Conditions with abnormally low levels of BETA-LIPOPROTEINS (low density lipoproteins or LDL) in the blood. It is defined as LDL values equal to or less than the 5th percentile for the population. They include the autosomal dominant form involving mutation of the APOLIPOPROTEINS B gene, and the autosomal recessive form involving mutation of the microsomal triglyceride transfer protein. All are characterized by low LDL and dietary fat malabsorption.
A condition marked by the development of widespread xanthomas, yellow tumor-like structures filled with lipid deposits. Xanthomas can be found in a variety of tissues including the SKIN; TENDONS; joints of KNEES and ELBOWS. Xanthomatosis is associated with disturbance of LIPID METABOLISM and formation of FOAM CELLS.
An autosomal dominant disorder of lipid metabolism. It is caused by mutations of APOLIPOPROTEINS B, main components of CHYLOMICRONS and BETA-LIPOPROTEINS (low density lipoproteins or LDL). Features include abnormally low LDL, normal triglyceride level, and dietary fat malabsorption.
A group of apolipoproteins that can readily exchange among the various classes of lipoproteins (HDL; VLDL; CHYLOMICRONS). After lipolysis of TRIGLYCERIDES on VLDL and chylomicrons, Apo-C proteins are normally transferred to HDL. The subtypes can modulate remnant binding to receptors, LECITHIN CHOLESTEROL ACYLTRANSFERASE, or LIPOPROTEIN LIPASE.
Major structural proteins of triacylglycerol-rich LIPOPROTEINS. There are two forms, apolipoprotein B-100 and apolipoprotein B-48, both derived from a single gene. ApoB-100 expressed in the liver is found in low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). ApoB-48 expressed in the intestine is found in CHYLOMICRONS. They are important in the biosynthesis, transport, and metabolism of triacylglycerol-rich lipoproteins. Plasma Apo-B levels are high in atherosclerotic patients but non-detectable in ABETALIPOPROTEINEMIA.
Conditions with abnormally low levels of LIPOPROTEINS in the blood. This may involve any of the lipoprotein subclasses, including ALPHA-LIPOPROTEINS (high-density lipoproteins); BETA-LIPOPROTEINS (low-density lipoproteins); and PREBETA-LIPOPROTEINS (very-low-density lipoproteins).
A 513-kDa protein synthesized in the LIVER. It serves as the major structural protein of low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). It is the ligand for the LDL receptor (RECEPTORS, LDL) that promotes cellular binding and internalization of LDL particles.
An autosomal recessive disorder of lipid metabolism. It is caused by mutation of the microsomal triglyceride transfer protein that catalyzes the transport of lipids (TRIGLYCERIDES; CHOLESTEROL ESTERS; PHOSPHOLIPIDS) and is required in the secretion of BETA-LIPOPROTEINS (low density lipoproteins or LDL). Features include defective intestinal lipid absorption, very low serum cholesterol level, and near absent LDL.
The most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. This protein serves as an acceptor for CHOLESTEROL released from cells thus promoting efflux of cholesterol to HDL then to the LIVER for excretion from the body (reverse cholesterol transport). It also acts as a cofactor for LECITHIN CHOLESTEROL ACYLTRANSFERASE that forms CHOLESTEROL ESTERS on the HDL particles. Mutations of this gene APOA1 cause HDL deficiency, such as in FAMILIAL ALPHA LIPOPROTEIN DEFICIENCY DISEASE and in some patients with TANGIER DISEASE.
A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues.
An individual having different alleles at one or more loci regarding a specific character.
Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes.
Triglycerides are the most common type of fat in the body, stored in fat cells and used as energy; they are measured in blood tests to assess heart disease risk, with high levels often resulting from dietary habits, obesity, physical inactivity, smoking, and alcohol consumption.
A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues.
The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.
A 241-kDa protein synthesized only in the INTESTINES. It serves as a structural protein of CHYLOMICRONS. Its exclusive association with chylomicron particles provides an indicator of intestinally derived lipoproteins in circulation. Apo B-48 is a shortened form of apo B-100 and lacks the LDL-receptor region.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
A class of protein components which can be found in several lipoproteins including HIGH-DENSITY LIPOPROTEINS; VERY-LOW-DENSITY LIPOPROTEINS; and CHYLOMICRONS. Synthesized in most organs, Apo E is important in the global transport of lipids and cholesterol throughout the body. Apo E is also a ligand for LDL receptors (RECEPTORS, LDL) that mediates the binding, internalization, and catabolism of lipoprotein particles in cells. There are several allelic isoforms (such as E2, E3, and E4). Deficiency or defects in Apo E are causes of HYPERLIPOPROTEINEMIA TYPE III.
Protein components on the surface of LIPOPROTEINS. They form a layer surrounding the hydrophobic lipid core. There are several classes of apolipoproteins with each playing a different role in lipid transport and LIPID METABOLISM. These proteins are synthesized mainly in the LIVER and the INTESTINES.
Cholesterol which is contained in or bound to low density lipoproteins (LDL), including CHOLESTEROL ESTERS and free cholesterol.
An individual in which both alleles at a given locus are identical.
A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)
A 9-kDa protein component of VERY-LOW-DENSITY LIPOPROTEINS and CHYLOMICRON REMNANTS. Apo C-III, synthesized in the liver, is an inhibitor of LIPOPROTEIN LIPASE. Apo C-III modulates the binding of chylomicron remnants and VLDL to receptors (RECEPTORS, LDL) thus decreases the uptake of triglyceride-rich particles by the liver cells and subsequent degradation. The normal Apo C-III is glycosylated. There are several polymorphic forms with varying amounts of SIALIC ACID (Apo C-III-0, Apo C-III-1, and Apo C-III-2).
Structural proteins of the alpha-lipoproteins (HIGH DENSITY LIPOPROTEINS), including APOLIPOPROTEIN A-I and APOLIPOPROTEIN A-II. They can modulate the activity of LECITHIN CHOLESTEROL ACYLTRANSFERASE. These apolipoproteins are low in atherosclerotic patients. They are either absent or present in extremely low plasma concentration in TANGIER DISEASE.
A major and the second most common isoform of apolipoprotein E. In humans, Apo E4 differs from APOLIPOPROTEIN E3 at only one residue 112 (cysteine is replaced by arginine), and exhibits a lower resistance to denaturation and greater propensity to form folded intermediates. Apo E4 is a risk factor for ALZHEIMER DISEASE and CARDIOVASCULAR DISEASES.
A 34-kDa glycosylated protein. A major and most common isoform of apolipoprotein E. Therefore, it is also known as apolipoprotein E (ApoE). In human, Apo E3 is a 299-amino acid protein with a cysteine at the 112 and an arginine at the 158 position. It is involved with the transport of TRIGLYCERIDES; PHOSPHOLIPIDS; CHOLESTEROL; and CHOLESTERYL ESTERS in and out of the cells.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The second most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. It has a high lipid affinity and is known to displace APOLIPOPROTEIN A-I from HDL particles and generates a stable HDL complex. ApoA-II can modulate the activation of LECITHIN CHOLESTEROL ACYLTRANSFERASE in the presence of APOLIPOPROTEIN A-I, thus affecting HDL metabolism.
Cholesterol which is contained in or bound to high-density lipoproteins (HDL), including CHOLESTEROL ESTERS and free cholesterol.
A 9-kDa protein component of VERY-LOW-DENSITY LIPOPROTEINS. It contains a cofactor for LIPOPROTEIN LIPASE and activates several triacylglycerol lipases. The association of Apo C-II with plasma CHYLOMICRONS; VLDL, and HIGH-DENSITY LIPOPROTEINS is reversible and changes rapidly as a function of triglyceride metabolism. Clinically, Apo C-II deficiency is similar to lipoprotein lipase deficiency (HYPERLIPOPROTEINEMIA TYPE I) and is therefore called hyperlipoproteinemia type IB.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
One of three major isoforms of apolipoprotein E. In humans, Apo E2 differs from APOLIPOPROTEIN E3 at one residue 158 where arginine is replaced by cysteine (R158--C). In contrast to Apo E3, Apo E2 displays extremely low binding affinity for LDL receptors (RECEPTORS, LDL) which mediate the internalization and catabolism of lipoprotein particles in liver cells. ApoE2 allelic homozygosity is associated with HYPERLIPOPROTEINEMIA TYPE III.
A 6.6-kDa protein component of VERY-LOW-DENSITY LIPOPROTEINS; INTERMEDIATE-DENSITY LIPOPROTEINS; and HIGH-DENSITY LIPOPROTEINS. Apo C-I displaces APO E from lipoproteins, modulate their binding to receptors (RECEPTORS, LDL), and thereby decrease their clearance from plasma. Elevated Apo C-I levels are associated with HYPERLIPOPROTEINEMIA and ATHEROSCLEROSIS.
The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.
Lipid infiltration of the hepatic parenchymal cells resulting in a yellow-colored liver. The abnormal lipid accumulation is usually in the form of TRIGLYCERIDES, either as a single large droplet or multiple small droplets. Fatty liver is caused by an imbalance in the metabolism of FATTY ACIDS.
A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases.
A large and highly glycosylated protein constituent of LIPOPROTEIN (A). It has very little affinity for lipids but forms disulfide-linkage to APOLIPOPROTEIN B-100. Apoprotein(a) has SERINE PROTEINASE activity and can be of varying sizes from 400- to 800-kDa. It is homologous to PLASMINOGEN and is known to modulate THROMBOSIS and FIBRINOLYSIS.
A lipoprotein that resembles the LOW-DENSITY LIPOPROTEINS but with an extra protein moiety, APOPROTEIN (A) also known as APOLIPOPROTEIN (A), linked to APOLIPOPROTEIN B-100 on the LDL by one or two disulfide bonds. High plasma level of lipoprotein (a) is associated with increased risk of atherosclerotic cardiovascular disease.
An enzyme that catalyzes the deamination of cytidine, forming uridine. EC 3.5.4.5.
Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking.
A process that changes the nucleotide sequence of mRNA from that of the DNA template encoding it. Some major classes of RNA editing are as follows: 1, the conversion of cytosine to uracil in mRNA; 2, the addition of variable number of guanines at pre-determined sites; and 3, the addition and deletion of uracils, templated by guide-RNAs (RNA, GUIDE).
A mixture of very-low-density lipoproteins (VLDL), particularly the triglyceride-poor VLDL, with slow diffuse electrophoretic mobilities in the beta and alpha2 regions which are similar to that of beta-lipoproteins (LDL) or alpha-lipoproteins (HDL). They can be intermediate (remnant) lipoproteins in the de-lipidation process, or remnants of mutant CHYLOMICRONS and VERY-LOW-DENSITY LIPOPROTEINS which cannot be metabolized completely as seen in FAMILIAL DYSBETALIPOPROTEINEMIA.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A type of familial lipid metabolism disorder characterized by a variable pattern of elevated plasma CHOLESTEROL and/or TRIGLYCERIDES. Multiple genes on different chromosomes may be involved, such as the major late transcription factor (UPSTREAM STIMULATORY FACTORS) on CHROMOSOME 1.
A group of familial disorders characterized by elevated circulating cholesterol contained in either LOW-DENSITY LIPOPROTEINS alone or also in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins).
Conditions with excess LIPIDS in the blood.
A class of lipoproteins that carry dietary CHOLESTEROL and TRIGLYCERIDES from the SMALL INTESTINE to the tissues. Their density (0.93-1.006 g/ml) is the same as that of VERY-LOW-DENSITY LIPOPROTEINS.
Thickening and loss of elasticity of the walls of ARTERIES of all sizes. There are many forms classified by the types of lesions and arteries involved, such as ATHEROSCLEROSIS with fatty lesions in the ARTERIAL INTIMA of medium and large muscular arteries.
Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS.
A thickening and loss of elasticity of the walls of ARTERIES that occurs with formation of ATHEROSCLEROTIC PLAQUES within the ARTERIAL INTIMA.
Conditions with abnormally elevated levels of LIPOPROTEINS in the blood. They may be inherited, acquired, primary, or secondary. Hyperlipoproteinemias are classified according to the pattern of lipoproteins on electrophoresis or ultracentrifugation.
A glycoprotein component of HIGH-DENSITY LIPOPROTEINS that transports small hydrophobic ligands including CHOLESTEROL and STEROLS. It occurs in the macromolecular complex with LECITHIN CHOLESTEROL ACYLTRANSFERASE. Apo D is expressed in and secreted from a variety of tissues such as liver, placenta, brain tissue and others.
A condition with abnormally high levels of CHOLESTEROL in the blood. It is defined as a cholesterol value exceeding the 95th percentile for the population.
An unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. (Stedman, 26th ed)
Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis.
Cholesterol which is contained in or bound to very low density lipoproteins (VLDL). High circulating levels of VLDL cholesterol are found in HYPERLIPOPROTEINEMIA TYPE IIB. The cholesterol on the VLDL is eventually delivered by LOW-DENSITY LIPOPROTEINS to the tissues after the catabolism of VLDL to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LDL.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.

Abnormal apolipoprotein B pre-mRNA splicing in patients with familial hypobetalipoproteinaemia. (1/4)

BACKGROUND: Familial hypobetalipoproteinaemia (FHBL) is a codominant disorder characterised by fatty liver and reduced plasma levels of low-density lipoprotein (LDL) and its protein constituent apolipoprotein B (apoB). FHBL is linked to the APOB gene in some but not all known cases. In a group of 59 patients with FHBL genotyped for APOB gene mutations, we found three novel splice-site mutations: c.904+4A-->G in intron 8, c.3843-2A-->G in intron 24 and c.4217-1G-->T in intron 25. OBJECTIVE: To assess the effects of these mutations on apoB pre-mRNA splicing. METHODS: ApoB mRNA was analysed in the liver of one proband and in cells expressing APOB minigenes harbouring the mutations found in the other probands. RESULTS: In the liver of the c.3843-2A-->G carrier, an apoB mRNA devoid of exon 25 was identified, predicted to encode a truncated peptide of 1260 amino acids. The analysis of minigene transcripts in COS-1 cells showed that the c.904+4A-->G mutation caused the formation of an mRNA devoid of exon 8, predicted to encode a short apoB of 247 amino acids. The minigene harbouring the c.4217-1G-->T mutation in intron 25 generated an mRNA in which exon 25 joined to a partially deleted exon 26, resulting from the activation of an acceptor site in exon 26; this mRNA is predicted to encode a truncated protein of 1380 amino acids. All these truncated apoBs were not secreted as constituents of plasma lipoproteins. CONCLUSION: These findings demonstrate the pathogenic effect of rare splice-site mutations of the APOB gene found in FHBL.  (+info)

PCSK9 dominant negative mutant results in increased LDL catabolic rate and familial hypobetalipoproteinemia. (2/4)

 (+info)

Nonsynonymous mutations within APOB in human familial hypobetalipoproteinemia: evidence for feedback inhibition of lipogenesis and postendoplasmic reticulum degradation of apolipoprotein B. (3/4)

 (+info)

Dissociation between intrahepatic triglyceride content and insulin resistance in familial hypobetalipoproteinemia. (4/4)

 (+info)

Hypobetalipoproteinemias are a group of genetic disorders characterized by low levels of betalipoproteins, including low-density lipoprotein (LDL) and/or apolipoprotein B (apoB), in the blood. These conditions can lead to decreased absorption and transportation of dietary fats and fat-soluble vitamins, such as vitamin E and A.

There are two main types of hypobetalipoproteinemias:

1. Type I (also known as Abetalipoproteinemia): This is a rare autosomal recessive disorder caused by mutations in the microsomal triglyceride transfer protein (MTTP) gene. It results in almost undetectable levels of LDL, apoB, and chylomicrons in the blood. Symptoms typically appear in infancy or early childhood and include fat malabsorption, steatorrhea (fatty stools), and failure to thrive. Additionally, individuals with type I hypobetalipoproteinemia may develop neurological symptoms such as ataxia, neuropathy, and retinitis pigmentosa due to vitamin E deficiency.
2. Type II (also known as Homozygous or Compound Heterozygous Hypobetalipoproteinemia): This is a less severe form of the disorder caused by mutations in the APOB gene, which encodes apolipoprotein B. It leads to reduced levels of LDL and apoB but not as dramatically low as in type I. Symptoms may include mild fat malabsorption, decreased blood cholesterol levels, and an increased risk of developing fatty liver disease (hepatic steatosis). Neurological symptoms are less common than in type I hypobetalipoproteinemia.

Early diagnosis and treatment of hypobetalipoproteinemias, particularly type I, are crucial to prevent severe complications associated with fat-soluble vitamin deficiencies and neurological damage. Treatment typically involves dietary modifications, including supplementation with high doses of fat-soluble vitamins (A, D, E, and K).

Xanthomatosis is a medical term that refers to the condition characterized by the presence of xanthomas, which are yellowish, fat-laden deposits that form under the skin or in other tissues. These deposits consist of lipids, such as cholesterol and triglycerides, and immune cells called macrophages, which have engulfed the lipids.

Xanthomas can occur in various parts of the body, including the eyelids, tendons, joints, and other areas with connective tissue. They may appear as small papules or larger nodules, and their size and number can vary depending on the severity of the underlying disorder.

Xanthomatosis is often associated with genetic disorders that affect lipid metabolism, such as familial hypercholesterolemia, or with acquired conditions that cause high levels of lipids in the blood, such as diabetes, hypothyroidism, and certain liver diseases. Treatment typically involves addressing the underlying disorder and controlling lipid levels through dietary changes, medications, or a combination of both.

Familial Hypobetalipoproteinemia, Apolipoprotein B type (FHBL, APOB) is a genetic disorder characterized by low levels of low-density lipoproteins (LDL), also known as "bad cholesterol," and apolipoprotein B in the blood. This condition is caused by mutations in the APOB gene, which provides instructions for making the apolipoprotein B protein, a key component of LDL particles.

Individuals with FHBL, APOB type have decreased levels of LDL cholesterol and other lipids in their blood due to impaired production or assembly of VLDL (very low-density lipoproteins) and LDL particles. This results in a reduced risk of cardiovascular disease but can lead to fat malabsorption, steatorrhea (fatty stools), and deficiencies of fat-soluble vitamins (A, D, E, and K).

The diagnosis of FHBL, APOB type is typically made through clinical evaluation, family history, and genetic testing. Treatment may include dietary modifications to increase the intake of fat-soluble vitamins and other nutrients, as well as monitoring for potential complications related to fat malabsorption.

Apolipoprotein C (apoC) is a group of proteins that are associated with lipoproteins, which are complex particles composed of lipids and proteins that play a crucial role in the transport and metabolism of lipids in the body. There are three main types of apoC proteins: apoC-I, apoC-II, and apoC-III.

ApoC-I is involved in the regulation of lipoprotein metabolism and has been shown to inhibit the activity of cholesteryl ester transfer protein (CETP), which is an enzyme that facilitates the transfer of cholesteryl esters from high-density lipoproteins (HDL) to low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL).

ApoC-II is a cofactor for lipoprotein lipase, an enzyme that hydrolyzes triglycerides in chylomicrons and VLDL, leading to the formation of smaller, denser lipoproteins. A deficiency in apoC-II can lead to hypertriglyceridemia, a condition characterized by elevated levels of triglycerides in the blood.

ApoC-III is also involved in the regulation of lipoprotein metabolism and has been shown to inhibit the activity of lipoprotein lipase and CETP. Elevated levels of apoC-III have been associated with an increased risk of cardiovascular disease, possibly due to its effects on lipoprotein metabolism.

In summary, apolipoprotein C is a group of proteins that are involved in the regulation of lipoprotein metabolism and have important roles in the transport and metabolism of lipids in the body.

Apolipoprotein B (ApoB) is a type of protein that plays a crucial role in the metabolism of lipids, particularly low-density lipoprotein (LDL) or "bad" cholesterol. ApoB is a component of LDL particles and serves as a ligand for the LDL receptor, which is responsible for the clearance of LDL from the bloodstream.

There are two main forms of ApoB: ApoB-100 and ApoB-48. ApoB-100 is found in LDL particles, very low-density lipoprotein (VLDL) particles, and chylomicrons, while ApoB-48 is only found in chylomicrons, which are produced in the intestines and responsible for transporting dietary lipids.

Elevated levels of ApoB are associated with an increased risk of cardiovascular disease (CVD), as they indicate a higher concentration of LDL particles in the bloodstream. Therefore, measuring ApoB levels can provide additional information about CVD risk beyond traditional lipid profile tests that only measure total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides.

Hypolipoproteinemias are a group of genetic disorders characterized by low levels of lipoproteins in the blood. Lipoproteins are complex particles composed of proteins and lipids that play a crucial role in the transport and metabolism of fat molecules, such as cholesterol and triglycerides, in the body.

There are several types of hypolipoproteinemias, each associated with deficiencies in specific lipoproteins:

1. Hypobetalipoproteinemia: This disorder is characterized by low levels of beta-lipoproteins, also known as low-density lipoproteins (LDL), or "bad" cholesterol. It can lead to decreased absorption of fat-soluble vitamins and an increased risk of fatty liver disease.
2. Abetalipoproteinemia: This is a rare autosomal recessive disorder characterized by the absence of beta-lipoproteins and apolipoprotein B, which results in very low levels of LDL cholesterol and high-density lipoproteins (HDL), or "good" cholesterol. It can lead to fat malabsorption, neurological symptoms, and retinal degeneration.
3. Tangier disease: This disorder is caused by a deficiency in apolipoprotein A-I and results in low levels of HDL cholesterol. It can cause enlarged orange-colored tonsils, neuropathy, and an increased risk of coronary artery disease.
4. Familial hypoalphalipoproteinemia: This disorder is characterized by low levels of HDL cholesterol due to a deficiency in apolipoprotein A-I or A-II. It can increase the risk of premature coronary artery disease.

It's important to note that while some hypolipoproteinemias are associated with an increased risk of cardiovascular disease, others may actually protect against it due to reduced levels of atherogenic lipoproteins. Treatment for these disorders typically involves dietary modifications and supplementation of fat-soluble vitamins and essential fatty acids. In some cases, medication may be necessary to manage symptoms or prevent complications.

Apolipoprotein B-100 (apoB-100) is a large protein component of low-density lipoprotein (LDL), also known as "bad cholesterol." It plays a crucial role in the metabolism and transport of fats and cholesterol in the body. ApoB-100 is responsible for the binding of LDL to specific receptors on cell surfaces, facilitating the uptake of lipoprotein particles by cells. Elevated levels of apoB-100 in the blood are associated with an increased risk of developing cardiovascular diseases, such as atherosclerosis and coronary artery disease.

Abetalipoproteinemia is a rare inherited genetic disorder that affects the way the body absorbs and metabolizes fats and fat-soluble vitamins. It is caused by mutations in the genes responsible for producing proteins involved in the formation and transport of beta-lipoproteins, which are necessary for the absorption of dietary fats and cholesterol from the intestines.

Individuals with abetalipoproteinemia are unable to produce adequate levels of these lipoproteins, leading to a deficiency in fat-soluble vitamins (A, D, E, and K) and an accumulation of fats in the intestines. This results in various symptoms such as steatorrhea (fatty, foul-smelling stools), malabsorption, diarrhea, failure to thrive, and neurological issues due to vitamin E deficiency.

The disorder is typically diagnosed in infancy or early childhood and requires lifelong dietary management, including a low-fat diet and supplementation with fat-soluble vitamins. Early intervention can help prevent the progression of neurological symptoms and improve overall prognosis.

Apolipoprotein A-I (ApoA-I) is a major protein component of high-density lipoproteins (HDL) in human plasma. It plays a crucial role in the metabolism and transport of lipids, particularly cholesterol, within the body. ApoA-I facilitates the formation of HDL particles, which are involved in the reverse transport of cholesterol from peripheral tissues to the liver for excretion. This process is known as reverse cholesterol transport and helps maintain appropriate cholesterol levels in the body. Low levels of ApoA-I or dysfunctional ApoA-I have been associated with an increased risk of developing cardiovascular diseases.

VLDL (Very Low-Density Lipoproteins) are a type of lipoprotein that play a crucial role in the transport and metabolism of fat molecules, known as triglycerides, in the body. They are produced by the liver and consist of a core of triglycerides surrounded by a shell of proteins called apolipoproteins, phospholipids, and cholesterol.

VLDL particles are responsible for delivering fat molecules from the liver to peripheral tissues throughout the body, where they can be used as an energy source or stored for later use. During this process, VLDL particles lose triglycerides and acquire more cholesterol, transforming into intermediate-density lipoproteins (IDL) and eventually low-density lipoproteins (LDL), which are also known as "bad" cholesterol.

Elevated levels of VLDL in the blood can contribute to the development of cardiovascular disease due to their association with increased levels of triglycerides and LDL cholesterol, as well as decreased levels of high-density lipoproteins (HDL), which are considered "good" cholesterol.

A heterozygote is an individual who has inherited two different alleles (versions) of a particular gene, one from each parent. This means that the individual's genotype for that gene contains both a dominant and a recessive allele. The dominant allele will be expressed phenotypically (outwardly visible), while the recessive allele may or may not have any effect on the individual's observable traits, depending on the specific gene and its function. Heterozygotes are often represented as 'Aa', where 'A' is the dominant allele and 'a' is the recessive allele.

Lipoproteins are complex particles composed of multiple proteins and lipids (fats) that play a crucial role in the transport and metabolism of fat molecules in the body. They consist of an outer shell of phospholipids, free cholesterols, and apolipoproteins, enclosing a core of triglycerides and cholesteryl esters.

There are several types of lipoproteins, including:

1. Chylomicrons: These are the largest lipoproteins and are responsible for transporting dietary lipids from the intestines to other parts of the body.
2. Very-low-density lipoproteins (VLDL): Produced by the liver, VLDL particles carry triglycerides to peripheral tissues for energy storage or use.
3. Low-density lipoproteins (LDL): Often referred to as "bad cholesterol," LDL particles transport cholesterol from the liver to cells throughout the body. High levels of LDL in the blood can lead to plaque buildup in artery walls and increase the risk of heart disease.
4. High-density lipoproteins (HDL): Known as "good cholesterol," HDL particles help remove excess cholesterol from cells and transport it back to the liver for excretion or recycling. Higher levels of HDL are associated with a lower risk of heart disease.

Understanding lipoproteins and their roles in the body is essential for assessing cardiovascular health and managing risks related to heart disease and stroke.

Triglycerides are the most common type of fat in the body, and they're found in the food we eat. They're carried in the bloodstream to provide energy to the cells in our body. High levels of triglycerides in the blood can increase the risk of heart disease, especially in combination with other risk factors such as high LDL (bad) cholesterol, low HDL (good) cholesterol, and high blood pressure.

It's important to note that while triglycerides are a type of fat, they should not be confused with cholesterol, which is a waxy substance found in the cells of our body. Both triglycerides and cholesterol are important for maintaining good health, but high levels of either can increase the risk of heart disease.

Triglyceride levels are measured through a blood test called a lipid panel or lipid profile. A normal triglyceride level is less than 150 mg/dL. Borderline-high levels range from 150 to 199 mg/dL, high levels range from 200 to 499 mg/dL, and very high levels are 500 mg/dL or higher.

Elevated triglycerides can be caused by various factors such as obesity, physical inactivity, excessive alcohol consumption, smoking, and certain medical conditions like diabetes, hypothyroidism, and kidney disease. Medications such as beta-blockers, steroids, and diuretics can also raise triglyceride levels.

Lifestyle changes such as losing weight, exercising regularly, eating a healthy diet low in saturated and trans fats, avoiding excessive alcohol consumption, and quitting smoking can help lower triglyceride levels. In some cases, medication may be necessary to reduce triglycerides to recommended levels.

Low-density lipoproteins (LDL), also known as "bad cholesterol," are a type of lipoprotein that carry cholesterol and other fats from the liver to cells throughout the body. High levels of LDL in the blood can lead to the buildup of cholesterol in the walls of the arteries, which can increase the risk of heart disease and stroke.

Lipoproteins are complex particles composed of proteins (apolipoproteins) and lipids (cholesterol, triglycerides, and phospholipids) that are responsible for transporting fat molecules around the body in the bloodstream. LDL is one type of lipoprotein, along with high-density lipoproteins (HDL), very low-density lipoproteins (VLDL), and chylomicrons.

LDL particles are smaller than HDL particles and can easily penetrate the artery walls, leading to the formation of plaques that can narrow or block the arteries. Therefore, maintaining healthy levels of LDL in the blood is essential for preventing cardiovascular disease.

I must clarify that the term "pedigree" is not typically used in medical definitions. Instead, it is often employed in genetics and breeding, where it refers to the recorded ancestry of an individual or a family, tracing the inheritance of specific traits or diseases. In human genetics, a pedigree can help illustrate the pattern of genetic inheritance in families over multiple generations. However, it is not a medical term with a specific clinical definition.

Apolipoprotein B-48 (apoB-48) is a protein component of chylomicrons, which are lipoprotein particles responsible for carrying dietary fat and cholesterol from the intestines to other parts of the body. ApoB-48 is produced in the intestines and is a shorter version of apolipoprotein B-100 (apoB-100), which is a component of low-density lipoproteins (LDL) or "bad cholesterol."

Chylomicrons are assembled and secreted by intestinal cells after a meal, and apoB-48 is essential for the formation and function of these particles. ApoB-48-containing chylomicrons transport dietary lipids to various tissues, including the liver, where they contribute to the maintenance of lipid homeostasis.

Elevated levels of apoB-48 in the blood have been associated with an increased risk of cardiovascular disease, particularly in individuals with familial chylomicronemia syndrome (FCS), a rare genetic disorder characterized by severely elevated triglyceride levels due to impaired clearance of chylomicrons.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

Apolipoprotein E (ApoE) is a protein involved in the metabolism of lipids, particularly cholesterol. It is produced primarily by the liver and is a component of several types of lipoproteins, including very low-density lipoproteins (VLDL) and high-density lipoproteins (HDL).

ApoE plays a crucial role in the transport and uptake of lipids in the body. It binds to specific receptors on cell surfaces, facilitating the delivery of lipids to cells for energy metabolism or storage. ApoE also helps to clear cholesterol from the bloodstream and is involved in the repair and maintenance of tissues.

There are three major isoforms of ApoE, designated ApoE2, ApoE3, and ApoE4, which differ from each other by only a few amino acids. These genetic variations can have significant effects on an individual's risk for developing certain diseases, particularly cardiovascular disease and Alzheimer's disease. For example, individuals who inherit the ApoE4 allele have an increased risk of developing Alzheimer's disease, while those with the ApoE2 allele may have a reduced risk.

In summary, Apolipoprotein E is a protein involved in lipid metabolism and transport, and genetic variations in this protein can influence an individual's risk for certain diseases.

Apolipoproteins are a group of proteins that are associated with lipids (fats) in the body and play a crucial role in the metabolism, transportation, and regulation of lipids. They are structural components of lipoprotein particles, which are complexes of lipids and proteins that transport lipids in the bloodstream.

There are several types of apolipoproteins, including ApoA, ApoB, ApoC, ApoD, ApoE, and others. Each type has a specific function in lipid metabolism. For example, ApoA is a major component of high-density lipoprotein (HDL), often referred to as "good cholesterol," and helps remove excess cholesterol from cells and tissues and transport it to the liver for excretion. ApoB, on the other hand, is a major component of low-density lipoprotein (LDL), or "bad cholesterol," and plays a role in the delivery of cholesterol to cells and tissues.

Abnormal levels of apolipoproteins or dysfunctional forms of these proteins have been linked to various diseases, including cardiovascular disease, Alzheimer's disease, and metabolic disorders such as diabetes. Therefore, measuring apolipoprotein levels in the blood can provide valuable information for diagnosing and monitoring these conditions.

LDL, or low-density lipoprotein, is often referred to as "bad" cholesterol. It is one of the lipoproteins that helps carry cholesterol throughout your body. High levels of LDL cholesterol can lead to a buildup of cholesterol in your arteries, which can increase the risk of heart disease and stroke.

Cholesterol is a type of fat (lipid) that is found in the cells of your body. Your body needs some cholesterol to function properly, but having too much can lead to health problems. LDL cholesterol is one of the two main types of cholesterol; the other is high-density lipoprotein (HDL), or "good" cholesterol.

It's important to keep your LDL cholesterol levels in a healthy range to reduce your risk of developing heart disease and stroke. A healthcare professional can help you determine what your target LDL cholesterol level should be based on your individual health status and risk factors.

A homozygote is an individual who has inherited the same allele (version of a gene) from both parents and therefore possesses two identical copies of that allele at a specific genetic locus. This can result in either having two dominant alleles (homozygous dominant) or two recessive alleles (homozygous recessive). In contrast, a heterozygote has inherited different alleles from each parent for a particular gene.

The term "homozygote" is used in genetics to describe the genetic makeup of an individual at a specific locus on their chromosomes. Homozygosity can play a significant role in determining an individual's phenotype (observable traits), as having two identical alleles can strengthen the expression of certain characteristics compared to having just one dominant and one recessive allele.

Lipids are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. They include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids serve many important functions in the body, including energy storage, acting as structural components of cell membranes, and serving as signaling molecules. High levels of certain lipids, particularly cholesterol and triglycerides, in the blood are associated with an increased risk of cardiovascular disease.

Apolipoprotein C-III (APOC3) is a protein that is produced in the liver and circulates in the bloodstream. It is a component of certain lipoproteins, including very low-density lipoproteins (VLDL) and chylomicrons, which are responsible for transporting fat molecules, such as triglycerides and cholesterol, throughout the body.

APOC3 plays a role in regulating the metabolism of these lipoproteins. Specifically, it inhibits the activity of an enzyme called lipoprotein lipase, which breaks down triglycerides in VLDL and chylomicrons. As a result, high levels of APOC3 can lead to an increase in triglyceride levels in the blood, which is a risk factor for cardiovascular disease.

Genetic variations in the APOC3 gene have been associated with differences in triglyceride levels and risk of cardiovascular disease. Some studies have suggested that reducing APOC3 levels through genetic editing or other means may be a promising strategy for lowering triglycerides and reducing the risk of heart disease.

Apolipoprotein A (apoA) is a type of apolipoprotein that is primarily associated with high-density lipoproteins (HDL), often referred to as "good cholesterol." There are several subtypes of apoA, including apoA-I, apoA-II, and apoA-IV.

ApoA-I is the major protein component of HDL particles and plays a crucial role in reverse cholesterol transport, which is the process by which excess cholesterol is removed from tissues and delivered to the liver for excretion. Low levels of apoA-I have been linked to an increased risk of cardiovascular disease.

ApoA-II is another protein component of HDL particles, although its function is less well understood than that of apoA-I. Some studies suggest that apoA-II may play a role in regulating the metabolism of HDL particles.

ApoA-IV is found in both HDL and chylomicrons, which are lipoprotein particles that transport dietary lipids from the intestine to the liver. The function of apoA-IV is not well understood, but it may play a role in regulating appetite and energy metabolism.

Overall, apolipoproteins A are important components of HDL particles and play a critical role in maintaining healthy lipid metabolism and reducing the risk of cardiovascular disease.

Apolipoprotein E (APOE) is a gene that provides instructions for making a protein involved in the metabolism of fats called lipids. One variant of this gene, APOE4, is associated with an increased risk of developing Alzheimer's disease and other forms of dementia.

The APOE4 allele (variant) is less efficient at clearing beta-amyloid protein, a component of the amyloid plaques found in the brains of people with Alzheimer's disease. This can lead to an accumulation of beta-amyloid and an increased risk of developing Alzheimer's disease.

It is important to note that having one or two copies of the APOE4 allele does not mean that a person will definitely develop Alzheimer's disease, but it does increase the risk. Other factors, such as age, family history, and the presence of other genetic variants, also contribute to the development of this complex disorder.

Apolipoprotein E3 (ApoE3) is one of the three major isoforms of apolipoprotein E (ApoE), a protein involved in the metabolism of lipids, particularly cholesterol. ApoE is produced by the APOE gene, which has three common alleles: ε2, ε3, and ε4. These alleles result in three main isoforms of the protein: ApoE2, ApoE3, and ApoE4.

ApoE3 is the most common isoform, found in approximately 77-78% of the population. It has a slightly different amino acid sequence compared to ApoE2 and ApoE4, which can affect its function. ApoE3 is thought to play a neutral or protective role in the risk of developing Alzheimer's disease and cardiovascular diseases, although some studies suggest that it may have a mildly favorable effect on lipid metabolism compared to ApoE4.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Apolipoprotein A-II (ApoA-II) is a protein component of high-density lipoproteins (HDL), often referred to as "good cholesterol." It is one of the major apolipoproteins in HDL and plays a role in the structure, metabolism, and function of HDL particles. ApoA-II is produced primarily in the liver and intestine and helps facilitate the transport of cholesterol from tissues to the liver for excretion. Additionally, ApoA-II has been shown to have anti-inflammatory properties and may play a role in the regulation of the immune response.

HDL (High-Density Lipoprotein) cholesterol is often referred to as "good" cholesterol. It is a type of lipoprotein that helps remove excess cholesterol from cells and carry it back to the liver, where it can be broken down and removed from the body. High levels of HDL cholesterol have been associated with a lower risk of heart disease and stroke.

Apolipoprotein C-II (ApoC-II) is a type of apolipoprotein, which are proteins that bind to lipids to form lipoprotein complexes. ApoC-II is a component of several lipoproteins, including very low-density lipoproteins (VLDL) and chylomicrons, which are responsible for the transport of fat molecules, such as triglycerides and cholesterol, in the bloodstream.

ApoC-II plays a crucial role in the activation of lipoprotein lipase, an enzyme that breaks down triglycerides in VLDL and chylomicrons into fatty acids, which can then be taken up by cells for energy production or storage. Therefore, ApoC-II deficiency can lead to hypertriglyceridemia, a condition characterized by high levels of triglycerides in the blood.

In addition to its role in lipid metabolism, ApoC-II has been implicated in the development and progression of atherosclerosis, a chronic inflammatory disease that affects the arteries and can lead to serious cardiovascular complications, such as heart attack and stroke.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Apolipoprotein E2 (ApoE2) is one of the three major isoforms of the apolipoprotein E (ApoE) protein, which is a component of lipoproteins that are involved in the transport and metabolism of cholesterol and other fats in the body. ApoE is produced by the APOE gene, which has three common alleles: ε2, ε3, and ε4.

The ApoE2 protein is encoded by the ε2 allele of the APOE gene. Compared to the other two isoforms (ApoE3 and ApoE4), ApoE2 has a different amino acid at position 112, where it has a cysteine instead of an arginine. This difference affects the protein's ability to interact with other molecules involved in lipid metabolism, such as the low-density lipoprotein receptor (LDLR).

Individuals who inherit two copies of the ε2 allele (ε2/ε2) have a higher risk of developing type III hyperlipoproteinemia, also known as dysbetalipoproteinemia, which is characterized by elevated levels of cholesterol and triglycerides in the blood due to impaired clearance of remnant lipoproteins. However, not all people with the ε2/ε2 genotype develop type III hyperlipoproteinemia, and other genetic and environmental factors may contribute to the development of this condition.

It's worth noting that having one or two copies of the ε2 allele has been associated with a reduced risk of developing Alzheimer's disease, although the mechanism by which ApoE2 protects against Alzheimer's is not fully understood.

Apolipoprotein C-I (apoC-I) is a small protein component of lipoproteins, which are particles that transport all fat molecules (lipids), including cholesterol, in the bloodstream. ApoC-I is primarily produced in the liver and intestines and plays a crucial role in the metabolism of triglyceride-rich lipoproteins, such as very low-density lipoproteins (VLDL) and chylomicrons.

Apolipoprotein C-I has several functions:

1. Inhibition of lipoprotein lipase (LPL): ApoC-I inhibits the activity of LPL, an enzyme responsible for breaking down triglycerides in lipoproteins. This inhibition helps regulate the rate at which fatty acids are released from triglyceride-rich lipoproteins and taken up by cells for energy production or storage.
2. Activation of hepatic lipase (HL): ApoC-I activates HL, an enzyme involved in the catabolism of intermediate-density lipoproteins (IDL) and high-density lipoproteins (HDL). This activation aids in the clearance of these particles from the circulation.
3. Regulation of cholesterol efflux: ApoC-I may also play a role in regulating cholesterol efflux, the process by which excess cholesterol is removed from cells and transported to the liver for excretion.

Genetic variations in the APOC1 gene, which encodes apoC-I, have been associated with alterations in lipid metabolism and an increased risk of cardiovascular disease.

Exons are the coding regions of DNA that remain in the mature, processed mRNA after the removal of non-coding intronic sequences during RNA splicing. These exons contain the information necessary to encode proteins, as they specify the sequence of amino acids within a polypeptide chain. The arrangement and order of exons can vary between different genes and even between different versions of the same gene (alternative splicing), allowing for the generation of multiple protein isoforms from a single gene. This complexity in exon structure and usage significantly contributes to the diversity and functionality of the proteome.

Fatty liver, also known as hepatic steatosis, is a medical condition characterized by the abnormal accumulation of fat in the liver. The liver's primary function is to process nutrients, filter blood, and fight infections, among other tasks. When excess fat builds up in the liver cells, it can impair liver function and lead to inflammation, scarring, and even liver failure if left untreated.

Fatty liver can be caused by various factors, including alcohol consumption, obesity, nonalcoholic fatty liver disease (NAFLD), viral hepatitis, and certain medications or medical conditions. NAFLD is the most common cause of fatty liver in the United States and other developed countries, affecting up to 25% of the population.

Symptoms of fatty liver may include fatigue, weakness, weight loss, loss of appetite, nausea, abdominal pain or discomfort, and jaundice (yellowing of the skin and eyes). However, many people with fatty liver do not experience any symptoms, making it essential to diagnose and manage the condition through regular check-ups and blood tests.

Treatment for fatty liver depends on the underlying cause. Lifestyle changes such as weight loss, exercise, and dietary modifications are often recommended for people with NAFLD or alcohol-related fatty liver disease. Medications may also be prescribed to manage related conditions such as diabetes, high cholesterol, or metabolic syndrome. In severe cases of liver damage, a liver transplant may be necessary.

High-Density Lipoproteins (HDL) are a type of lipoprotein that play a crucial role in the transportation and metabolism of cholesterol in the body. They are often referred to as "good" cholesterol because they help remove excess cholesterol from cells and carry it back to the liver, where it can be broken down and removed from the body. This process is known as reverse cholesterol transport.

HDLs are composed of a lipid core containing cholesteryl esters and triglycerides, surrounded by a shell of phospholipids, free cholesterol, and apolipoproteins, primarily apoA-I. The size and composition of HDL particles can vary, leading to the classification of different subclasses of HDL with varying functions and metabolic fates.

Elevated levels of HDL have been associated with a lower risk of developing cardiovascular diseases, while low HDL levels increase the risk. However, it is essential to consider that HDL function and quality may be more important than just the quantity in determining cardiovascular risk.

Cytidine deaminase is an enzyme that catalyzes the removal of an amino group from cytidine, converting it to uridine. This reaction is part of the process of RNA degradation and also plays a role in the immune response to viral infections.

Cytidine deaminase can be found in various organisms, including bacteria, humans, and other mammals. In humans, cytidine deaminase is encoded by the APOBEC3 gene family, which consists of several different enzymes that have distinct functions and expression patterns. Some members of this gene family are involved in the restriction of retroviruses, such as HIV-1, while others play a role in the regulation of endogenous retroelements and the modification of cellular RNA.

Mutations in cytidine deaminase genes have been associated with various diseases, including cancer and autoimmune disorders. For example, mutations in the APOBEC3B gene have been linked to an increased risk of breast cancer, while mutations in other members of the APOBEC3 family have been implicated in the development of lymphoma and other malignancies. Additionally, aberrant expression of cytidine deaminase enzymes has been observed in some autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus, suggesting a potential role for these enzymes in the pathogenesis of these conditions.

LDL receptors (Low-Density Lipoprotein Receptors) are cell surface receptors that play a crucial role in the regulation of cholesterol homeostasis within the body. They are responsible for recognizing and binding to LDL particles, also known as "bad cholesterol," which are then internalized by the cell through endocytosis.

Once inside the cell, the LDL particles are broken down, releasing their cholesterol content, which can be used for various cellular processes such as membrane synthesis and hormone production. The LDL receptors themselves are recycled back to the cell surface, allowing for continued uptake of LDL particles.

Mutations in the LDL receptor gene can lead to a condition called familial hypercholesterolemia, which is characterized by high levels of LDL cholesterol in the blood and an increased risk of premature cardiovascular disease.

RNA editing is a process that alters the sequence of a transcribed RNA molecule after it has been synthesized from DNA, but before it is translated into protein. This can result in changes to the amino acid sequence of the resulting protein or to the regulation of gene expression. The most common type of RNA editing in mammals is the hydrolytic deamination of adenosine (A) to inosine (I), catalyzed by a family of enzymes called adenosine deaminases acting on RNA (ADARs). Inosine is recognized as guanosine (G) by the translation machinery, leading to A-to-G changes in the RNA sequence. Other types of RNA editing include cytidine (C) to uridine (U) deamination and insertion/deletion of nucleotides. RNA editing is a crucial mechanism for generating diversity in gene expression and has been implicated in various biological processes, including development, differentiation, and disease.

IDL, or intermediate-density lipoproteins, are a type of lipoprotein that is denser than low-density lipoproteins (LDL) but less dense than high-density lipoproteins (HDL). They are formed during the catabolism (breakdown) of VLDL (very low-density lipoproteins), another type of lipoprotein, by lipoprotein lipase, an enzyme that breaks down triglycerides in lipoproteins.

IDLs contain a higher proportion of cholesterol and apolipoprotein E (apoE) compared to VLDLs and LDLs. Some IDLs are taken up by the liver, while others are converted into LDL particles through the action of cholesteryl ester transfer protein (CETP), which exchanges triglycerides in LDL for cholesterol esters in IDL.

Elevated levels of IDLs in the blood may be a risk factor for cardiovascular disease, as they can contribute to the formation and accumulation of plaque in the arteries. However, IDLs are not typically measured in routine clinical testing, and their role in disease is not as well understood as that of LDL or HDL.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Familial Combined Hyperlipidemia (FCH) is a genetic disorder characterized by high levels of cholesterol and/or fats (lipids) in the blood. It is one of the most common inherited lipid disorders, affecting approximately 1 in 200 to 1 in 500 people.

FCH is caused by mutations in several genes involved in lipid metabolism, including the APOB, LDLR, and PCSK9 genes. These genetic defects lead to increased levels of low-density lipoprotein (LDL) cholesterol, triglycerides, or both in the blood.

Individuals with FCH may have elevated levels of total cholesterol, LDL cholesterol, and/or triglycerides, which can increase their risk for premature atherosclerosis and cardiovascular disease. The condition often presents in early adulthood and may manifest as mixed hyperlipidemia (high levels of both LDL cholesterol and triglycerides) or isolated hypercholesterolemia (high levels of LDL cholesterol only).

Familial combined hyperlipidemia is typically managed with lifestyle modifications, such as a heart-healthy diet, regular exercise, and weight management. Medications, such as statins, may also be prescribed to lower lipid levels and reduce the risk of cardiovascular disease. Regular monitoring of lipid levels is essential for effective management and prevention of complications associated with FCH.

Hyperlipoproteinemia Type II, also known as Fredrickson Type II or Familial Combined Hyperlipidemia, is a genetic disorder characterized by elevated levels of low-density lipoprotein (LDL) cholesterol and/or triglycerides in the blood. This condition can lead to an increased risk of developing cardiovascular diseases such as atherosclerosis and coronary artery disease.

The disorder is caused by mutations in several genes involved in lipid metabolism, including APOB, LDLR, PCSK9, and APOE. These genetic defects result in impaired clearance of LDL particles from the bloodstream, leading to their accumulation and increased risk of cardiovascular disease.

Individuals with Hyperlipoproteinemia Type II typically have elevated levels of both LDL cholesterol and triglycerides, although some may only have one or the other elevated. The disorder can present at any age, but it is often diagnosed in adulthood during routine cholesterol screening.

Treatment for Hyperlipoproteinemia Type II typically involves lifestyle modifications such as a heart-healthy diet, regular exercise, and weight loss. Medications such as statins, ezetimibe, and PCSK9 inhibitors may also be prescribed to lower LDL cholesterol levels and reduce the risk of cardiovascular disease.

Hyperlipidemias are a group of disorders characterized by an excess of lipids (fats) or lipoproteins in the blood. These include elevated levels of cholesterol, triglycerides, or both. Hyperlipidemias can be inherited (primary) or caused by other medical conditions (secondary). They are a significant risk factor for developing cardiovascular diseases, such as atherosclerosis and coronary artery disease.

There are two main types of lipids that are commonly measured in the blood: low-density lipoprotein (LDL) cholesterol, often referred to as "bad" cholesterol, and high-density lipoprotein (HDL) cholesterol, known as "good" cholesterol. High levels of LDL cholesterol can lead to the formation of plaques in the arteries, which can narrow or block them and increase the risk of heart attack or stroke. On the other hand, high levels of HDL cholesterol are protective because they help remove LDL cholesterol from the bloodstream.

Triglycerides are another type of lipid that can be measured in the blood. Elevated triglyceride levels can also contribute to the development of cardiovascular disease, particularly when combined with high LDL cholesterol and low HDL cholesterol levels.

Hyperlipidemias are typically diagnosed through a blood test that measures the levels of various lipids and lipoproteins in the blood. Treatment may include lifestyle changes, such as following a healthy diet, getting regular exercise, losing weight, and quitting smoking, as well as medication to lower lipid levels if necessary.

Chylomicrons are a type of lipoprotein that are responsible for carrying dietary lipids, such as triglycerides and cholesterol, from the intestines to other parts of the body through the lymphatic system and bloodstream. They are the largest lipoproteins and are composed of an outer layer of phospholipids, free cholesterol, and apolipoproteins, which surrounds a core of triglycerides and cholesteryl esters. Chylomicrons are produced in the intestinal mucosa after a meal containing fat, and their production is stimulated by the hormone cholecystokinin. Once in the bloodstream, chylomicrons interact with other lipoproteins and enzymes to deliver their lipid cargo to various tissues, including muscle and adipose tissue, where they are used for energy or stored for later use.

Arteriosclerosis is a general term that describes the hardening and stiffening of the artery walls. It's a progressive condition that can occur as a result of aging, or it may be associated with certain risk factors such as high blood pressure, high cholesterol, diabetes, smoking, and a sedentary lifestyle.

The process of arteriosclerosis involves the buildup of plaque, made up of fat, cholesterol, calcium, and other substances, in the inner lining of the artery walls. Over time, this buildup can cause the artery walls to thicken and harden, reducing the flow of oxygen-rich blood to the body's organs and tissues.

Arteriosclerosis can affect any of the body's arteries, but it is most commonly found in the coronary arteries that supply blood to the heart, the cerebral arteries that supply blood to the brain, and the peripheral arteries that supply blood to the limbs. When arteriosclerosis affects the coronary arteries, it can lead to heart disease, angina, or heart attack. When it affects the cerebral arteries, it can lead to stroke or transient ischemic attack (TIA). When it affects the peripheral arteries, it can cause pain, numbness, or weakness in the limbs, and in severe cases, gangrene and amputation.

Lipid metabolism is the process by which the body breaks down and utilizes lipids (fats) for various functions, such as energy production, cell membrane formation, and hormone synthesis. This complex process involves several enzymes and pathways that regulate the digestion, absorption, transport, storage, and consumption of fats in the body.

The main types of lipids involved in metabolism include triglycerides, cholesterol, phospholipids, and fatty acids. The breakdown of these lipids begins in the digestive system, where enzymes called lipases break down dietary fats into smaller molecules called fatty acids and glycerol. These molecules are then absorbed into the bloodstream and transported to the liver, which is the main site of lipid metabolism.

In the liver, fatty acids may be further broken down for energy production or used to synthesize new lipids. Excess fatty acids may be stored as triglycerides in specialized cells called adipocytes (fat cells) for later use. Cholesterol is also metabolized in the liver, where it may be used to synthesize bile acids, steroid hormones, and other important molecules.

Disorders of lipid metabolism can lead to a range of health problems, including obesity, diabetes, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). These conditions may be caused by genetic factors, lifestyle habits, or a combination of both. Proper diagnosis and management of lipid metabolism disorders typically involves a combination of dietary changes, exercise, and medication.

Atherosclerosis is a medical condition characterized by the buildup of plaques, made up of fat, cholesterol, calcium, and other substances found in the blood, on the inner walls of the arteries. This process gradually narrows and hardens the arteries, reducing the flow of oxygen-rich blood to various parts of the body. Atherosclerosis can affect any artery in the body, including those that supply blood to the heart (coronary arteries), brain, limbs, and other organs. The progressive narrowing and hardening of the arteries can lead to serious complications such as coronary artery disease, carotid artery disease, peripheral artery disease, and aneurysms, which can result in heart attacks, strokes, or even death if left untreated.

The exact cause of atherosclerosis is not fully understood, but it is believed to be associated with several risk factors, including high blood pressure, high cholesterol levels, smoking, diabetes, obesity, physical inactivity, and a family history of the condition. Atherosclerosis can often progress without any symptoms for many years, but as the disease advances, it can lead to various signs and symptoms depending on which arteries are affected. Treatment typically involves lifestyle changes, medications, and, in some cases, surgical procedures to restore blood flow.

Hyperlipoproteinemias are medical conditions characterized by elevated levels of lipoproteins in the blood. Lipoproteins are particles that consist of proteins and lipids, which are responsible for transporting all fat molecules, such as cholesterol and triglycerides, around the body within the water outside cells. These lipids cannot dissolve in the blood, so they must be carried by these lipoprotein particles.

There are several types of hyperlipoproteinemias, classified based on the type of lipoprotein that is elevated and the pattern of inheritance. The most commonly recognized classification system is the Fredrickson classification, which includes five main types:

1. Type I - characterized by an excess of chylomicrons, a type of lipoprotein that carries dietary lipids, leading to extremely high levels of triglycerides in the blood. This rare disorder is usually caused by genetic mutations.
2. Type II - divided into two subtypes:
a. Type IIa - characterized by elevated LDL (low-density lipoprotein), or "bad" cholesterol, levels and often associated with premature cardiovascular disease. This condition can be caused by genetic factors, lifestyle choices, or both.
b. Type IIb - marked by increased levels of both LDL cholesterol and VLDL (very low-density lipoprotein), which leads to elevated triglycerides and cholesterol in the blood. This subtype can also be influenced by genetic factors, lifestyle choices, or both.
3. Type III - known as broad beta disease or remnant removal disease, this condition is characterized by an abnormal accumulation of remnant particles from VLDL and IDL (intermediate-density lipoprotein) metabolism, leading to increased levels of both cholesterol and triglycerides. This disorder can be caused by genetic mutations or secondary factors like diabetes, obesity, or hypothyroidism.
4. Type IV - characterized by elevated VLDL particles and high triglyceride levels in the blood. This condition is often associated with metabolic syndrome, obesity, diabetes, and alcohol consumption.
5. Type V - marked by increased VLDL and chylomicrons (lipoprotein particles that transport dietary lipids) in the blood, leading to extremely high triglyceride levels. This rare condition can be caused by genetic factors or secondary factors like diabetes, obesity, alcohol consumption, or uncontrolled lipid absorption.

It is important to note that these types are not mutually exclusive and can coexist in various combinations. Additionally, lifestyle choices such as diet, exercise, smoking, and alcohol consumption can significantly impact lipoprotein levels and contribute to the development of dyslipidemia (abnormal lipid levels).

Apolipoprotein D (apoD) is a protein that is associated with high-density lipoprotein (HDL) particles in the blood. It is one of several apolipoproteins that are involved in the transport and metabolism of lipids, such as cholesterol and triglycerides, in the body.

ApoD is produced by the APOD gene and is found in various tissues, including the brain, where it is believed to play a role in protecting nerve cells from oxidative stress. It has also been studied for its potential role in Alzheimer's disease and other neurological disorders.

In addition to its role in lipid metabolism and neuroprotection, apoD has been shown to have anti-inflammatory properties and may be involved in the regulation of immune responses. However, more research is needed to fully understand the functions and mechanisms of action of this protein.

Hypercholesterolemia is a medical term that describes a condition characterized by high levels of cholesterol in the blood. Specifically, it refers to an abnormally elevated level of low-density lipoprotein (LDL) cholesterol, also known as "bad" cholesterol, which can contribute to the development of fatty deposits in the arteries called plaques. Over time, these plaques can narrow and harden the arteries, leading to atherosclerosis, a condition that increases the risk of heart disease, stroke, and other cardiovascular complications.

Hypercholesterolemia can be caused by various factors, including genetics, lifestyle choices, and underlying medical conditions. In some cases, it may not cause any symptoms until serious complications arise. Therefore, regular cholesterol screening is essential for early detection and management of hypercholesterolemia. Treatment typically involves lifestyle modifications, such as a healthy diet, regular exercise, and weight management, along with medication if necessary.

Oleic acid is a monounsaturated fatty acid that is commonly found in various natural oils such as olive oil, sunflower oil, and peanut oil. Its chemical formula is cis-9-octadecenoic acid, and it is a colorless liquid at room temperature with a slight odor. Oleic acid is an important component of human diet and has been shown to have various health benefits, including reducing the risk of heart disease and improving immune function. It is also used in the manufacture of soaps, cosmetics, and other industrial products.

Cholesteryl esters are formed when cholesterol, a type of lipid (fat) that is important for the normal functioning of the body, becomes combined with fatty acids through a process called esterification. This results in a compound that is more hydrophobic (water-repelling) than cholesterol itself, which allows it to be stored more efficiently in the body.

Cholesteryl esters are found naturally in foods such as animal fats and oils, and they are also produced by the liver and other cells in the body. They play an important role in the structure and function of cell membranes, and they are also precursors to the synthesis of steroid hormones, bile acids, and vitamin D.

However, high levels of cholesteryl esters in the blood can contribute to the development of atherosclerosis, a condition characterized by the buildup of plaque in the arteries, which can increase the risk of heart disease and stroke. Cholesteryl esters are typically measured as part of a lipid profile, along with other markers such as total cholesterol, HDL cholesterol, and triglycerides.

VLDL, or very low-density lipoproteins, are a type of lipoprotein that carries triglycerides and cholesterol from the liver to other parts of the body. Cholesterol is a fatty substance found in the blood, and VLDL contains both triglycerides and cholesterol.

Cholesterol itself cannot dissolve in the blood and needs to be transported around the body by lipoproteins, which are protein molecules that encapsulate and carry fat molecules, such as cholesterol and triglycerides, through the bloodstream. VLDL is one of several types of lipoproteins, including low-density lipoproteins (LDL) and high-density lipoproteins (HDL).

Elevated levels of VLDL in the blood can contribute to the development of atherosclerosis, a condition characterized by the buildup of plaque in the arteries, which can increase the risk of heart disease and stroke. Therefore, maintaining healthy levels of VLDL and other lipoproteins is an important part of overall cardiovascular health.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

The clinical manifestations are similar to diseases produced by mutations of the LDL receptor, such as familial ... Treatment may include, niacin or statin or ezetimibe.: 534 It is also known as "normotriglyceridemic hypobetalipoproteinemia". ... Apolipoprotein B deficiency is an autosomal dominant disorder resulting from a missense mutation which reduces the affinity of ... Familial hypercholesterolemia Braunwald, Eugene; Hauser, Stephen L.; et al. (2001). Harrison's Principles of Internal Medicine ...
June 1989). "Familial hypobetalipoproteinemia associated with a mutant species of apolipoprotein B (B-46)". N. Engl. J. Med. ... Hypobetalipoproteinemia is a disorder consisting of low levels of LDL cholesterol or apolipoprotein B, below the 5th percentile ... Schonfeld G, Lin X, Yue P (June 2005). "Familial hypobetalipoproteinemia: genetics and metabolism". Cell. Mol. Life Sci. 62 (12 ... Schonfeld G (May 2003). "Familial hypobetalipoproteinemia: a review". J. Lipid Res. 44 (5): 878-83. doi:10.1194/jlr.R300002- ...
Hypobetalipoproteinemia is a genetic disorder that can be caused by a mutation in the ApoB gene, APOB. Abetalipoproteinaemia is ... Mutations in gene APOB100 can also cause familial hypercholesterolemia, a hereditary (autosomal dominant) form of metabolic ... Apolipoprotein B is the primary apolipoprotein of chylomicrons, VLDL, Lp(a), IDL, and LDL particles (LDL-commonly known as "bad ... Apolipoprotein B (ApoB) is a protein that in humans is encoded by the APOB gene. It is commonly used to detect risk of ...
Causes of hypolipidemia include:[citation needed] Hypobetalipoproteinemia (low levels of LDL cholesterol or apolipoprotein B) ... 2010). "Exome Sequencing, ANGPTL3Mutations, and Familial Combined Hypolipidemia". New England Journal of Medicine. 363 (23): ... It occurs in genetic disorders (e.g. hypoalphalipoproteinemia, hypobetalipoproteinemia), malnutrition, malabsorption, wasting ... "familial combined hypolipidemia"). Hooft disease is a rare condition evidenced by low blood lipid level, red rash and mental ...
... and familial hypobetalipoproteinemia (FHBL) are relatively uncommon inherited disorders of lipoprotein metabolism that cause ... Familial hypobetalipoproteinemia caused by a mutation in the apolipoprotein B gene that results in a truncated species of ... Beta apolipoproteins. Beta apolipoproteins are the largest of the apolipoproteins. They are critically important for the ... Familial hypobetalipoproteinemia. APOB gene mutation. FHBL is a rare autosomal dominant disorder of apoB metabolism. Most cases ...
The clinical manifestations are similar to diseases produced by mutations of the LDL receptor, such as familial ... Treatment may include, niacin or statin or ezetimibe.: 534 It is also known as "normotriglyceridemic hypobetalipoproteinemia". ... Apolipoprotein B deficiency is an autosomal dominant disorder resulting from a missense mutation which reduces the affinity of ... Familial hypercholesterolemia Braunwald, Eugene; Hauser, Stephen L.; et al. (2001). Harrisons Principles of Internal Medicine ...
Hypobetalipoproteinemia, see Familial hypobetalipoproteinemia. *Hypobetalipoproteinemia with accumulation of apolipoprotein B- ... Hemiplegic migraine, familial, see Familial hemiplegic migraine. *Hemiplegic-ophthalmoplegic migraine, see Familial hemiplegic ... Hyperaldosteronism, familial, see Familial hyperaldosteronism. *Hyperammonemia due to carbonic anhydrase VA deficiency, see ... Hyperlipoproteinemia type I, see Familial lipoprotein lipase deficiency. *Hyperlipoproteinemia type Ia, see Familial ...
Genetic analysis of a kindred with familial hypobetalipoproteinemia. Evidence for two separate gene defects: one associated ... apolipoprotein B-37; and a second associated with low plasma concentrations of apolipoprotein B-100. J Clin Invest. 1987 Jun. ... Acanthocytes in the homozygous form of familial hypobetalipoproteinemia are thought to have a similar pathophysiology. ... Autosomal recessive abetalipoproteinemia must be differentiated from the homozygous form of familial hypobetalipoproteinemia. ...
... and familial hypobetalipoproteinemia (FHBL) are relatively uncommon inherited disorders of lipoprotein metabolism that cause ... Familial hypobetalipoproteinemia caused by a mutation in the apolipoprotein B gene that results in a truncated species of ... Beta apolipoproteins. Beta apolipoproteins are the largest of the apolipoproteins. They are critically important for the ... Schonfeld G. Familial hypobetalipoproteinemia: a review. J Lipid Res. 2003 May. 44(5):878-83. [QxMD MEDLINE Link]. [Full Text]. ...
Familial defective apolipoprotein B-100 in a group of hypercholesterolaemic patients in Poland. Identification of a new ... Linkage of a gene for familial hypobetalipoproteinemia to chromosome 3p21.1-22. Am J Hum Genet. 2000 May. 66(5):1699-704. [QxMD ... Familial hypobetalipoproteinemia. J Lipid Res. 1993 Apr. 34(4):521-41. [QxMD MEDLINE Link]. ... The molecular mechanism for the genetic disorder familial defective apolipoprotein B100. J Biol Chem. 2001 Mar 23. 276(12):9214 ...
Familial broken apolipoprotein B and familial hypobetalipoproteinemia in one family: two neutralizing mutations. Table 2 ...
Severe, familial hypobetalipoproteinemia with permanent low levels (,5th percentile) of apolipoprotein B and LDL cholesterol, ...
Keywords included familial hypobetalipoproteinemia, heterozygous familial hypobetalipoproteinemia, abetalipoproteinemia, ... due to a mutation in the apolipoprotein B (apoB) gene. Those with the condition should be screened for ophthalmologic, ... Results that included cases of familial hypobetalipoproteinemia were included. Results: Review of the literature reveals that ... His presentation was most consistent with heterozygous familial hypobetalipoproteinemia (FHBL), and the patient was cleared for ...
Homozygous familial hypobetalipoproteinemia, MTP deficiency, Microsomal triglyceride transfer protein deficiency, Microsomal ... Other Names: ABL, Abetalipoproteinemia neuropathy, Apolipoprotein B deficiency, Bassen Kornzweig syndrome, Bassen-Kornzweig ... Abetalipoproteinemia and homozygous hypobetalipoproteinemia: a framework for diagnosis and management J Inherit Metab Dis. May ...
Apolipoprotein 1 deficiency,. Familial hypoalphalipoproteinemia,. Tangier disease, FISH eye disease, Familial combined ... Hypobetalipoproteinemia. PCSK9 deficiency. Chylomicron retention disease. Familial combined hypolipidemia. LCAT deficiency,. ... Apolipoprotein: APOA (1, 2, 4, 5) • APOB ( Apolipoprotein B-48, Apolipoprotein B-100) • APOC (1, 2, 3, 4) • APOD • APOE • APOH ... Primary lipoprotein disorders: Familial hyperchylomicronemia (Type I) • Familial hypercholesterolemia (Type IIA) • Familial ...
Abetalipoproteinemia, Normotriglyceridemic, Steinbert Type use Hypobetalipoproteinemia, Familial, Apolipoprotein B ABH Blood ...
Apolipoproteins B. Fatty Liver. Abstract. OBJECTIVE: In familial hypobetalipoproteinemia, fatty liver is a characteristic ...
Homozygous familial hypobetalipoproteinemia caused by APOB gene variations: a case report and review of literature]. ... caused by apolipoprotein B (APOB) gene variations. Methods: The clinical, laboratory, genetic, and liver histology data of a ... "familial hypobetalipoproteinemia" or "hypobetalipoproteinemias" or "hypo beta lipoproteinemia" or "hypolipoproteinemias" as the ... In addition, in terms of distinguishing the type of familial hemophagocytic lymphohistiocytosis type 2 (FHL2) from all other ...
Hypobetalipoproteinemia, Familial, Apolipoprotein B. Hipobetalipoproteinemia Familiar por Apolipoproteína B. ... Apolipoprotein C-II. Apolipoproteína C-II. Apolipoproteína C-II. Apolipoprotein C-III. Apolipoproteína C-III. Apolipoproteína C ... Apolipoprotein B-100. Apolipoproteína B-100. Apolipoproteína B-100. Apolipoprotein B-48. Apolipoproteína B-48. Apolipoproteína ... Lipodystrophy, Familial Partial. Lipodistrofia Parcial Familiar. Lipodistrofia Parcial Familiar. Scleromyxedema. ...
Hypobetalipoproteinemia, Familial, Apolipoprotein B. Hipobetalipoproteinemia Familiar por Apolipoproteína B. ... Apolipoprotein C-II. Apolipoproteína C-II. Apolipoproteína C-II. Apolipoprotein C-III. Apolipoproteína C-III. Apolipoproteína C ... Apolipoprotein B-100. Apolipoproteína B-100. Apolipoproteína B-100. Apolipoprotein B-48. Apolipoproteína B-48. Apolipoproteína ... Lipodystrophy, Familial Partial. Lipodistrofia Parcial Familiar. Lipodistrofia Parcial Familiar. Scleromyxedema. ...
Hypobetalipoproteinemia, Familial, Apolipoprotein B. Hipobetalipoproteinemia Familiar por Apolipoproteína B. ... Apolipoprotein C-II. Apolipoproteína C-II. Apolipoproteína C-II. Apolipoprotein C-III. Apolipoproteína C-III. Apolipoproteína C ... Apolipoprotein B-100. Apolipoproteína B-100. Apolipoproteína B-100. Apolipoprotein B-48. Apolipoproteína B-48. Apolipoproteína ... Lipodystrophy, Familial Partial. Lipodistrofia Parcial Familiar. Lipodistrofia Parcial Familiar. Scleromyxedema. ...
Hypobetalipoproteinemia, Familial, Apolipoprotein B. Hipobetalipoproteinemia Familiar por Apolipoproteína B. ... Apolipoprotein C-II. Apolipoproteína C-II. Apolipoproteína C-II. Apolipoprotein C-III. Apolipoproteína C-III. Apolipoproteína C ... Apolipoprotein B-100. Apolipoproteína B-100. Apolipoproteína B-100. Apolipoprotein B-48. Apolipoproteína B-48. Apolipoproteína ... Lipodystrophy, Familial Partial. Lipodistrofia Parcial Familiar. Lipodistrofia Parcial Familiar. Scleromyxedema. ...
Hypobetalipoproteinemia, Familial, Apolipoprotein B. Hipobetalipoproteinemia Familiar por Apolipoproteína B. ... Apolipoprotein C-II. Apolipoproteína C-II. Apolipoproteína C-II. Apolipoprotein C-III. Apolipoproteína C-III. Apolipoproteína C ... Apolipoprotein B-100. Apolipoproteína B-100. Apolipoproteína B-100. Apolipoprotein B-48. Apolipoproteína B-48. Apolipoproteína ... Lipodystrophy, Familial Partial. Lipodistrofia Parcial Familiar. Lipodistrofia Parcial Familiar. Scleromyxedema. ...
Hypobetalipoproteinemia, Familial, Apolipoprotein B. Hipobetalipoproteinemia Familiar por Apolipoproteína B. ... Apolipoprotein C-II. Apolipoproteína C-II. Apolipoproteína C-II. Apolipoprotein C-III. Apolipoproteína C-III. Apolipoproteína C ... Apolipoprotein B-100. Apolipoproteína B-100. Apolipoproteína B-100. Apolipoprotein B-48. Apolipoproteína B-48. Apolipoproteína ... Lipodystrophy, Familial Partial. Lipodistrofia Parcial Familiar. Lipodistrofia Parcial Familiar. Scleromyxedema. ...
Hypobetalipoproteinemia, Familial, Apolipoprotein B. Hipobetalipoproteinemia Familiar por Apolipoproteína B. ... Apolipoprotein C-II. Apolipoproteína C-II. Apolipoproteína C-II. Apolipoprotein C-III. Apolipoproteína C-III. Apolipoproteína C ... Apolipoprotein B-100. Apolipoproteína B-100. Apolipoproteína B-100. Apolipoprotein B-48. Apolipoproteína B-48. Apolipoproteína ... Lipodystrophy, Familial Partial. Lipodistrofia Parcial Familiar. Lipodistrofia Parcial Familiar. Scleromyxedema. ...
Hypobetalipoproteinemia, Familial, Apolipoprotein B. Hipobetalipoproteinemia Familiar por Apolipoproteína B. ... Apolipoprotein C-II. Apolipoproteína C-II. Apolipoproteína C-II. Apolipoprotein C-III. Apolipoproteína C-III. Apolipoproteína C ... Apolipoprotein B-100. Apolipoproteína B-100. Apolipoproteína B-100. Apolipoprotein B-48. Apolipoproteína B-48. Apolipoproteína ... Lipodystrophy, Familial Partial. Lipodistrofia Parcial Familiar. Lipodistrofia Parcial Familiar. Scleromyxedema. ...
Hypobetalipoproteinemia, Familial, Apolipoprotein B. Hipobetalipoproteinemia Familiar por Apolipoproteína B. ... Apolipoprotein C-II. Apolipoproteína C-II. Apolipoproteína C-II. Apolipoprotein C-III. Apolipoproteína C-III. Apolipoproteína C ... Apolipoprotein B-100. Apolipoproteína B-100. Apolipoproteína B-100. Apolipoprotein B-48. Apolipoproteína B-48. Apolipoproteína ... Lipodystrophy, Familial Partial. Lipodistrofia Parcial Familiar. Lipodistrofia Parcial Familiar. Scleromyxedema. ...
Hypobetalipoproteinemia, Familial, Apolipoprotein B. Hipobetalipoproteinemia Familiar por Apolipoproteína B. ... Apolipoprotein C-II. Apolipoproteína C-II. Apolipoproteína C-II. Apolipoprotein C-III. Apolipoproteína C-III. Apolipoproteína C ... Apolipoprotein B-100. Apolipoproteína B-100. Apolipoproteína B-100. Apolipoprotein B-48. Apolipoproteína B-48. Apolipoproteína ... Lipodystrophy, Familial Partial. Lipodistrofia Parcial Familiar. Lipodistrofia Parcial Familiar. Scleromyxedema. ...
Hypobetalipoproteinemia, Familial, Apolipoprotein B. Hipobetalipoproteinemia Familiar por Apolipoproteína B. ... Apolipoprotein C-II. Apolipoproteína C-II. Apolipoproteína C-II. Apolipoprotein C-III. Apolipoproteína C-III. Apolipoproteína C ... Apolipoprotein B-100. Apolipoproteína B-100. Apolipoproteína B-100. Apolipoprotein B-48. Apolipoproteína B-48. Apolipoproteína ... Lipodystrophy, Familial Partial. Lipodistrofia Parcial Familiar. Lipodistrofia Parcial Familiar. Scleromyxedema. ...
Hypobetalipoproteinemia, Familial, Apolipoprotein B [C18.452.584.563.497] * Hypolipoproteinemias [C18.452.584.563.500] * ... Apolipoprotein B-100, Familial Defective Apolipoprotein B-100, Familial Ligand-Defective Familial Combined Hyperlipoproteinemia ... Apolipoprotein B-100, Familial Ligand-Defective Term UI T645976. Date07/15/2005. LexicalTag NON. ThesaurusID ... Apolipoprotein B-100, Familial Defective Term UI T812589. Date11/15/2011. LexicalTag NON. ThesaurusID OMIM (2013). ...
Abetalipoproteinemia, Normotriglyceridemic, Steinbert Type use Hypobetalipoproteinemia, Familial, Apolipoprotein B ABH Blood ...
Decreased circulating apolipoprotein A-I concentration, Decreased HDL cholesterol concentration, .... ORPHA:650. ... Hypobetalipoproteinemia, Familial, 1. Decreased HDL cholesterol concentration, Hypertriglyceridemia, Decreased LDL cholesterol ... Decreased circulating apolipoprotein A-I concentration, Decreased HDL cholesterol concentration, .... OMIM:205400. ... Increased VLDL cholesterol concentration, Hyperlipidemia, Elevated circulating apolipoprotein B c.... OMIM:144250. ...
Familial hypobetalipoproteinemia 11 test. *Familial hypobetalipoproteinemia 21 test. *Familial hypocalciuric hypercalcemia 11 ... Familial aplasia of the vermis1 test. *Familial apolipoprotein C-II deficiency3 tests ... Familial amyloid nephropathy with urticaria AND deafness1 test. * ... Familial atrial myxoma1 test. *Familial benign pemphigus1 test ...
Fatty liver in heterozygous hypobetalipoproteinemia caused by a novel truncated form of apolipoprotein B. Gastroenterology 1996 ... Ninety patients with nonalcoholic steatohepatitis: insulin resistance, familial tendency, and severity of disease. Am J ... Fatty liver due to heterozygous hypobetalipoproteinemia. Am J Gastroenterol 1994;89:1106-7. ...
  • MANNHEIM, Germany - Lomitapide , which reduces lipoprotein production in the liver, could help manage pediatric homozygous familial hypercholesterolemia (HoFH), suggest results of a trial that showed large reductions in circulating lipids . (medscape.com)
  • Abetalipoproteinemia (ABL) and familial hypobetalipoproteinemia (FHBL) are relatively uncommon inherited disorders of lipoprotein metabolism that cause low cholesterol levels. (medscape.com)
  • Each lipoprotein is characterized by its lipid composition and by the type and number of apolipoproteins it possesses. (medscape.com)
  • these apolipoproteins have lipid-soluble segments, the beta apolipoproteins, which remain part of the lipoprotein throughout its metabolism. (medscape.com)
  • Apolipoprotein B deficiency is an autosomal dominant disorder resulting from a missense mutation which reduces the affinity of apoB-100 for the low-density lipoprotein receptor (LDL Receptor). (wikipedia.org)
  • Inactivity of lipoprotein lipase (LPL) plays the predominant role in the development of familial hypertriglyceridemia. (mdwiki.org)
  • Lomitapide inhibits microsomal triglyceride transfer protein, which plays a key role in apolipoprotein B-containing lipoprotein assembly and secretion in the liver and intestines. (medscape.com)
  • It is a low-density lipoprotein, though it is slightly larger than an LDL particle and contains two apolipoprotein(a) molecules and one apolipoprotein B molecule. (medscape.com)
  • The clinical manifestations are similar to diseases produced by mutations of the LDL receptor, such as familial hypercholesterolemia. (wikipedia.org)
  • abnormalities that impede this process result in abetalipoproteinemia (ABL) and hypobetalipoproteinemia. (medscape.com)
  • His presentation was most consistent with heterozygous familial hypobetalipoproteinemia (FHBL), and the patient was cleared for Special Operations duty. (jsomonline.org)
  • [4] One of the most common mutations implicated in the development of familial hypertriglyceridemia is a heterozygous inactivating mutation of the LPL gene. (mdwiki.org)
  • Other apolipoproteins (A, C, D, E, and their subtypes) are soluble and are exchanged between lipoproteins during metabolism. (medscape.com)
  • Plasma phospholipid levels are very low, while plasma apolipoprotein B, chylomicrons, very-low-density lipoproteins (VLDLs), and low-density lipoproteins (LDLs) are absent. (medscape.com)
  • A group of familial disorders characterized by elevated circulating cholesterol contained in either LOW-DENSITY LIPOPROTEINS alone or also in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins). (nih.gov)
  • Type IIb hyperlipoproteinemia is caused by mutation in the receptor-binding domain of APOLIPOPROTEIN B-100 which is a major component of LOW-DENSITY LIPOPROTEINS and VERY-LOW-DENSITY LIPOPROTEINS resulting in reduced clearance of these lipoproteins. (nih.gov)
  • Familial hypertriglyceridemia (type IV familial dyslipidemia) is a genetic disorder characterized by the liver overproducing very-low-density lipoproteins (VLDL). (mdwiki.org)
  • Results: Review of the literature reveals that FHBL is a genetic disorder frequently, but not always, due to a mutation in the apolipoprotein B (apoB) gene. (jsomonline.org)
  • Once in the enterocyte, FFA chains and 2MG compounds are transported to the endoplasmic reticulum, where they are reformed into triglycerides and packaged into chylomicrons in the golgi apparatus to receive chylomicron specific apolipoproteins, namely apo B48, which is a marker for TG chylomicron. (medscape.com)
  • Familial hypertriglyceridemia is considered a type IV familial dyslipidemia it is distinguished from other dyslipidemias based on the individual's lipid profile. (mdwiki.org)
  • Familial hypertriglyceridemia is typically associated with other co-morbid conditions such as hypertension , obesity , and hyperglycemia . (mdwiki.org)
  • Familial hypertriglyceridemia falls in the Fredrickson-Levy and Lee's (FLL) phenotypes . (mdwiki.org)
  • Familial hypertriglyceridemia separates itself from other dyslipidemias with significantly high triglycerides and low HDL levels. (mdwiki.org)
  • Familial hypertriglyceridemia is considered to be inherited in an autosomal dominant manner. (mdwiki.org)
  • There are other varying secondary causes of pancreatitis that can further contribute to the primary scenario of pancreatitis related to familial hypertriglyceridemia. (mdwiki.org)
  • Treatment for familial hypertriglyceridemia should focus primarily on reducing serum triglyceride levels. (mdwiki.org)
  • Secondary hypobetalipoproteinemia may be associated with cancers, liver disease, severe malnutrition, and other wasting disorders. (medscape.com)
  • Unusually low levels of triglycerides can be present in disease states, producing syndromes of malabsorption in addition to patients who carry genes for familial hypobetalipoproteinemia . (medscape.com)
  • The nonfamilial forms of hypobetalipoproteinemia are secondary to a number of clinical states, such as occult malignancy, malnutrition, and chronic liver disease. (medscape.com)
  • In familial hypobetalipoproteinemia, fatty liver is a characteristic feature, and there are several reports of associated cirrhosis and hepatocarcinoma. (broadinstitute.org)
  • Results that included cases of familial hypobetalipoproteinemia were included. (jsomonline.org)
  • APOB-Related Familial Hypobetalipoproteinemia. (medlineplus.gov)
  • Individuals with biallelic APOB -related familial hypobetalipoproteinemia ( APOB -FHBL) may present from infancy through to adulthood with a range of clinical symptoms including deficiency of fat-soluble vitamins and gastrointestinal and neurologic dysfunction. (nih.gov)
  • Di Leo E, Magnolo L, Bertolotti M, Bourbon M, Carmo Pereira S, Pirisi M, Calandra S, Tarugi P. Variable phenotypic expression of homozygous familial hypobetalipoproteinaemia due to novel APOB gene mutations. (medlineplus.gov)
  • These particles consist of a core of cholesterol esters and triglycerides surrounded by a monolayer of free cholesterol, phospholipids, and proteins (apolipoproteins). (medscape.com)
  • Apolipoproteins (plasma proteins involved in metabolism of cholesterol, triglycerides, phospholipids, and proteins in the blood) and enzymes involved in lipid metabolism are measured. (nih.gov)
  • Unusually low levels of triglycerides can be present in disease states, producing syndromes of malabsorption in addition to patients who carry genes for familial hypobetalipoproteinemia. (medscape.com)
  • The severity of the condition largely depends on the length of these two versions of apolipoprotein B. Severely shortened versions cannot partner with lipoproteins and transport fats and cholesterol . (medlineplus.gov)
  • All of these protein changes lead to a reduction of functional apolipoprotein B. As a result, the transportation of dietary fats and cholesterol is decreased or absent. (medlineplus.gov)
  • Oral bempedoic acid also significantly reduced non-HDL cholesterol, total cholesterol, apolipoprotein B, and C-reactive protein levels. (medscape.com)
  • Other apolipoproteins (A, C, D, E, and their subtypes) are soluble and are exchanged between lipoproteins during metabolism. (medscape.com)
  • This gene provides instructions for making two versions of the apolipoprotein B protein: a short version called apolipoprotein B-48 and a longer version known as apolipoprotein B-100. (medlineplus.gov)
  • METHODS:We sequenced the APOB gene in 29 Japanese hypobetalipoproteinemia families as well as 57,973 individuals derived from 12 CHD case-control studies - 18,442 with early-onset CHD and 39,531 controls. (ox.ac.uk)
  • The nonfamilial forms of hypobetalipoproteinemia are secondary to a number of clinical states, such as occult malignancy, malnutrition, and chronic liver disease. (medscape.com)