A collection of heterogenous conditions resulting from defective LIPID METABOLISM and characterized by ADIPOSE TISSUE atrophy. Often there is redistribution of body fat resulting in peripheral fat wasting and central adiposity. They include generalized, localized, congenital, and acquired lipodystrophy.
Congenital disorders, usually autosomal recessive, characterized by severe generalized lack of ADIPOSE TISSUE, extreme INSULIN RESISTANCE, and HYPERTRIGLYCERIDEMIA.
Defective metabolism leading to fat maldistribution in patients infected with HIV. The etiology appears to be multifactorial and probably involves some combination of infection-induced alterations in metabolism, direct effects of antiretroviral therapy, and patient-related factors.
Inherited conditions characterized by the partial loss of ADIPOSE TISSUE, either confined to the extremities with normal or increased fat deposits on the face, neck and trunk (type 1), or confined to the loss of SUBCUTANEOUS FAT from the limbs and trunk (type 2). Type 3 is associated with mutation in the gene encoding PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA.
A type of diabetes mellitus that is characterized by severe INSULIN RESISTANCE and LIPODYSTROPHY. The latter may be generalized, partial, acquired, or congenital (LIPODYSTROPHY, CONGENITAL GENERALIZED).
A subclass of developmentally regulated lamins having a neutral isoelectric point. They are found to disassociate from nuclear membranes during mitosis.
A circumscribed melanosis consisting of a brown-pigmented, velvety verrucosity or fine papillomatosis appearing in the axillae and other body folds. It occurs in association with endocrine disorders, underlying malignancy, administration of certain drugs, or as in inherited disorder.
Heterotrimeric GTP-binding protein subunits that tightly associate with GTP-BINDING PROTEIN BETA SUBUNITS. A dimer of beta and gamma subunits is formed when the GTP-BINDING PROTEIN ALPHA SUBUNIT dissociates from the GTP-binding protein heterotrimeric complex. The beta-gamma dimer can play an important role in signal transduction by interacting with a variety of second messengers.
An enzyme that catalyzes the acyl group transfer of ACYL COA to 1-acyl-sn-glycerol 3-phosphate to generate 1,2-diacyl-sn-glycerol 3-phosphate. This enzyme has alpha, beta, gamma, delta and epsilon subunits.
A condition with congenital and acquired forms causing recurrent ulcers in the fingers and toes. The congenital form exhibits autosomal dominant inheritance; the acquired form is found in workers who handle VINYL CHLORIDE. When acro-osteolysis is accompanied by generalized OSTEOPOROSIS and skull deformations, it is called HAJDU-CHENEY SYNDROME.
Drug regimens, for patients with HIV INFECTIONS, that aggressively suppress HIV replication. The regimens usually involve administration of three or more different drugs including a protease inhibitor.
Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white.
A dideoxynucleoside analog that inhibits reverse transcriptase and has in vitro activity against HIV.
Includes the spectrum of human immunodeficiency virus infections that range from asymptomatic seropositivity, thru AIDS-related complex (ARC), to acquired immunodeficiency syndrome (AIDS).
Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS.
An abnormal congenital condition, associated with defects in the LAMIN TYPE A gene, which is characterized by premature aging in children, where all the changes of cell senescence occur. It is manifested by premature greying; hair loss; hearing loss (DEAFNESS); cataracts (CATARACT); ARTHRITIS; OSTEOPOROSIS; DIABETES MELLITUS; atrophy of subcutaneous fat; skeletal hypoplasia; elevated urinary HYALURONIC ACID; and accelerated ATHEROSCLEROSIS. Many affected individuals develop malignant tumors, especially SARCOMA.
Nuclear matrix proteins that are structural components of the NUCLEAR LAMINA. They are found in most multicellular organisms.
An IgG autoantibody against the ALTERNATIVE PATHWAY C3 CONVERTASE, found in serum of patients with MESANGIOCAPILLARY GLOMERULONEPHRITIS. The binding of this autoantibody to C3bBb stabilizes the enzyme thus reduces the actions of C3b inactivators (COMPLEMENT FACTOR H; COMPLEMENT FACTOR I). This abnormally stabilized enzyme induces a continuous COMPLEMENT ACTIVATION and generation of C3b thereby promoting the assembly of MEMBRANE ATTACK COMPLEX and cytolysis.
Deposits of ADIPOSE TISSUE throughout the body. The pattern of fat deposits in the body regions is an indicator of health status. Excess ABDOMINAL FAT increases health risks more than excess fat around the hips or thighs, therefore, WAIST-HIP RATIO is often used to determine health risks.
A 16-kDa peptide hormone secreted from WHITE ADIPOCYTES. Leptin serves as a feedback signal from fat cells to the CENTRAL NERVOUS SYSTEM in regulation of food intake, energy balance, and fat storage.
A condition of elevated levels of TRIGLYCERIDES in the blood.
General term for inflammation of adipose tissue, usually of the skin, characterized by reddened subcutaneous nodules.
The relative amounts of various components in the body, such as percentage of body fat.
A heterogenous group of inherited muscular dystrophy without the involvement of nervous system. The disease is characterized by MUSCULAR ATROPHY; MUSCLE WEAKNESS; CONTRACTURE of the elbows; ACHILLES TENDON; and posterior cervical muscles; with or without cardiac features. There are several INHERITANCE PATTERNS including X-linked (X CHROMOSOME), autosomal dominant, and autosomal recessive gene mutations.
Inhibitors of HIV PROTEASE, an enzyme required for production of proteins needed for viral assembly.
Prolonged shortening of the muscle or other soft tissue around a joint, preventing movement of the joint.
A phosphomonoesterase involved in the synthesis of triacylglycerols. It catalyzes the hydrolysis of phosphatidates with the formation of diacylglycerols and orthophosphate. EC 3.1.3.4.
Agents used to treat AIDS and/or stop the spread of the HIV infection. These do not include drugs used to treat symptoms or opportunistic infections associated with AIDS.
A nuclear transcription factor. Heterodimerization with RETINOID X RECEPTOR ALPHA is important in regulation of GLUCOSE metabolism and CELL GROWTH PROCESSES. It is a target of THIAZOLIDINEDIONES for control of DIABETES MELLITUS.
Cells in the body that store FATS, usually in the form of TRIGLYCERIDES. WHITE ADIPOCYTES are the predominant type and found mostly in the abdominal cavity and subcutaneous tissue. BROWN ADIPOCYTES are thermogenic cells that can be found in newborns of some species and hibernating mammals.
The differentiation of pre-adipocytes into mature ADIPOCYTES.
A sultanate on the southeast coast of the Arabian peninsula. Its capital is Masqat. Before the 16th century it was ruled by independent emirs but was captured and controlled by the Portuguese 1508-1648. In 1741 it was recovered by a descendent of Yemen's imam. After its decline in the 19th century, it became virtually a political and economic dependency within the British Government of India, retaining close ties with Great Britain by treaty from 1939 to 1970 when it achieved autonomy. The name was recorded by Pliny in the 1st century A.D. as Omana, said to be derived from the founder of the state, Oman ben Ibrahim al-Khalil. (From Webster's New Geographical Dictionary, 1988, p890; Oman Embassy, Washington; Room, Brewer's Dictionary of Names, 1992, p391)
Fatty tissue under the SKIN through out the body.
Abnormally infrequent menstruation.
Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS.
The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.
A plant genus of the family ARECACEAE. It is a tropical palm tree that yields a large, edible hard-shelled fruit from which oil and fiber are also obtained.
Loose connective tissue lying under the DERMIS, which binds SKIN loosely to subjacent tissues. It may contain a pad of ADIPOCYTES, which vary in number according to the area of the body and vary in size according to the nutritional state.
NATIONAL LIBRARY OF MEDICINE service for health professionals and consumers. It links extensive information from the National Institutes of Health and other reviewed sources of information on specific diseases and conditions.

Post-traumatic anterior pituitary insufficiency developed in a patient with partial lipodystrophy. (1/317)

A case of partial lipodystrophy developing anterior pituitary insufficiency, chronic glomerulonephritis and pulmonary fibrosis was reported. The patient died of respiratory failure secondary to pituitary crisis during the hospital course. From the clinical course in recent several years and the postmortem examination the head injury following car accident in the past history was considered to be the most plausible cause of hypopituitarism. The etiology of pulmonary fibrosis remained unresolved.  (+info)

Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. (2/317)

We validate the use of 1H magnetic resonance spectroscopy (MRS) to quantitatively differentiate between adipocyte and intracellular triglyceride (TG) stores by monitoring the TG methylene proton signals at 1.6 and 1.4 ppm, respectively. In two animal models of intracellular TG accumulation, intrahepatic and intramyocellular TG accumulation was confirmed histologically. Consistent with the histological changes, the methylene signal intensity at 1.4 ppm increased in both liver and muscle, whereas the signal at 1.6 ppm was unchanged. In response to induced fat accumulation, the TG concentration in liver derived from 1H MRS increased from 0 to 44.9 +/- 13.2 micromol/g, and this was matched by increases measured biochemically (2.1 +/- 1.1 to 46.1 +/- 10.9 micromol/g). Supportive evidence that the methylene signal at 1.6 ppm in muscle is derived from investing interfascial adipose tissue was the finding that, in four subjects with generalized lipodystrophy, a disease characterized by absence of interfacial fat, no signal was detected at 1.6 ppm; however, a strong signal was seen at 1.4 ppm. An identical methylene chemical shift at 1.4 ppm was obtained in human subjects with fatty liver where the fat is located exclusively within hepatocytes. In experimental animals, there was a close correlation between hepatic TG content measured in vivo by 1H MRS and chemically by liver biopsy [R = 0.934; P <.0001; slope 0.98, confidence interval (CI) 0.70-1.17; y-intercept 0.26, CI -0.28 to 0. 70]. When applied to human calf muscle, the coefficient of variation of the technique in measuring intramyocellular TG content was 11.8% in nonobese subjects and 7.9% in obese subjects and of extramyocellular (adipocyte) fat was 22.6 and 52.5%, respectively. This study demonstrates for the first time that noninvasive in vivo 1H MRS measurement of intracellular TG, including that within myocytes, is feasible at 1.5-T field strengths and is comparable in accuracy to biochemical measurement. In addition, in mixed tissue such as muscle, the method is clearly advantageous in differentiating between TG from contaminating adipose tissue compared with intramyocellular lipids.  (+info)

Identification of nephritic factor as an immunoglobulin. (3/317)

C3 nephritic factor (C3NeF) activity in sera from three patients with mesangiocapillary glomerulonephritis, one of whom had partial lipodystrophy, was found on chromatography to be associated with fractions containing IgG and no other detectable proteins. Immunoadsorption of IgG from these fractions with a highly purified anti-IgG removed the C3NeF, and the IgG, eluted after combination with the anti-IgG, retained C3NeF activity. In each case the isolated IgG with C3NeF activity was found to contain more than one subclass of IgG and both kappa and lambda chains, indicating that the immunoglobulin comprising C3NeF in these patients is heterogeneous and not monoclonal. The identification of C3NeF as an immunoglobulin suggests that it may be an autoantibody against antigenic determinants of complement components present in the C3 convertase of the alternative pathway.  (+info)

Diabetes, insulin resistance and dyslipidaemia in lipodystrophic HIV-infected patients on highly active antiretroviral therapy (HAART). (4/317)

This study assessed glucose tolerance, insulin sensitivity and lipid parameters in HIV-infected patients presenting with lipodystrophy during HAART including protease inhibitors. Fourteen consecutive patients from Rothschild Hospital treated with HAART and presenting with marked facial lipoatrophy were evaluated. A 75 g oral glucose tolerance test (OGTT) with measurement of plasma glucose, insulin, proinsulin and free fatty acids at T0, 30, 60, 90 and 120 min was performed. Lipid parameters (triglycerides, cholesterol, apolipoproteins A1 and B) were studied as well as nutritional and inflammatory markers (albumin, prealbumin, transferrin, haptoglobin, orosomucoid, C-reactive protein), endocrine and cytokine parameters (thyrotropin, cortisol, leptin, interleukin-6), HIV viral load and CD4-lymphocyte count. These patients were compared with 20 non-lipodystrophic protease inhibitor-treated patients. The measurements performed during OGTT showed that among the 14 lipodystrophic patients, 11 (79%) presented with diabetes (5 patients) or normal glucose tolerance but with insulin resistance (6 patients). This frequency was strikingly different in the group of nonlipodystrophic patients, which included only 4 (20%) presenting with diabetes (1 patient), or impaired glucose tolerance (2 patients), or normal glucose tolerance but with insulin resistance (1 patient). Hypertriglyceridaemia was present in 11 lipodystrophic (79%) versus 7 nonlipodystrophic patients (35%). Nutritional and endocrine measurements were normal. An abnormal processing of proinsulin to insulin was excluded. Thus, lipodystrophy during HAART was associated with diabetes, insulin resistance and hypertriglyceridaemia. Diabetes, diagnosed by basal and/or 120 min-OGTT glycaemia, seems more frequent than previously described. The therapeutic consequences of these results deserve evaluation in clinical trials.  (+info)

Bioelectrical impedance analysis in HIV-infected patients treated with triple antiretroviral treatment. (5/317)

BACKGROUND: Triple antiretroviral treatment including protease inhibitors (PIs) delays the clinical progression of HIV infection and may thus reduce the risk of malnutrition. However, fat redistribution (lipodystrophy) was recognized recently as a metabolic side effect of PIs. OBJECTIVE: The study aimed to assess the effect of triple antiretroviral treatment on body composition and on the prevalence of malnutrition. DESIGN: Two cross-sectional studies, 1 in 1996 (t96; n = 247) and 1 in 1997 (t97; n = 266), were conducted in HIV-infected outpatients. Among patients who participated in both studies, 111 patients started a new antiretroviral treatment including a PI between t96 and t97 and were studied longitudinally. Total body water (TBW), intracellular water (ICW), extracellular water (ECW), and fat mass were estimated by monofrequency bioelectrical impedance analysis (BIA). RESULTS: Prevalence of malnutrition was reduced by 30-50% from t96 to t97, depending on the definition used. In the longitudinal study, TBW and the ratio between ICW and ECW increased and fat mass decreased (P < 0.001). BIA indicated a greater increase in ICW in 23 (21%) patients with clinically apparent fat redistribution than in patients without this syndrome, but estimates of fat mass changes were not significantly different. CONCLUSIONS: Triple antiretroviral treatment may protect HIV-infected patients against the development of malnutrition. Whole-body BIA data suggest an increase in appendicular body cell mass associated with improved antiretroviral treatment. However, the method is unreliable in detecting fat redistribution, and current prediction equations will need to be recalibrated for HIV-infected patients receiving highly active antiretroviral treatment.  (+info)

PPAR gamma is required for placental, cardiac, and adipose tissue development. (6/317)

The nuclear hormone receptor PPAR gamma promotes adipogenesis and macrophage differentiation and is a primary pharmacological target in the treatment of type II diabetes. Here, we show that PPAR gamma gene knockout results in two independent lethal phases. Initially, PPAR gamma deficiency interferes with terminal differentiation of the trophoblast and placental vascularization, leading to severe myocardial thinning and death by E10.0. Supplementing PPAR gamma null embryos with wild-type placentas via aggregation with tetraploid embryos corrects the cardiac defect, implicating a previously unrecognized dependence of the developing heart on a functional placenta. A tetraploid-rescued mutant surviving to term exhibited another lethal combination of pathologies, including lipodystrophy and multiple hemorrhages. These findings both confirm and expand the current known spectrum of physiological functions regulated by PPAR gamma.  (+info)

Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. (7/317)

Patients with Dunnigan-type familial partial lipodystrophy (FPLD) are born with normal fat distribution, but after puberty experience regional and progressive adipocyte degeneration, often associated with profound insulin resistance and diabetes. Recently, the FPLD gene was mapped to chromosome 1q21-22, which harbours the LMNA gene encoding nuclear lamins A and C. Mutations in LMNA were shown to underlie autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD-AD), which is characterized by regional and progressive skeletal muscle wasting and cardiac effects. We hypothesized that the analogy between the regional muscle wasting in EDMD-AD and the regional adipocyte degeneration in FPLD, in addition to its chromosomal localization, made LMNA a good candidate gene for FPLD. DNA sequencing of LMNA in five Canadian FPLD probands indicated that each had a novel missense mutation, R482Q, which co-segregated with the FPLD phenotype and was absent from 2000 normal alleles ( P = 1.1 x 10(-13)). This is the first report of a mutation underlying a degenerative disorder of adipose tissue and suggests that LMNA mutations could underlie other diseases characterized by tissue type- and anatomical site-specific cellular degeneration.  (+info)

Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C-terminal domain of lamin A/C. (8/317)

Familial partial lipodystrophy (FPLD), Dunnigan variety, is an autosomal dominant disorder characterized by marked loss of subcutaneous adipose tissue from the extremities and trunk but by excess fat deposition in the head and neck. The disease is frequently associated with profound insulin resistance, dyslipidemia, and diabetes. We have localized a gene for FPLD to chromosome 1q21-q23, and it has recently been proposed that nuclear lamin A/C is altered in FPLD, on the basis of a novel missense mutation (R482Q) in five Canadian probands. This gene had previously been shown to be altered in autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD-AD) and in dilated cardiomyopathy and conduction-system disease. We examined 15 families with FPLD for mutations in lamin A/C. Five families harbored the R482Q alteration that segregated with the disease phenotype. Seven families harbored an R482W alteration, and one family harbored a G465D alteration. All these mutations lie within exon 8 of the lamin A/C gene-an exon that has also been shown to harbor different missense mutations that are responsible for EDMD-AD. Mutations could not be detected in lamin A/C in one FPLD family in which there was linkage to chromosome 1q21-q23. One family with atypical FPLD harbored an R582H alteration in exon 11 of lamin A. This exon does not comprise part of the lamin C coding region. All mutations in FPLD affect the globular C-terminal domain of the lamin A/C protein. In contrast, mutations responsible for dilated cardiomyopathy and conduction-system disease are observed in the rod domain of the protein. The FPLD mutations R482Q and R482W occurred on different haplotypes, indicating that they are likely to have arisen more than once.  (+info)

Lipodystrophy is a medical condition characterized by abnormal distribution or absence of fat (adipose tissue) in the body. It can lead to metabolic complications such as insulin resistance, diabetes mellitus, high levels of fats in the blood (dyslipidemia), and liver disease. There are different types of lipodystrophy, including congenital generalized lipodystrophy, acquired generalized lipodystrophy, and partial lipodystrophy, which can affect different parts of the body and have varying symptoms and causes.

Congenital Generalized Lipodystrophy (CGL) is a rare genetic disorder characterized by the near or complete absence of body fat at birth or in early childhood. It is also known as Berardinelli-Seip congenital lipodystrophy. The condition is caused by mutations in genes responsible for the development and function of adipose tissue (fat).

Individuals with CGL typically have a lack of subcutaneous fat, which gives them a muscular appearance, but they may have excess fat accumulation in other areas such as the neck, face, and liver. This can lead to various metabolic complications, including insulin resistance, diabetes mellitus, hypertriglyceridemia (high levels of triglycerides in the blood), and hepatic steatosis (fatty liver disease).

CGL is a genetic disorder that is inherited in an autosomal recessive pattern. This means that an individual must inherit two copies of the mutated gene, one from each parent, to develop the condition. The diagnosis of CGL is typically based on clinical features and confirmed by genetic testing. Treatment for CGL focuses on managing the metabolic complications associated with the disorder.

HIV-Associated Lipodystrophy Syndrome is a term used to describe a range of body shape changes and metabolic abnormalities that can occur in some individuals receiving long-term combination antiretroviral therapy (cART) for HIV infection. The syndrome is characterized by the abnormal distribution of fat, including:

1. Lipoatrophy: Loss of subcutaneous fat from the face, limbs, and buttocks, leading to a gaunt appearance.
2. Lipohypertrophy: Accumulation of fat in the abdomen, breasts, and dorsocervical region (buffalo hump), resulting in an altered body shape.
3. Metabolic abnormalities: Insulin resistance, hyperlipidemia, and lactic acidosis, which can increase the risk of developing cardiovascular disease and diabetes mellitus.

The exact pathogenesis of HIV-Associated Lipodystrophy Syndrome is not fully understood, but it is believed to be related to a combination of factors, including the direct effects of HIV infection on adipose tissue, mitochondrial toxicity caused by certain antiretroviral medications, and chronic inflammation. The syndrome can have significant psychological and social consequences for affected individuals, and management typically involves a multidisciplinary approach that includes switching to alternative antiretroviral regimens, addressing metabolic abnormalities, and providing cosmetic interventions as needed.

Familial Partial Lipodystrophy (FPL) is a rare genetic disorder characterized by the selective loss of fat tissue in various parts of the body. It is caused by mutations in specific genes involved in the regulation of fat metabolism. There are several types of FPL, but the most common one is called Dunnigan-type or FPLD2, which is caused by mutations in the LMNA gene.

In FPL, there is a lack of subcutaneous fat (the fat layer beneath the skin) in certain areas of the body, such as the face, arms, legs, and buttocks, while other areas may have excess fat accumulation, such as the neck, shoulders, and abdomen. This abnormal distribution of fat can lead to a variety of metabolic complications, including insulin resistance, diabetes mellitus, high levels of triglycerides in the blood (hypertriglyceridemia), and an increased risk of cardiovascular disease.

FPL is usually inherited as an autosomal dominant trait, which means that a person has a 50% chance of inheriting the mutated gene from an affected parent. However, some cases may occur spontaneously due to new mutations in the gene. The diagnosis of FPL is typically based on clinical examination, family history, and genetic testing. Treatment usually involves lifestyle modifications, such as diet and exercise, and medications to manage metabolic complications.

Diabetes Mellitus, Lipoatrophic is not a recognized medical term or official classification for diabetes. However, Lipodystrophy is a condition that can occur in some people with diabetes, particularly those being treated with insulin. Lipodystrophy refers to the loss of fat tissue, which can cause changes in the way the body responds to insulin and lead to difficulties controlling blood sugar levels. There are different types of lipodystrophy, including localized lipoatrophy (small areas of fat loss) and generalized lipodystrophy (widespread fat loss).

In people with Diabetes Mellitus, Lipodystrophy can lead to an increased need for insulin, as well as other metabolic complications. It is important for individuals with diabetes who notice changes in their body's response to insulin or unusual fat distribution to consult with their healthcare provider for further evaluation and management.

Lamin Type A, also known as LMNA, is a gene that provides instructions for making proteins called lamins. These proteins are part of the nuclear lamina, a network of fibers that lies just inside the nuclear envelope, which is the membrane that surrounds the cell's nucleus. The nuclear lamina helps maintain the shape and stability of the nucleus and plays a role in regulating gene expression and DNA replication.

Mutations in the LMNA gene can lead to various diseases collectively known as laminopathies, which affect different tissues and organs in the body. These conditions include Emery-Dreifuss muscular dystrophy, limb-girdle muscular dystrophy, dilated cardiomyopathy with conduction system disease, and a type of premature aging disorder called Hutchinson-Gilford progeria syndrome. The specific symptoms and severity of these disorders depend on the particular LMNA mutation and the tissues affected.

Acanthosis nigricans is a medical condition characterized by the darkening and thickening of the skin in certain areas of the body. These areas typically include the back of the neck, armpits, groin, and skin folds. The skin becomes velvety to touch, and may have a "dirty" appearance.

The condition is often associated with insulin resistance, which can be a sign of type 2 diabetes or prediabetes. It can also be linked to obesity, hormonal imbalances, certain medications, and some rare genetic syndromes.

In addition to the changes in skin color and texture, people with acanthosis nigricans may also experience itching, odor, or discomfort in the affected areas. Treatment typically involves addressing the underlying cause of the condition, such as managing diabetes or losing weight. Topical treatments may also be used to improve the appearance of the skin.

GTP-binding protein (G protein) gamma subunits are a type of regulatory protein that bind to and hydrolyze guanosine triphosphate (GTP). They are a component of heterotrimeric G proteins, which are composed of alpha, beta, and gamma subunits. The gamma subunit is tightly associated with the beta subunit and together they form a stable complex called the beta-gamma dimer.

When a G protein-coupled receptor (GPCR) is activated by an agonist, it causes a conformational change in the associated G protein, allowing the alpha subunit to exchange GDP for GTP. This leads to the dissociation of the alpha subunit from the beta-gamma dimer. Both the alpha and beta-gamma subunits can then go on to activate downstream effectors, leading to a variety of cellular responses.

The gamma subunit plays a role in regulating the activity of various signaling pathways, including those involved in vision, neurotransmission, and immune function. Mutations in genes encoding gamma subunits have been associated with several human diseases, including forms of retinal degeneration and neurological disorders.

1-Acylglycerol-3-Phosphate O-Acyltransferase is an enzyme that catalyzes the reaction of forming diacylglycerol phosphate (also known as phosphatidic acid) from 1-acylglycerol-3-phosphate and acyl-CoA. This enzyme plays a crucial role in the biosynthesis of glycerophospholipids, which are major components of biological membranes. The systematic name for this enzyme is 1-acylglycerol-3-phosphate O-acyltransferase; alternatively, it may also be referred to as lysophosphatidic acid acyltransferase or LPAAT.

Acro-osteolysis is a medical condition that refers to the progressive degeneration or dissolution of the bones, particularly affecting the distal portions of fingers and toes. This process results in shortening and deformity of the affected digits. The condition can be associated with various systemic diseases, such as scleroderma, Raynaud's phenomenon, and hyperparathyroidism, or it can be caused by exposure to certain chemicals. Acro-osteolysis is a progressive disorder, and its severity may vary depending on the underlying cause.

Antiretroviral Therapy, Highly Active (HAART) is a medical treatment regimen used to manage HIV infection. It involves the combination of three or more antiretroviral drugs from at least two different classes, aiming to maximally suppress viral replication and prevent the development of drug resistance. The goal of HAART is to reduce the amount of HIV in the body to undetectable levels, preserve immune function, and improve quality of life for people living with HIV. Commonly used antiretroviral classes include nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), integrase strand transfer inhibitors (INSTIs), and fusion inhibitors.

Adipose tissue, also known as fatty tissue, is a type of connective tissue that is composed mainly of adipocytes (fat cells). It is found throughout the body, but is particularly abundant in the abdominal cavity, beneath the skin, and around organs such as the heart and kidneys.

Adipose tissue serves several important functions in the body. One of its primary roles is to store energy in the form of fat, which can be mobilized and used as an energy source during periods of fasting or exercise. Adipose tissue also provides insulation and cushioning for the body, and produces hormones that help regulate metabolism, appetite, and reproductive function.

There are two main types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is the more common form and is responsible for storing energy as fat. BAT, on the other hand, contains a higher number of mitochondria and is involved in heat production and energy expenditure.

Excessive accumulation of adipose tissue can lead to obesity, which is associated with an increased risk of various health problems such as diabetes, heart disease, and certain types of cancer.

Stavudine is an antiviral medication used to treat HIV (human immunodeficiency virus) infections. It works by blocking the action of reverse transcriptase, an enzyme that the virus needs to multiply. By preventing the multiplication of the virus, Stavudine helps reduce the amount of HIV in the body and slows down the progression of the disease.

Stavudine is often prescribed in combination with other antiretroviral drugs as part of a highly active antiretroviral therapy (HAART) regimen. It is available in oral form, typically taken twice daily, and is usually prescribed at a dose of 40 milligrams per dose for adults.

It's important to note that Stavudine can cause serious side effects, including peripheral neuropathy (nerve damage that causes pain, numbness, or tingling in the hands and feet), pancreatitis (inflammation of the pancreas), and lipoatrophy (loss of fat tissue under the skin). As a result, it is generally only prescribed when other antiretroviral drugs are not effective or tolerated.

If you have any questions about Stavudine or your HIV treatment regimen, be sure to talk with your healthcare provider.

HIV (Human Immunodeficiency Virus) infection is a viral illness that progressively attacks and weakens the immune system, making individuals more susceptible to other infections and diseases. The virus primarily infects CD4+ T cells, a type of white blood cell essential for fighting off infections. Over time, as the number of these immune cells declines, the body becomes increasingly vulnerable to opportunistic infections and cancers.

HIV infection has three stages:

1. Acute HIV infection: This is the initial stage that occurs within 2-4 weeks after exposure to the virus. During this period, individuals may experience flu-like symptoms such as fever, fatigue, rash, swollen glands, and muscle aches. The virus replicates rapidly, and the viral load in the body is very high.
2. Chronic HIV infection (Clinical latency): This stage follows the acute infection and can last several years if left untreated. Although individuals may not show any symptoms during this phase, the virus continues to replicate at low levels, and the immune system gradually weakens. The viral load remains relatively stable, but the number of CD4+ T cells declines over time.
3. AIDS (Acquired Immunodeficiency Syndrome): This is the most advanced stage of HIV infection, characterized by a severely damaged immune system and numerous opportunistic infections or cancers. At this stage, the CD4+ T cell count drops below 200 cells/mm3 of blood.

It's important to note that with proper antiretroviral therapy (ART), individuals with HIV infection can effectively manage the virus, maintain a healthy immune system, and significantly reduce the risk of transmission to others. Early diagnosis and treatment are crucial for improving long-term health outcomes and reducing the spread of HIV.

Insulin resistance is a condition in which the body's cells become less responsive to insulin, a hormone produced by the pancreas that regulates blood sugar levels. In response to this decreased sensitivity, the pancreas produces more insulin to help glucose enter the cells. However, over time, the pancreas may not be able to keep up with the increased demand for insulin, leading to high levels of glucose in the blood and potentially resulting in type 2 diabetes, prediabetes, or other health issues such as metabolic syndrome, cardiovascular disease, and non-alcoholic fatty liver disease. Insulin resistance is often associated with obesity, physical inactivity, and genetic factors.

Progeria, also known as Hutchinson-Gilford Progeria Syndrome (HGPS), is a rare and fatal genetic condition characterized by the rapid aging of children. The term "progeria" comes from the Greek words "pro," meaning prematurely, and "gereas," meaning old age.

Individuals with progeria typically appear normal at birth but begin to display signs of accelerated aging within the first two years of life. These symptoms can include growth failure, loss of body fat and hair, aged-looking skin, joint stiffness, hip dislocation, and cardiovascular disease. The most common cause of death in progeria patients is heart attack or stroke due to widespread atherosclerosis (the hardening and narrowing of the arteries).

Progeria is caused by a mutation in the LMNA gene, which provides instructions for making a protein called lamin A. This protein is essential for the structure and function of the nuclear envelope, the membrane that surrounds the cell's nucleus. The mutation leads to the production of an abnormal form of lamin A called progerin, which accumulates in cells throughout the body, causing premature aging.

There is currently no cure for progeria, and treatment is focused on managing symptoms and complications. Researchers are actively studying potential treatments that could slow or reverse the effects of the disease.

Lamins are type V intermediate filament proteins that play a structural role in the nuclear envelope. They are the main components of the nuclear lamina, a mesh-like structure located inside the inner membrane of the nuclear envelope. Lamins are organized into homo- and heterodimers, which assemble into higher-order polymers to form the nuclear lamina. This structure provides mechanical support to the nucleus, helps maintain the shape and integrity of the nucleus, and plays a role in various nuclear processes such as DNA replication, transcription, and chromatin organization. Mutations in the genes encoding lamins have been associated with various human diseases, collectively known as laminopathies, which include muscular dystrophies, neuropathies, cardiomyopathies, and premature aging disorders.

Complement C3 Nephritic Factor (C3NeF) is a type of autoantibody that activates the complement system and plays a significant role in the development of certain types of kidney diseases. The complement system is a part of the immune system that helps to eliminate pathogens and damaged cells from the body.

C3NeF is specifically directed against the C3 convertase enzyme complex, which is a critical component of the complement system's activation pathway. By binding to this enzyme complex, C3NeF stabilizes it and enhances its activity, leading to excessive complement activation and subsequent tissue damage.

In the context of kidney diseases, C3NeF has been associated with several forms of glomerulonephritis, including membranoproliferative glomerulonephritis (MPGN) type II, also known as dense deposit disease (DDD). The persistent activation of the complement system by C3NeF can result in the accumulation of complement components and immune complexes in the glomeruli, causing inflammation, tissue injury, and ultimately leading to kidney function impairment.

It is essential to diagnose and monitor C3NeF levels in patients with kidney diseases, as it may help guide treatment decisions and assess disease prognosis. Therapeutic strategies targeting the complement system, such as eculizumab, have shown promising results in managing C3NeF-associated kidney diseases.

Body fat distribution refers to the way in which adipose tissue (fat) is distributed throughout the body. There are two main types of body fat distribution: android or central/abdominal distribution and gynoid or peripheral distribution.

Android or central/abdominal distribution is characterized by a higher proportion of fat deposited in the abdominal area, surrounding internal organs (visceral fat) and between muscle fibers (intramuscular fat). This pattern is more common in men and is associated with an increased risk of metabolic diseases such as type 2 diabetes, hypertension, dyslipidemia, and cardiovascular disease.

Gynoid or peripheral distribution is characterized by a higher proportion of fat deposited in the hips, thighs, and buttocks. This pattern is more common in women and is generally considered less harmful to health than android distribution. However, excessive accumulation of body fat, regardless of its distribution, can lead to obesity-related health problems.

It's important to note that body fat distribution can be influenced by various factors, including genetics, hormones, lifestyle, and environmental factors. Assessing body fat distribution is an essential aspect of evaluating overall health and disease risk.

Leptin is a hormone primarily produced and released by adipocytes, which are the fat cells in our body. It plays a crucial role in regulating energy balance and appetite by sending signals to the brain when the body has had enough food. This helps control body weight by suppressing hunger and increasing energy expenditure. Leptin also influences various metabolic processes, including glucose homeostasis, neuroendocrine function, and immune response. Defects in leptin signaling can lead to obesity and other metabolic disorders.

Hypertriglyceridemia is a medical condition characterized by an elevated level of triglycerides in the blood. Triglycerides are a type of fat (lipid) found in your blood that can increase the risk of developing heart disease, especially when levels are very high.

In general, hypertriglyceridemia is defined as having triglyceride levels greater than 150 milligrams per deciliter (mg/dL) of blood. However, the specific definition of hypertriglyceridemia may vary depending on individual risk factors and medical history.

Hypertriglyceridemia can be caused by a variety of factors, including genetics, obesity, physical inactivity, excessive alcohol consumption, and certain medications. In some cases, it may also be a secondary consequence of other medical conditions such as diabetes or hypothyroidism. Treatment for hypertriglyceridemia typically involves lifestyle modifications such as dietary changes, increased exercise, and weight loss, as well as medication if necessary.

Panniculitis is a medical term that refers to inflammation of the subcutaneous fat, or the layer of fat located just beneath the skin. This condition can affect people of all ages and genders, although it is more commonly seen in middle-aged women. The inflammation can be caused by a variety of factors, including infections, autoimmune disorders, trauma, and medications.

The symptoms of panniculitis may include:

* Red, painful lumps or nodules under the skin
* Skin lesions that may be tender, warm, or bruised
* Swelling and redness in the affected area
* Fever, fatigue, and malaise (a general feeling of illness)

The diagnosis of panniculitis typically involves a physical examination, medical history, and sometimes a biopsy of the affected tissue. Treatment depends on the underlying cause of the inflammation and may include antibiotics, anti-inflammatory medications, or other therapies. In severe cases, hospitalization may be necessary to manage symptoms and prevent complications.

Body composition refers to the relative proportions of different components that make up a person's body, including fat mass, lean muscle mass, bone mass, and total body water. It is an important measure of health and fitness, as changes in body composition can indicate shifts in overall health status. For example, an increase in fat mass and decrease in lean muscle mass can be indicative of poor nutrition, sedentary behavior, or certain medical conditions.

There are several methods for measuring body composition, including:

1. Bioelectrical impedance analysis (BIA): This method uses low-level electrical currents to estimate body fat percentage based on the conductivity of different tissues.
2. Dual-energy X-ray absorptiometry (DXA): This method uses low-dose X-rays to measure bone density and body composition, including lean muscle mass and fat distribution.
3. Hydrostatic weighing: This method involves submerging a person in water and measuring their weight underwater to estimate body density and fat mass.
4. Air displacement plethysmography (ADP): This method uses air displacement to measure body volume and density, which can be used to estimate body composition.

Understanding body composition can help individuals make informed decisions about their health and fitness goals, as well as provide valuable information for healthcare providers in the management of chronic diseases such as obesity, diabetes, and heart disease.

Emery-Dreifuss muscular dystrophy (EDMD) is a genetic disorder characterized by the triad of 1) early contractures of the elbow and Achilles tendons, 2) slowly progressive muscle weakness and wasting, which begins in the muscles around the shoulder and pelvis and later involves the arms and legs, and 3) cardiac conduction defects that can lead to serious heart rhythm abnormalities.

EDMD is caused by mutations in one of several genes, including the EMD, LMNA, FHL1, and SYNE1/2 genes. These genes provide instructions for making proteins that are important for maintaining the structure and function of muscle cells, as well as the electrical activity of the heart.

The symptoms of EDMD can vary in severity and age of onset, even among family members with the same genetic mutation. Treatment typically focuses on managing the symptoms of the disease, including physical therapy to maintain mobility, bracing or surgery for contractures, and medications to manage cardiac arrhythmias. In some cases, a heart transplant may be necessary.

HIV Protease Inhibitors are a class of antiretroviral medications used in the treatment of HIV infection. They work by blocking the activity of the HIV protease enzyme, which is necessary for the virus to replicate and infect new cells. By inhibiting this enzyme, the medication prevents the virus from maturing and assembling into new infectious particles.

HIV protease inhibitors are often used in combination with other antiretroviral drugs as part of a highly active antiretroviral therapy (HAART) regimen. This approach has been shown to effectively suppress viral replication, reduce the amount of virus in the bloodstream (viral load), and improve the health and longevity of people living with HIV.

Examples of HIV protease inhibitors include saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, fosamprenavir, atazanavir, darunavir, and tipranavir. These medications are usually taken orally in the form of tablets or capsules, and may be prescribed alone or in combination with other antiretroviral drugs.

It is important to note that HIV protease inhibitors can have significant side effects, including gastrointestinal symptoms such as nausea, diarrhea, and abdominal pain, as well as metabolic changes such as increased cholesterol and triglyceride levels. Therefore, regular monitoring of liver function, lipid levels, and other health parameters is necessary to ensure safe and effective use of these medications.

A contracture, in a medical context, refers to the abnormal shortening and hardening of muscles, tendons, or other tissue, which can result in limited mobility and deformity of joints. This condition can occur due to various reasons such as injury, prolonged immobilization, scarring, neurological disorders, or genetic conditions.

Contractures can cause significant impairment in daily activities and quality of life, making it difficult for individuals to perform routine tasks like dressing, bathing, or walking. Treatment options may include physical therapy, splinting, casting, medications, surgery, or a combination of these approaches, depending on the severity and underlying cause of the contracture.

Phosphatidate phosphatase is an enzyme that plays a crucial role in the metabolism of lipids, particularly in the synthesis of glycerophospholipids, which are key components of cell membranes.

The term "phosphatidate" refers to a type of lipid molecule known as a diacylglycerol phosphate. This molecule contains two fatty acid chains attached to a glycerol backbone, with a phosphate group also attached to the glycerol.

Phosphatidate phosphatase functions to remove the phosphate group from phosphatidate, converting it into diacylglycerol (DAG). This reaction is an important step in the biosynthesis of glycerophospholipids, as DAG can be further metabolized to produce various types of these lipids, including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol.

There are two main types of phosphatidate phosphatase enzymes: type 1 and type 2. Type 1 phosphatidate phosphatase is primarily located in the cytosol and is involved in the synthesis of triacylglycerols, which are stored as energy reserves in cells. Type 2 phosphatidate phosphatase, on the other hand, is found on the endoplasmic reticulum membrane and plays a key role in the biosynthesis of glycerophospholipids.

Deficiencies or mutations in phosphatidate phosphatase enzymes can lead to various metabolic disorders, including some forms of lipodystrophy, which are characterized by abnormalities in fat metabolism and distribution.

Anti-HIV agents are a class of medications specifically designed to treat HIV (Human Immunodeficiency Virus) infection. These drugs work by interfering with various stages of the HIV replication cycle, preventing the virus from infecting and killing CD4+ T cells, which are crucial for maintaining a healthy immune system.

There are several classes of anti-HIV agents, including:

1. Nucleoside/Nucleotide Reverse Transcriptase Inhibitors (NRTIs): These drugs act as faulty building blocks that the virus incorporates into its genetic material, causing the replication process to halt. Examples include zidovudine (AZT), lamivudine (3TC), and tenofovir.
2. Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs): These medications bind directly to the reverse transcriptase enzyme, altering its shape and preventing it from functioning properly. Examples include efavirenz, nevirapine, and rilpivirine.
3. Protease Inhibitors (PIs): These drugs target the protease enzyme, which is responsible for cleaving viral polyproteins into functional components. By inhibiting this enzyme, PIs prevent the formation of mature, infectious virus particles. Examples include atazanavir, darunavir, and lopinavir.
4. Integrase Strand Transfer Inhibitors (INSTIs): These medications block the integrase enzyme, which is responsible for inserting the viral genetic material into the host cell's DNA. By inhibiting this step, INSTIs prevent the virus from establishing a permanent infection within the host cell. Examples include raltegravir, dolutegravir, and bictegravir.
5. Fusion/Entry Inhibitors: These drugs target different steps of the viral entry process, preventing HIV from infecting CD4+ T cells. Examples include enfuvirtide (T-20), maraviroc, and ibalizumab.
6. Post-Attachment Inhibitors: This class of medications prevents the virus from attaching to the host cell's receptors, thereby inhibiting infection. Currently, there is only one approved post-attachment inhibitor, fostemsavir.

Combination therapy using multiple classes of antiretroviral drugs has been shown to effectively suppress viral replication and improve clinical outcomes in people living with HIV. Regular adherence to the prescribed treatment regimen is crucial for maintaining an undetectable viral load and reducing the risk of transmission.

PPAR gamma, or Peroxisome Proliferator-Activated Receptor gamma, is a nuclear receptor protein that functions as a transcription factor. It plays a crucial role in the regulation of genes involved in adipogenesis (the process of forming mature fat cells), lipid metabolism, insulin sensitivity, and glucose homeostasis. PPAR gamma is primarily expressed in adipose tissue but can also be found in other tissues such as the immune system, large intestine, and brain.

PPAR gamma forms a heterodimer with another nuclear receptor protein, RXR (Retinoid X Receptor), and binds to specific DNA sequences called PPREs (Peroxisome Proliferator Response Elements) in the promoter regions of target genes. Upon binding, PPAR gamma modulates the transcription of these genes, either activating or repressing their expression.

Agonists of PPAR gamma, such as thiazolidinediones (TZDs), are used clinically to treat type 2 diabetes due to their insulin-sensitizing effects. These drugs work by binding to and activating PPAR gamma, which in turn leads to the upregulation of genes involved in glucose uptake and metabolism in adipose tissue and skeletal muscle.

In summary, PPAR gamma is a nuclear receptor protein that regulates gene expression related to adipogenesis, lipid metabolism, insulin sensitivity, and glucose homeostasis. Its activation has therapeutic implications for the treatment of type 2 diabetes and other metabolic disorders.

Adipocytes are specialized cells that comprise adipose tissue, also known as fat tissue. They are responsible for storing energy in the form of lipids, particularly triglycerides, and releasing energy when needed through a process called lipolysis. There are two main types of adipocytes: white adipocytes and brown adipocytes. White adipocytes primarily store energy, while brown adipocytes dissipate energy as heat through the action of uncoupling protein 1 (UCP1).

In addition to their role in energy metabolism, adipocytes also secrete various hormones and signaling molecules that contribute to whole-body homeostasis. These include leptin, adiponectin, resistin, and inflammatory cytokines. Dysregulation of adipocyte function has been implicated in the development of obesity, insulin resistance, type 2 diabetes, and cardiovascular disease.

Adipogenesis is the process by which precursor cells differentiate into mature adipocytes, or fat cells. This complex biological process involves a series of molecular and cellular events that are regulated by various genetic and epigenetic factors.

During adipogenesis, preadipocytes undergo a series of changes that include cell cycle arrest, morphological alterations, and the expression of specific genes that are involved in lipid metabolism and insulin sensitivity. These changes ultimately result in the formation of mature adipocytes that are capable of storing energy in the form of lipids.

Abnormalities in adipogenesis have been linked to various health conditions, including obesity, type 2 diabetes, and metabolic syndrome. Understanding the molecular mechanisms that regulate adipogenesis is an active area of research, as it may lead to the development of new therapies for these and other related diseases.

I'm sorry for any confusion, but "Oman" is not a medical term or concept. It is the name of a country, which is located on the southeastern coast of the Arabian Peninsula in Western Asia. If you have any questions related to medicine or healthcare, I would be happy to try and help answer those for you!

Subcutaneous fat, also known as hypodermic fat, is the layer of fat found beneath the skin and above the muscle fascia, which is the fibrous connective tissue covering the muscles. It serves as an energy reserve, insulation to maintain body temperature, and a cushion to protect underlying structures. Subcutaneous fat is distinct from visceral fat, which is found surrounding internal organs in the abdominal cavity.

Oligomenorrhea is a medical term used to describe infrequent menstrual periods, where the cycle length is more than 35 days but less than 68 days. It's considered a menstrual disorder and can affect people of reproductive age. The causes of oligomenorrhea are varied, including hormonal imbalances, polycystic ovary syndrome (PCOS), thyroid disorders, excessive exercise, significant weight loss or gain, and stress. In some cases, it may not cause any other symptoms, but in others, it can be associated with infertility, hirsutism (excessive hair growth), acne, or obesity. Treatment depends on the underlying cause and may include lifestyle modifications, hormonal medications, or surgery in rare cases.

Lipid metabolism is the process by which the body breaks down and utilizes lipids (fats) for various functions, such as energy production, cell membrane formation, and hormone synthesis. This complex process involves several enzymes and pathways that regulate the digestion, absorption, transport, storage, and consumption of fats in the body.

The main types of lipids involved in metabolism include triglycerides, cholesterol, phospholipids, and fatty acids. The breakdown of these lipids begins in the digestive system, where enzymes called lipases break down dietary fats into smaller molecules called fatty acids and glycerol. These molecules are then absorbed into the bloodstream and transported to the liver, which is the main site of lipid metabolism.

In the liver, fatty acids may be further broken down for energy production or used to synthesize new lipids. Excess fatty acids may be stored as triglycerides in specialized cells called adipocytes (fat cells) for later use. Cholesterol is also metabolized in the liver, where it may be used to synthesize bile acids, steroid hormones, and other important molecules.

Disorders of lipid metabolism can lead to a range of health problems, including obesity, diabetes, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). These conditions may be caused by genetic factors, lifestyle habits, or a combination of both. Proper diagnosis and management of lipid metabolism disorders typically involves a combination of dietary changes, exercise, and medication.

I must clarify that the term "pedigree" is not typically used in medical definitions. Instead, it is often employed in genetics and breeding, where it refers to the recorded ancestry of an individual or a family, tracing the inheritance of specific traits or diseases. In human genetics, a pedigree can help illustrate the pattern of genetic inheritance in families over multiple generations. However, it is not a medical term with a specific clinical definition.

I could not find a medical definition specifically for "Cocos." However, Cocos is a geographical name that may refer to:

* The Cocos (Keeling) Islands, an Australian territory in the Indian Ocean.
* Cocos nucifera, the scientific name for the coconut palm tree.

There are some medical conditions related to the consumption of coconuts or exposure to the coconut palm tree, such as allergies to coconut products, but there is no specific medical term "Cocos."

Subcutaneous tissue, also known as the subcutis or hypodermis, is the layer of fatty connective tissue found beneath the dermis (the inner layer of the skin) and above the muscle fascia. It is composed mainly of adipose tissue, which serves as a energy storage reservoir and provides insulation and cushioning to the body. The subcutaneous tissue also contains blood vessels, nerves, and immune cells that support the skin's functions. This layer varies in thickness depending on the location in the body and can differ significantly between individuals based on factors such as age, genetics, and weight.

MedlinePlus is not a medical term, but rather a consumer health website that provides high-quality, accurate, and reliable health information, written in easy-to-understand language. It is produced by the U.S. National Library of Medicine, the world's largest medical library, and is widely recognized as a trusted source of health information.

MedlinePlus offers information on various health topics, including conditions, diseases, tests, treatments, and wellness. It also provides access to drug information, medical dictionary, and encyclopedia, as well as links to clinical trials, medical news, and patient organizations. The website is available in both English and Spanish and can be accessed for free.

No FAQ available that match "lipodystrophy"

No images available that match "lipodystrophy"