A monocot plant family of the Liliopsida class. It is classified by some in the Liliales order and some in the Asparagales order.
A plant genus of the family IRIDACEAE that contains IRIP, a type-1 ribosome-inactivating protein, and iridals (TRITERPENES).
A plant genus, in the IRIDACEAE family, known as a source of Saffron.
The transfer of POLLEN grains (male gametes) to the plant ovule (female gamete).
The reproductive organs of plants.

Isoflavonoids from Belamcanda chinensis. (1/24)

Four new isoflavonoids were isolated along with six known related compounds from a rhizome of Belamcanda chinensis (Iridaceae), and their structures were characterized as 6''-O-p-hydroxybenzoyliridin, 6''-O-vanilloyliridin, 5,6,7,3'-tetrahydroxy-4'-methoxyisoflavone and 2,3-dihydroirigenin, respectively, on the basis of spectroscopic methods and chemical evidence.  (+info)

Long-term anoxia tolerance in leaves of Acorus calamus L. and Iris pseudacorus L. (2/24)

Mature green leaves of Acorus calamus and Iris pseudacorus have been shown to survive at least 28 d of total anoxia in the dark during the growing season, increasing up to 75 d and 60 d in overwintering leaves in A. calamus and I. pseudacorus, respectively. During the period of anaerobic incubation the glycolytic rate is reduced, carbohydrate reserves are conserved and ethanol levels in the tissues reached an equilibrium. Prolonged anoxia significantly suppressed leaf capacity for respiration and photosynthesis. After 28 d of anoxia, respiratory capacity was reduced in A. calamus and I. pseudacorus by 80% and 90%, respectively. The photosynthetic capacity of leaves decreased by 83% in A. calamus and by 97% in I. pseudacorus after 28 d of anoxia. This reduction in photosynthetic capacity was accompanied by a modification of the chlorophyll fluorescence pattern indicating damage to the PSII reaction centre and subsequent electron transport. Chlorophyll content was only slightly reduced after 28 d under anoxia and darkness in A. calamus, whereas there was a 50% reduction in I. pseudacorus. On return to air A. calamus leaves that endured 28 d of anoxia recovered full photosynthetic activity within 7 d while those of I. pseudacorus had a lag phase of 3-10 d. This well-developed ability to endure prolonged periods of oxygen deprivation in both these species is associated with a down-regulation in metabolic activity in response to the imposition of anaerobiosis. It is suggested that when leaf damage eventually does take place in these species after protracted oxygen deprivation, it is anoxic rather than post-anoxic stress that is responsible.  (+info)

Five new peltogynoids from underground parts of Iris bungei: a Mongolian medicinal plant. (3/24)

Five new peltogynoids, irisoids A-E (1-5), have been isolated from the underground parts of Iris bungei. The structures of the new compounds were established on the basis of spectroscopic methods and were found to be 1,8,10-trihydroxy-9-methoxy-[1]benzopyrano-[3,2-c][2]-benzopyran-7(5H)-one (1), 1,8-dihydroxy-9,10-dimethoxy-[1]benzopyrano-[3,2-c][2]-benzopyran-7(5H)-one (2), 1,10-dihydroxy-8,9-dimethoxy-[1]benzopyrano-13,2-c][2]-benzopyran-7(5H)-one (3), 1,8-dihydroxy-9,10-methylenedioxy-[1]benzopyrano-[3,2-c][2]-benzopyran-7(5H)-one (4), and 1,8,11-trihydroxy-9,10-methylenedioxy-[1]benzopyrano-[3,2-c][2]-benzopyran-7(5H)- one (5). The structure of irisoid B (2) was established unambiguously by X-ray diffraction study.  (+info)

Pollinator-mediated selection on flower-tube length in a hawkmoth-pollinated Gladiolus (Iridaceae). (4/24)

Darwin's mechanistic model whereby selection favours plants with flower tubes that exceed the tongue length of the primary pollinator, was tested using unmanipulated plants of the hawkmoth-pollinated South African iris, Gladiolus longicollis. The study population was characterized by exceptionally large phenotypic variation in flower-tube length (range 56-129 mm). Directional selection on tube length was revealed by a significant positive relationship between this trait and both fruit and seed set. Selection was attributed to the effect of tube length on pollen receipt, as supplemental hand pollinations showed fruit and seed set in the population to be pollen limited. Indirect selection on tube length may also occur through the correlation of this trait with inflorescence height, although direct selection on the latter trait was significant only for seed set. The main pollinators at the study site were individuals of the large hawkmoth Agrius convolvuli that had tongue lengths of 85-135 mm. Other hawkmoths had tongues that were much too short to reach the nectar in G. longicollis flowers and seldom carried pollen of G. longicollis. Flowers with tubes shorter than the tongues of A. convolvuli are apparently not effectively pollinated because stigmas do not contact the moth's head effectively. This study demonstrates that selection may occur among plants with natural phenotypic variation in flower-tube length, and supports Darwin's model of pollinator-mediated selection.  (+info)

Protein kinase C activation by iridal type triterpenoids. (5/24)

Eleven iridal type triterpenoids from Iris tectorum and Belamcanda chinensis were examined for protein kinase C (PKC) activation and binding activity to PKC. Among the tested compounds, nine iridals showed dose-dependent activities, and a mutual relation between the two activities was also observed. 28-Deacetylbelamcandal, which has been found to be a new class 12-O-tetradecanoylphorbol 13-acetate type tumor promoter, showed the most potent activity in both tests. The structural requirements of the iridals inducing these activities were as follows: 1) a hydrophobic side-chain, 2) an E-methylidene aldehyde group at the C-1 position, and 3) a hydroxyl group at the C-26 position.  (+info)

Eleutherinone, a novel fungitoxic naphthoquinone from Eleutherine bulbosa (Iridaceae). (6/24)

The dichloromethane extract prepared from the underground parts of Eleutherine bulbosa (Miller) Urban (Iridaceae) showed strong activity in the direct bioautography assay with the phytopathogenic fungus Cladosporium sphaerospermum. This assay was used to guide the fractionation of this extract and allowed the isolation of four compounds: the new naphthoquinone eleutherinone[8-methoxy-1-methyl-1,3-dihydro-naphtho(2,3-c)furan-4,9 -dione] and the known compounds, previously isolated from this species, eleutherin [9-methoxy-1(R),3(S)-dimethyl-3,4-dihydro-1H-benzo(g)isochromene-5,10-dione], isoeleutherin [9-methoxy-1(R),3(R)-dimethyl-3,4-dihydro-1H-benzo(g)isochromene-5,10-dione], and eleutherol [4-hydroxy-5-methoxy-3(R)-methyl-3H-naphtho(2,3-c)furan-1 -one]. All quinonoid compounds showed strong antifungal activity in the bioautography assay at 100 g/spot, while eleutherol was inactive.  (+info)

Radiation of pollination systems in the Iridaceae of sub-Saharan Africa. (7/24)

BACKGROUND: Seventeen distinct pollination systems are known for genera of sub-Saharan African Iridaceae and recurrent shifts in pollination system have evolved in those with ten or more species. Pollination by long-tongued anthophorine bees foraging for nectar and coincidentally acquiring pollen on some part of their bodies is the inferred ancestral pollination strategy for most genera of the large subfamilies Iridoideae and Crocoideae and may be ancestral for the latter. Derived strategies include pollination by long-proboscid flies, large butterflies, night-flying hovering and settling moths, hopliine beetles and sunbirds. Bee pollination is diverse, with active pollen collection by female bees occurring in several genera, vibratile systems in a few and non-volatile oil as a reward in one species. Long-proboscid fly pollination, which is apparently restricted to southern Africa, includes four separate syndromes using different sets of flies and plant species in different parts of the subcontinent. Small numbers of species use bibionid flies, short-proboscid flies or wasps for their pollination; only about 2 % of species use multiple pollinators and can be described as generalists. SCOPE: Using pollination observations for 375 species and based on repeated patterns of floral attractants and rewards, we infer pollination mechanisms for an additional 610 species. Matching pollination system to phylogeny or what is known about species relationships based on shared derived features, we infer repeated shifts in pollination system in some genera, as frequently as one shift for every five or six species of southern African Babiana or Gladiolus. Specialized systems using pollinators of one pollination group, or even a single pollinator species are the rule in the family. Shifts in pollination system are more frequent in genera of Crocoideae that have bilaterally symmetric flowers and a perianth tube, features that promote adaptive radiation by facilitating precise shifts in pollen placement, in conjunction with changes in flower colour, scent and tube length. CONCLUSIONS: Diversity of pollination systems explains in part the huge species diversity of Iridaceae in sub-Saharan Africa, and permits species packing locally. Pollination shifts are, however, seen as playing a secondary role in speciation by promoting reproductive isolation in peripheral, ecologically distinct populations in areas of diverse topography, climate and soils. Pollination of Iridaceae in Eurasia and the New World, where the family is also well represented, is poorly studied but appears less diverse, although pollination by both pollen- and oil-collecting bees is frequent and bird pollination rare.  (+info)

Identification of a new naphthalene and its derivatives from the bulb of eleutherine americana with inhibitory activity on lipopolysaccharide-induced nitric oxide production. (8/24)

A new naphthoquinone, (-)-3-[2-(acetyloxy)propyl]-2-hydroxy-8-methoxy-1,4-naphthoquinone (1) was isolated from the bulb of Eleutherine americana MERR. et HEYNE (Iridaceae) together with two known compounds, eleutherinol (6) and 1,5-dihydroxy-3-methylanthraquinone (7) which were found in this species for the first time. The other known compounds, (-)-isoeleutherin (2), (+)-eleutherin (3), (-)-hongconin (4), and (+)-dihydroeleutherinol (5) which were reported previously from this species, were also isolated in the present study. Compounds 2-6 exhibited potent inhibitory activity on nitric oxide production in RAW 264.7 lipopolysaccharide-activated mouse macrophage cells with IC(50) values of 7.7, 11.4, 19.8, 21.7, and 34.4 microM, respectively, whereas the other two compounds, 1 and 7, were inactive. The structure of compound 1 was elucidated by spectroscopic data analysis including 1D and 2D NMR experiments.  (+info)

Iridaceae is not a medical term but a taxonomic category in botany. It refers to the family of plants known as the Iris family, which includes over 2,000 species distributed across 66 genera. These plants are characterized by their distinctive flowers, which typically have six petal-like structures (three outer and three inner) and a tubular or cup-shaped structure called the perianth tube.

While Iridaceae is not a medical term, some of its member species do have medicinal uses. For example, the roots of certain iris species, such as Iris germanica and Iris versicolor, contain compounds with medicinal properties. These compounds have been used in traditional medicine to treat various conditions, including digestive disorders, skin problems, and respiratory ailments. However, it is important to note that the use of these plants for medicinal purposes should be done under the guidance of a qualified healthcare professional, as they can also contain toxic compounds that can cause adverse effects if used improperly.

I am not aware of a specific medical definition for "Iris Plant." The term "iris" in a medical context usually refers to the colored part of the eye that regulates the size of the pupil and controls the amount of light that enters the eye.

However, the "Iris Plant" (Iris spp.) is a type of perennial flowering plant that belongs to the family Iridaceae. It is native to temperate regions of the Northern Hemisphere, although there are also some species found in tropical and subtropical areas. The iris plant has long, sword-shaped leaves and showy flowers that come in various colors, including blue, purple, yellow, white, and red.

If you have any further questions or need information related to a medical topic, please let me know!

I have searched through various medical and scientific databases, and I cannot find a specific medical definition for "Crocus." Crocus is actually the name of a genus of flowering plants in the iris family. The most commonly known species is the saffron crocus (Crocus sativus), which produces the spice saffron.

While there are no direct medical definitions for "Crocus," some compounds derived from certain Crocus species have been studied for their potential medicinal properties. For example, safranal and crocin, both found in saffron, have been investigated for their possible benefits in treating conditions like depression, PMS symptoms, and age-related macular degeneration. However, more research is needed to confirm these effects and establish recommended dosages.

In summary, "Crocus" generally refers to a genus of flowering plants, with some species' compounds having potential medicinal properties. It does not have a specific medical definition on its own.

I'm sorry for any confusion, but "pollination" is not a term typically used in medical definitions. Pollination is a process in biology, specifically in botany, that refers to the transfer of pollen from the male reproductive organ (anther) of a flower to the female reproductive organ (stigma) of the same or another flower, leading to fertilization and the production of fruits and seeds.

If you have any medical terms or concepts in mind, please provide them so I can offer an accurate definition or explanation.

I'm sorry for any confusion, but "flowers" is not a term that has a medical definition. The term "flowers" is commonly used to refer to the reproductive structures of flowering plants (angiosperms), which are characterized by having both male and female reproductive organs or separate male and female flowers.

If you have any questions related to medical terminology or health conditions, I would be happy to try to help answer those for you!

No FAQ available that match "iridaceae"

No images available that match "iridaceae"