Abnormally high potassium concentration in the blood, most often due to defective renal excretion. It is characterized clinically by electrocardiographic abnormalities (elevated T waves and depressed P waves, and eventually by atrial asystole). In severe cases, weakness and flaccid paralysis may occur. (Dorland, 27th ed)
A congenital or acquired condition of insufficient production of ALDOSTERONE by the ADRENAL CORTEX leading to diminished aldosterone-mediated synthesis of Na(+)-K(+)-EXCHANGING ATPASE in renal tubular cells. Clinical symptoms include HYPERKALEMIA, sodium-wasting, HYPOTENSION, and sometimes metabolic ACIDOSIS.
A heterogeneous group of disorders characterized by renal electrolyte transport dysfunctions. Congenital forms are rare autosomal disorders characterized by neonatal hypertension, HYPERKALEMIA, increased RENIN activity and ALDOSTERONE concentration. The Type I features HYPERKALEMIA with sodium wasting; Type II, HYPERKALEMIA without sodium wasting. Pseudohypoaldosteronism can be the result of a defective renal electrolyte transport protein or acquired after KIDNEY TRANSPLANTATION.
An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
A synthetic mineralocorticoid with anti-inflammatory activity.
A potassium sparing diuretic that acts by antagonism of aldosterone in the distal renal tubules. It is used mainly in the treatment of refractory edema in patients with congestive heart failure, nephrotic syndrome, or hepatic cirrhosis. Its effects on the endocrine system are utilized in the treatments of hirsutism and acne but they can lead to adverse effects. (From Martindale, The Extra Pharmacopoeia, 30th ed, p827)
Abnormally low potassium concentration in the blood. It may result from potassium loss by renal secretion or by the gastrointestinal route, as by vomiting or diarrhea. It may be manifested clinically by neuromuscular disorders ranging from weakness to paralysis, by electrocardiographic abnormalities (depression of the T wave and elevation of the U wave), by renal disease, and by gastrointestinal disorders. (Dorland, 27th ed)
Drugs that bind to and block the activation of MINERALOCORTICOID RECEPTORS by MINERALOCORTICOIDS such as ALDOSTERONE.
A white, crystalline powder that is commonly used as a pH buffering agent, an electrolyte replenisher, systemic alkalizer and in topical cleansing solutions.
A pathologic condition of acid accumulation or depletion of base in the body. The two main types are RESPIRATORY ACIDOSIS and metabolic acidosis, due to metabolic acid build up.
A hormone secreted by the ADRENAL CORTEX that regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium.
High molecular weight insoluble polymers which contain functional anionic groups that are capable of undergoing exchange reactions with cations.
Potassium or potassium compounds used in foods or as foods.
A subclass of symporters found in KIDNEY TUBULES, DISTAL that are the major pathway for salt resorption. Inhibition of these symporters by BENZOTHIADIAZINES is the basis of action of some DIURETICS.
Agents that are used to stimulate evacuation of the bowels.
A quaternary skeletal muscle relaxant usually used in the form of its bromide, chloride, or iodide. It is a depolarizing relaxant, acting in about 30 seconds and with a duration of effect averaging three to five minutes. Succinylcholine is used in surgical, anesthetic, and other procedures in which a brief period of muscle relaxation is called for.
Polymerized forms of styrene used as a biocompatible material, especially in dentistry. They are thermoplastic and are used as insulators, for injection molding and casting, as sheets, plates, rods, rigid forms and beads.
A class of drugs whose main indications are the treatment of hypertension and heart failure. They exert their hemodynamic effect mainly by inhibiting the renin-angiotensin system. They also modulate sympathetic nervous system activity and increase prostaglandin synthesis. They cause mainly vasodilation and mild natriuresis without affecting heart rate and contractility.
One of the ANGIOTENSIN-CONVERTING ENZYME INHIBITORS (ACE inhibitors), orally active, that has been used in the treatment of hypertension and congestive heart failure.

Enhanced exercise-induced hyperkalemia in patients with syndrome X. (1/356)

OBJECTIVES: The purpose of this study was to determine whether patients with syndrome X have altered potassium metabolism. BACKGROUND: Patients with syndrome X have angina pectoris and exercise induced ST segment depression on the electrocardiogram despite normal coronary angiograms. Increasing evidence suggests that myocardial ischemia is uncommon in these patients. Altered potassium metabolism causing interstitial potassium accumulation in the myocardium may be an alternative mechanism for chest pain and ST segment depression in syndrome X. METHODS: We compared the magnitude of exercise-induced hyperkalemia in 16 patients with syndrome X (12 female and four male, mean +/- SD age 53 +/- 6 years) and 15 matched healthy control subjects. The participants underwent a bicycle test at a fixed load of 75 W for 10 min, and blood samples were taken for analysis of potassium, catecholamines and lactate before, during and in the recovery period after exercise. In five patients with syndrome X, the test was repeated during alpha1 adrenoceptor blockade. RESULTS: Baseline concentrations of serum potassium, plasma catecholamines and plasma lactate were similar in patients and control subjects. The rate of exercise-induced increment of serum potassium was increased in the patients (70 +/- 29 vs. 30 +/- 21 micromol/liter/min in control subjects, p < 0.001). Six patients, who stopped before 10 min of exercise, showed very rapid increments in serum potassium concentration. Compared to the control subjects, patients also demonstrated larger increments in rate-pressure product, plasma norepinephrine and lactate concentrations during exercise. The rate of serum potassium increment correlated with the rate of plasma norepinephrine increment in the patients (r = 0.63, p < 0.02), but not in the control subjects (r = 0.01, p = 0.97). Blockade of alpha1 adrenoceptors decreased systolic blood pressure at baseline, but did not influence the increment of serum potassium, plasma catecholamines and lactate. CONCLUSIONS: Patients with syndrome X have enhanced exercise induced hyperkalemia in parallel with augmented increases of circulating norepinephrine and lactate. The prevailing mechanisms behind the abnormal potassium handling comprise sources distinct from alpha1-adrenoceptor activation.  (+info)

Familial pseudohyperkalemia maps to the same locus as dehydrated hereditary stomatocytosis (hereditary xerocytosis). (2/356)

Familial pseudohyperkalemia is a "leaky red blood cell" condition in which the cells show a temperature-dependent loss of potassium (K) from red blood cells when stored at room temperature, manifesting as apparent hyperkalemia. The red blood cells show a reduced lifespan in vivo but there is no frank hemolysis. Studies of cation content and transport show a marginal increase in permeability at 37 degrees C and a degree of cellular dehydration, qualitatively similar to the changes seen in dehydrated hereditary stomatocytosis (hereditary xerocytosis). Physiological studies have shown that the passive leak to K has an abnormal temperature dependence, such that the leak is less sensitive to temperature than that in normal cells. We performed genetic mapping on the original family and found that the condition in this kindred maps to the same locus (16q23-ter) that we have previously identified for an Irish family with dehydrated hereditary stomatocytosis, which does not show the same temperature effects.  (+info)

A case of aldosterone-producing adenoma with severe postoperative hyperkalemia. (3/356)

It is known that some patients with primary aldosteronism show postoperative hyperkalemia, which is due to inability of the adrenal gland to secrete sufficient amounts of aldosterone. However, hyperkalemia is generally neither severe nor prolonged, in which replacement therapy with mineralocorticoid is seldom necessary. We report a case of a 46-year-old woman with an aldosterone-producing adenoma associated with severe postoperative hyperkalemia. After unilateral adrenalectomy, the patient showed episodes of severe hyperkalemia for four months, which required not only cation-exchange resin, but also mineralocorticoid replacement. Plasma aldosterone concentration (PAC) was low, although PAC was increased after rapid ACTH test. Histological examination indicated the presence of adrenocortical tumor and paradoxical hyperplasia of zona glomerulosa in the adjacent adrenal. Immunohistochemistry demonstrated that the enzymes involved in aldosterone synthesis, such as cholesterol side chain cleavage (P-450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), and 21-hydroxylase (P-450c21), or the enzyme involved in glucocorticoid synthesis, 11beta-hydroxylase (P-450c11beta), were expressed in the tumor, but they were completely absent in zona glomerulosa of the adjacent adrenal. These findings were consistent with the patterns of primary aldosteronism. Serum potassium level was gradually decreased with concomitant increase in PAC. These results suggest that severe postoperative hyperkalemia of the present case was attributable to severe suppression of aldosterone synthesis in the adjacent and contralateral adrenal, which resulted in slow recovery of aldosterone secretion. It is plausible that aldosterone synthesis of adjacent and contralateral adrenal glands is severely impaired in some cases with primary aldosteronism, as glucocorticoid synthesis in Cushing syndrome.  (+info)

Hyperkalaemic paralysis--a bizarre presentation of renal failure. (4/356)

Paralysis due to hyperkalaemia is rare and the diagnosis may be overlooked in the first instance. However it is rapidly reversible and so long as electro-cardiography and serum potassium measurement are urgently done in all patients presenting with paralysis, it will not be missed. A case of hyperkalaemic paralysis is described and a review of the emergency management discussed.  (+info)

Activation and inactivation of the voltage-gated sodium channel: role of segment S5 revealed by a novel hyperkalaemic periodic paralysis mutation. (5/356)

Hyperkalaemic periodic paralysis, paramyotonia congenita, and potassium-aggravated myotonia are three autosomal dominant skeletal muscle disorders linked to the SCN4A gene encoding the alpha-subunit of the human voltage-sensitive sodium channel. To date, approximately 20 point mutations causing these disorders have been described. We have identified a new point mutation, in the SCN4A gene, in a family with a hyperkalaemic periodic paralysis phenotype. This mutation predicts an isoleucine-to-phenylalanine substitution at position 1495 located in the transmembrane segment S5 in the fourth homologous domain of the human alpha-subunit sodium channel. Introduction of the I1495F mutation into the wild-type channels disrupted the macroscopic current inactivation decay and shifted both steady-state activation and inactivation to the hyperpolarizing direction. The recovery from fast inactivation was slowed, and there was no effect on channel deactivation. Additionally, a significant enhancement of slow inactivation was observed in the I1495F mutation. In contrast, the T704M mutation, a hyperkalaemic periodic paralysis mutation located in the cytoplasmic interface of the S5 segment of the second domain, also shifted activation in the hyperpolarizing direction but had little effect on fast inactivation and dramatically impaired slow inactivation. These results, showing that the I1495F and T704M hyperkalaemic periodic paralysis mutations both have profound effects on channel activation and fast-slow inactivation, suggest that the S5 segment maybe in a location where fast and slow inactivation converge.  (+info)

Hyperkalemia in patients infected with the human immunodeficiency virus: involvement of a systemic mechanism. (6/356)

BACKGROUND: The appearance of hyperkalemia has been described in human immunodeficiency virus (HIV)-positive patients treated with drugs with amiloride-like properties. Recent in vitro data suggest that individuals infected with HIV have alterations in transcellular K+ transport. METHODS: With the objective of examining the presence of alterations in transmembrane K+ equilibrium in HIV-positive patients, we designed a prospective, interventional study involving 10 HIV-positive individuals and 10 healthy controls, all with normal renal function. An infusion of L-arginine (6%, intravenously, in four 30-min periods at 50, 100, 200, and 300 ml/hr) was administered, and plasma and urine electrolytes, creatinine, pH and osmolality, total and fractional sodium and potassium excretion, transtubular potassium gradient, plasma insulin, renin, aldosterone, and cortisol were measured. RESULTS: A primary disturbance consisting of a significant rise in plasma [K+] induced by L-arginine was detected in only the HIV patients but not in the controls (P < 0.001 between groups). A K+ redistribution origin of the hyperkalemia was supported by its rapid development (within 60 min) and the lack of significant differences between HIV-positive individuals and controls in the amount of K+ excreted in the urine. The fact that the HIV-positive individuals had an inhibited aldosterone response to the increase in plasma K+ suggested a putative mechanism for the deranged K+ response. CONCLUSIONS: These results reveal that HIV-infected individuals have a significant abnormality in systemic K+ equilibrium. This abnormality, which leads to the development of hyperkalemia after the L-arginine challenge, may be related, in part, to a failure in the aldosterone response to hyperkalemia. These results provide a new basis for understanding the pathogenesis of hyperkalemia in HIV individuals, and demonstrate that the risk of HIV-associated hyperkalemia exists even in the absence of amiloride-mimicking drugs or overt hyporeninemic hypoaldosteronism.  (+info)

The effect of potassium chloride infusion of parotid salivary flow and composition in conscious sheep. (7/356)

The composition and flow of parotid saliva in conscious sheep was measured before, during and after the intravenous infusion of 0-43 M-KCl or 0-43 M-NaCl at 2 ml./min for 2 hr. The salivary flow rate was depressed during the infusion of potassium chloride into both intact sheep and adrenalectomized sheep. As the salivary flow was unchanged by sodium chloride infusion it was concluded that the potassium ion was responsible for the decrease in flow and that this effect was not mediated through any of the adrenal hormones. The highly significant negative correlation between plasma potassium concentration and salivary flow throughout all potassium infusions indicated that the extent to which the salivary flow was depressed varied with the degree of hyperkalaemia. Except for situations where mineralocorticoid levels were likely to be elevated the concentrations of sodium and potassium in the saliva were positively correlated with the plasma concentrations of these ions. The salivary bicarbonate concentration of the saliva was negatively related to flow. The chloride concentration of the saliva was negatively correlated with salivary flow during all potassium chloride infusions.  (+info)

Changes in renal haemodynamics and electrolyte excretion during acute hyperkalemia in conscious adrenalectomized sheep. (8/356)

The p-aminohippurate (PAH) clearance, inulin clearance and the excretion of electrolytes by 10 adrenalectomized sheep were measured before, during and after the infusion of 0-43 M-KCl at 2 ml./min for 2 hr. The PAH clearance increased as the plasma potassium concentration increased up to approximately 6-0 m-mole/l. Further increases in plasma potassium were associated with a progressive return of the PAH clearance to or below the pre-infusion levels. At its maximum the PAH clearance was 1-228 +/- 0-032 (S.E. of mean) times the pre-infusion levels. The inulin clearance increased to reach a mazimum coincident with or subsequent to the maximum PAH clearance. The maximum level of inulin clearance during the hyperkalaemia was 1-158 +/- 0-020 times the pre-infusion clearance. The increments in the clearance of potassium and of bicarbonate rose rapidly to exceed the increment in inulin clearance during the hyperkalaemia in all experiments. The increments in the clearance of sodium and of chloride exceeded the increment in inulin clearance in more than half the experiments. It was concluded that although hyperkalaemia was associated with increased glomerular filtration much of the increased excretion of sodium, chloride and bicarbonate was derived from depressed tubular reabsorption of the ions. When the infusion experiments were repeated on the same animals the sheep demonstrated an improved ability to control the rise in plasma potassium concentration which was similar to potassium adaptation described in other species. There were no apparent differences between sheep maintained on 1-5 mg and 5 mg deoxycorticosterone acetate daily in their adaptation to potassium loading and the effect was tentatively attributed to the level of steroid maintenance being chronically high. The toxicity of hyperkalaemia was not lessened by this adaptation to potassium loading.  (+info)

Hyperkalemia is a medical condition characterized by an elevated level of potassium (K+) in the blood serum, specifically when the concentration exceeds 5.0-5.5 mEq/L (milliequivalents per liter). Potassium is a crucial intracellular ion that plays a significant role in various physiological processes, including nerve impulse transmission, muscle contraction, and heart rhythm regulation.

Mild to moderate hyperkalemia might not cause noticeable symptoms but can still have harmful effects on the body, particularly on the cardiovascular system. Severe cases of hyperkalemia (potassium levels > 6.5 mEq/L) can lead to potentially life-threatening arrhythmias and heart failure.

Hyperkalemia may result from various factors, such as kidney dysfunction, hormonal imbalances, medication side effects, trauma, or excessive potassium intake. Prompt identification and management of hyperkalemia are essential to prevent severe complications and ensure proper treatment.

Hypoaldosteronism is a medical condition characterized by decreased levels or impaired function of the hormone aldosterone, which is produced by the adrenal gland. Aldosterone plays a crucial role in regulating electrolyte and fluid balance in the body by increasing the reabsorption of sodium and excretion of potassium in the kidneys.

Hypoaldosteronism can lead to low blood pressure, muscle weakness, and an imbalance of electrolytes, particularly low serum sodium levels and high serum potassium levels. This condition can be caused by various factors, including damage to the adrenal gland, impaired production or function of aldosterone, or decreased responsiveness of the kidneys to aldosterone.

Hypoaldosteronism can be primary or secondary. Primary hypoaldosteronism is caused by a problem with the adrenal glands themselves, such as damage to the gland or a genetic disorder that affects aldosterone production. Secondary hypoaldosteronism is caused by a problem outside of the adrenal glands, such as decreased production of renin (an enzyme produced by the kidneys) or certain medications that interfere with aldosterone production or function.

Treatment for hypoaldosteronism depends on the underlying cause and may include medication to replace missing aldosterone or correct electrolyte imbalances, as well as addressing any underlying conditions contributing to the development of the condition.

Pseudohypoaldosteronism is a group of disorders that are characterized by resistance to aldosterone, a hormone produced by the adrenal glands. Aldosterone plays a key role in regulating sodium and potassium balance in the body. In pseudohypoaldosteronism, the kidneys fail to respond to aldosterone, leading to an imbalance of electrolytes in the body.

There are two types of pseudohypoaldosteronism: type I and type II. Type I is further divided into two subtypes: severe neonatal or infantile forms, which are usually caused by genetic mutations that affect the function of the sodium-potassium pump in the kidney; and milder forms, which can be inherited or acquired and may be associated with other medical conditions.

Type II pseudohypoaldosteronism is a rare disorder that typically affects older children and adults. It is caused by genetic mutations that affect the function of the mineralocorticoid receptor in the kidney, which binds to aldosterone and triggers a response.

Symptoms of pseudohypoaldosteronism may include low sodium levels, high potassium levels, and metabolic acidosis (a buildup of acid in the body). Treatment typically involves supplementation with sodium and/or medications to help regulate electrolyte balance.

Potassium is a essential mineral and an important electrolyte that is widely distributed in the human body. The majority of potassium in the body (approximately 98%) is found within cells, with the remaining 2% present in blood serum and other bodily fluids. Potassium plays a crucial role in various physiological processes, including:

1. Regulation of fluid balance and maintenance of normal blood pressure through its effects on vascular tone and sodium excretion.
2. Facilitation of nerve impulse transmission and muscle contraction by participating in the generation and propagation of action potentials.
3. Protein synthesis, enzyme activation, and glycogen metabolism.
4. Regulation of acid-base balance through its role in buffering systems.

The normal serum potassium concentration ranges from 3.5 to 5.0 mEq/L (milliequivalents per liter) or mmol/L (millimoles per liter). Potassium levels outside this range can have significant clinical consequences, with both hypokalemia (low potassium levels) and hyperkalemia (high potassium levels) potentially leading to serious complications such as cardiac arrhythmias, muscle weakness, and respiratory failure.

Potassium is primarily obtained through the diet, with rich sources including fruits (e.g., bananas, oranges, and apricots), vegetables (e.g., leafy greens, potatoes, and tomatoes), legumes, nuts, dairy products, and meat. In cases of deficiency or increased needs, potassium supplements may be recommended under the guidance of a healthcare professional.

Fludrocortisone is a synthetic corticosteroid hormone, specifically a mineralocorticoid. It is often used to treat conditions associated with low levels of corticosteroids, such as Addison's disease. It works by helping the body retain sodium and lose potassium, which helps to maintain fluid balance and blood pressure.

In medical terms, fludrocortisone is defined as a synthetic mineralocorticoid with glucocorticoid activity used in the treatment of adrenogenital syndrome and Addison's disease, and as an adjunct in the treatment of rheumatoid arthritis. It is also used to treat orthostatic hypotension by helping the body retain sodium and water, thereby increasing blood volume and blood pressure.

It is important to note that fludrocortisone can have significant side effects, particularly if used in high doses or for long periods of time. These can include fluid retention, high blood pressure, increased risk of infection, and slowed growth in children. As with any medication, it should be used under the close supervision of a healthcare provider.

Spironolactone is a prescription medication that belongs to a class of drugs known as potassium-sparing diuretics. It works by blocking the action of aldosterone, a hormone that helps regulate sodium and potassium balance in your body. This results in increased urine production (diuresis) and decreased salt and fluid retention.

Spironolactone is primarily used to treat edema (fluid buildup) associated with heart failure, liver cirrhosis, or kidney disease. It's also prescribed for the treatment of high blood pressure and primary hyperaldosteronism, a condition where the adrenal glands produce too much aldosterone.

Furthermore, spironolactone is used off-label to treat conditions such as acne, hirsutism (excessive hair growth in women), and hormone-sensitive breast cancer in postmenopausal women.

It's important to note that spironolactone can cause increased potassium levels in the blood (hyperkalemia) and should be used with caution in patients with kidney impairment or those taking other medications that affect potassium balance. Regular monitoring of electrolyte levels, including potassium and sodium, is essential during spironolactone therapy.

Hypokalemia is a medical condition characterized by abnormally low potassium levels in the blood, specifically when the concentration falls below 3.5 milliequivalents per liter (mEq/L). Potassium is an essential electrolyte that helps regulate heart function, nerve signals, and muscle contractions.

Hypokalemia can result from various factors, including inadequate potassium intake, increased potassium loss through the urine or gastrointestinal tract, or shifts of potassium between body compartments. Common causes include diuretic use, vomiting, diarrhea, certain medications, kidney diseases, and hormonal imbalances.

Mild hypokalemia may not cause noticeable symptoms but can still affect the proper functioning of muscles and nerves. More severe cases can lead to muscle weakness, fatigue, cramps, paralysis, heart rhythm abnormalities, and in rare instances, respiratory failure or cardiac arrest. Treatment typically involves addressing the underlying cause and replenishing potassium levels through oral or intravenous (IV) supplementation, depending on the severity of the condition.

Mineralocorticoid receptor antagonists (MRAs) are a class of medications that block the action of aldosterone, a hormone produced by the adrenal glands. Aldosterone helps regulate sodium and potassium balance and blood pressure by binding to mineralocorticoid receptors in the kidneys, heart, blood vessels, and brain.

When aldosterone binds to these receptors, it promotes sodium retention and potassium excretion, which can lead to an increase in blood volume and blood pressure. MRAs work by blocking the binding of aldosterone to its receptors, thereby preventing these effects.

MRAs are primarily used to treat heart failure, hypertension, and kidney disease. By reducing sodium retention and increasing potassium excretion, MRAs can help lower blood pressure, reduce fluid buildup in the body, and improve heart function. Examples of MRAs include spironolactone and eplerenone.

Sodium bicarbonate, also known as baking soda, is a chemical compound with the formula NaHCO3. It is a white solid that is crystalline but often appears as a fine powder. It has a slightly salty, alkaline taste and is commonly used in cooking as a leavening agent.

In a medical context, sodium bicarbonate is used as a medication to treat conditions caused by high levels of acid in the body, such as metabolic acidosis. It works by neutralizing the acid and turning it into a harmless salt and water. Sodium bicarbonate can be given intravenously or orally, depending on the severity of the condition being treated.

It is important to note that sodium bicarbonate should only be used under the supervision of a healthcare professional, as it can have serious side effects if not used properly. These may include fluid buildup in the body, electrolyte imbalances, and an increased risk of infection.

Acidosis is a medical condition that occurs when there is an excess accumulation of acid in the body or when the body loses its ability to effectively regulate the pH level of the blood. The normal pH range of the blood is slightly alkaline, between 7.35 and 7.45. When the pH falls below 7.35, it is called acidosis.

Acidosis can be caused by various factors, including impaired kidney function, respiratory problems, diabetes, severe dehydration, alcoholism, and certain medications or toxins. There are two main types of acidosis: metabolic acidosis and respiratory acidosis.

Metabolic acidosis occurs when the body produces too much acid or is unable to eliminate it effectively. This can be caused by conditions such as diabetic ketoacidosis, lactic acidosis, kidney failure, and ingestion of certain toxins.

Respiratory acidosis, on the other hand, occurs when the lungs are unable to remove enough carbon dioxide from the body, leading to an accumulation of acid. This can be caused by conditions such as chronic obstructive pulmonary disease (COPD), asthma, and sedative overdose.

Symptoms of acidosis may include fatigue, shortness of breath, confusion, headache, rapid heartbeat, and in severe cases, coma or even death. Treatment for acidosis depends on the underlying cause and may include medications, oxygen therapy, fluid replacement, and dialysis.

Aldosterone is a hormone produced by the adrenal gland. It plays a key role in regulating sodium and potassium balance and maintaining blood pressure through its effects on the kidneys. Aldosterone promotes the reabsorption of sodium ions and the excretion of potassium ions in the distal tubules and collecting ducts of the nephrons in the kidneys. This increases the osmotic pressure in the blood, which in turn leads to water retention and an increase in blood volume and blood pressure.

Aldosterone is released from the adrenal gland in response to a variety of stimuli, including angiotensin II (a peptide hormone produced as part of the renin-angiotensin-aldosterone system), potassium ions, and adrenocorticotropic hormone (ACTH) from the pituitary gland. The production of aldosterone is regulated by a negative feedback mechanism involving sodium levels in the blood. High sodium levels inhibit the release of aldosterone, while low sodium levels stimulate its release.

In addition to its role in maintaining fluid and electrolyte balance and blood pressure, aldosterone has been implicated in various pathological conditions, including hypertension, heart failure, and primary hyperaldosteronism (a condition characterized by excessive production of aldosterone).

Cation exchange resins are a type of ion exchange resin that are positively charged and used to remove cations (positively charged ions) from aqueous solutions. They are often used in water treatment to soften water by removing calcium and magnesium ions, which can cause scale buildup in pipes and appliances. Cation exchange resins can also be used to remove heavy metals and other contaminants from water.

The resin itself is typically made of a cross-linked polymer matrix, such as polystyrene or polyacrylate, which contains functional groups that give the resin its ion exchange properties. The most common type of cation exchange resin is the sulfonated styrene divinylbenzene copolymer (SSDVB), in which the functional group is a sulfonic acid (-SO3H) group. When this resin comes into contact with a solution containing cations, such as a water supply, the cations in the solution will replace the hydrogen ions on the resin, causing the resin to become positively charged and the solution to become deionized.

Cation exchange resins can be regenerated by washing them with a strong acid, which replaces the captured cations with hydrogen ions, allowing the resin to be reused. The regeneration process must be done carefully to avoid damaging the resin and to ensure that it is properly rinsed of any residual acid before being put back into service.

Cation exchange resins are widely used in various industries such as pharmaceuticals, food and beverage, power generation, chemical processing and metal finishing for purification of water and wastewater treatment.

Dietary Potassium is a mineral and an essential electrolyte that is required in the human body for various physiological processes. It is primarily obtained through dietary sources. The recommended daily intake of potassium for adults is 4700 milligrams (mg).

Potassium plays a crucial role in maintaining normal blood pressure, heart function, and muscle and nerve activity. It also helps to balance the body's fluids and prevent kidney stones. Foods that are rich in dietary potassium include fruits such as bananas, oranges, and melons; vegetables such as leafy greens, potatoes, and tomatoes; legumes such as beans and lentils; dairy products such as milk and yogurt; and nuts and seeds.

It is important to maintain a balanced intake of dietary potassium, as both deficiency and excess can have negative health consequences. A deficiency in potassium can lead to muscle weakness, fatigue, and heart arrhythmias, while an excess can cause hyperkalemia, which can result in serious cardiac complications.

Sodium chloride symporters are membrane transport proteins that actively co-transport sodium and chloride ions into a cell. They are also known as sodium-chloride cotransporters or NCCs. These transporters play a crucial role in regulating the electrolyte balance and water homeostasis in various tissues, particularly in the kidney's distal convoluted tubule.

The primary function of sodium chloride symporters is to reabsorb sodium and chloride ions from the filtrate in the nephron back into the bloodstream. By doing so, they help maintain the body's sodium concentration and control water balance through osmosis.

Mutations in the gene encoding for the NCC can lead to various kidney disorders, such as Gitelman syndrome or Bartter syndrome type III, which are characterized by electrolyte imbalances, low blood pressure, and metabolic alkalosis.

Cathartics are a type of medication that stimulates bowel movements and evacuates the intestinal tract. They are often used to treat constipation or to prepare the bowel for certain medical procedures, such as colonoscopies. Common cathartic medications include laxatives, enemas, and suppositories.

Cathartics work by increasing the muscle contractions of the intestines, which helps to move stool through the digestive tract more quickly. They may also increase the amount of water in the stool, making it softer and easier to pass. Some cathartics, such as bulk-forming laxatives, work by absorbing water and swelling in the intestines, which helps to bulk up the stool and stimulate a bowel movement.

While cathartics can be effective at relieving constipation, they should be used with caution. Overuse of cathartics can lead to dependence on them for bowel movements, as well as electrolyte imbalances and other complications. It is important to follow the instructions carefully when using cathartic medications and to speak with a healthcare provider if constipation persists or worsens.

Succinylcholine is a neuromuscular blocking agent, a type of muscle relaxant used in anesthesia during surgical procedures. It works by inhibiting the transmission of nerve impulses at the neuromuscular junction, leading to temporary paralysis of skeletal muscles. This facilitates endotracheal intubation and mechanical ventilation during surgery. Succinylcholine has a rapid onset of action and is metabolized quickly, making it useful for short surgical procedures. However, its use may be associated with certain adverse effects, such as increased heart rate, muscle fasciculations, and potentially life-threatening hyperkalemia in susceptible individuals.

I'm sorry for any confusion, but "Polystyrenes" is not a medical term. Polystyrene is a type of synthetic aromatic hydrocarbon polymer that is used in a variety of commercial and industrial products, such as packaging materials, insulation, and disposable cutlery. It's important to note that some polystyrene products may contain potentially harmful chemicals, such as styrene, which can leach out into food or drink, posing potential health risks. However, the medical community primarily deals with the health effects of exposure to these chemicals rather than defining the material itself.

Angiotensin-Converting Enzyme (ACE) inhibitors are a class of medications that are commonly used to treat various cardiovascular conditions, such as hypertension (high blood pressure), heart failure, and diabetic nephropathy (kidney damage in people with diabetes).

ACE inhibitors work by blocking the action of angiotensin-converting enzyme, an enzyme that converts the hormone angiotensin I to angiotensin II. Angiotensin II is a potent vasoconstrictor, meaning it narrows blood vessels and increases blood pressure. By inhibiting the conversion of angiotensin I to angiotensin II, ACE inhibitors cause blood vessels to relax and widen, which lowers blood pressure and reduces the workload on the heart.

Some examples of ACE inhibitors include captopril, enalapril, lisinopril, ramipril, and fosinopril. These medications are generally well-tolerated, but they can cause side effects such as cough, dizziness, headache, and elevated potassium levels in the blood. It is important for patients to follow their healthcare provider's instructions carefully when taking ACE inhibitors and to report any unusual symptoms or side effects promptly.

Lisinopril is an angiotensin-converting enzyme (ACE) inhibitor, which is a type of medication used to treat various cardiovascular conditions. It works by blocking the conversion of angiotensin I to angiotensin II, a potent vasoconstrictor, resulting in relaxation and widening of blood vessels, decreased blood pressure, and increased blood flow.

Lisinopril is primarily used to treat hypertension (high blood pressure), congestive heart failure, and to improve survival after a heart attack. It may also be used to protect the kidneys from damage due to diabetes or high blood pressure. Additionally, it has been shown to reduce proteinuria (excess protein in urine) in patients with diabetic nephropathy.

Common side effects of Lisinopril include dizziness, headache, fatigue, and cough. More serious side effects may include angioedema (rapid swelling of the face, lips, tongue, or throat), hyperkalemia (elevated potassium levels), and impaired kidney function.

It is important to follow the prescribing physician's instructions carefully when taking Lisinopril and to report any unusual symptoms promptly. Regular monitoring of blood pressure, kidney function, and electrolyte levels may be necessary during treatment with this medication.

Hyperkalemia can cause an abnormal heart rhythm which can result in cardiac arrest and death. Common causes of hyperkalemia ... Rare causes of hyperkalemia are discussed as follows. Acute digitalis overdose such as digoxin toxicity may cause hyperkalemia ... Box jellyfish venom can also cause hyperkalemia. Excessive intake of potassium is not a primary cause of hyperkalemia because ... "What is Hyperkalemia?". National Kidney Foundation. 8 February 2016. Retrieved 23 February 2020. "High potassium (hyperkalemia ...
... or hyperkalemia, may include nausea, and difficulty breathing. Kidney issues are the main cause. Learn more here. ... Chronic hyperkalemia often has fewer symptoms than acute hyperkalemia.. At higher potassium levels, symptoms of hyperkalemia ... Hyperkalemia is the medical term for high potassium levels. There are often no symptoms of hyperkalemia, but it can be a sign ... Treatment for hyperkalemia varies according to whether it is acute or chronic. Acute hyperkalemia is more urgent and dangerous ...
This is called hyperkalemia, or high potassium. According to the National Kidney Foundation, normal and high potassium levels, ... Hyperkalemia occurs when theres too much potassium in the blood. Using low-potassium substitutes for your favorite takeout ... A common cause of advanced kidney disease is hyperkalemia.. Medications. Certain medications. have been linked with high ... A blood test can help your doctor diagnose hyperkalemia. Your doctor will routinely do blood tests during your annual checkup ...
... assessed the impact of dual renin-angiotensin-aldosterone system inhibition on risk of acute kidney injury and hyperkalemia in ... but with a risk of hyperkalemia similar to that with an ACEi plus ARB combination. The hyperkalemia risk of dual combination ... Is RAASi Therapy Safe in Heart Failure Patients with Moderate Hyperkalemia?. * In CKD, We Need to Work Harder to Prevent the ... Hyperkalemia Doubles Risk of Mortality in Acute Heart Failure Rising levels of serum potassium spells trouble for older ...
Hyperkalemia Doubles Risk of Mortality in Acute Heart Failure Rising levels of serum potassium spells trouble for older ... Should RAAS Inhibitors Be De-intensified for Hyperkalemia?. * In Patients with CKD, is it Time to Dial Back the NSAID ... Is RAASi Therapy Safe in Heart Failure Patients with Moderate Hyperkalemia? These investigators claim that the risks of down- ... Should RAAS Inhibitors Be De-intensified for Hyperkalemia? When treating certain conditions, clinicians sometimes discontinue ...
Hyperkalemia is a higher than normal level of potassium in the blood. Although mild cases may not produce symptoms and may be ... Hyperkalemia (High Potassium). What is hyperkalemia?. Hyperkalemia is a higher than normal level of potassium in the blood. ... How is hyperkalemia treated?. If your potassium level is very high, or if there are dangerous indications such as changes in an ... How does hyperkalemia affect the body?. Potassium is a mineral that is crucial for normal cell function in the body, including ...
In the trial, 41.2% of patients with hyperkalaemia on stable haemodialysis receiving Lokelma maintained pre-dialysis normal ... oral potassium-removing agent currently approved and available in the US and EU for the treatment of adults with hyperkalaemia ... "Lokelma can normalise potassium levels in between dialysis sessions for patients with hyperkalaemia who have end-stage renal ... for the treatment of hyperkalaemia in patients with end-stage renal disease (ESRD) on haemodialysis. ...
If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Centers RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.. ...
Mild hyperkalemia (6.0mEQ/L), with normal renal function generally needs no treatment. Moderate hyperkalemia (6.0-7.0mEq/L), ... Treatment of Hyperkalemia. *If you get a lab value back that is questionable, be sure to send another sample for a repeat value ... The Heart and Hyperkalemia. =. Most of the bodys potassium is located intracellularly. Onl a small fraction (=2%) is found in ... HOW TREATMENT OF HYPERKALEMIA IS ACHIEVED. NaHcO3: Correction of acidosis by diminishing the extracellular hydrogen burden and ...
Calculator to predict risk of AKI or hyperkalemia within 30 days after initiation of prescription NSAIDs in adults 66 years and ... NSAID risk of AKI or hyperkalemia. Calculator to predict risk of AKI or hyperkalemia within 30 days after initiation of ... Nonsteroidal anti-inflammatory drug use and risk of acute kidney injury and hyperkalemia in older adults: a population-based ... This calculator to estimate patients risk of acute kidney injury or hyperkalemia within 30 days following initiation of a ...
Are you comfortable managing hyperkalemia? Join the experts as they cover strategies, potassium binders, gaps, and more. ... Hyperkalemia in the Emergency Room: Improving Long-Term Outcomes With Effective Discharge. *Authors: Matthew R. Weir, MD; W. ... Hyperkalemia in the Emergency Room: Improving Long-Term Outcomes With Effective Discharge. Authors: Matthew R. Weir, MD; W. ... The goal of this activity is that learners will be better able to manage chronic kidney disease (CKD)-related hyperkalemia, ...
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.. ...
Hyperkalemia is a serious concern in the treatment of combat casualties as it is a common complication of acute kidney injury, ... Investigation of a potassium adsorber for the treatment of hyperkalemia induced by traumatic injury and acute kidney injury in ... The risk of death from hyperkalemia-induced cardiac arrhythmias is significant in the absence of renal replacement therapy (RRT ... The benefits of our forward care medical device are three-fold: 1) stabilizes hyperkalemia patients to endure prolonged field ...
Gordons syndrome is an autosomal dominant disease which is a rare cause of secondary hypertension and hyperkalaemia is the ... ABSTRACT Secondary hypertension co-occurrence with hyperkalaemia is not an expected finding. ... Gordons syndrome is an autosomal dominant disease which is a rare cause of secondary hypertension and hyperkalaemia is the ... A 33-year-old male patient presented with hypertension and hyperkalaemia. Due to a familial hypertension history, normal serum ...
Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study Juurlink DN, Mamdani MM, Lee DS, Kopp A, ...
Approximately 275 subjects with hyperkalemia (two consecutive i-STAT potassium levels ≥ 5.1 mmol/l, taken 60 minutes apart at ...
N A Flores, R Li Davies, D J Sheridan; Microangiographic Study of the Effects of Hyperkalaemia and Radiographic Contrast Media ... Microangiographic Study of the Effects of Hyperkalaemia and Radiographic Contrast Media on Coronary Artery Calibre in the ...
Hence, false hyperkalaemia was defined as repeat serum potassium within 8 days of index unlysed hyperkalaemia being ≤5.5 mmol, ... Repeat potassium are often normal (≤5.5 mmo/L), that is, false hyperkalaemia. Haemolysis is known to cause false hyperkalaemia ... There is no international consensus as to what constitutes false hyperkalaemia.18 The definition of true hyperkalaemia as ... spurious hyperkalaemia or factitious hyperkalaemia.6 The literature reports preanalytical factors for pseudohyperkalaemia, ...
Methods: A randomized, crossover study was conducted in 10 chronic hemodialysis patients who were prone to hyperkalemia. ... Hyperkalemia is a common medical emergency that may result in serious cardiac arrhythmias. Standard therapy with insulin plus ... Background: Hyperkalemia is a common medical emergency that may result in serious cardiac arrhythmias. Standard therapy with ... Bolus administration of intravenous glucose in the treatment of hyperkalemia : a randomized controlled trial. ...
7) Hyperkalemia is associated with a variety of ECG changes in a dose-dependent manner. The first sign of hyperkalemia is tall ... Hyperkalemia Revisited. Tex Heart Inst J. 2006; 33(1): 40-47. *Perazella MA. Drug-induced hyperkalemia: old culprits and new ... Emergent management of hyperkalemia. Patients who have signs or symptoms of hyperkalemia (muscle weakness, paralysis, ECG ... Patients with chronic, mild hyperkalemia (K,5.5mmol/L) or moderate (K = 5.5-6.5mmol/L) hyperkalemia should have their potassium ...
Hyperkalemia is defined as a serum potassium concentration higher than the upper limit of the normal range; the range in ... encoded search term (Hyperkalemia) and Hyperkalemia What to Read Next on Medscape ... Fluoride-induced hyperkalemia: the role of Ca2+-dependent K+ channels. Am J Emerg Med. 1988 Jan. 6(1):1-3. [QxMD MEDLINE Link] ... Hyperkalemia Differential Diagnoses. Updated: Jan 11, 2016 * Author: Eleanor Lederer, MD, FASN; Chief Editor: Vecihi Batuman, ...
... often present with hyperkalaemia (HK) leading to increased risk of hospitalisations, cardiovascular related events and ... Hyperkalemia among hospitalized patients and association between duration of hyperkalemia and outcomes. Arch Med Sci. 2014;10(2 ... Hyperkalaemia. The occurrence of HK was categorized as a serum potassium level greater than 5 mmol/l, consistent with the ... Ward, T., Lewis, R.D., Brown, T. et al. A cost-effectiveness analysis of patiromer in the UK: evaluation of hyperkalaemia ...
What is causing this older mans sudden-onset weakness and nausea?
Related Terms: Cardio-Cerebrovascular, ACE inhibitors, angiotensin receptor blockers, heart failure, hyperkalemia, vasodilators ... hyperkalemia, and azotemia. This approach could be considered in patients who remain symptomatic despite optimal doses of ... but a number of clinical conditions exist which predispose people to both hyperkalemia and hypokalemia. These conditions can ...
Hyperkalemia. Hyperkalemia is defined as a serum potassium level of greater than 6mEq/L measured in a nonhemolyzed specimen. ... Hyperkalemia is of far more concern than hypokalemia, especially when serum potassium levels exceed 6.5 mEq/L or if ... Electrocardiographic manifestations of hyperkalemia are a progression from peaked T waves, as the earliest sign, to a widened ... Causes of hyperkalemia include potassium release from damaged neuronal cells and breakdown of red blood cells (RBCs) following ...
Hyperkalemia after the publication of RALES. / Witham, Miles D.; Gillespie, Neil D.; Struthers, Allan D. In: New England ... Witham, M. D., Gillespie, N. D., & Struthers, A. D. (2004). Hyperkalemia after the publication of RALES. New England Journal of ... Witham, Miles D. ; Gillespie, Neil D. ; Struthers, Allan D. / Hyperkalemia after the publication of RALES. In: New England ... Witham, MD, Gillespie, ND & Struthers, AD 2004, Hyperkalemia after the publication of RALES, New England Journal of Medicine ...
... potentially fatal hyperkalemia can result [see CONTRAINDICATIONS and WARNINGS]. It is important to recognize that hyperkalemia ... One of the most severe adverse effects is hyperkalemia [see CONTRAINDICATIONS, WARNINGS and OVERDOSAGE]. There have also been ... Hyperkalemia. [see OVERDOSAGE] In patients with impaired mechanisms for excreting potassium, the administration of potassium ... In treating hyperkalemia, it should be recalled that in patients who have been stabilized on digitalis, too rapid a lowering of ...

No FAQ available that match "hyperkalemia"

No images available that match "hyperkalemia"