Pupillary constriction. This may result from congenital absence of the dilatator pupillary muscle, defective sympathetic innervation, or irritation of the CONJUNCTIVA or CORNEA.
The aperture in the iris through which light passes.
Agents causing contraction of the pupil of the eye. Some sources use the term miotics only for the parasympathomimetics but any drug used to induce miosis is included here.
A syndrome associated with defective sympathetic innervation to one side of the face, including the eye. Clinical features include MIOSIS; mild BLEPHAROPTOSIS; and hemifacial ANHIDROSIS (decreased sweating)(see HYPOHIDROSIS). Lesions of the BRAIN STEM; cervical SPINAL CORD; first thoracic nerve root; apex of the LUNG; CAROTID ARTERY; CAVERNOUS SINUS; and apex of the ORBIT may cause this condition. (From Miller et al., Clinical Neuro-Ophthalmology, 4th ed, pp500-11)
Agents that dilate the pupil. They may be either sympathomimetics or parasympatholytics.
An organophosphorus ester compound that produces potent and irreversible inhibition of cholinesterase. It is toxic to the nervous system and is a chemical warfare agent.
Constriction of the pupil in response to light stimulation of the retina. It refers also to any reflex involving the iris, with resultant alteration of the diameter of the pupil. (Cline et al., Dictionary of Visual Science, 4th ed)
The most anterior portion of the uveal layer, separating the anterior chamber from the posterior. It consists of two layers - the stroma and the pigmented epithelium. Color of the iris depends on the amount of melanin in the stroma on reflection from the pigmented epithelium.
Diseases, dysfunctions, or disorders of or located in the iris.
An alpha-adrenergic blocking agent that is used in Raynaud's disease. It is also used locally in the eye to reverse the mydriasis caused by phenylephrine and other sympathomimetic agents. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1312)
A slowly hydrolyzed muscarinic agonist with no nicotinic effects. Pilocarpine is used as a miotic and in the treatment of glaucoma.
The clear, watery fluid which fills the anterior and posterior chambers of the eye. It has a refractive index lower than the crystalline lens, which it surrounds, and is involved in the metabolism of the cornea and the crystalline lens. (Cline et al., Dictionary of Visual Science, 4th ed, p319)
The pressure of the fluids in the eye.
The application of drug preparations to the surfaces of the body, especially the skin (ADMINISTRATION, CUTANEOUS) or mucous membranes. This method of treatment is used to avoid systemic side effects when high doses are required at a localized area or as an alternative systemic administration route, to avoid hepatic processing for example.
A condition or physical state produced by the ingestion, injection, inhalation of or exposure to a deleterious agent.
Sterile solutions that are intended for instillation into the eye. It does not include solutions for cleaning eyeglasses or CONTACT LENS SOLUTIONS.
The removal of a cataractous CRYSTALLINE LENS from the eye.

The histologic classification of 602 cases of feline lymphoproliferative disease using the National Cancer Institute working formulation. (1/44)

Case information and histologic slides for 688 admissions of feline tissues from 12 veterinary institutions were assembled and reviewed to determine tissues obtained by biopsy or necropsy, age and sex of cat, tumor topography, feline leukemia viral antigen status, histologic frequency of mitoses, diagnosis, presence of necrosis, and presence and degree of sclerosis. Histologic sections were examined to place the lesions in one of the diagnostic categories of the National Cancer Institute working formulation (NCI WF) for lymphomas or lymphoid leukemia. Correlations between the various factors determined were tested using contingency tables and chi-square analysis to provide a statistical comparison between the levels of observations determined by case examination with the numbers expected from chance alone. Significant correlations (P < or = 0.05) were found between diagnosis and tumor topography, the frequency of mitoses, necrosis, sclerosis, and age, between mitoses and necrosis, topography, age, and feline leukemia viral infection status, between topography and necrosis and age, and between leukemia viral status and age. Significant correlations between diagnosis and tumor topography included a greater than expected number of cases of acute and chronic lymphoid leukemia and multicentric distribution of tumor. Small cell lymphomas were more frequent than expected in enteric and cutaneous areas and less frequent than expected in mediastinal, renal, and multicentric areas. In contrast, the high-grade small noncleaved type of lymphomas was found significantly more frequently than expected in the mediastinum and less frequently than expected in enteric tissues. In comparing diagnosis and frequency of mitoses, the lymphomas classified as low grade by the NCI WF were significantly more frequent than expected in the lower categories (0-2/100x) of mitoses, and those classified as high-grade lymphomas were more frequent than expected in the higher categories (4-8/1OOx) of mitoses. In comparing diagnosis and sclerosis, diffuse sclerosis was more frequent than expected for the intermediate grade lymphomas of mixed cell type and for the high-grade lymphomas of the immunoblastic polymorphous type. In comparing diagnosis and locally extensive necrosis, this feature was more frequently observed than expected for cases of intermediate grade lymphoma of the small-cleaved cell category and for the high-grade lymphoma of the immunoblastic cell type. In comparing mitoses and necrosis, the lower grade lymphomas were, in general, characterized by a lower frequency of mitoses and a lower incidence of necrosis then would be expected from chance alone. In contrast, the higher grade lymphomas were characterized by more frequent mitoses and a higher incidence of necrosis. In tests comparing mitoses and tumor topography, lymphomas of the alimentary tract were more frequently observed than expected in the category with the lowest level of mitoses (0-1/100x), whereas lymphomas of the mediastinum and kidney were more frequently observed than expected in the categories with a higher level (4-20/ 100x) of mitoses.  (+info)

Basilar artery aneurysm with autonomic features: an interesting pathophysiological problem. (2/44)

Unruptured cerebral aneurysms often present with neuro-ophthalmological symptoms but ocular autonomic involvement from an aneurysm of the posterior circulation has not previously been reported. A patient is described with a basilar artery aneurysm presenting with headache and unilateral autonomic symptoms. After angiographic coiling of the aneurysm there was a near complete resolution of these features. The relevant anatomy and proposed mechanism of autonomic involvement of what may be considered--from a pathophysiological perspective as a secondary trigeminal-autonomic cephalgia--is discussed  (+info)

Effect of pituitary adenylate cyclase-activating peptide on isolated rabbit iris sphincter and dilator muscles. (3/44)

PURPOSE: Pituitary adenylate cyclase-activating peptide (PACAP) is a sensory neuropeptide in the eye that is released by noxious stimuli and considered to be a mediator of the neurogenic ocular injury response, including miosis. The purpose of this study was to clarify the functional role of PACAP in iris sphincter and dilator muscles. METHODS: Iris sphincter and dilator muscles were isolated from rabbit eyes, and the effect of PACAP on mechanical responses of these muscles using isometric tension-recording methods was investigated. RESULTS: The iris sphincter responded to electric field stimulation with contractions composed of fast twitch and subsequent slow components. Both PACAP 27 and PACAP 38 enhanced the twitch response, but neither had an effect on the slow response. The effect of both PACAPs on the twitch response was dose dependent. Neither PACAP had an effect on the amplitude of contraction evoked by exogenously applied Ach. For the iris dilator muscle, PACAP 27 inhibited the contractions induced by field stimulation or phenylephrine, whereas PACAP 38 had no effect. CONCLUSIONS: Both PACAP 27 and PACAP 38 enhance cholinergic transmission in sphincter muscle. The PACAP 27 induces relaxation of the dilator muscle by a direct effect on the muscle itself. The PACAP released during an ocular inflammatory response may induce miosis by the enhancement of cholinergic stimulation of the iris sphincter and by direct relaxation of the dilator muscles.  (+info)

Interaction of exposure concentration and duration in determining acute toxic effects of sarin vapor in rats. (4/44)

Sarin (GB) vapor exposure is associated with both systemic and local toxic effects occurring primarily via the inhalation and ocular routes. The objective of these studies was to develop models for predicting dose-response effects of GB vapor concentrations as a function of exposure duration. Thus, the probability of GB vapor-induced lethality was estimated in rats exposed to various combinations of exposure concentration and duration. Groups of male and female Sprague-Dawley rats were exposed to one of a series of GB vapor concentrations for a single duration (5-360 min) in a whole-body dynamic chamber. The onset of clinical signs and changes in blood cholinesterase activity were measured with each exposure. Separate effective concentrations for lethality in 50% of the exposed population (LC50) and corresponding dose-response slopes were determined for each exposure duration by the Bliss probit method. Contrary to that predicted by Haber's rule, the interaction of LC50 x time (LCT50) values increased with exposure duration (i.e., the CT for 50% lethality in the exposed population and corresponding dose-response slope was not constant over time). A plot of log (LCT50) versus log (exposure time) showed significant curvature. Predictive models derived from multifactor probit analysis of results describing the relationship between exposure conditions and probability of lethality in the rat are discussed. Overall, female rats were more sensitive to GB vapor toxicity than male rats over the range of exposure concentration and duration studied. Miosis was the initial clinical sign noted after the start of GB vapor exposure. Although blood cholinesterase activity was significantly inhibited by GB vapor exposure, poor correlation between cholinesterase inhibition and exposure conditions or cholinesterase inhibition and severity of clinical signs was noted.  (+info)

Mice lacking M2 and M3 muscarinic acetylcholine receptors are devoid of cholinergic smooth muscle contractions but still viable. (5/44)

Cholinergic agents elicit prominent smooth muscle contractions via stimulation of muscarinic receptors that comprise five distinct subtypes (M1-M5). Although such contractions are important for autonomic organs, the role of each subtype has not been characterized precisely because of the poor selectivity of the currently available muscarinic ligands. Here, we generated a mutant mouse line (M2-/-M3-/- mice) lacking M2 and M3 receptors that are implicated in such cholinergic contractions. The relative contributions of M2 and M3 receptors in vitro was approximately 5 and 95% for the detrusor muscle contraction and approximately 25 and 75% for the ileal longitudinal muscle contraction, respectively. Thus, M1, M4, or M5 receptors do not seem to play a role in such contractions. Despite the complete lack of cholinergic contractions in vitro, M2-/-M3-/- mice were viable, fertile, and free of apparent intestinal complications. The urinary bladder was distended only in males, which excludes a major contribution by cholinergic mechanisms to the urination in females. Thus, cholinergic mechanisms are dispensable in gastrointestinal motility and female urination. After 10 Hz electrical field stimulation, noncholinergic inputs were found to be increased in the ileum of M2-/-M3-/- females, which may account for the lack of apparent functional deficits. Interestingly, the M2-/-M3-/- mice had smaller ocular pupils than M3-deficient mice. The results suggest a novel role of M2 in the pupillary dilation, contrary to the well known cholinergic constriction. These results collectively suggest that an additional mechanism operates in the control of pupillary constriction-dilatation.  (+info)

New fluoroprostaglandin F(2alpha) derivatives with prostanoid FP-receptor agonistic activity as potent ocular-hypotensive agents. (6/44)

To find new prostanoid FP-receptor agonists possessing potent ocular-hypotensive effects with minimal side effects, we evaluated the agonistic activities of newly synthesized prostaglandin F(2alpha) derivatives for the prostanoid FP-receptor both in vitro and in vivo. The iris constrictions induced by the derivatives and their effects on melanin content were examined using cat isolated iris sphincters and cultured B16 melanoma cells, respectively. The effects of derivative ester forms on miosis and intraocular pressure (IOP) were evaluated in cats and cynomolgus monkeys, respectively. Of these derivatives, 6 out of 12 compounds were more potent iris constrictors, with EC(50) values of 0.6 to 9.4 nM, than a carboxylic acid of latanoprost (EC(50)=13.6 nM). A carboxylic acid of latanoprost (100 microM) significantly increased the melanin content of cultured B16 melanoma cells, but some 15,15-difluoro derivatives, such as AFP-157 and AFP-172, did not. Topically applied AFP-168, AFP-169 and AFP-175 (isopropyl ester, methyl ester and ethyl ester forms, respectively, of AFP-172) induced miosis in cats more potently than latanoprost. AFP-168 (0.0005%) reduced IOP to the same extent as 0.005% latanoprost (for at least 8 h). These findings indicate that 15,15-difluoroprostaglandin F(2alpha) derivatives, especially AFP-168, have more potent prostanoid FP-receptor agonistic activities than latanoprost. Hence, AFP-168 may be worthy of further evaluation as an ocular-hypotensive agent.  (+info)

Passive transfer of autoimmune autonomic neuropathy to mice. (7/44)

Autoimmune autonomic neuropathy (AAN) is an acquired, often severe, form of dysautonomia. Many patients with AAN have serum antibodies specific for the neuronal ganglionic nicotinic acetylcholine receptor (AChR). Rabbits immunized with a fusion protein corresponding to the N-terminal extracellular domain of the ganglionic AChR alpha3 subunit produce ganglionic AChR antibodies and develop signs of experimental AAN (EAAN) that recapitulate the cardinal autonomic features of AAN in man. We now demonstrate that EAAN is an antibody-mediated disorder by documenting sympathetic, parasympathetic, and enteric autonomic dysfunction in mice injected with rabbit IgG containing ganglionic AChR antibodies. Recipient mice develop transient gastrointestinal dysmotility, urinary retention, dilated pupils, reduced heart rate variability, and impaired catecholamine response to stress. The autonomic signs are associated with a reversible failure of nicotinic cholinergic synaptic transmission in superior mesenteric ganglia. Mice injected with IgG from two patients with AAN (of three tested) demonstrated a milder phenotype with evidence of urinary retention and gastrointestinal dysmotility. The demonstration that ganglionic AChR-specific IgG causes impaired autonomic synaptic transmission and autonomic failure in mice implicates an antibody-mediated pathogenesis for AAN. The antibody effect is potentially reversible, justifying early use of immunomodulatory therapy directed at lowering IgG levels and abrogating IgG production in patients with AAN.  (+info)

Regulation of Src kinase activity during Xenopus oocyte maturation. (8/44)

Expression of constitutively active Src protein tyrosine kinase in Xenopus oocytes has been shown to accelerate oocyte maturation suggesting that Src may be involved in meiotic progression. However, meiotic regulation of endogenous Src kinase in oocytes has not been investigated in detail. To address this problem, we measured the activity, expression level, and phosphorylation state of the endogenous Xenopus Src (xSrc) and overexpressed xSrc mutants in the process of progesterone-induced oocyte maturation. We found that the enzyme is first transiently activated in the plasma membrane-containing fraction of oocytes within 3 min of progesterone administration. This event represents one of the earliest responses of oocytes to the hormone and should be related to triggering some early signaling pathways of maturation. Thereafter, xSrc activity increases again at the time of germinal vesicle breakdown (GVBD) and remains elevated till the completion of maturation. This elevation of xSrc activity is associated with a 2-fold increase of xSrc protein content in the absence of change in its specific activity and xSrc mRNA content. No significant changes in the phosphorylation state of C-terminal regulatory phosphotyrosine can be registered either in endogenous xSrc or in overexpressed kinase-negative and wild-type xSrc proteins during maturation. Altogether, these results indicate that upregulation of xSrc in the meiotic metaphase occurs at the translation level. We also demonstrate here that the expression of constitutively active xSrc in Xenopus oocytes is accompanied by the activation of mitogen-activated protein kinase (MAPK). Our data suggest that the Src kinase acts through the MAPK pathway to accelerate oocyte maturation.  (+info)

Miosis is the medical term for the constriction or narrowing of the pupil of the eye. It's a normal response to close up viewing, as well as a reaction to certain drugs like opioids and pilocarpine. Conversely, dilation of the pupils is called mydriasis. Miosis can be also a symptom of certain medical conditions such as Horner's syndrome or third cranial nerve palsy.

A pupil, in medical terms, refers to the circular opening in the center of the iris (the colored part of the eye) that allows light to enter and reach the retina. The size of the pupil can change involuntarily in response to light intensity and emotional state, as well as voluntarily through certain eye exercises or with the use of eye drops. Pupillary reactions are important in clinical examinations as they can provide valuable information about the nervous system's functioning, particularly the brainstem and cranial nerves II and III.

Miotics, also known as parasympathomimetics or cholinergic agents, are a class of medications that stimulate the parasympathetic nervous system. They work by activating muscarinic receptors, which are found in various organs throughout the body, including the eye. In the eye, miotics cause contraction of the circular muscle of the iris, resulting in pupillary constriction (miosis). This action can help to reduce intraocular pressure in patients with glaucoma.

Miotics may also have other effects on the eye, such as accommodation (focusing) and decreasing the production of aqueous humor. Some examples of miotics include pilocarpine, carbachol, and ecothiopate. It's important to note that the use of miotics can have side effects, including blurred vision, headache, and brow ache.

Horner syndrome, also known as Horner's syndrome or oculosympathetic palsy, is a neurological disorder characterized by the interruption of sympathetic nerve pathways that innervate the head and neck, leading to a constellation of signs affecting the eye and face on one side of the body.

The classic triad of symptoms includes:

1. Ptosis (drooping) of the upper eyelid: This is due to the weakness or paralysis of the levator palpebrae superioris muscle, which is responsible for elevating the eyelid.
2. Miosis (pupillary constriction): The affected pupil becomes smaller in size compared to the other side, and it may not react as robustly to light.
3. Anhydrosis (decreased sweating): There is reduced or absent sweating on the ipsilateral (same side) of the face, particularly around the forehead and upper eyelid.

Horner syndrome can be caused by various underlying conditions, such as brainstem stroke, tumors, trauma, or certain medical disorders affecting the sympathetic nervous system. The diagnosis typically involves a thorough clinical examination, pharmacological testing, and sometimes imaging studies to identify the underlying cause. Treatment is directed towards managing the underlying condition responsible for Horner syndrome.

Mydriatics are medications that cause mydriasis, which is the dilation of the pupil. These drugs work by blocking the action of the muscarinic receptors in the iris, leading to relaxation of the circular muscle and constriction of the radial muscle, resulting in pupil dilation. Mydriatics are often used in eye examinations to facilitate examination of the interior structures of the eye. Commonly used mydriatic agents include tropicamide, phenylephrine, and cyclopentolate. It is important to note that mydriatics can have side effects such as blurred vision, photophobia, and accommodation difficulties, so patients should be advised accordingly.

Sarin is a potent and deadly nerve agent, a type of organic compound called a phosphoro-organic fluid. It is a colorless, odorless, and tasteless liquid, which is also known as GB. Sarin is a human-made chemical warfare agent that is considered a weapon of mass destruction and is banned under the Chemical Weapons Convention of 1993.

Sarin works by inhibiting the enzyme acetylcholinesterase, which is responsible for breaking down the neurotransmitter acetylcholine in the body. This leads to an overaccumulation of acetylcholine at the neuromuscular junctions and synapses, causing uncontrolled muscle contractions, paralysis, respiratory failure, and ultimately death if not treated promptly.

Exposure to Sarin can occur through inhalation, skin contact, or ingestion. Symptoms of exposure include runny nose, tightness in the chest, difficulty breathing, nausea, vomiting, diarrhea, blurred vision, and confusion. Immediate medical attention is required for anyone exposed to Sarin, as antidotes such as atropine and pralidoxime can be administered to counteract its effects.

A pupillary reflex is a type of reflex that involves the constriction or dilation of the pupils in response to changes in light or near vision. It is mediated by the optic and oculomotor nerves. The pupillary reflex helps regulate the amount of light that enters the eye, improving visual acuity and protecting the retina from excessive light exposure.

In a clinical setting, the pupillary reflex is often assessed as part of a neurological examination. A normal pupillary reflex consists of both direct and consensual responses. The direct response occurs when light is shone into one eye and the pupil of that same eye constricts. The consensual response occurs when light is shone into one eye, causing the pupil of the other eye to also constrict.

Abnormalities in the pupillary reflex can indicate various neurological conditions, such as brainstem injuries or diseases affecting the optic or oculomotor nerves.

In medical terms, the iris refers to the colored portion of the eye that surrounds the pupil. It is a circular structure composed of thin, contractile muscle fibers (radial and circumferential) arranged in a regular pattern. These muscles are controlled by the autonomic nervous system and can adjust the size of the pupil in response to changes in light intensity or emotional arousal. By constricting or dilating the iris, the amount of light entering the eye can be regulated, which helps maintain optimal visual acuity under various lighting conditions.

The color of the iris is determined by the concentration and distribution of melanin pigments within the iris stroma. The iris also contains blood vessels, nerves, and connective tissue that support its structure and function. Anatomically, the iris is continuous with the ciliary body and the choroid, forming part of the uveal tract in the eye.

Iris diseases refer to a variety of conditions that affect the iris, which is the colored part of the eye that regulates the amount of light reaching the retina by adjusting the size of the pupil. Some common iris diseases include:

1. Iritis: This is an inflammation of the iris and the adjacent tissues in the eye. It can cause pain, redness, photophobia (sensitivity to light), and blurred vision.
2. Aniridia: A congenital condition characterized by the absence or underdevelopment of the iris. This can lead to decreased visual acuity, sensitivity to light, and an increased risk of glaucoma.
3. Iris cysts: These are fluid-filled sacs that form on the iris. They are usually benign but can cause vision problems if they grow too large or interfere with the function of the eye.
4. Iris melanoma: A rare type of eye cancer that develops in the pigmented cells of the iris. It can cause symptoms such as blurred vision, floaters, and changes in the appearance of the iris.
5. Iridocorneal endothelial syndrome (ICE): A group of rare eye conditions that affect the cornea and the iris. They are characterized by the growth of abnormal tissue on the back surface of the cornea and can lead to vision loss.

It is important to seek medical attention if you experience any symptoms of iris diseases, as early diagnosis and treatment can help prevent complications and preserve your vision.

Moxisylyte is a muscle relaxant that is primarily used in the form of a topical cream or ointment to help relieve pain and discomfort associated with minor strains, sprains, and bruises. It works by blocking the signals that are sent from the nerves to the brain, which can help to reduce the sensation of pain. Moxisylyte is also known as a vasodilator, meaning that it causes the blood vessels to widen, which can improve blood flow and help to promote healing in the affected area. It is important to note that moxisylyte is not typically used as an oral medication, and it should only be used under the guidance of a healthcare professional.

Pilocarpine is a cholinergic agonist, which means it stimulates the parasympathetic nervous system by binding to muscarinic receptors. It is primarily used in the treatment of dry mouth (xerostomia) caused by radiation therapy or Sjögren's syndrome, as well as in the management of glaucoma due to its ability to construct the pupils and reduce intraocular pressure. Pilocarpine can also be used to treat certain cardiovascular conditions and chronic bronchitis. It is available in various forms, including tablets, ophthalmic solutions, and topical gels.

Aqueous humor is a clear, watery fluid that fills the anterior and posterior chambers of the eye. It is produced by the ciliary processes in the posterior chamber and circulates through the pupil into the anterior chamber, where it provides nutrients to the cornea and lens, maintains intraocular pressure, and helps to shape the eye. The aqueous humor then drains out of the eye through the trabecular meshwork and into the canal of Schlemm, eventually reaching the venous system.

Intraocular pressure (IOP) is the fluid pressure within the eye, specifically within the anterior chamber, which is the space between the cornea and the iris. It is measured in millimeters of mercury (mmHg). The aqueous humor, a clear fluid that fills the anterior chamber, is constantly produced and drained, maintaining a balance that determines the IOP. Normal IOP ranges from 10-21 mmHg, with average values around 15-16 mmHg. Elevated IOP is a key risk factor for glaucoma, a group of eye conditions that can lead to optic nerve damage and vision loss if not treated promptly and effectively. Regular monitoring of IOP is essential in diagnosing and managing glaucoma and other ocular health issues.

Topical administration refers to a route of administering a medication or treatment directly to a specific area of the body, such as the skin, mucous membranes, or eyes. This method allows the drug to be applied directly to the site where it is needed, which can increase its effectiveness and reduce potential side effects compared to systemic administration (taking the medication by mouth or injecting it into a vein or muscle).

Topical medications come in various forms, including creams, ointments, gels, lotions, solutions, sprays, and patches. They may be used to treat localized conditions such as skin infections, rashes, inflammation, or pain, or to deliver medication to the eyes or mucous membranes for local or systemic effects.

When applying topical medications, it is important to follow the instructions carefully to ensure proper absorption and avoid irritation or other adverse reactions. This may include cleaning the area before application, covering the treated area with a dressing, or avoiding exposure to sunlight or water after application, depending on the specific medication and its intended use.

Poisoning is defined medically as the harmful, sometimes fatal, effect produced by a substance when it is introduced into or absorbed by living tissue. This can occur through various routes such as ingestion, inhalation, injection, or absorption through the skin. The severity of poisoning depends on the type and amount of toxin involved, the route of exposure, and the individual's age, health status, and susceptibility. Symptoms can range from mild irritation to serious conditions affecting multiple organs, and may include nausea, vomiting, diarrhea, abdominal pain, difficulty breathing, seizures, or unconsciousness. Immediate medical attention is required in cases of poisoning to prevent severe health consequences or death.

Ophthalmic solutions are sterile, single-use or multi-dose preparations in a liquid form that are intended for topical administration to the eye. These solutions can contain various types of medications, such as antibiotics, anti-inflammatory agents, antihistamines, or lubricants, which are used to treat or prevent ocular diseases and conditions.

The pH and osmolarity of ophthalmic solutions are carefully controlled to match the physiological environment of the eye and minimize any potential discomfort or irritation. The solutions may be packaged in various forms, including drops, sprays, or irrigations, depending on the intended use and administration route.

It is important to follow the instructions for use provided by a healthcare professional when administering ophthalmic solutions, as improper use can lead to eye injury or reduced effectiveness of the medication.

Cataract extraction is a surgical procedure that involves removing the cloudy lens (cataract) from the eye. This procedure is typically performed to restore vision impairment caused by cataracts and improve overall quality of life. There are two primary methods for cataract extraction:

1. Phacoemulsification: This is the most common method used today. It involves making a small incision in the front part of the eye (cornea), inserting an ultrasonic probe to break up the cloudy lens into tiny pieces, and then removing those pieces with suction. After removing the cataract, an artificial intraocular lens (IOL) is inserted to replace the natural lens and help focus light onto the retina.

2. Extracapsular Cataract Extraction: In this method, a larger incision is made on the side of the cornea, allowing the surgeon to remove the cloudy lens in one piece without breaking it up. The back part of the lens capsule is left intact to support the IOL. This technique is less common and typically reserved for more advanced cataracts or when phacoemulsification cannot be performed.

Recovery from cataract extraction usually involves using eye drops to prevent infection and inflammation, as well as protecting the eye with a shield or glasses during sleep for a few weeks after surgery. Most people experience improved vision within a few days to a week following the procedure.

No FAQ available that match "miosis"

No images available that match "miosis"