A condition characterized by an abnormally elevated concentration of KETONE BODIES in the blood (acetonemia) or urine (acetonuria). It is a sign of DIABETES COMPLICATION, starvation, alcoholism or a mitochondrial metabolic disturbance (e.g., MAPLE SYRUP URINE DISEASE).
BUTYRIC ACID substituted in the beta or 3 position. It is one of the ketone bodies produced in the liver.
A life-threatening complication of diabetes mellitus, primarily of TYPE 1 DIABETES MELLITUS with severe INSULIN deficiency and extreme HYPERGLYCEMIA. It is characterized by KETOSIS; DEHYDRATION; and depressed consciousness leading to COMA.
The metabolic substances ACETONE; 3-HYDROXYBUTYRIC ACID; and acetoacetic acid (ACETOACETATES). They are produced in the liver and kidney during FATTY ACIDS oxidation and used as a source of energy by the heart, muscle and brain.
A course of food intake that is high in FATS and low in CARBOHYDRATES. This diet provides sufficient PROTEINS for growth but insufficient amount of carbohydrates for the energy needs of the body. A ketogenic diet generates 80-90% of caloric requirements from fats and the remainder from proteins.
Salts and esters of hydroxybutyric acid.
Salts and derivatives of acetoacetic acid.
A disease of pregnant and lactating cows and ewes leading to generalized paresis and death. The disease, which is characterized by hypocalcemia, occurs at or shortly after parturition in cows and within weeks before or after parturition in ewes.
A pathologic condition of acid accumulation or depletion of base in the body. The two main types are RESPIRATORY ACIDOSIS and metabolic acidosis, due to metabolic acid build up.
Diseases of domestic cattle of the genus Bos. It includes diseases of cows, yaks, and zebus.
4-carbon straight chain aliphatic hydrocarbons substituted with two hydroxyl groups. The hydroxyl groups cannot be on the same carbon atom.
The period shortly before, during, and immediately after giving birth.
A colorless liquid used as a solvent and an antiseptic. It is one of the ketone bodies produced during ketoacidosis.
A state of unconsciousness as a complication of diabetes mellitus. It occurs in cases of extreme HYPERGLYCEMIA or extreme HYPOGLYCEMIA as a complication of INSULIN therapy.
A genus of gram-negative bacteria in the family ACIDAMINOCOCCACEAE, found in the RUMEN of SHEEP and CATTLE, and also in humans.
The fourth stomach of ruminating animals. It is also called the "true" stomach. It is an elongated pear-shaped sac lying on the floor of the abdomen, on the right-hand side, and roughly between the seventh and twelfth ribs. It leads to the beginning of the small intestine. (From Black's Veterinary Dictionary, 17th ed)
Curved bacteria, usually crescent-shaped rods, with ends often tapered, occurring singly, in pairs, or short chains. They are non-encapsulated, non-sporing, motile, and ferment glucose. Selenomonas are found mainly in the human buccal cavity, the rumen of herbivores, and the cecum of pigs and several rodents. (From Bergey's Manual of Determinative Bacteriology, 9th ed)
A serious complication of TYPE 2 DIABETES MELLITUS. It is characterized by extreme HYPERGLYCEMIA; DEHYDRATION; serum hyperosmolarity; and depressed consciousness leading to COMA in the absence of KETOSIS and ACIDOSIS.
A placenta that fails to be expelled after BIRTH of the FETUS. A PLACENTA is retained when the UTERUS fails to contract after the delivery of its content, or when the placenta is abnormally attached to the MYOMETRIUM.
'Ketones' are organic compounds with a specific structure, characterized by a carbonyl group (a carbon double-bonded to an oxygen atom) and two carbon atoms, formed as byproducts when the body breaks down fats for energy due to lack of glucose, often seen in diabetes and starvation states.
A departure from the normal gait in animals.
FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form.
'Dairying' is not a term used in medical definitions; it refers to the practice of keeping dairy animals for milk production and its related processes, which is an agricultural or farming concept.
Enzymes which transfer coenzyme A moieties from acyl- or acetyl-CoA to various carboxylic acceptors forming a thiol ester. Enzymes in this group are instrumental in ketone body metabolism and utilization of acetoacetate in mitochondria. EC 2.8.3.
Pathological processes involving the STOMACH.

Effect of acute ketosis on the endothelial function of type 1 diabetic patients: the role of nitric oxide. (1/154)

In type 1 diabetic patients, acute loss of metabolic control is associated with increased blood flow, which is believed to favor the development of long-term complications. The mechanisms for inappropriate vasodilation are partially understood, but a role of endothelium-derived nitric oxide (NO) production can be postulated. We assessed, in type 1 diabetic patients, the effect of the acute loss of metabolic control and its restoration on forearm endothelial function in 13 type 1 diabetic patients who were studied under conditions of mild ketosis on two different occasions. In study 1, after basal determination, a rapid amelioration of the metabolic picture was obtained by insulin infusion. In study 2, seven type 1 diabetic patients underwent the same experimental procedure, except that fasting plasma glucose was maintained constant throughout. Basal plasma venous concentrations of nitrites/nitrates (NO2- + NO3-) were determined both before and after intravenous insulin infusion. Endothelium-dependent and -independent vasodilation of the brachial artery was assessed by an intra-arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA) and sodium nitroprusside (SNP), respectively. The same parameters were determined in 13 control subjects at baseline conditions and during a hyperinsulinemic-euglycemic glucose clamp. Baseline forearm blood flow (4.89 +/- 0.86 vs. 3.65 +/- 0.59 ml x (100 ml tissue)(-1) x min(-1)) and NO2- + NO3- concentration (30 +/- 8 vs. 24 +/- 3 micromol/l) were higher in type 1 diabetic patients than in control subjects (P < 0.05). Insulin infusion was associated with lower forearm blood flow and plasma (NO2- + NO3-) concentration (P < 0.05), irrespective of the prevailing glucose levels, as compared with patients under ketotic conditions. The responses to L-NMMA were significantly lower in type 1 diabetic patients during euglycemia and hyperglycemic hyperinsulinemia (-11 +/- 5 and -10 +/- 4%, respectively, of the ratio of the infused arm to the control arm) than in control subjects at baseline (-18 +/- 6%, P < 0.05) and during hyperinsulinemia (-32 +/- 11%, P < 0.01). We conclude that the acute loss of metabolic control is associated with a functional disturbance of the endothelial function characterized by hyperemia and increased NO release during ketosis and blunted NO-mediated vasodilatory response during restoration of metabolic control by intravenous insulin. This functional alteration is unlikely to be explained by hyperglycemia itself.  (+info)

Human brain beta-hydroxybutyrate and lactate increase in fasting-induced ketosis. (2/154)

Ketones are known to constitute an important fraction of fuel for consumption by the brain, with brain ketone content generally thought to be low. However, the recent observation of 1-mmol/L levels of brain beta-hydroxybutyrate (BHB) in children on the ketogenic diet suggests otherwise. The authors report the measurement of brain BHB and lactate in the occipital lobe of healthy adults using high field (4-T) magnetic resonance spectroscopy, measured in the nonfasted state and after 2- and 3-day fasting-induced ketosis. A 9-mL voxel located in the calcarine fissure was studied, detecting the BHB and lactate upfield resonances using a 1H homonuclear editing sequence. Plasma BHB levels also were measured. The mean brain BHB concentration increased from a nonfasted level of 0.05 +/- 0.05 to 0.60 +/- 0.26 mmol/L (after second day of fasting), increasing further to 0.98 +/- 0.16 mmol/L (after the third day of fasting). The mean nonfasted brain lactate was 0.69 +/- 0.17 mmol/L, increasing to 1.47 +/- 0.22 mmol/L after the third day. The plasma and brain BHB levels correlated well (r = 0.86) with a brain-plasma slope of 0.26. These data show that brain BHB rises significantly with 2- and 3-day fasting-induced ketosis. The lactate increase likely results from ketones displacing lactate oxidation without altering glucose phosphorylation and glycolysis.  (+info)

Reduction in serum lecithin:cholesterol acyltransferase activity prior to the occurrence of ketosis and milk fever in cows. (3/154)

Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for production of cholesteryl esters in plasma. The LCAT activity is reduced in cows with fatty liver developed during the nonlactating stage and those with the fatty liver-related postparturient diseases such as ketosis. The purpose of the present study was to examine whether reduced LCAT activity during the nonlactating stage could be detected before the occurrence of postparturient diseases. Sera from 24 cows were collected at approximately 10-day intervals from -48 to +14 days from parturition. Of the 24 cows, 14 were apparently healthy, whereas 7 had ketosis and 3 had milk fever at around parturition. Of the 14 healthy cows, 7 had unaltered LCAT activity during the observation period, whereas 7 showed reduced activity from -20 to +14 days. Ketosis and milk fever occurred at from -3 to +10 days, but reductions of LCAT activity in diseased cows had already been observed from days -20 to 0. These results suggest that LCAT activity is virtually unaffected during the peripartum period at least in some healthy cows and also that the reduction in LCAT activity can be detected before the occurrence of ketosis and milk fever.  (+info)

Decreased concentration of serum apolipoprotein C-III in cows with fatty liver, ketosis, left displacement of the abomasum, milk fever and retained placenta. (4/154)

Apolipoprotein (apo) C-III is a low molecular mass protein mainly distributed in the high-density lipoprotein (HDL) fraction. In cows with postparturient diseases such as ketosis, concentrations of cholesterol, phospholipids and apoA-I and the activity of lecithin:cholesterol acyltransferase, which are mainly distributed in or functionally associated with HDL, are reduced. The purpose of the present study was to examine whether the serum concentration of apoC-III was similarly decreased in the postparturient diseases. Compared with healthy controls, the apoC-III concentration was significantly (P<0.01) decreased in cows with fatty liver, ketosis, left displacement of the abomasum, milk fever and retained placenta. Concentrations of apoC-III in the HDL fractions from diseased cows were also lower than in controls. Of the diseased cows, the decreased apoC-III concentration was particularly distinct in cows with milk fever. Increased nonesterified fatty acid and reduced free cholesterol, cholesteryl ester and phospholipid concentrations were observed in cows with milk fever, as in the other diseased cows. The decrease in the apoC-III concentration is suggested to be closely associated with the postparturient disorders, in particular with milk fever.  (+info)

Diabetic ketoacidosis associated with recurrent pulmonary edema and rhabdomyolysis in a patient with Turner's syndrome. (5/154)

Turner's syndrome is a condition involving total or partial absence of one X chromosome and has been associated with a number of diseases including non insulin dependent diabetes mellitus, abnormalities of glucose metabolism and hypothreosis. There have been many case reports in which Turner's syndrome is associated with type 2 diabetes, but the association with type 1 diabetes and/or life threatening complications is very rare. We present an unusual case of a patient with Turner's syndrome who has type 1 diabetes and is complicated with ketoacidosis, severe acute and recurrent pulmonary edema and rhabdomyolysis.  (+info)

Field study of dairy cows with reduced appetite in early lactation: clinical examinations, blood and rumen fluid analyses. (6/154)

The study included 125 cows with reduced appetite and with clinical signs interpreted by the owner as indicating bovine ketosis 6 to 75 days postpartum. Almost all of the cows were given concentrates 2 to 3 times daily. With a practitioners view to treatment and prophylaxis the cows were divided into 5 diagnostic groups on the basis of thorough clinical examination, milk ketotest, decreased protozoal activity and concentrations, increased methylene blue reduction time, and increased liver parameters: ketosis (n = 32), indigestion (n = 26), combined ketosis and indigestion (n = 29), liver disease combined with ketosis, indigestion, or both (n = 15), and no specific diagnosis (n = 17). Three cows with traumatic reticuloperitonitis and 3 with abomasal displacement were not grouped. Nonparametric methods were used when groups were compared. Aspartate aminotransferase, glutamate dehydrogenase, gamma-glutamyl transferase and total bilirubin were elevated in the group with liver disease. Free fatty acids were significantly elevated in cows with ketosis, compared with cows with indigestion. Activity and concentrations of large and small protozoas were reduced, and methylene blue reduction time was increased in cows with indigestion. The rumen fluid pH was the same for groups of cows with and without indigestion. Prolonged reduced appetite before examination could have led to misclassification. Without careful interpretation of the milk ketotest, many cases with additional diagnoses would have been reported as primary ketosis. Thorough clinical examination together with feasible rumen fluid examination and economically reasonable blood biochemistry did not uncover the reason(s) for reduced appetite in 14% of the cows. More powerful diagnostic methods are needed.  (+info)

Lipid metabolism in the cow during starvation-induced ketosis. (7/154)

1. Concentrations and compositions of liver, serum and milk lipids of cows were measured during 6 days' starvation and serum lipids during 60 days' re-feeding. 2. The concentration of free fatty acid in serum increased fivefold during starvation. 3. The content of total lipid in liver (g/100g of liver dry matter) doubled owing to a 20-fold increase in triglyceride, an eightfold increase in cholesterol ester, a three fold increase in free fatty acid and a 20% increase in cholesterol. There were no changes in the content or composition of liver phospholipids. 4. Starvation lowered the concentrations of total lipid, phospholipid and cholesterol ester of dextran sulphate-precipitable serum lipoproteins. Total lipid and cholesterol ester concentrations in lipoproteins of d greater than 1.055 and in lipoproteins not precipitable by dextran sulphate decreased from day 4 of the starvation period and during the first 20 days' re-feeding. 5. During starvation there were decreases in percentages of stearic acid and increases in oleic acid in serum free fatty acids and triglycerides and in liver neutral lipid. 6. Throughout starvation total milk lipid yield decreased, yields and percentages of C4-14 fatty acids decreased and percentages of C18 fatty acids increased. 7. It is suggested that accumulation of triglyceride in liver may be caused by increased uptake of plasma free fatty acids without corresponding increase in lipoprotein secretion.  (+info)

Breath acetone as a measure of systemic ketosis assessed in a rat model of the ketogenic diet. (8/154)

BACKGROUND: The mechanism of a high-fat, low-carbohydrate ketogenic diet (KD) in alleviating drug-resistant epilepsy is unknown but may be related to systemic ketosis induced under this treatment. The need for frequent measurement of systemic ketosis, which is essential for improving maintenance of the KD in patients and for studying mechanism of the KD action, has prompted us to validate the breath acetone test as a fast, reliable, and noninvasive tool for ketosis assessment. METHODS: A rat model of the KD that allowed frequent blood sampling was used to investigate how well breath acetone reflects plasma beta-hydroxybutyrate (beta-HBA), the most commonly measured ketone body. Rat pups (20 days of age) were introduced to and maintained on a KD or control diet for 33 days. During this period, breath acetone, plasma beta-HBA, blood glucose, and body weight were measured approximately every 4th day. A correlational analysis of breath acetone and plasma beta-HBA was conducted. RESULTS: Breath acetone was found to be a significant predictor of plasma beta-HBA over a clinically relevant range of beta-HBA concentrations (r(2) = 0.75; P <0.001). We have proposed a general formula that allows the value of plasma beta-HBA to be estimated based on breath acetone measurement. CONCLUSIONS: Breath acetone is an accurate measure of mild to moderate systemic ketosis. The noninvasive nature of this test will be useful for day-to-day implementation of the KD, searching for better forms of this diet, and understanding the role of ketosis in the mechanism of the KD action.  (+info)

Ketosis is a metabolic state characterized by an elevated level of ketone bodies in the blood or tissues. Ketone bodies are alternative energy sources that are produced when the body breaks down fat for fuel, particularly when glucose levels are low or when carbohydrate intake is restricted. This condition often occurs during fasting, starvation, or high-fat, low-carbohydrate diets like the ketogenic diet. In a clinical setting, ketosis may be associated with diabetes management and monitoring. However, it's important to note that extreme or uncontrolled ketosis can lead to a dangerous condition called diabetic ketoacidosis (DKA), which requires immediate medical attention.

3-Hydroxybutyric acid, also known as β-hydroxybutyric acid, is a type of ketone body that is produced in the liver during the metabolism of fatty acids. It is a colorless, slightly water-soluble compound with a bitter taste and an unpleasant odor.

In the body, 3-hydroxybutyric acid is produced when there is not enough glucose available to meet the body's energy needs, such as during fasting, starvation, or prolonged intense exercise. It can also be produced in large amounts in people with uncontrolled diabetes, particularly during a condition called diabetic ketoacidosis.

3-Hydroxybutyric acid is an important source of energy for the brain and other organs during periods of low glucose availability. However, high levels of 3-hydroxybutyric acid in the blood can lead to a condition called ketosis, which can cause symptoms such as nausea, vomiting, abdominal pain, and confusion. If left untreated, ketosis can progress to diabetic ketoacidosis, a potentially life-threatening complication of diabetes.

Diabetic ketoacidosis (DKA) is a serious metabolic complication characterized by the triad of hyperglycemia, metabolic acidosis, and increased ketone bodies. It primarily occurs in individuals with diabetes mellitus type 1, but it can also be seen in some people with diabetes mellitus type 2, particularly during severe illness or surgery.

The condition arises when there is a significant lack of insulin in the body, which impairs the ability of cells to take up glucose for energy production. As a result, the body starts breaking down fatty acids to produce energy, leading to an increase in ketone bodies (acetoacetate, beta-hydroxybutyrate, and acetone) in the bloodstream. This process is called ketosis.

In DKA, the excessive production of ketone bodies results in metabolic acidosis, which is characterized by a lower than normal pH level in the blood (< 7.35) and an elevated serum bicarbonate level (< 18 mEq/L). The hyperglycemia in DKA is due to both increased glucose production and decreased glucose utilization by cells, which can lead to severe dehydration and electrolyte imbalances.

Symptoms of diabetic ketoacidosis include excessive thirst, frequent urination, nausea, vomiting, abdominal pain, fatigue, fruity breath odor, and altered mental status. If left untreated, DKA can progress to coma and even lead to death. Treatment typically involves administering insulin, fluid replacement, and electrolyte management in a hospital setting.

Ketone bodies, also known as ketones or ketoacids, are organic compounds that are produced by the liver during the metabolism of fats when carbohydrate intake is low. They include acetoacetate (AcAc), beta-hydroxybutyrate (BHB), and acetone. These molecules serve as an alternative energy source for the body, particularly for the brain and heart, when glucose levels are insufficient to meet energy demands.

In a healthy individual, ketone bodies are present in low concentrations; however, during periods of fasting, starvation, or intense physical exertion, ketone production increases significantly. In some pathological conditions like uncontrolled diabetes mellitus, the body may produce excessive amounts of ketones, leading to a dangerous metabolic state called diabetic ketoacidosis (DKA).

Elevated levels of ketone bodies can be detected in blood or urine and are often used as an indicator of metabolic status. Monitoring ketone levels is essential for managing certain medical conditions, such as diabetes, where maintaining optimal ketone concentrations is crucial to prevent complications.

A ketogenic diet is a type of diet that is characterized by a significant reduction in carbohydrate intake and an increase in fat intake, with the goal of inducing a metabolic state called ketosis. In ketosis, the body shifts from using glucose (carbohydrates) as its primary source of energy to using ketones, which are produced by the liver from fatty acids.

The typical ketogenic diet consists of a daily intake of less than 50 grams of carbohydrates, with protein intake moderated and fat intake increased to make up the majority of calories. This can result in a rapid decrease in blood sugar and insulin levels, which can have various health benefits for some individuals, such as weight loss, improved blood sugar control, and reduced risk factors for heart disease.

However, it is important to note that a ketogenic diet may not be suitable for everyone, particularly those with certain medical conditions or who are taking certain medications. It is always recommended to consult with a healthcare provider before starting any new diet plan.

Hydroxybutyrates are compounds that contain a hydroxyl group (-OH) and a butyric acid group. More specifically, in the context of clinical medicine and biochemistry, β-hydroxybutyrate (BHB) is often referred to as a "ketone body."

Ketone bodies are produced by the liver during periods of low carbohydrate availability, such as during fasting, starvation, or a high-fat, low-carbohydrate diet. BHB is one of three major ketone bodies, along with acetoacetate and acetone. These molecules serve as alternative energy sources for the brain and other tissues when glucose levels are low.

In some pathological states, such as diabetic ketoacidosis, the body produces excessive amounts of ketone bodies, leading to a life-threatening metabolic acidosis. Elevated levels of BHB can also be found in other conditions like alcoholism, severe illnesses, and high-fat diets.

It is important to note that while BHB is a hydroxybutyrate, not all hydroxybutyrates are ketone bodies. The term "hydroxybutyrates" can refer to any compound containing both a hydroxyl group (-OH) and a butyric acid group.

Acetoacetates are compounds that are produced in the liver as a part of fatty acid metabolism, specifically during the breakdown of fatty acids for energy. Acetoacetates are formed from the condensation of two acetyl-CoA molecules and are intermediate products in the synthesis of ketone bodies, which can be used as an alternative energy source by tissues such as the brain during periods of low carbohydrate availability or intense exercise.

In clinical settings, high levels of acetoacetates in the blood may indicate a condition called diabetic ketoacidosis (DKA), which is a complication of diabetes mellitus characterized by high levels of ketone bodies in the blood due to insulin deficiency or resistance. DKA can lead to serious complications such as cerebral edema, cardiac arrhythmias, and even death if left untreated.

Parturient paresis, also known as Eclampsia or Puerperal eclampsia, is a serious condition that can occur during pregnancy or after childbirth. It is characterized by the onset of seizures (convulsions) and coma in a woman who has previously developed high blood pressure and proteinuria (protein in the urine) – a condition known as preeclampsia.

Eclampsia is considered a medical emergency, and it can lead to severe complications for both the mother and the baby if not promptly treated. The exact cause of eclampsia is not fully understood, but it is thought to be related to problems with the blood vessels that supply the placenta.

Symptoms of eclampsia include high blood pressure, severe headaches, visual disturbances, nausea and vomiting, and sudden weight gain. If left untreated, eclampsia can lead to serious complications such as brain damage, stroke, kidney failure, and even death for the mother and the baby.

Treatment typically involves close monitoring of the mother and the baby, medication to control seizures and lower blood pressure, and delivery of the baby if necessary. In some cases, eclampsia may occur after the baby has been delivered, in which case it is known as postpartum eclampsia.

Acidosis is a medical condition that occurs when there is an excess accumulation of acid in the body or when the body loses its ability to effectively regulate the pH level of the blood. The normal pH range of the blood is slightly alkaline, between 7.35 and 7.45. When the pH falls below 7.35, it is called acidosis.

Acidosis can be caused by various factors, including impaired kidney function, respiratory problems, diabetes, severe dehydration, alcoholism, and certain medications or toxins. There are two main types of acidosis: metabolic acidosis and respiratory acidosis.

Metabolic acidosis occurs when the body produces too much acid or is unable to eliminate it effectively. This can be caused by conditions such as diabetic ketoacidosis, lactic acidosis, kidney failure, and ingestion of certain toxins.

Respiratory acidosis, on the other hand, occurs when the lungs are unable to remove enough carbon dioxide from the body, leading to an accumulation of acid. This can be caused by conditions such as chronic obstructive pulmonary disease (COPD), asthma, and sedative overdose.

Symptoms of acidosis may include fatigue, shortness of breath, confusion, headache, rapid heartbeat, and in severe cases, coma or even death. Treatment for acidosis depends on the underlying cause and may include medications, oxygen therapy, fluid replacement, and dialysis.

Cattle diseases are a range of health conditions that affect cattle, which include but are not limited to:

1. Bovine Respiratory Disease (BRD): Also known as "shipping fever," BRD is a common respiratory illness in feedlot cattle that can be caused by several viruses and bacteria.
2. Bovine Viral Diarrhea (BVD): A viral disease that can cause a variety of symptoms, including diarrhea, fever, and reproductive issues.
3. Johne's Disease: A chronic wasting disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis. It primarily affects the intestines and can cause severe diarrhea and weight loss.
4. Digital Dermatitis: Also known as "hairy heel warts," this is a highly contagious skin disease that affects the feet of cattle, causing lameness and decreased productivity.
5. Infectious Bovine Keratoconjunctivitis (IBK): Also known as "pinkeye," IBK is a common and contagious eye infection in cattle that can cause blindness if left untreated.
6. Salmonella: A group of bacteria that can cause severe gastrointestinal illness in cattle, including diarrhea, dehydration, and septicemia.
7. Leptospirosis: A bacterial disease that can cause a wide range of symptoms in cattle, including abortion, stillbirths, and kidney damage.
8. Blackleg: A highly fatal bacterial disease that causes rapid death in young cattle. It is caused by Clostridium chauvoei and vaccination is recommended for prevention.
9. Anthrax: A serious infectious disease caused by the bacterium Bacillus anthracis. Cattle can become infected by ingesting spores found in contaminated soil, feed or water.
10. Foot-and-Mouth Disease (FMD): A highly contagious viral disease that affects cloven-hooved animals, including cattle. It is characterized by fever and blisters on the feet, mouth, and teats. FMD is not a threat to human health but can have serious economic consequences for the livestock industry.

It's important to note that many of these diseases can be prevented or controlled through good management practices, such as vaccination, biosecurity measures, and proper nutrition. Regular veterinary care and monitoring are also crucial for early detection and treatment of any potential health issues in your herd.

Butylene glycols are a type of organic compounds that belong to the class of diols, which are chemical compounds containing two hydroxyl groups. Specifically, butylene glycols are composed of a four-carbon chain with two hydroxyl groups located on adjacent carbon atoms.

There are two isomeric forms of butylene glycol: 1,2-butanediol and 1,3-butanediol.

* 1,2-Butanediol (also known as 1,2-butylene glycol) has the hydroxyl groups on the first and second carbon atoms of the chain. It is a colorless, viscous liquid that is used as a solvent, humectant, and antifreeze in various industrial and cosmetic applications.
* 1,3-Butanediol (also known as 1,3-butylene glycol) has the hydroxyl groups on the first and third carbon atoms of the chain. It is also a colorless, viscous liquid that is used as a solvent, humectant, and antifreeze in various industrial and cosmetic applications.

Butylene glycols are generally considered to be safe for use in cosmetics and other consumer products, although they may cause skin irritation or allergic reactions in some individuals. They are also used as intermediates in the synthesis of other chemicals, such as polyesters and polyurethanes.

The peripartum period is a term used to describe the time frame surrounding childbirth, specifically it refers to the weeks starting from the 20th week of pregnancy up to 4-6 weeks after giving birth. It is a critical period for both the mother and the baby, as many physical and emotional changes occur during this time. The peripartum period includes the late stages of pregnancy (intrapartum) and the postpartum phase. This is the time when medical professionals pay close attention to the health of the mother and the newborn, monitoring for any potential complications or issues that may arise.

Acetone is a colorless, volatile, and flammable liquid organic compound with the chemical formula (CH3)2CO. It is the simplest and smallest ketone, and its molecules consist of a carbonyl group linked to two methyl groups. Acetone occurs naturally in the human body and is produced as a byproduct of normal metabolic processes, particularly during fat burning.

In clinical settings, acetone can be measured in breath or blood to assess metabolic status, such as in cases of diabetic ketoacidosis, where an excess production of acetone and other ketones occurs due to insulin deficiency and high levels of fatty acid breakdown. High concentrations of acetone can lead to a sweet, fruity odor on the breath, often described as "fruity acetone" or "acetone breath."

A diabetic coma is a serious and life-threatening condition that occurs when an individual with diabetes experiences severely high or low blood sugar levels, leading to unconsciousness. It is a medical emergency that requires immediate attention.

In the case of hyperglycemia (high blood sugar), the body produces excess amounts of urine to try to eliminate the glucose, leading to dehydration and a lack of essential nutrients in the body. This can result in a buildup of toxic byproducts called ketones, which can cause a condition known as diabetic ketoacidosis (DKA). DKA can lead to a diabetic coma if left untreated.

On the other hand, hypoglycemia (low blood sugar) can also cause a diabetic coma. This occurs when the brain is not receiving enough glucose to function properly, leading to confusion, seizures, and eventually unconsciousness.

If you suspect someone is experiencing a diabetic coma, it is important to seek emergency medical attention immediately. While waiting for help to arrive, try to administer glucose or sugar to the individual if they are conscious and able to swallow. If they are unconscious, do not give them anything to eat or drink, as this could cause choking or further complications.

"Megasphaera" is a genus of Gram-negative, anaerobic, coccoid or rod-shaped bacteria found in various environments, including the human mouth and gastrointestinal tract. These bacteria are commonly associated with dental caries, periodontal disease, and bacterial vaginosis. They have the ability to produce both acid and gas from carbohydrate fermentation, which can contribute to the development of dental plaque and tissue destruction in periodontal disease. In addition, certain species of Megasphaera have been implicated in the pathogenesis of intra-abdominal infections and other anaerobic infections in humans.

The abomasum is the fourth and final stomach chamber in ruminant animals, such as cows, sheep, and goats. It is often referred to as the "true" stomach because its structure and function are most similar to the stomachs of non-ruminant animals, including humans.

In the abomasum, gastric juices containing hydrochloric acid and digestive enzymes are secreted, which help to break down proteins and fats in the ingested feed. The abomasum also serves as a site for nutrient absorption and further mechanical breakdown of food particles before they enter the small intestine.

The term "abomasum" is derived from Latin, where "ab-" means "away from," and "omassum" refers to the "stomach." This name reflects its location away from the other three stomach chambers in ruminants.

Selenomonas is a genus of gram-negative, anaerobic bacteria that are commonly found in the oral cavity and gastrointestinal tract of humans and animals. These bacteria have a unique characteristic of having curved or spiral-shaped morphology and a polar flagellum for motility. They are named after their ability to reduce selenite to elemental selenium, which gives them a characteristic red color.

Selenomonas species are often associated with dental caries and periodontal disease due to their production of acid and other virulence factors that can contribute to tissue destruction. However, they also play important roles in the breakdown of complex carbohydrates and the production of volatile sulfur compounds in the gut.

It's worth noting that while Selenomonas species are generally considered to be commensal organisms, they have been implicated in various opportunistic infections, particularly in immunocompromised individuals or those with underlying medical conditions.

Hyperglycemic Hyperosmolar Nonketotic Coma (HHNC) is a serious complication of diabetes, specifically type 2, that occurs when blood glucose levels rise to extremely high levels, typically above 600 mg/dL. This condition is often accompanied by severe dehydration due to excessive urination and an inability to consume adequate fluids.

The term "hyperosmolar" refers to the high concentration of glucose in the blood, which increases the osmolality (or osmotic pressure) of the blood. This can lead to water moving out of cells and into the bloodstream to try to balance out the concentration, causing severe dehydration.

The term "nonketotic" means that there is no significant production of ketone bodies, which are produced when the body breaks down fat for energy in the absence of sufficient insulin. This differentiates HHNC from diabetic ketoacidosis (DKA), another serious complication of diabetes.

The "coma" part of the term refers to the fact that HHNC can cause altered mental status, ranging from confusion and disorientation to coma, due to the effects of dehydration and high blood glucose levels on the brain.

HHNC is a medical emergency that requires immediate treatment in a hospital setting. Treatment typically involves administering fluids to rehydrate the body, insulin to lower blood glucose levels, and addressing any other underlying conditions or complications. If left untreated, HHNC can be life-threatening.

Retained placenta is a medical condition that occurs when all or part of the placenta remains in the uterus after delivery, instead of being expelled naturally. Normally, the placenta separates from the uterine wall and is delivered within 30 minutes of childbirth. However, if the placenta is not completely delivered, it can lead to complications such as infection, heavy bleeding, and in rare cases, infertility or even death.

Retained placenta can be caused by various factors, including a weakened uterine muscle tone, an abnormally attached placenta, or a retained portion of the membranes. Treatment for retained placenta typically involves manual removal of the remaining tissue by a healthcare professional, often under anesthesia. In some cases, medication may be used to help promote contraction of the uterus and expulsion of the placenta.

It is important to seek medical attention promptly if a retained placenta is suspected, as timely treatment can help prevent potentially serious complications.

Ketones are organic compounds that contain a carbon atom bound to two oxygen atoms and a central carbon atom bonded to two additional carbon groups through single bonds. In the context of human physiology, ketones are primarily produced as byproducts when the body breaks down fat for energy in a process called ketosis.

Specifically, under conditions of low carbohydrate availability or prolonged fasting, the liver converts fatty acids into ketone bodies, which can then be used as an alternative fuel source for the brain and other organs. The three main types of ketones produced in the human body are acetoacetate, beta-hydroxybutyrate, and acetone.

Elevated levels of ketones in the blood, known as ketonemia, can occur in various medical conditions such as diabetes, starvation, alcoholism, and high-fat/low-carbohydrate diets. While moderate levels of ketosis are generally considered safe, severe ketosis can lead to a life-threatening condition called diabetic ketoacidosis (DKA) in people with diabetes.

Lameness in animals refers to an alteration in the animal's normal gait or movement, which is often caused by pain, injury, or disease affecting the locomotor system. This can include structures such as bones, joints, muscles, tendons, and ligaments. The severity of lameness can vary from subtle to non-weight bearing, and it can affect one or more limbs.

Lameness can have various causes, including trauma, infection, degenerative diseases, congenital defects, and neurological disorders. In order to diagnose and treat lameness in animals, a veterinarian will typically perform a physical examination, observe the animal's gait and movement, and may use diagnostic imaging techniques such as X-rays or ultrasound to identify the underlying cause. Treatment for lameness can include medication, rest, physical therapy, surgery, or a combination of these approaches.

Nonesterified fatty acids (NEFA), also known as free fatty acids (FFA), refer to fatty acid molecules that are not bound to glycerol in the form of triglycerides or other esters. In the bloodstream, NEFAs are transported while bound to albumin and can serve as a source of energy for peripheral tissues. Under normal physiological conditions, NEFA levels are tightly regulated by the body; however, elevated NEFA levels have been associated with various metabolic disorders such as insulin resistance, obesity, and type 2 diabetes.

"Dairying" is not a medical term. It refers to the industry or practice of producing and processing milk and milk products, such as butter, cheese, and yogurt, typically from cows but also from other animals like goats and sheep. Dairying involves various activities including breeding and raising dairy animals, milking, processing, and marketing milk and milk products. It is not a medical concept or procedure.

Coenzyme A-transferases are a group of enzymes that catalyze the transfer of Coenzyme A (CoA) from one molecule to another. CoA is a coenzyme that plays a crucial role in various metabolic processes, including the oxidation of carbohydrates, fatty acids, and amino acids.

Coenzyme A-transferases can be further classified into several subfamilies based on their specific functions and the types of molecules they act upon. For example, some CoA-transferases transfer CoA to acyl groups, forming acyl-CoAs, which are important intermediates in fatty acid metabolism. Other CoA-transferases transfer CoA to pyruvate, forming pyruvate dehydrogenase complexes that play a key role in glucose metabolism.

These enzymes are essential for maintaining the proper functioning of various metabolic pathways and are involved in a wide range of physiological processes, including energy production, lipid synthesis, and detoxification. Defects in CoA-transferases can lead to several metabolic disorders, such as fatty acid oxidation disorders and pyruvate dehydrogenase deficiency.

Stomach diseases refer to a range of conditions that affect the stomach, a muscular sac located in the upper part of the abdomen and is responsible for storing and digesting food. These diseases can cause various symptoms such as abdominal pain, nausea, vomiting, heartburn, indigestion, loss of appetite, and bloating. Some common stomach diseases include:

1. Gastritis: Inflammation of the stomach lining that can cause pain, irritation, and ulcers.
2. Gastroesophageal reflux disease (GERD): A condition where stomach acid flows back into the esophagus, causing heartburn and damage to the esophageal lining.
3. Peptic ulcers: Open sores that develop on the lining of the stomach or duodenum, often caused by bacterial infections or long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs).
4. Stomach cancer: Abnormal growth of cancerous cells in the stomach, which can spread to other parts of the body if left untreated.
5. Gastroparesis: A condition where the stomach muscles are weakened or paralyzed, leading to difficulty digesting food and emptying the stomach.
6. Functional dyspepsia: A chronic disorder characterized by symptoms such as pain, bloating, and fullness in the upper abdomen, without any identifiable cause.
7. Eosinophilic esophagitis: A condition where eosinophils, a type of white blood cell, accumulate in the esophagus, causing inflammation and difficulty swallowing.
8. Stomal stenosis: Narrowing of the opening between the stomach and small intestine, often caused by scar tissue or surgical complications.
9. Hiatal hernia: A condition where a portion of the stomach protrudes through the diaphragm into the chest cavity, causing symptoms such as heartburn and difficulty swallowing.

These are just a few examples of stomach diseases, and there are many other conditions that can affect the stomach. Proper diagnosis and treatment are essential for managing these conditions and preventing complications.

No FAQ available that match "ketosis"

No images available that match "ketosis"