and perceiving, and motor skills, such as gross and fine motor movements. Examples of psychomotor performances include driving a car, playing a musical instrument, or performing surgical procedures.

In a medical context, psychomotor performance is often used to assess an individual's ability to perform activities of daily living (ADLs) and instrumental activities of daily living (IADLs), such as bathing, dressing, cooking, cleaning, and managing medications. Deficits in psychomotor performance can be a sign of neurological or psychiatric disorders, such as dementia, Parkinson's disease, or depression.

Assessment of psychomotor performance may involve tests that measure reaction time, coordination, speed, precision, and accuracy of movements, as well as cognitive functions such as attention, memory, and problem-solving skills. These assessments can help healthcare professionals develop appropriate treatment plans and monitor the progression of diseases or the effectiveness of interventions.

The motor cortex is a region in the frontal lobe of the brain that is responsible for controlling voluntary movements. It is involved in planning, initiating, and executing movements of the limbs, body, and face. The motor cortex contains neurons called Betz cells, which have large cell bodies and are responsible for transmitting signals to the spinal cord to activate muscles. Damage to the motor cortex can result in various movement disorders such as hemiplegia or paralysis on one side of the body.

Motor skills are defined as the abilities required to plan, control and execute physical movements. They involve a complex interplay between the brain, nerves, muscles, and the environment. Motor skills can be broadly categorized into two types: fine motor skills, which involve small, precise movements (such as writing or picking up small objects), and gross motor skills, which involve larger movements using the arms, legs, and torso (such as crawling, walking, or running).

Motor skills development is an essential aspect of child growth and development, and it continues to evolve throughout adulthood. Difficulties with motor skills can impact a person's ability to perform daily activities and can be associated with various neurological and musculoskeletal conditions.

In medical terms, the thumb is referred to as "pollex" and it's the first digit of the hand, located laterally to the index finger. It's opposable, meaning it can move opposite to the other fingers, allowing for powerful gripping and precise manipulation. The thumb contains two phalanges bones - the distal and proximal - and is connected to the hand by the carpometacarpal joint, which provides a wide range of motion.

The metacarpal bones are the long slender bones that make up the middle part of the hand, located between the carpals (wrist bones) and the phalanges (finger bones). There are five metacarpal bones in total, with one for each finger and thumb. Each bone has a base attached to the carpals, a shaft, and a head that connects to the phalanges. The metacarpal bones play a crucial role in hand function, providing stability and support during gripping and manipulation movements.

Hygiene is the science and practice of maintaining and promoting health and preventing disease through cleanliness in personal and public environments. It includes various measures such as handwashing, bathing, using clean clothes, cleaning and disinfecting surfaces, proper waste disposal, safe food handling, and managing water supplies to prevent the spread of infectious agents like bacteria, viruses, and parasites.

In a medical context, hygiene is crucial in healthcare settings to prevent healthcare-associated infections (HAIs) and ensure patient safety. Healthcare professionals are trained in infection control practices, including proper hand hygiene, use of personal protective equipment (PPE), environmental cleaning and disinfection, and safe injection practices.

Overall, maintaining good hygiene is essential for overall health and well-being, reducing the risk of illness and promoting a healthy lifestyle.

A medical definition of the wrist is the complex joint that connects the forearm to the hand, composed of eight carpal bones arranged in two rows. The wrist allows for movement and flexibility in the hand, enabling us to perform various activities such as grasping, writing, and typing. It also provides stability and support for the hand during these movements. Additionally, numerous ligaments, tendons, and nerves pass through or near the wrist, making it susceptible to injuries and conditions like carpal tunnel syndrome.

The metacarpophalangeal (MCP) joint is the joint that connects the bones of the hand (metacarpals) to the bones of the fingers and thumb (phalanges). It's also commonly referred to as the "knuckle" joint. The MCP joint allows for flexion, extension, abduction, and adduction movements of the fingers and thumb. It is a synovial joint, which means it contains a lubricating fluid called synovial fluid that helps reduce friction during movement.

The wrist joint, also known as the radiocarpal joint, is a condyloid joint that connects the distal end of the radius bone in the forearm to the proximal row of carpal bones in the hand (scaphoid, lunate, and triquetral bones). It allows for flexion, extension, radial deviation, and ulnar deviation movements of the hand. The wrist joint is surrounded by a capsule and reinforced by several ligaments that provide stability and strength to the joint.

Electromyography (EMG) is a medical diagnostic procedure that measures the electrical activity of skeletal muscles during contraction and at rest. It involves inserting a thin needle electrode into the muscle to record the electrical signals generated by the muscle fibers. These signals are then displayed on an oscilloscope and may be heard through a speaker.

EMG can help diagnose various neuromuscular disorders, such as muscle weakness, numbness, or pain, and can distinguish between muscle and nerve disorders. It is often used in conjunction with other diagnostic tests, such as nerve conduction studies, to provide a comprehensive evaluation of the nervous system.

EMG is typically performed by a neurologist or a physiatrist, and the procedure may cause some discomfort or pain, although this is usually minimal. The results of an EMG can help guide treatment decisions and monitor the progression of neuromuscular conditions over time.

A finger phalanx is the medical term for the bones that make up each finger, excluding the thumb. The fingers typically consist of three phalanges, named proximally (nearest to the hand), middle, and distally (farthest from the hand). Each phalanx has a base, body, and head. The base articulates with the preceding bone, while the head articulates with the following bone to form a joint. The thumb, having only two phalanges, consists of a proximal and distal phalanx.

"EF hand motifs" are structural domains found in proteins that bind calcium ions. The name "EF hand" comes from the initials of the parvalbumin protein, where these structures were first identified, and the shape of the domain, which resembles the capital letters 'E' and 'F' lying on their sides when viewed in a certain orientation.

Each EF hand motif is composed of a helix-loop-helix structure, with the calcium-binding site located in the loop region. When calcium binds to the EF hand, it causes a conformational change in the protein, which can then activate or inhibit various cellular processes.

EF hand motifs are found in many different types of proteins, including calmodulin, troponin C, and S100 proteins. They play important roles in calcium signaling pathways, muscle contraction, and other physiological processes.

Finger injuries refer to any damage or trauma caused to the fingers, which can include cuts, bruises, dislocations, fractures, and sprains. These injuries can occur due to various reasons such as accidents, sports activities, falls, or direct blows to the finger. Symptoms of finger injuries may include pain, swelling, stiffness, deformity, numbness, or inability to move the finger. The treatment for finger injuries varies depending on the type and severity of the injury, but may include rest, immobilization, ice, compression, elevation, physical therapy, medication, or surgery. It is essential to seek medical attention promptly for proper diagnosis and treatment of finger injuries to prevent further complications and ensure optimal recovery.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Touch perception, also known as tactile perception, refers to the ability to perceive and interpret sensations resulting from mechanical stimulation of the skin and other tissues. This sense is mediated by various receptors in the skin, such as Meissner's corpuscles, Pacinian corpuscles, Merkel's disks, and Ruffini endings, which detect different types of stimuli like pressure, vibration, and texture.

The information gathered by these receptors is transmitted to the brain through sensory neurons, where it is processed and integrated with other sensory information to create a coherent perception of the environment. Touch perception plays a crucial role in many aspects of daily life, including object manipulation, social interaction, and the appreciation of various forms of sensory pleasure.

Proprioception is the unconscious perception of movement and spatial orientation arising from stimuli within the body itself. It is sometimes described as the "sixth sense" and it's all about knowing where your body parts are, how they are moving, and the effort being used to move them. This information is crucial for motor control, balance, and coordination.

The proprioceptive system includes sensory receptors called proprioreceptors located in muscles, tendons, and joints that send messages to the brain through nerves regarding body position and movement. These messages are then integrated with information from other senses, such as vision and vestibular sense (related to balance), to create a complete understanding of the body's position and motion in space.

Deficits in proprioception can lead to problems with coordination, balance, and fine motor skills.

Kinesthesia, also known as proprioception, refers to the perception or awareness of the position and movement of the body parts in space. It is a type of sensory information that comes from receptors located in muscles, tendons, ligaments, and joints, which detect changes in tension, length, and pressure of these tissues during movement. This information is then sent to the brain, where it is integrated with visual and vestibular (inner ear) inputs to create a sense of body position and movement.

Kinesthesia allows us to perform complex movements and maintain balance without having to consciously think about each movement. It helps us to coordinate our movements, adjust our posture, and navigate through our environment with ease. Deficits in kinesthetic perception can lead to difficulties with motor coordination, balance, and mobility.

Alien hand syndrome (AHS) is a rare neurological disorder in which the afflicted individual experiences their hand as if it were not their own and moves without their voluntary control. This condition often occurs following certain types of brain surgeries or strokes that damage the connection between the frontal lobes and the primary motor cortex of the brain, particularly on the side responsible for controlling the dominant hand.

Individuals with AHS may experience involuntary, purposeful movements of their affected hand, such as grasping, manipulating, or even attacking objects. They often have difficulty restraining these movements and may describe a sense of detachment from the limb, hence the term "alien hand." Additionally, they may not recognize the hand as their own, leading to feelings of estrangement or fear.

There are two main types of AHS: frontal lobe disconnection syndrome and callosal dissection syndrome. Frontal lobe disconnection syndrome results from damage to the connections between the frontal lobes and the primary motor cortex, while callosal dissection syndrome arises from a lesion in the corpus callosum, which is the bundle of nerve fibers connecting the two hemispheres of the brain.

Treatment for AHS typically focuses on managing symptoms and improving functional abilities through various therapeutic interventions, such as occupational therapy and behavioral strategies. There is no known cure for this condition, but ongoing research aims to better understand its underlying mechanisms and develop more effective treatment approaches.

'Infectious disease transmission, professional-to-patient' refers to the spread of an infectious agent or disease from a healthcare professional to a patient within a healthcare setting. This can occur through various routes such as:

1. Direct contact transmission: This involves physical contact between the healthcare professional and the patient, which may result in the transfer of microorganisms. Examples include touching, coughing, or sneezing on the patient.

2. Indirect contact transmission: This occurs when a healthcare professional contaminates an object or surface that is then touched by the patient, leading to the spread of infection. Common examples include contaminated medical equipment, bed rails, or doorknobs.

3. Droplet transmission: This type of transmission occurs when an infected individual generates respiratory droplets containing microorganisms, which can then be dispersed through the air and inhaled by a susceptible host. Healthcare professionals can transmit infectious diseases to patients via this route if they have close contact (within 1 meter) with the patient during procedures that generate aerosols or when coughing or sneezing.

4. Airborne transmission: This occurs when microorganisms are suspended in air and transmitted over long distances. Healthcare professionals can become sources of airborne infections through activities such as suctioning, endotracheal intubation, bronchoscopy, or cardiopulmonary resuscitation.

To prevent professional-to-patient transmission of infectious diseases, healthcare professionals should adhere to standard precautions, including hand hygiene, use of personal protective equipment (PPE), safe injection practices, and environmental cleaning and disinfection. Additionally, they should be vaccinated against vaccine-preventable diseases and follow respiratory etiquette, such as wearing masks and covering their mouths and noses when coughing or sneezing.

Artificial limbs, also known as prosthetics, are artificial substitutes that replace a part or all of an absent extremity or limb. They are designed to restore the function, mobility, and appearance of the lost limb as much as possible. Artificial limbs can be made from various materials such as wood, plastic, metal, or carbon fiber, and they can be custom-made to fit the individual's specific needs and measurements.

Prosthetic limbs can be categorized into two main types: cosmetic and functional. Cosmetic prosthetics are designed to look like natural limbs and are primarily used to improve the appearance of the person. Functional prosthetics, on the other hand, are designed to help the individual perform specific tasks and activities. They may include features such as hooks, hands, or specialized feet that can be used for different purposes.

Advances in technology have led to the development of more sophisticated artificial limbs, including those that can be controlled by the user's nervous system, known as bionic prosthetics. These advanced prosthetic devices can provide a greater degree of mobility and control for the user, allowing them to perform complex movements and tasks with ease.

An illusion is a perception in the brain that does not match the actual stimulus in the environment. It is often described as a false or misinterpreted sensory experience, where the senses perceive something that is different from the reality. Illusions can occur in any of the senses, including vision, hearing, touch, taste, and smell.

In medical terms, illusions are sometimes associated with certain neurological conditions, such as migraines, brain injuries, or mental health disorders like schizophrenia. They can also be a side effect of certain medications or substances. In these cases, the illusions may be a symptom of an underlying medical condition and should be evaluated by a healthcare professional.

It's important to note that while illusions are often used in the context of entertainment and art, they can also have serious implications for individuals who experience them frequently or as part of a medical condition.

In a medical context, "gestures" are not typically defined as they are a part of communication and behavior rather than specific medical terminology. However, in the field of physical therapy or rehabilitation, gestures may refer to purposeful movements made with the hands, arms, or body to express ideas or commands.

In neurology or neuropsychology, abnormal gestures may be a symptom of certain conditions such as apraxia, where patients have difficulty performing learned, purposeful movements despite having the physical ability to do so. In this context, "gestures" would refer to specific motor behaviors that are impaired due to brain damage or dysfunction.

Occupational dermatitis is a specific type of contact dermatitis that results from exposure to certain substances or conditions in the workplace. It can be caused by direct contact with chemicals, irritants, or allergens present in the work environment. This condition typically affects the skin on the hands and forearms but can also involve other areas of the body, depending on the nature of the exposure.

There are two main types of occupational dermatitis:

1. Irritant contact dermatitis (ICD): This type occurs when the skin comes into direct contact with an irritating substance, leading to redness, swelling, itching, and sometimes blistering. Common irritants include solvents, detergents, oils, and other industrial chemicals.
2. Allergic contact dermatitis (ACD): This type is a result of an allergic reaction to a specific substance. The immune system identifies the allergen as harmful and mounts a response, causing skin inflammation. Common allergens include latex, metals (such as nickel), and certain plants (like poison ivy).

Prevention measures for occupational dermatitis include using appropriate personal protective equipment (PPE) like gloves, masks, and aprons, as well as practicing good hygiene, such as washing hands regularly and avoiding touching the face with contaminated hands. If you suspect you have developed occupational dermatitis, consult a healthcare professional for proper diagnosis and treatment.

Congenital foot deformities refer to abnormal structural changes in the foot that are present at birth. These deformities can vary from mild to severe and may affect the shape, position, or function of one or both feet. Common examples include clubfoot (talipes equinovarus), congenital vertical talus, and cavus foot. Congenital foot deformities can be caused by genetic factors, environmental influences during fetal development, or a combination of both. Treatment options may include stretching, casting, surgery, or a combination of these approaches, depending on the severity and type of the deformity.

In medical terms, the foot is the part of the lower limb that is distal to the leg and below the ankle, extending from the tarsus to the toes. It is primarily responsible for supporting body weight and facilitating movement through push-off during walking or running. The foot is a complex structure made up of 26 bones, 33 joints, and numerous muscles, tendons, ligaments, and nerves that work together to provide stability, balance, and flexibility. It can be divided into three main parts: the hindfoot, which contains the talus and calcaneus (heel) bones; the midfoot, which includes the navicular, cuboid, and cuneiform bones; and the forefoot, which consists of the metatarsals and phalanges that form the toes.

In the context of medicine and physiology, vibration refers to the mechanical oscillation of a physical body or substance with a periodic back-and-forth motion around an equilibrium point. This motion can be produced by external forces or internal processes within the body.

Vibration is often measured in terms of frequency (the number of cycles per second) and amplitude (the maximum displacement from the equilibrium position). In clinical settings, vibration perception tests are used to assess peripheral nerve function and diagnose conditions such as neuropathy.

Prolonged exposure to whole-body vibration or hand-transmitted vibration in certain occupational settings can also have adverse health effects, including hearing loss, musculoskeletal disorders, and vascular damage.

Anti-infective agents, local, are medications that are applied directly to a specific area of the body to prevent or treat infections caused by bacteria, fungi, viruses, or parasites. These agents include topical antibiotics, antifungals, antivirals, and anti-parasitic drugs. They work by killing or inhibiting the growth of the infectious organisms, thereby preventing their spread and reducing the risk of infection. Local anti-infective agents are often used to treat skin infections, eye infections, and other localized infections, and can be administered as creams, ointments, gels, solutions, or drops.

The median nerve is one of the major nerves in the human body, providing sensation and motor function to parts of the arm and hand. It originates from the brachial plexus, a network of nerves that arise from the spinal cord in the neck. The median nerve travels down the arm, passing through the cubital tunnel at the elbow, and continues into the forearm and hand.

In the hand, the median nerve supplies sensation to the palm side of the thumb, index finger, middle finger, and half of the ring finger. It also provides motor function to some of the muscles that control finger movements, allowing for flexion of the fingers and opposition of the thumb.

Damage to the median nerve can result in a condition called carpal tunnel syndrome, which is characterized by numbness, tingling, and weakness in the hand and fingers.

Evoked potentials, motor, are a category of tests used in clinical neurophysiology to measure the electrical activity generated by the nervous system in response to a stimulus that specifically activates the motor pathways. These tests can help assess the integrity and function of the motor neurons, which are responsible for controlling voluntary muscle movements.

During a motor evoked potentials test, electrodes are placed on the scalp or directly on the surface of the brain or spinal cord. A stimulus is then applied to the motor cortex or peripheral nerves, causing the muscles to contract. The resulting electrical signals are recorded and analyzed to evaluate the conduction velocity, amplitude, and latency of the motor responses.

Motor evoked potentials tests can be useful in diagnosing various neurological conditions, such as multiple sclerosis, spinal cord injuries, and motor neuron diseases. They can also help monitor the progression of these conditions and assess the effectiveness of treatments.

The metacarpus is the medical term for the part of the hand located between the carpus (wrist) and the digits (fingers). It consists of five bones, known as the metacarpal bones, which are numbered 1 to 5 from the thumb side to the little finger side. Each metacarpal bone has a base, a shaft, and a head. The bases of the metacarpal bones articulate with the carpal bones to form the wrist joint, while the heads of the metacarpal bones form the knuckles at the back of the hand.

The metacarpus plays an essential role in hand function as it provides stability and support for the movement of the fingers and thumb. Injuries or conditions affecting the metacarpus can significantly impact hand function, causing pain, stiffness, weakness, or deformity.

Dystonic disorders are a group of neurological conditions characterized by sustained or intermittent muscle contractions that result in involuntary, repetitive, and often twisting movements and abnormal postures. These movements can affect any part of the body, including the face, neck, limbs, and trunk. Dystonic disorders can be primary, meaning they are caused by genetic mutations or idiopathic causes, or secondary, resulting from brain injury, infection, or other underlying medical conditions.

The most common form of dystonia is cervical dystonia (spasmodic torticollis), which affects the muscles of the neck and results in abnormal head positioning. Other forms of dystonia include blepharospasm (involuntary eyelid spasms), oromandibular dystonia (affecting the muscles of the jaw, face, and tongue), and generalized dystonia (affecting multiple parts of the body).

Dystonic disorders can significantly impact a person's quality of life, causing pain, discomfort, and social isolation. Treatment options include oral medications, botulinum toxin injections, and deep brain stimulation surgery in severe cases.

The Ulnar nerve is one of the major nerves in the forearm and hand, which provides motor function to the majority of the intrinsic muscles of the hand (except for those innervated by the median nerve) and sensory innervation to the little finger and half of the ring finger. It originates from the brachial plexus, passes through the cubital tunnel at the elbow, and continues down the forearm, where it runs close to the ulna bone. The ulnar nerve then passes through the Guyon's canal in the wrist before branching out to innervate the hand muscles and provide sensation to the skin on the little finger and half of the ring finger.

'Infection Control' is a set of practices, procedures, and protocols designed to prevent the spread of infectious agents in healthcare settings. It includes measures to minimize the risk of transmission of pathogens from both recognized and unrecognized sources, such as patients, healthcare workers, visitors, and the environment.

Infection control strategies may include:

* Hand hygiene (handwashing and use of alcohol-based hand sanitizers)
* Use of personal protective equipment (PPE), such as gloves, masks, gowns, and eye protection
* Respiratory etiquette, including covering the mouth and nose when coughing or sneezing
* Environmental cleaning and disinfection
* Isolation precautions for patients with known or suspected infectious diseases
* Immunization of healthcare workers
* Safe injection practices
* Surveillance and reporting of infections and outbreaks

The goal of infection control is to protect patients, healthcare workers, and visitors from acquiring and transmitting infections.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Biomechanics is the application of mechanical laws to living structures and systems, particularly in the field of medicine and healthcare. A biomechanical phenomenon refers to a observable event or occurrence that involves the interaction of biological tissues or systems with mechanical forces. These phenomena can be studied at various levels, from the molecular and cellular level to the tissue, organ, and whole-body level.

Examples of biomechanical phenomena include:

1. The way that bones and muscles work together to produce movement (known as joint kinematics).
2. The mechanical behavior of biological tissues such as bone, cartilage, tendons, and ligaments under various loads and stresses.
3. The response of cells and tissues to mechanical stimuli, such as the way that bone tissue adapts to changes in loading conditions (known as Wolff's law).
4. The biomechanics of injury and disease processes, such as the mechanisms of joint injury or the development of osteoarthritis.
5. The use of mechanical devices and interventions to treat medical conditions, such as orthopedic implants or assistive devices for mobility impairments.

Understanding biomechanical phenomena is essential for developing effective treatments and prevention strategies for a wide range of medical conditions, from musculoskeletal injuries to neurological disorders.

Carpal Tunnel Syndrome (CTS) is a common peripheral nerve disorder that affects the median nerve, which runs from the forearm into the hand through a narrow tunnel-like structure in the wrist called the carpal tunnel. The condition is caused by compression or pinching of the median nerve as it passes through this tunnel, leading to various symptoms such as numbness, tingling, and weakness in the hand and fingers.

The median nerve provides sensation to the thumb, index finger, middle finger, and half of the ring finger. It also controls some small muscles in the hand that allow for fine motor movements. When the median nerve is compressed or damaged due to CTS, it can result in a range of symptoms including:

1. Numbness, tingling, or burning sensations in the fingers (especially the thumb, index finger, middle finger, and half of the ring finger)
2. Pain or discomfort in the hand, wrist, or forearm
3. Weakness in the hand, leading to difficulty gripping objects or making a fist
4. A sensation of swelling or inflammation in the fingers, even if there is no visible swelling present
5. Nighttime symptoms that may disrupt sleep patterns

The exact cause of Carpal Tunnel Syndrome can vary from person to person, but some common risk factors include:

1. Repetitive hand and wrist motions (such as typing, writing, or using tools)
2. Prolonged exposure to vibrations (from machinery or power tools)
3. Wrist trauma or fractures
4. Pregnancy and hormonal changes
5. Certain medical conditions like diabetes, rheumatoid arthritis, and thyroid disorders
6. Obesity
7. Smoking

Diagnosis of Carpal Tunnel Syndrome typically involves a physical examination, medical history review, and sometimes specialized tests like nerve conduction studies or electromyography to confirm the diagnosis and assess the severity of the condition. Treatment options may include splinting, medication, corticosteroid injections, and in severe cases, surgery to relieve pressure on the median nerve.

A splint is a device used to support, protect, and immobilize injured body parts, such as bones, joints, or muscles. It can be made from various materials like plastic, metal, or fiberglass. Splints are often used to keep the injured area in a stable position, reducing pain, swelling, and further damage while the injury heals. They come in different shapes and sizes, tailored to fit specific body parts and injuries. A splint can be adjustable or custom-made, depending on the patient's needs. It is essential to follow healthcare professionals' instructions for using and caring for a splint to ensure proper healing and prevent complications.

Eczema is a medical condition characterized by inflammation of the skin, which leads to symptoms such as redness, itching, scaling, and blistering. It is often used to describe atopic dermatitis, a chronic relapsing form of eczema, although there are several other types of eczema with different causes and characteristics.

Atopic dermatitis is believed to be caused by a combination of genetic and environmental factors, and it often affects people with a family history of allergic conditions such as asthma or hay fever. The condition typically begins in infancy or childhood and can persist into adulthood, although it may improve over time.

Eczema can affect any part of the body, but it is most commonly found on the hands, feet, behind the knees, inside the elbows, and on the face. The rash of eczema is often accompanied by dry, scaly skin, and people with the condition may experience periods of flare-ups and remissions.

Treatment for eczema typically involves a combination of moisturizers to keep the skin hydrated, topical corticosteroids to reduce inflammation, and antihistamines to relieve itching. In severe cases, systemic immunosuppressive drugs may be necessary. It is also important for people with eczema to avoid triggers that can worsen their symptoms, such as harsh soaps, scratchy fabrics, and stress.

Sensory feedback refers to the information that our senses (such as sight, sound, touch, taste, and smell) provide to our nervous system about our body's interaction with its environment. This information is used by our brain and muscles to make adjustments in movement, posture, and other functions to maintain balance, coordination, and stability.

For example, when we walk, our sensory receptors in the skin, muscles, and joints provide feedback to our brain about the position and movement of our limbs. This information is used to adjust our muscle contractions and make small corrections in our gait to maintain balance and avoid falling. Similarly, when we touch a hot object, sensory receptors in our skin send signals to our brain that activate the withdrawal reflex, causing us to quickly pull away our hand.

In summary, sensory feedback is an essential component of our nervous system's ability to monitor and control our body's movements and responses to the environment.

The carpometacarpal (CMC) joints are the articulations between the carpal bones of the wrist and the metacarpal bones of the hand. There are five CMC joints in total, with one located at the base of each finger and thumb. The CMC joint of the thumb, also known as the first CMC joint or trapeziometacarpal joint, is the most commonly affected by osteoarthritis. These joints play a crucial role in hand function and movement, allowing for various grips and grasping motions.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Hand deformities refer to any abnormal changes in the shape or structure of the hand, which can result from various causes such as genetic factors, injuries, illnesses, or aging. These deformities may affect one or more parts of the hand, including the bones, joints, muscles, tendons, ligaments, and nerves. Common examples of hand deformities include:

1. Trigger finger: A condition where the affected finger or thumb gets locked in a bent position and can only be straightened with a snapping motion.
2. Dupuytren's contracture: A progressive hand deformity that causes the fingers to bend towards the palm due to thickening and shortening of the palmar fascia.
3. Mallet finger: An injury to the extensor tendon at the end joint of a finger, causing it to droop and making it difficult to straighten the fingertip.
4. Boutonnière deformity: A condition where the middle joint of a finger is dislocated and cannot be straightened due to damage to the central slip of the extensor tendon.
5. Camptodactyly: A congenital hand deformity characterized by permanent flexion of one or more fingers, typically affecting the little finger.
6. Rheumatoid arthritis: An autoimmune disease that can cause joint inflammation and damage, leading to hand deformities such as swan neck deformity and boutonnière deformity.
7. Fractures or dislocations: Trauma to the hand can result in various deformities depending on the severity and location of the injury.
8. Nerve injuries: Damage to nerves in the hand can lead to muscle weakness, numbness, tingling, and deformities such as claw hand or ulnar claw hand.
9. Osteoarthritis: A degenerative joint disease that commonly affects the hands, causing pain, stiffness, and potential deformities in the fingers and thumb.
10. Congenital hand differences: Birth defects that result in missing or abnormally formed parts of the hand, such as radial clubhand or cleft hand.

Reaction time, in the context of medicine and physiology, refers to the time period between the presentation of a stimulus and the subsequent initiation of a response. This complex process involves the central nervous system, particularly the brain, which perceives the stimulus, processes it, and then sends signals to the appropriate muscles or glands to react.

There are different types of reaction times, including simple reaction time (responding to a single, expected stimulus) and choice reaction time (choosing an appropriate response from multiple possibilities). These measures can be used in clinical settings to assess various aspects of neurological function, such as cognitive processing speed, motor control, and alertness.

However, it is important to note that reaction times can be influenced by several factors, including age, fatigue, attention, and the use of certain medications or substances.

In medical terms, the skin is the largest organ of the human body. It consists of two main layers: the epidermis (outer layer) and dermis (inner layer), as well as accessory structures like hair follicles, sweat glands, and oil glands. The skin plays a crucial role in protecting us from external factors such as bacteria, viruses, and environmental hazards, while also regulating body temperature and enabling the sense of touch.

Pinch strength is a measure of the force or grip strength that a person can apply using their thumb and one or more fingers to pinch or squeeze an object. It is often used as a clinical assessment tool to evaluate hand function, neuromuscular health, and rehabilitation progress. There are several types of pinch strengths that can be measured, including:

1. Lateral pinch strength: The force applied when the thumb tip and the side of the index finger tip come together (key pinch).
2. Palmar pinch strength: The force applied when the thumb pad and the tips of the index and middle fingers come together (three-jaw chuck pinch).
3. Tip-to-tip pinch strength: The force applied when the pads of the thumb and index finger tips come together (precision pinch).

These measurements help healthcare professionals assess any potential impairments, injuries, or conditions affecting hand function and grip strength, such as carpal tunnel syndrome, arthritis, nerve damage, or muscular disorders. Regular assessment of pinch strength can also aid in monitoring the effectiveness of treatment interventions and rehabilitation programs.

Paresis is a medical term that refers to a partial loss of voluntary muscle function. It is often described as muscle weakness, and it can affect one or several parts of the body. Paresis can be caused by various conditions, including nerve damage, stroke, spinal cord injuries, multiple sclerosis, and infections like polio or botulism. The severity of paresis can range from mild to severe, depending on the underlying cause and the specific muscles involved. Treatment for paresis typically focuses on addressing the underlying condition causing it.

Tenosynovitis is a medical condition characterized by inflammation of the lining (synovium) surrounding a tendon, which is a cord-like structure that attaches muscle to bone. This inflammation can cause pain, swelling, and difficulty moving the affected joint. Tenosynovitis often affects the hands, wrists, feet, and ankles, and it can result from various causes, including infection, injury, overuse, or autoimmune disorders like rheumatoid arthritis. Prompt diagnosis and treatment of tenosynovitis are essential to prevent complications such as tendon rupture or chronic pain.

Enterovirus A, Human is a type of enterovirus that infects humans. Enteroviruses are small, single-stranded RNA viruses that belong to the Picornaviridae family. There are over 100 different types of enteroviruses, and they are divided into several species, including Enterovirus A, B, C, D, and Rhinovirus.

Enterovirus A includes several important human pathogens, such as polioviruses (which have been largely eradicated thanks to vaccination efforts), coxsackieviruses, echoviruses, and enterovirus 71. These viruses are typically transmitted through the fecal-oral route or respiratory droplets and can cause a range of illnesses, from mild symptoms like fever, rash, and sore throat to more severe diseases such as meningitis, encephalitis, myocarditis, and paralysis.

Poliovirus, which is the most well-known member of Enterovirus A, was responsible for causing poliomyelitis, a highly infectious disease that can lead to irreversible paralysis. However, due to widespread vaccination programs, wild poliovirus transmission has been eliminated in many parts of the world, and only a few countries still report cases of polio caused by vaccine-derived viruses.

Coxsackieviruses and echoviruses can cause various symptoms, including fever, rash, mouth sores, muscle aches, and respiratory illnesses. In some cases, they can also lead to more severe diseases such as meningitis or myocarditis. Enterovirus 71 is a significant pathogen that can cause hand, foot, and mouth disease, which is a common childhood illness characterized by fever, sore throat, and rash on the hands, feet, and mouth. In rare cases, enterovirus 71 can also lead to severe neurological complications such as encephalitis and polio-like paralysis.

Prevention measures for enterovirus A infections include good hygiene practices, such as washing hands frequently, avoiding close contact with sick individuals, and practicing safe food handling. Vaccination is available for poliovirus and can help prevent the spread of vaccine-derived viruses. No vaccines are currently available for other enterovirus A infections, but research is ongoing to develop effective vaccines against these viruses.

Disinfection is the process of eliminating or reducing harmful microorganisms from inanimate objects and surfaces through the use of chemicals, heat, or other methods. The goal of disinfection is to reduce the number of pathogens to a level that is considered safe for human health. Disinfection is an important step in preventing the spread of infectious diseases in healthcare settings, food processing facilities, and other environments where there is a risk of infection transmission.

It's important to note that disinfection is not the same as sterilization, which is the complete elimination of all microorganisms, including spores. Disinfection is generally less effective than sterilization but is often sufficient for most non-critical surfaces and objects. The choice between disinfection and sterilization depends on the level of risk associated with the item or surface being treated and the intended use of that item or surface.

The term "upper extremity" is used in the medical field to refer to the portion of the upper limb that extends from the shoulder to the hand. This includes the arm, elbow, forearm, wrist, and hand. The upper extremity is responsible for various functions such as reaching, grasping, and manipulating objects, making it an essential part of a person's daily activities.

Wrist injuries refer to damages or traumas affecting the structures of the wrist, including bones, ligaments, tendons, muscles, and cartilage. These injuries can occur due to various reasons such as falls, accidents, sports-related impacts, or repetitive stress. Common types of wrist injuries include fractures (such as scaphoid fracture), sprains (like ligament tears), strains (involving muscles or tendons), dislocations, and carpal tunnel syndrome. Symptoms may include pain, swelling, tenderness, bruising, limited mobility, and in severe cases, deformity or numbness. Immediate medical attention is necessary for proper diagnosis and treatment to ensure optimal recovery and prevent long-term complications.

No FAQ available that match "hand"

No images available that match "hand"