A species of gram-positive, aerobic bacteria that causes LEPROSY in man. Its organisms are generally arranged in clumps, rounded masses, or in groups of bacilli side by side.
A chronic granulomatous infection caused by MYCOBACTERIUM LEPRAE. The granulomatous lesions are manifested in the skin, the mucous membranes, and the peripheral nerves. Two polar or principal types are lepromatous and tuberculoid.
Burrowing, chiefly nocturnal mammals of the family Dasypodidae having bodies and heads encased in small bony plates. They are widely distributed in the warmer parts of the Americas.
A genus of gram-positive, aerobic bacteria. Most species are free-living in soil and water, but the major habitat for some is the diseased tissue of warm-blooded hosts.
A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation.
Substances that suppress Mycobacterium leprae, ameliorate the clinical manifestations of leprosy, and/or reduce the incidence and severity of leprous reactions.
A chronic communicable infection which is a principal or polar form of LEPROSY. This disorder is caused by MYCOBACTERIUM LEPRAE and produces diffuse granulomatous skin lesions in the form of nodules, macules, or papules. The peripheral nerves are involved symmetrically and neural sequelae occur in the advanced stage.
The bovine variety of the tubercle bacillus. It is called also Mycobacterium tuberculosis var. bovis.
Infections with bacteria of the genus MYCOBACTERIUM.
Lepromin is a sterile suspension of Mycobacterium leprae, utilized in intradermal tests to determine the type of immune response in leprosy patients, distinguishing between tuberculoid and lepromatous forms.
A bacterium causing tuberculosis in domestic fowl and other birds. In pigs, it may cause localized and sometimes disseminated disease. The organism occurs occasionally in sheep and cattle. It should be distinguished from the M. avium complex, which infects primarily humans.
A principal or polar form of LEPROSY in which the skin lesions are few and are sharply demarcated. Peripheral nerve involvement is pronounced and may be severe. Unlike lepromatous leprosy (LEPROSY, LEPROMATOUS), the lepromin test is positive. Tuberculoid leprosy is rarely a source of infection to others.
A rapid-growing, nonphotochromogenic species of MYCOBACTERIUM originally isolated from human smegma and found also in soil and water. (From Dorland, 28th ed)
So-called atypical species of the genus MYCOBACTERIUM that do not cause tuberculosis. They are also called tuberculoid bacilli, i.e.: M. buruli, M. chelonae, M. duvalii, M. flavescens, M. fortuitum, M. gilvum, M. gordonae, M. intracellulare (see MYCOBACTERIUM AVIUM COMPLEX;), M. kansasii, M. marinum, M. obuense, M. scrofulaceum, M. szulgai, M. terrae, M. ulcerans, M. xenopi.
Substances elaborated by bacteria that have antigenic activity.
An order of New World mammals characterized by the absence of incisors and canines from among their teeth, and comprising the ARMADILLOS, the SLOTHS, and the anteaters. The order is distinguished from all others by what are known as xenarthrous vertebrae (xenos, strange; arthron, joint): there are secondary, and sometimes even more, articulations between the vertebrae of the lumbar series. The order was formerly called Edentata. (From Random House Unabridged Dictionary, 2d ed; Walker's Mammals of the World, 5th ed, vol. I, p515)
Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage)
A sulfone active against a wide range of bacteria but mainly employed for its actions against MYCOBACTERIUM LEPRAE. Its mechanism of action is probably similar to that of the SULFONAMIDES which involves inhibition of folic acid synthesis in susceptible organisms. It is also used with PYRIMETHAMINE in the treatment of malaria. (From Martindale, The Extra Pharmacopoeia, 30th ed, p157-8)
A complex that includes several strains of M. avium. M. intracellulare is not easily distinguished from M. avium and therefore is included in the complex. These organisms are most frequently found in pulmonary secretions from persons with a tuberculous-like mycobacteriosis. Strains of this complex have also been associated with childhood lymphadenitis and AIDS; M. avium alone causes tuberculosis in a variety of birds and other animals, including pigs.
Infections with nontuberculous mycobacteria (atypical mycobacteria): M. kansasii, M. marinum, M. scrofulaceum, M. flavescens, M. gordonae, M. obuense, M. gilvum, M. duvali, M. szulgai, M. intracellulare (see MYCOBACTERIUM AVIUM COMPLEX;), M. xenopi (littorale), M. ulcerans, M. buruli, M. terrae, M. fortuitum (minetti, giae), M. chelonae.
A form of LEPROSY in which there are clinical manifestations of both principal types (lepromatous and tuberculoid). The disease may shift toward one of these two polar or principal forms.
Proteins found in any species of bacterium.
A rapid-growing, nonphotochromogenic species that is potentially pathogenic, producing lesions of lung, bone, or soft tissue following trauma. It has been found in soil and in injection sites of humans, cattle, and cold-blooded animals. (Dorland, 28th ed)
Any of the infectious diseases of man and other animals caused by species of MYCOBACTERIUM.
The etiologic agent of rat leprosy, also known as murine leprosy.
An active immunizing agent and a viable avirulent attenuated strain of Mycobacterium tuberculosis, var. bovis, which confers immunity to mycobacterial infections. It is used also in immunotherapy of neoplasms due to its stimulation of antibodies and non-specific immunity.
A moderate-growing, photochromogenic species found in aquariums, diseased fish, and swimming pools. It is the cause of cutaneous lesions and granulomas (swimming pool granuloma) in humans. (Dorland, 28th ed)
Deoxyribonucleic acid that makes up the genetic material of bacteria.
A species of gram-positive, aerobic bacteria commonly found in soil and occasionally isolated from sputum. It causes postoperative wound infections as well as gluteal abscesses.
A fat-soluble riminophenazine dye used for the treatment of leprosy. It has been used investigationally in combination with other antimycobacterial drugs to treat Mycobacterium avium infections in AIDS patients. Clofazimine also has a marked anti-inflammatory effect and is given to control the leprosy reaction, erythema nodosum leprosum. (From AMA Drug Evaluations Annual, 1993, p1619)
A subspecies of gram-positive, aerobic bacteria. It is the etiologic agent of Johne's disease (PARATUBERCULOSIS), a chronic GASTROENTERITIS in RUMINANTS.
Mycolic acids are complex, long-chain fatty acids that are a major component of the cell wall of Mycobacterium species, including the causative agents of tuberculosis and leprosy, providing them with unique characteristics such as resistance to acid-alkali stability, pigmentation, and protection against host immune responses.
A semisynthetic antibiotic produced from Streptomyces mediterranei. It has a broad antibacterial spectrum, including activity against several forms of Mycobacterium. In susceptible organisms it inhibits DNA-dependent RNA polymerase activity by forming a stable complex with the enzyme. It thus suppresses the initiation of RNA synthesis. Rifampin is bactericidal, and acts on both intracellular and extracellular organisms. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1160)
An erythematous eruption commonly associated with drug reactions or infection and characterized by inflammatory nodules that are usually tender, multiple, and bilateral. These nodules are located predominantly on the shins with less common occurrence on the thighs and forearms. They undergo characteristic color changes ending in temporary bruise-like areas. This condition usually subsides in 3-6 weeks without scarring or atrophy.
A slow-growing, photochromogenic species that is the etiologic agent of a tuberculosis-like disease in humans and is frequently isolated from human pulmonary secretions or tubercles. The incidence of infection is sharply increased among immunocompromised individuals. (Dorland, 28th ed)
A nontuberculous infection when occurring in humans. It is characterized by pulmonary disease, lymphadenitis in children, and systemic disease in AIDS patients. Mycobacterium avium-intracellulare infection of birds and swine results in tuberculosis.
A saprophytic bacterium widely distributed in soil and dust and on plants.
Immunoglobulins produced in a response to BACTERIAL ANTIGENS.
A slow-growing mycobacterium that infects the skin and subcutaneous tissues, giving rise to indolent BURULI ULCER.
The study of disease in prehistoric times as revealed in bones, mummies, and archaeologic artifacts.
MYCOBACTERIUM infections of the lung.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Drugs used in the treatment of tuberculosis. They are divided into two main classes: "first-line" agents, those with the greatest efficacy and acceptable degrees of toxicity used successfully in the great majority of cases; and "second-line" drugs used in drug-resistant cases or those in which some other patient-related condition has compromised the effectiveness of primary therapy.
The period of history from the year 500 through 1450 of the common era.
The functional hereditary units of BACTERIA.
A group I chaperonin protein that forms the barrel-like structure of the chaperonin complex. It is an oligomeric protein with a distinctive structure of fourteen subunits, arranged in two rings of seven subunits each. The protein was originally studied in BACTERIA where it is commonly referred to as GroEL protein.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
A family of multisubunit protein complexes that form into large cylindrical structures which bind to and encapsulate non-native proteins. Chaperonins utilize the energy of ATP hydrolysis to enhance the efficiency of PROTEIN FOLDING reactions and thereby help proteins reach their functional conformation. The family of chaperonins is split into GROUP I CHAPERONINS, and GROUP II CHAPERONINS, with each group having its own repertoire of protein subunits and subcellular preferences.
A form of LEPROSY classified by the World Health Organization for the purpose of treatment, based on clinical manifestations and skin smear results. Patients with multibacillary leprosy have six or more lesions with or without positive skin smear results for the causative agent MYCOBACTERIUM LEPRAE. Multibacillary leprosy encompasses borderline lepromatous, midborderline, and lepromatous leprosy.
Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons.
An increased reactivity to specific antigens mediated not by antibodies but by cells.
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
Skin tests in which the sensitizer is injected.
A form of LEPROSY classified by the World Health Organization for the purpose of treatment, based on clinical manifestations and skin smear results. Patients with paucibacillary leprosy have fewer than six skin lesions with no causative agent MYCOBACTERIUM LEPRAE on any slit-skin smear testing. Paucibacillary leprosy encompasses indeterminate, borderline tuberculoid, and tuberculoid leprosy.
A protein extracted from boiled culture of tubercle bacilli (MYCOBACTERIUM TUBERCULOSIS). It is used in the tuberculin skin test (TUBERCULIN TEST) for the diagnosis of tuberculosis infection in asymptomatic persons.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Epicutaneous or intradermal application of a sensitizer for demonstration of either delayed or immediate hypersensitivity. Used in diagnosis of hypersensitivity or as a test for cellular immunity.
The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES.
Tandem arrays of moderately repetitive, short (10-60 bases) DNA sequences which are found dispersed throughout the GENOME, at the ends of chromosomes (TELOMERES), and clustered near telomeres. Their degree of repetition is two to several hundred at each locus. Loci number in the thousands but each locus shows a distinctive repeat unit.
Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen.
Suspensions of attenuated or killed bacteria administered for the prevention or treatment of infectious bacterial disease.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Acetylated sulfone that is slowly metabolized to give long-term, low blood levels of DAPSONE. It has antimicrobial and antimalarial action, but is mainly used as a depot leprostatic agent.
Techniques used in studying bacteria.
Antibacterial agent used primarily as a tuberculostatic. It remains the treatment of choice for tuberculosis.
Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION.
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
Genes bearing close resemblance to known genes at different loci, but rendered non-functional by additions or deletions in structure that prevent normal transcription or translation. When lacking introns and containing a poly-A segment near the downstream end (as a result of reverse copying from processed nuclear RNA into double-stranded DNA), they are called processed genes.
The distal extremity of the leg in vertebrates, consisting of the tarsus (ANKLE); METATARSUS; phalanges; and the soft tissues surrounding these bones.
A non-tuberculous mycobacterium causing cervical lymphadenitis in children. It very rarely causes pulmonary disease, and is believed to be non-pathogenic in animals.
The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
Sites on an antigen that interact with specific antibodies.
The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents.
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping.
A slow-growing, scotochromogenic species occurring usually harmlessly in human secretions but occasionally associated with chronic pulmonary disease. (Dorland, 28th ed)
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A chronic GASTROENTERITIS in RUMINANTS caused by MYCOBACTERIUM AVIUM SUBSPECIES PARATUBERCULOSIS.
An antitubercular agent that inhibits the transfer of mycolic acids into the cell wall of the tubercle bacillus. It may also inhibit the synthesis of spermidine in mycobacteria. The action is usually bactericidal, and the drug can penetrate human cell membranes to exert its lethal effect. (From Smith and Reynard, Textbook of Pharmacology, 1992, p863)
The genetic complement of a BACTERIA as represented in its DNA.
Proteins prepared by recombinant DNA technology.
Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
A relatively small nodular inflammatory lesion containing grouped mononuclear phagocytes, caused by infectious and noninfectious agents.

Specificity and function of immunogenic peptides from the 35-kilodalton protein of Mycobacterium leprae. (1/915)

We identified a T-cell determinant of the 35-kDa antigen of Mycobacterium leprae which is discriminatory against cross-sensitization by its closely related homologue in Mycobacterium avium. From synthetic peptides covering the entire sequence, those with the highest affinity and permissive binding to purified HLA-DR molecules were evaluated for the stimulation of proliferation of peripheral blood mononuclear cells (PBMCs) from leprosy patients and healthy sensitized controls. Responses to the peptide pair 206-224, differing by four residues between M. leprae and M. avium, involved both species-specific and cross-reactive T cells. Lymph node cell proliferation in HLA-DRB1*01 transgenic mice was reciprocally species specific, but only the response to the M. leprae peptide in the context of DR1 was immunodominant. Of the cytokines in human PBMC cultures, gamma interferon production was negligible, while interleukin 10 (IL-10) responses in both patients and controls were more pronounced. IL-10 was most frequently induced by the shared 241-255 peptide, indicating that environmental cross-sensitization may skew the response toward a potentially pathogenic cytokine phenotype.  (+info)

Immune responses to recombinant proteins of Mycobacterium leprae. (2/915)

Identification of antigenic determinants of the polar immune response in leprosy may illuminate both protection and pathogenesis. Thirty subjects were studied (22 with polar disease and 8 healthy controls who were heavily exposed but disease-free) by assaying the proliferative, interferon (IFN)-gamma, and antibody responses to recombinant antigens of Mycobacterium leprae (10, 28, 36, and 65 kDa). The 10-kDa antigen elicited IFN-gamma production from all tuberculoid (TT) and borderline tuberculoid (BT) patients but little from controls, lepromatous (LL), or borderline lepromatous (BL) patients (P<.05). Production of 65-kDa-specific IFN-gamma was higher in TT/BT than in controls or LL/BL patients (P<.006). All subjects produced 65-kDa-specific antibody, but it was higher in LL/BL patients than in healthy controls, whose responses were higher than in TT/BT subjects (P=.035). The 36-kDa antibody responses were selectively increased in LL/BL subjects (P<.02). The intermediate phenotype of the controls suggests that M. leprae-specific production of IFN-gamma may contribute to pathology and to protection in leprosy.  (+info)

Neutrophils isolated from leprosy patients release TNF-alpha and exhibit accelerated apoptosis in vitro. (3/915)

This study demonstrated that polymorphonuclear neutrophils (PMN) participate in the acute inflammatory response in leprosy as effector cells. Lepromatous patients present intense infiltrate of neutrophils in reactional (ENL) lesions. Circulating PMN of nonreactional patients, healthy donors, and reactional patients were purified and analyzed in vitro. The study confirmed the short lifespan of these cells in culture with progressive changes characteristic of apoptosis. Apoptosis was greatly accelerated in ENL patients as shown by cellular morphology, later confirmed by qualitative and quantitative analysis of fragmented DNA. It was observed that neutrophils stimulated with lipopolysaccharide, Mycobacterium leprae, and lipoarabinomannan secrete interleukin-8 and tumor necrosis factor alpha (TNF-alpha). Thalidomide, a drug known to inhibit TNF-alpha synthesis on monocytes, also exerted an inhibitory effect on TNF-alpha secretion in neutrophils. These data suggest that PMN can participate in the regulation of the immune response in leprosy and can contribute to the amplification of TNF-alpha production at the site of ENL lesion.  (+info)

Dominant recognition of a cross-reactive B-cell epitope in Mycobacterium leprae 10 K antigen by immunoglobulin G1 antibodies across the disease spectrum in leprosy. (4/915)

Mycobacterium leprae-specific immunoglobulin G1 (IgG1) antibodies in patients with leprosy show a direct correlation with bacterial load (rho=0.748; P<0002) suggesting that IgG1 B-cell responses may be surrogate markers of disease progression. To investigate if this upregulation was a general feature of IgG1 responses to all M. leprae (ML) antigens, we analysed responses to several recombinant purified ML heat-shock proteins (HSP). Three recombinant HSPs (ML10 K, ML 18 K and ML 65 K) were tested for their ability to induce various IgG subclasses in patients with either the lepromatous (LL/BL, n=26) or tuberculoid form (BT/TT, n=39) of the disease as well as in healthy households (HC, n=14) and endemic controls (EC=19). Our major findings were: (1) selective augmentation of IgG1 antibody responses to ML10 K; (2) recognition of a restricted number of epitopes across the disease spectrum and healthy controls by IgG1 antibodies; (3) dominant recognition of cross-reactive epitopes which were common to both ML and MT 10 K. This response was not related to contamination with endotoxin. Epitope mapping using 15-mer overlapping peptides spanning the ML 10 000 MW revealed an immunodominant IgG1 binding peptide (aa41-55) in patients as well as healthy controls. This peptide is a shared epitope with M. tuberculosis 10 K suggesting that postswitched IgG1 B cells recognizing this epitope rather than naive B cells are being expanded.  (+info)

Species-specific identification of Mycobacterium leprae by PCR-restriction fragment length polymorphism analysis of the hsp65 gene. (5/915)

PCR-restriction fragment length polymorphism analysis (PRA) of the hsp65 gene present in all mycobacteria was used in the present investigation to characterize Mycobacterium leprae. Bacilli were extracted and purified from different organs from experimentally infected armadillos and nude mice (Swiss mice of nu/nu origin). A total of 15 samples were assayed in duplicate, and the results were compared with those obtained for a total of 147 cultivable mycobacteria representing 34 species. Irrespective of its origin or viability, M. leprae strains from all the samples were uniformly characterized by two fragments of 315 and 135 bp upon BstEII digestion and two fragments of 265 and 130 bp upon HaeIII digestion. PRA is a relatively simple method and permits the conclusive identification of M. leprae to the species level.  (+info)

Localization of Mycobacterium leprae to endothelial cells of epineurial and perineurial blood vessels and lymphatics. (6/915)

Infection of peripheral nerve by Mycobacterium leprae, the histopathological hallmark of leprosy, is a major factor in this disease, but the route and mechanisms by which bacilli localize to peripheral nerve are unknown. Experimentally infected armadillos have recently been recognized as a model of lepromatous neuritis; the major site of early accumulation of M. leprae is epineurial. To determine the epineurial cells involved, 1-cm segments of 44 nerves from armadillos were screened for acid-fast bacilli and thin sections were examined ultrastructurally. Of 596 blocks containing nerve, 36% contained acid-fast bacilli. Overall, M. leprae were found in endothelial cells in 40% of epineurial blood vessels and 75% of lymphatics, and in 25% of vessels intraneurally. Comparison of epineurial and endoneurial findings suggested that colonization of epineurial vessels preceded endoneurial infection. Such colonization of epineurial nutrient vessels may greatly increase the risk of endoneurial M. leprae bacteremia, and also enhance the risk of ischemia following even mild increases in inflammation or mechanical stress. These findings also raise the possibility that early, specific mechanisms in the localization of M. leprae to peripheral nerve may involve adhesion events between M. leprae (or M. leprae-parasitized macrophages) and the endothelial cells of the vasa nervorum.  (+info)

Use of a whole blood assay to evaluate in vitro T cell responses to new leprosy skin test antigens in leprosy patients and healthy subjects. (7/915)

Development of an immunological tool to detect infection with Mycobacterium leprae would greatly benefit leprosy control programmes, as demonstrated by the contribution of the tuberculin test to tuberculosis control. In a new approach to develop a 'tuberculin-like' reagent for use in leprosy, two new fractions of M. leprae depleted of cross-reactive and immunomodulatory lipids- MLSA-LAM (cytosol-derived) and MLCwA (cell wall-derived)-have been produced in a form suitable for use as skin test reagents. T cell responses (interferon-gamma (IFN-gamma) and lymphoproliferation) to these two new fractions were evaluated in a leprosy-endemic area of Nepal using a simple in vitro whole blood test. The two fractions were shown to be highly potent T cell antigens in subjects exposed to M. leprae-paucibacillary leprosy patients and household contacts. Responses to the fractions decreased towards the lepromatous pole of leprosy. Endemic control subjects also showed high responses to the fractions, indicating high exposure to M. leprae, or cross-reactive mycobacterial antigens, in this Nepali population. The new fractions, depleted of lipids and lipoarabinomannan (LAM) gave enhanced responses compared with a standard M. leprae sonicate. The cell wall fraction appeared a more potent antigen than the cytosol fraction, which may be due to the predominance of the 65-kD GroEL antigen in the cell wall. The whole blood assay proved a robust field tool and a useful way of evaluating such reagents prior to clinical trials.  (+info)

HLA-class II-associated control of antigen recognition by T cells in leprosy: a prominent role for the 30/31-kDa antigens. (8/915)

The recognition of 16 mycobacterial Ags by a panel of T cell lines from leprosy patients and healthy exposed individuals from an endemic population was examined within the context of expressed HLA-DR molecules. Although overall no significant differences were found between the frequencies of Ag recognition in the different subject groups, when Ag-specific T cell responses were examined within the context of HLA-DR, a highly significant difference was found in the recognition of the 30/31-kDa Ag. HLA-DR3 appeared to be associated with high T cell responsiveness to the 30/31-kDa Ag in healthy contacts (p = 0.01), but, conversely, with low T cell responsiveness to this Ag in tuberculoid patients (p = 0.005). Within the group of HLA-DR3-positive individuals, differences in 30/31-kDa directed T cell responsiveness were highly significant not only between healthy individuals and tuberculoid patients (p < 0. 0001), but also between healthy individuals and lepromatous patients (p = 0.009), and consequently between healthy individuals compared with leprosy patients as a group (p < 0.0001). A dominant HLA-DR3-restricted epitope was recognized by healthy contacts in this population. It has been proposed that secreted Ags may dominate acquired immunity early in infection. The low T cell response to the secreted, immunodominant 30/31-kDa Ag in HLA-DR3-positive leprosy patients in this population may result in retarded macrophage activation and delayed bacillary clearance, which in turn may lead to enhanced Ag load followed by T cell-mediated immunopathology.  (+info)

"Mycobacterium leprae" is a slow-growing, rod-shaped, gram-positive bacterium that is the causative agent of leprosy, a chronic infectious disease that primarily affects the skin, peripheral nerves, and mucosal surfaces of the upper respiratory tract. The bacterium was discovered in 1873 by Gerhard Armauer Hansen, a Norwegian physician, and is named after him as "Hansen's bacillus."

"Mycobacterium leprae" has a unique cell wall that contains high amounts of lipids, which makes it resistant to many common disinfectants and antibiotics. It can survive and multiply within host macrophages, allowing it to evade the immune system and establish a chronic infection.

Leprosy is a treatable disease with multidrug therapy (MDT), which combines several antibiotics such as dapsone, rifampicin, and clofazimine. Early diagnosis and treatment can prevent the progression of the disease and reduce its transmission to others.

Leprosy, also known as Hansen's disease, is a chronic infectious disease caused by the bacterium Mycobacterium leprae. It primarily affects the skin, peripheral nerves, mucosal surfaces of the upper respiratory tract, and the eyes. The disease mainly spreads through droplets from the nose and mouth of infected people.

Leprosy is characterized by granulomatous inflammation, which leads to the formation of distinctive skin lesions and nerve damage. If left untreated, it can cause progressive and permanent damage to the skin, nerves, limbs, and eyes. However, with early diagnosis and multidrug therapy (MDT), the disease can be cured, and disability can be prevented or limited.

The World Health Organization (WHO) classifies leprosy into two types based on the number of skin lesions and bacteriological index: paucibacillary (one to five lesions) and multibacillary (more than five lesions). This classification helps determine the appropriate treatment regimen.

Although leprosy is curable, it remains a public health concern in many developing countries due to its stigmatizing nature and potential for social exclusion of affected individuals.

An armadillo is not a medical condition or term. It is a type of mammal that is native to the Americas, known for its distinctive armor-like shell. If you have any questions about a specific medical condition or topic, I would be happy to help if you could provide more information.

"Mycobacterium" is a genus of gram-positive, aerobic, rod-shaped bacteria that are characterized by their complex cell walls containing large amounts of lipids. This genus includes several species that are significant in human and animal health, most notably Mycobacterium tuberculosis, which causes tuberculosis, and Mycobacterium leprae, which causes leprosy. Other species of Mycobacterium can cause various diseases in humans, including skin and soft tissue infections, lung infections, and disseminated disease in immunocompromised individuals. These bacteria are often resistant to common disinfectants and antibiotics, making them difficult to treat.

'Mycobacterium tuberculosis' is a species of slow-growing, aerobic, gram-positive bacteria that demonstrates acid-fastness. It is the primary causative agent of tuberculosis (TB) in humans. This bacterium has a complex cell wall rich in lipids, including mycolic acids, which provides a hydrophobic barrier and makes it resistant to many conventional antibiotics. The ability of M. tuberculosis to survive within host macrophages and resist the immune response contributes to its pathogenicity and the difficulty in treating TB infections.

M. tuberculosis is typically transmitted through inhalation of infectious droplets containing the bacteria, which primarily targets the lungs but can spread to other parts of the body (extrapulmonary TB). The infection may result in a spectrum of clinical manifestations, ranging from latent TB infection (LTBI) to active disease. LTBI represents a dormant state where individuals are infected with M. tuberculosis but do not show symptoms and cannot transmit the bacteria. However, they remain at risk of developing active TB throughout their lifetime, especially if their immune system becomes compromised.

Effective prevention and control strategies for TB rely on early detection, treatment, and public health interventions to limit transmission. The current first-line treatments for drug-susceptible TB include a combination of isoniazid, rifampin, ethambutol, and pyrazinamide for at least six months. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis present significant challenges in TB control and require more complex treatment regimens.

Leprosstatic agents are substances or drugs that have a specific effect on the bacterium that causes leprosy, also known as Mycobacterium leprae. These agents are used in the treatment and prevention of leprosy, a chronic infectious disease that primarily affects the skin, peripheral nerves, and mucosal surfaces of the upper respiratory tract.

The most common leprostatic agents are antibiotics, which target the bacterial cells and inhibit their growth or kill them. The two main antibiotics used to treat leprosy are dapsone and rifampicin, which are often given in combination with other drugs such as clofazimine to prevent the development of drug-resistant strains of the bacteria.

Leprosstatic agents are usually administered orally or by injection, and the duration of treatment can vary depending on the severity of the disease and the patient's response to therapy. It is important to note that early detection and treatment of leprosy can help prevent the progression of the disease and reduce the risk of transmission to others.

Lepromatous leprosy is a type of leprosy, a chronic infectious disease caused by the bacterium Mycobacterium leprae. In this form of the disease, there is a widespread and diffuse involvement of the skin, mucous membranes, and peripheral nerves. The bacteria multiply slowly and spread to the skin, upper respiratory tract, and peripheral nerves.

In lepromatous leprosy, the immune response is weak, allowing for extensive bacterial multiplication and widespread tissue damage. The skin lesions are typically numerous, pale, and have a smooth surface. Nerve involvement can lead to loss of sensation, muscle weakness, and deformities, particularly in the hands and feet.

Lepromatous leprosy is a more severe form of the disease compared to tuberculoid leprosy, which has a stronger immune response and localized skin lesions. Both forms of the disease are treatable with multidrug therapy (MDT), recommended by the World Health Organization (WHO) for all leprosy patients. Early diagnosis and treatment can prevent disability and reduce transmission.

"Mycobacterium bovis" is a species of slow-growing, aerobic, gram-positive bacteria in the family Mycobacteriaceae. It is the causative agent of tuberculosis in cattle and other animals, and can also cause tuberculosis in humans, particularly in those who come into contact with infected animals or consume unpasteurized dairy products from infected cows. The bacteria are resistant to many common disinfectants and survive for long periods in a dormant state, making them difficult to eradicate from the environment. "Mycobacterium bovis" is closely related to "Mycobacterium tuberculosis," the bacterium that causes tuberculosis in humans, and both species share many genetic and biochemical characteristics.

Mycobacterium infections are a group of infectious diseases caused by various species of the Mycobacterium genus, including but not limited to M. tuberculosis (which causes tuberculosis), M. avium complex (which causes pulmonary and disseminated disease, particularly in immunocompromised individuals), M. leprae (which causes leprosy), and M. ulcerans (which causes Buruli ulcer). These bacteria are known for their ability to resist destruction by normal immune responses and many disinfectants due to the presence of a waxy mycolic acid layer in their cell walls.

Infection typically occurs through inhalation, ingestion, or direct contact with contaminated materials. The severity and manifestations of the disease can vary widely depending on the specific Mycobacterium species involved, the route of infection, and the host's immune status. Symptoms may include cough, fever, night sweats, weight loss, fatigue, skin lesions, or lymphadenitis. Diagnosis often requires specialized laboratory tests, such as culture or PCR-based methods, to identify the specific Mycobacterium species involved. Treatment typically involves a combination of antibiotics and may require long-term therapy.

Lepromin is not a medical condition but rather a diagnostic test used in the diagnosis and classification of leprosy, a chronic infectious disease caused by the bacterium Mycobacterium leprae. The Lepromin test measures the cell-mediated immunity of an individual to the bacteria that causes leprosy.

The test involves injecting two types of antigens derived from M. leprae, one more soluble and the other less soluble, into the skin of the forearm. The response of the immune system to these antigens is then observed after 24 hours (for the soluble antigen) and 48 hours (for the less soluble antigen).

A positive reaction to the more soluble antigen indicates a strong cell-mediated immunity, which is associated with tuberculoid leprosy, a milder form of the disease. A positive reaction to the less soluble antigen suggests a weaker cell-mediated immunity and is associated with lepromatous leprosy, a more severe form of the disease.

It's important to note that the Lepromin test has limited availability and is not widely used in many parts of the world due to its complexity and the need for specialized laboratory facilities.

"Mycobacterium avium is a species of gram-positive, aerobic bacteria that belongs to the family Mycobacteriaceae. It is a slow-growing mycobacterium that is widely distributed in the environment, particularly in soil and water. M. avium is an opportunistic pathogen that can cause pulmonary disease, lymphadenitis, and disseminated infection in individuals with compromised immune systems, such as those with HIV/AIDS. It is also known to cause pulmonary disease in elderly people with structural lung damage. The bacteria are resistant to many common disinfectants and can survive in hostile environments for extended periods."

Tuberculoid leprosy is a form of leprosy caused by the bacterium Mycobacterium leprae. It is one of the two major forms of the disease, with the other being lepromatous leprosy.

Tuberculoid leprosy typically presents with fewer lesions (generally less than five) that are well-defined, asymmetric, and dry. The lesions can be hypopigmented or erythematous and may have a raised border. Nerve involvement is common in tuberculoid leprosy, leading to symptoms such as numbness, muscle weakness, and paralysis.

The disease primarily affects the skin, peripheral nerves, and mucosa of the upper respiratory tract. Tuberculoid leprosy is characterized by a strong cell-mediated immune response, which can lead to the destruction of mycobacteria but may also cause tissue damage. It is generally a milder form of the disease compared to lepromatous leprosy and responds well to treatment with multidrug therapy (MDT).

"Mycobacterium smegmatis" is a species of fast-growing, non-tuberculous mycobacteria (NTM). It is commonly found in the environment, including soil and water. This bacterium is known for its ability to form resistant colonies called biofilms. While it does not typically cause disease in humans, it can contaminate medical equipment and samples, potentially leading to misdiagnosis or infection. In rare cases, it has been associated with skin and soft tissue infections. It is often used in research as a model organism for studying mycobacterial biology and drug resistance due to its relatively harmless nature and rapid growth rate.

Nontuberculous mycobacteria (NTM) are a group of environmental mycobacteria that do not cause tuberculosis or leprosy. They can be found in water, soil, and other natural environments. Some people may become infected with NTM, leading to various diseases depending on the site of infection, such as lung disease (most common), skin and soft tissue infections, lymphadenitis, and disseminated disease.

The clinical significance of NTM isolation is not always clear, as colonization without active infection can occur. Diagnosis typically requires a combination of clinical, radiological, microbiological, and sometimes molecular evidence to confirm the presence of active infection. Treatment usually involves multiple antibiotics for an extended period, depending on the species involved and the severity of disease.

Bacterial antigens are substances found on the surface or produced by bacteria that can stimulate an immune response in a host organism. These antigens can be proteins, polysaccharides, teichoic acids, lipopolysaccharides, or other molecules that are recognized as foreign by the host's immune system.

When a bacterial antigen is encountered by the host's immune system, it triggers a series of responses aimed at eliminating the bacteria and preventing infection. The host's immune system recognizes the antigen as foreign through the use of specialized receptors called pattern recognition receptors (PRRs), which are found on various immune cells such as macrophages, dendritic cells, and neutrophils.

Once a bacterial antigen is recognized by the host's immune system, it can stimulate both the innate and adaptive immune responses. The innate immune response involves the activation of inflammatory pathways, the recruitment of immune cells to the site of infection, and the production of antimicrobial peptides.

The adaptive immune response, on the other hand, involves the activation of T cells and B cells, which are specific to the bacterial antigen. These cells can recognize and remember the antigen, allowing for a more rapid and effective response upon subsequent exposures.

Bacterial antigens are important in the development of vaccines, as they can be used to stimulate an immune response without causing disease. By identifying specific bacterial antigens that are associated with virulence or pathogenicity, researchers can develop vaccines that target these antigens and provide protection against infection.

Xenarthra is not a medical term, but a taxonomic category in biology. It refers to the order of mammals that consists of anteaters, sloths, and armadillos. These animals are characterized by their unique skeletal and dental structures, including extra joints between their vertebrae and specialized teeth for grinding or tearing food.

While Xenarthra is not a medical term, it is worth noting that these animals have some unique adaptations that can impact their health and veterinary care. For example, anteaters have an extremely long and sticky tongue to eat ants and termites, which can make dental care challenging. Sloths have a slow metabolism and spend most of their time hanging upside down in trees, which can affect their digestion and musculoskeletal health. Armadillos are known to be carriers of leprosy, which can impact human health in certain areas where they are common.

Glycolipids are a type of lipid (fat) molecule that contain one or more sugar molecules attached to them. They are important components of cell membranes, where they play a role in cell recognition and signaling. Glycolipids are also found on the surface of some viruses and bacteria, where they can be recognized by the immune system as foreign invaders.

There are several different types of glycolipids, including cerebrosides, gangliosides, and globosides. These molecules differ in the number and type of sugar molecules they contain, as well as the structure of their lipid tails. Glycolipids are synthesized in the endoplasmic reticulum and Golgi apparatus of cells, and they are transported to the cell membrane through vesicles.

Abnormalities in glycolipid metabolism or structure have been implicated in a number of diseases, including certain types of cancer, neurological disorders, and autoimmune diseases. For example, mutations in genes involved in the synthesis of glycolipids can lead to conditions such as Tay-Sachs disease and Gaucher's disease, which are characterized by the accumulation of abnormal glycolipids in cells.

Dapsone is a medication that belongs to a class of drugs called sulfones. It is primarily used to treat bacterial skin infections such as leprosy and dermatitis herpetiformis (a skin condition associated with coeliac disease). Dapsone works by killing the bacteria responsible for these infections.

In addition, dapsone has anti-inflammatory properties and is sometimes used off-label to manage inflammatory conditions such as vasculitis, bullous pemphigoid, and chronic urticaria. It is available in oral tablet form and topical cream or gel form.

Like all medications, dapsone can cause side effects, which may include nausea, loss of appetite, and headache. More serious side effects, such as methemoglobinemia (a blood disorder that affects the body's ability to transport oxygen), peripheral neuropathy (nerve damage that causes pain, numbness, or weakness in the hands and feet), and liver damage, can occur but are less common.

It is important for patients taking dapsone to be monitored by a healthcare provider to ensure safe and effective use of the medication.

Mycobacterium avium Complex (MAC) is a group of slow-growing mycobacteria that includes Mycobacterium avium and Mycobacterium intracellulare. These bacteria are commonly found in water, soil, and dust, and can cause pulmonary disease, lymphadenitis, and disseminated infection, particularly in individuals with compromised immune systems, such as those with HIV/AIDS. The infection caused by MAC is often chronic and difficult to eradicate, requiring long-term antibiotic therapy.

Nontuberculous Mycobacterium (NTM) infections refer to illnesses caused by a group of bacteria called mycobacteria that do not cause tuberculosis or leprosy. These bacteria are commonly found in the environment, such as in water, soil, and dust. They can be spread through inhalation, ingestion, or contact with contaminated materials.

NTM infections can affect various parts of the body, including the lungs, skin, and soft tissues. Lung infections are the most common form of NTM infection and often occur in people with underlying lung conditions such as chronic obstructive pulmonary disease (COPD) or bronchiectasis. Symptoms of NTM lung infection may include cough, fatigue, weight loss, fever, and night sweats.

Skin and soft tissue infections caused by NTM can occur through direct contact with contaminated water or soil, or through medical procedures such as contaminated injections or catheters. Symptoms of NTM skin and soft tissue infections may include redness, swelling, pain, and drainage.

Diagnosis of NTM infections typically involves a combination of clinical symptoms, imaging studies, and laboratory tests to identify the specific type of mycobacteria causing the infection. Treatment may involve multiple antibiotics for an extended period of time, depending on the severity and location of the infection.

"Borderline leprosy," also known as "borderline tuberculoid leprosy (BT)," is a type of leprosy that falls in the middle of the clinical spectrum of the disease. It has features of both tuberculoid and lepromatous leprosy, but they are not well-defined. The immune response in borderline leprosy is unstable, which means that the condition can either improve or deteriorate over time.

In borderline leprosy, there are usually a few well-defined lesions with some sensory loss. The bacteria are present in the skin and nerves, but they have not yet caused extensive damage. Treatment for borderline leprosy is similar to that of other forms of leprosy, which typically involves multidrug therapy (MDT) recommended by the World Health Organization (WHO).

It's important to note that leprosy is a curable disease, and early diagnosis and treatment can prevent complications and reduce transmission.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

"Mycobacterium fortuitum" is a rapidly growing mycobacterium (RGM) species that is commonly found in the environment, particularly in soil and water. It is a gram-positive, aerobic, non-tuberculous mycobacteria (NTM) that can cause a variety of infections in humans, including skin and soft tissue infections, lung infections, and disseminated disease.

M. fortuitum is known for its ability to form colonies on solid media within one week, which distinguishes it from other slow-growing mycobacteria such as Mycobacterium tuberculosis. It is also resistant to many common antibiotics, making treatment challenging. Infections caused by M. fortuitum are often associated with exposure to contaminated medical devices or procedures, such as contaminated tattoos, wound care, or invasive medical procedures.

It's important to note that while M. fortuitum can cause infections, it is not considered a highly virulent pathogen and most people who are exposed to it do not develop symptoms. However, individuals with weakened immune systems, such as those with HIV/AIDS or receiving immunosuppressive therapy, may be at higher risk for severe disease.

Tuberculosis (TB) is a chronic infectious disease caused by the bacterium Mycobacterium tuberculosis. It primarily affects the lungs but can also involve other organs and tissues in the body. The infection is usually spread through the air when an infected person coughs, sneezes, or talks.

The symptoms of pulmonary TB include persistent cough, chest pain, coughing up blood, fatigue, fever, night sweats, and weight loss. Diagnosis typically involves a combination of medical history, physical examination, chest X-ray, and microbiological tests such as sputum smear microscopy and culture. In some cases, molecular tests like polymerase chain reaction (PCR) may be used for rapid diagnosis.

Treatment usually consists of a standard six-month course of multiple antibiotics, including isoniazid, rifampin, ethambutol, and pyrazinamide. In some cases, longer treatment durations or different drug regimens might be necessary due to drug resistance or other factors. Preventive measures include vaccination with the Bacillus Calmette-Guérin (BCG) vaccine and early detection and treatment of infected individuals to prevent transmission.

'Mycobacterium lepraemurium' is not typically associated with human leprosy or any medical conditions affecting humans. It is a species of mycobacteria that primarily infects rodents, particularly mice and rats. This bacterium is the causative agent of a form of leprosy-like disease in these animals, known as murine leprosy.

Human infections with 'Mycobacterium lepraemurium' are extremely rare and have only been reported in a handful of cases worldwide. When they do occur, they usually result from close contact with infected rodents or their excrement. The disease caused by this bacterium in humans is typically milder than human leprosy and often resolves on its own without specific treatment.

Therefore, 'Mycobacterium lepraemurium' should not be confused with the mycobacterial species that cause leprosy in humans, such as 'Mycobacterium leprae' or 'Mycobacterium lepromatosis'.

BCG (Bacillus Calmette-Guérin) vaccine is a type of immunization used primarily to prevent tuberculosis (TB). It contains a live but weakened strain of Mycobacterium bovis, which is related to the bacterium that causes TB in humans (Mycobacterium tuberculosis).

The BCG vaccine works by stimulating an immune response in the body, enabling it to better resist infection with TB bacteria if exposed in the future. It is often given to infants and children in countries where TB is common, and its use varies depending on the national immunization policies. The protection offered by the BCG vaccine is moderate and may not last for a very long time.

In addition to its use against TB, the BCG vaccine has also been investigated for its potential therapeutic role in treating bladder cancer and some other types of cancer. The mechanism of action in these cases is thought to be related to the vaccine's ability to stimulate an immune response against abnormal cells.

"Mycobacterium marinum" is a slow-growing, gram-positive bacterium that belongs to the group of nontuberculous mycobacteria (NTM). It is commonly found in fresh and saltwater environments, including aquariums and swimming pools. This pathogen can cause skin infections, known as swimmer's granuloma or fish tank granuloma, in individuals who have exposure to contaminated water. The infection typically occurs through minor cuts or abrasions on the skin, leading to a localized, chronic, and slowly progressive lesion. In some cases, disseminated infection can occur in people with weakened immune systems.

References:
1. Chan, R. C., & Cohen, S. M. (2017). Nontuberculous mycobacterial skin infections. Clinics in dermatology, 35(4), 416-423.
2. Kohler, P., Bloch, A., & Pfyffer, G. E. (2002). Nontuberculous mycobacteria: an overview. Swiss medical weekly, 132(35-36), 548-557.
3. Sanguinetti, M., & Bloch, S. A. (2019). Mycobacterium marinum skin infection. American journal of clinical dermatology, 20(2), 219-226.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

"Mycobacterium chelonae" is a rapidly growing, gram-positive bacterium that belongs to the group of nontuberculous mycobacteria (NTM). It is widely distributed in the environment, particularly in water and soil. This organism can cause various types of infections in humans, ranging from localized skin and soft tissue infections to disseminated disease, especially in immunocompromised individuals. Infections are typically acquired through contaminated wounds, medical procedures, or inhalation of aerosolized particles. Common clinical manifestations include cutaneous abscesses, lung infections, catheter-related bloodstream infections, and ocular infections. Proper identification and targeted antimicrobial therapy are essential for the management of "Mycobacterium chelonae" infections.

Clofazimine is an antimycobacterial medication used mainly in the treatment of leprosy (Hansen's disease) and also has some activity against Mycobacterium avium complex (MAC) infections. It is an oral riminophenazine dye that accumulates in macrophages and bacterial cells, where it inhibits mycobacterial DNA-dependent RNA polymerase. Its side effects include skin discoloration, gastrointestinal symptoms, and potential eye toxicity.

Medical Definition:

Mycobacterium avium subspecies paratuberculosis (M. avium subsp. paratuberculosis) is a type of mycobacteria that causes a chronic infectious disease known as paratuberculosis or Johne's disease in domestic and wild animals, particularly ruminants such as cattle, sheep, goats, and deer. The infection primarily affects the intestines, leading to chronic diarrhea, weight loss, and decreased milk production in affected animals.

M. avium subsp. paratuberculosis is a slow-growing mycobacteria, which makes it difficult to culture and identify. It is resistant to many common disinfectants and can survive in the environment for long periods, facilitating its transmission between animals through contaminated feces, water, food, or milk.

Human infection with M. avium subsp. paratuberculosis is rare, but it has been implicated as a possible cause of Crohn's disease, a chronic inflammatory bowel condition in humans. However, the evidence for this association is still controversial and requires further research.

Mycolic acids are complex, long-chain fatty acids that are a major component of the cell wall in mycobacteria, including the bacteria responsible for tuberculosis and leprosy. These acids contribute to the impermeability and resistance to chemical agents of the mycobacterial cell wall, making these organisms difficult to eradicate. Mycolic acids are unique to mycobacteria and some related actinomycetes, and their analysis can be useful in the identification and classification of these bacteria.

Rifampin is an antibiotic medication that belongs to the class of drugs known as rifamycins. It works by inhibiting bacterial DNA-dependent RNA polymerase, thereby preventing bacterial growth and multiplication. Rifampin is used to treat a variety of infections caused by bacteria, including tuberculosis, Haemophilus influenzae, Neisseria meningitidis, and Legionella pneumophila. It is also used to prevent meningococcal disease in people who have been exposed to the bacteria.

Rifampin is available in various forms, including tablets, capsules, and injectable solutions. The medication is usually taken two to four times a day, depending on the type and severity of the infection being treated. Rifampin may be given alone or in combination with other antibiotics.

It is important to note that rifampin can interact with several other medications, including oral contraceptives, anticoagulants, and anti-seizure drugs, among others. Therefore, it is essential to inform your healthcare provider about all the medications you are taking before starting treatment with rifampin.

Rifampin may cause side effects such as nausea, vomiting, diarrhea, dizziness, headache, and changes in the color of urine, tears, sweat, and saliva to a reddish-orange color. These side effects are usually mild and go away on their own. However, if they persist or become bothersome, it is important to consult your healthcare provider.

In summary, rifampin is an antibiotic medication used to treat various bacterial infections and prevent meningococcal disease. It works by inhibiting bacterial DNA-dependent RNA polymerase, preventing bacterial growth and multiplication. Rifampin may interact with several other medications, and it can cause side effects such as nausea, vomiting, diarrhea, dizziness, headache, and changes in the color of body fluids.

Erythema nodosum is a type of inflammation that occurs in the fatty layer of the skin, causing painful, red or purple bumps (nodules) to form. It is a type of panniculitis, which refers to any condition that causes inflammation of the fatty layer of tissue beneath the skin.

Erythema nodosum is often associated with a variety of underlying conditions, such as infections (e.g., streptococcus, tuberculosis), medications (e.g., sulfa drugs, oral contraceptives), inflammatory bowel disease (e.g., Crohn's disease, ulcerative colitis), and pregnancy.

The bumps associated with erythema nodosum typically appear on the shins, ankles, knees, or other areas of the legs, although they can also occur on the arms, hands, or face. The bumps may be tender to the touch, warm, and swollen, and they may cause pain or discomfort when walking or standing for prolonged periods.

In most cases, erythema nodosum resolves on its own within a few weeks to several months, although symptoms can be managed with medications such as nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids. Treating the underlying condition is also important for resolving erythema nodosum and preventing recurrences.

"Mycobacterium kansasii" is a slow-growing, gram-positive bacterium that belongs to the group of nontuberculous mycobacteria (NTM). It is named after the state of Kansas where it was first isolated. This bacterium can cause pulmonary and extrapulmonary infections in humans, particularly in individuals with compromised immune systems or underlying lung diseases such as chronic obstructive pulmonary disease (COPD) and bronchiectasis.

The symptoms of M. kansasii infection are similar to those of tuberculosis and can include cough, fever, night sweats, fatigue, weight loss, and chest pain. The diagnosis of M. kansasii infection is usually made by culturing the bacterium from clinical specimens such as sputum or bronchoalveolar lavage fluid. Treatment typically involves a combination of antibiotics such as rifampin, ethambutol, and isoniazid for an extended period of time, often up to 12-24 months.

Mycobacterium avium-intracellulare (M. avium-intracellulare) infection is a type of nontuberculous mycobacterial (NTM) lung disease caused by the environmental pathogens Mycobacterium avium and Mycobacterium intracellulare, which are commonly found in water, soil, and dust. These bacteria can cause pulmonary infection, especially in individuals with underlying lung conditions such as chronic obstructive pulmonary disease (COPD), bronchiectasis, or prior tuberculosis infection.

M. avium-intracellulare infection typically presents with symptoms like cough, fatigue, weight loss, fever, night sweats, and sputum production. Diagnosis is established through a combination of clinical presentation, radiographic findings, and microbiological culture of respiratory samples. Treatment usually involves a multidrug regimen consisting of macrolides (such as clarithromycin or azithromycin), ethambutol, and rifamycins (such as rifampin or rifabutin) for an extended period, often 12-24 months. Eradication of the infection can be challenging due to the bacteria's inherent resistance to many antibiotics and its ability to survive within host cells.

"Mycobacterium phlei" is not a recognized medical condition or disease. Mycobacterium phlei is actually a species of non-tuberculous mycobacteria (NTM) that is commonly found in the environment, such as in soil and water. It is often used in laboratory settings as a reference strain for mycobacterial identification and research. This bacterium is not known to cause disease in humans and is generally considered to be non-pathogenic.

Bacterial antibodies are a type of antibodies produced by the immune system in response to an infection caused by bacteria. These antibodies are proteins that recognize and bind to specific antigens on the surface of the bacterial cells, marking them for destruction by other immune cells. Bacterial antibodies can be classified into several types based on their structure and function, including IgG, IgM, IgA, and IgE. They play a crucial role in the body's defense against bacterial infections and provide immunity to future infections with the same bacteria.

"Mycobacterium ulcerans" is a slow-growing mycobacterium that is the causative agent of a chronic infection known as Buruli ulcer. This bacterium is naturally found in aquatic environments and can infect humans through minor traumas or wounds on the skin. The infection typically begins as a painless nodule or papule, which may progress to form necrotic ulcers if left untreated. The bacteria produce a unique toxin called mycolactone, which is responsible for the extensive tissue damage and destruction observed in Buruli ulcers.

Paleopathology is the study of ancient diseases and injuries as recorded in bones, mummies, and other archaeological remains. It is an interdisciplinary field that combines knowledge from pathology, epidemiology, anthropology, and archaeology to understand the health and disease patterns of past populations. The findings of paleopathology can provide valuable insights into the evolution of diseases, the effectiveness of ancient medical practices, and the impact of environmental and social factors on human health over time. Examples of conditions that may be studied in paleopathology include infectious diseases (such as tuberculosis or leprosy), nutritional deficiencies, trauma, cancer, and genetic disorders.

Pulmonary tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. It primarily affects the lungs and can spread to other parts of the body through the bloodstream or lymphatic system. The infection typically enters the body when a person inhales droplets containing the bacteria, which are released into the air when an infected person coughs, sneezes, or talks.

The symptoms of pulmonary TB can vary but often include:

* Persistent cough that lasts for more than three weeks and may produce phlegm or blood-tinged sputum
* Chest pain or discomfort, particularly when breathing deeply or coughing
* Fatigue and weakness
* Unexplained weight loss
* Fever and night sweats
* Loss of appetite

Pulmonary TB can cause serious complications if left untreated, including damage to the lungs, respiratory failure, and spread of the infection to other parts of the body. Treatment typically involves a course of antibiotics that can last several months, and it is essential for patients to complete the full treatment regimen to ensure that the infection is fully eradicated.

Preventive measures include vaccination with the Bacillus Calmette-Guérin (BCG) vaccine, which can provide some protection against severe forms of TB in children, and measures to prevent the spread of the disease, such as covering the mouth and nose when coughing or sneezing, wearing a mask in public places, and avoiding close contact with people who have active TB.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Antitubercular agents, also known as anti-tuberculosis drugs or simply TB drugs, are a category of medications specifically used for the treatment and prevention of tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis. These drugs target various stages of the bacteria's growth and replication process to eradicate it from the body or prevent its spread.

There are several first-line antitubercular agents, including:

1. Isoniazid (INH): This is a bactericidal drug that inhibits the synthesis of mycolic acids, essential components of the mycobacterial cell wall. It is primarily active against actively growing bacilli.
2. Rifampin (RIF) or Rifampicin: A bactericidal drug that inhibits DNA-dependent RNA polymerase, preventing the transcription of genetic information into mRNA. This results in the interruption of protein synthesis and ultimately leads to the death of the bacteria.
3. Ethambutol (EMB): A bacteriostatic drug that inhibits the arabinosyl transferase enzyme, which is responsible for the synthesis of arabinan, a crucial component of the mycobacterial cell wall. It is primarily active against actively growing bacilli.
4. Pyrazinamide (PZA): A bactericidal drug that inhibits the synthesis of fatty acids and mycolic acids in the mycobacterial cell wall, particularly under acidic conditions. PZA is most effective during the initial phase of treatment when the bacteria are in a dormant or slow-growing state.

These first-line antitubercular agents are often used together in a combination therapy to ensure complete eradication of the bacteria and prevent the development of drug-resistant strains. Treatment duration typically lasts for at least six months, with the initial phase consisting of daily doses of INH, RIF, EMB, and PZA for two months, followed by a continuation phase of INH and RIF for four months.

Second-line antitubercular agents are used when patients have drug-resistant TB or cannot tolerate first-line drugs. These include drugs like aminoglycosides (e.g., streptomycin, amikacin), fluoroquinolones (e.g., ofloxacin, moxifloxacin), and injectable bacteriostatic agents (e.g., capreomycin, ethionamide).

It is essential to closely monitor patients undergoing antitubercular therapy for potential side effects and ensure adherence to the treatment regimen to achieve optimal outcomes and prevent the development of drug-resistant strains.

A "Medical History, Medieval" typically refers to the study and documentation of medical practices, knowledge, and beliefs during the Middle Ages, which spanned approximately from the 5th to the 15th century. This era saw significant developments in medicine, including the translation and dissemination of ancient Greek and Roman medical texts, the establishment of hospitals and medical schools, and the growth of surgical techniques.

During this time, medical theories were heavily influenced by the works of Hippocrates and Galen, who believed that diseases were caused by an imbalance in the four bodily fluids or "humors" (blood, phlegm, black bile, and yellow bile). Treatments often involved attempts to restore this balance through diet, lifestyle changes, and various medical interventions such as bloodletting, purgatives, and herbal remedies.

The Medieval period also saw the rise of monastic medicine, in which monasteries and convents played a crucial role in providing medical care to the sick and poor. Monks and nuns often served as healers and were known for their knowledge of herbs and other natural remedies. Additionally, during this time, Islamic medicine flourished, with physicians such as Avicenna and Rhazes making significant contributions to the field, including the development of new surgical techniques and the creation of comprehensive medical texts that were widely translated and studied in Europe.

Overall, the Medieval period was a critical time in the development of medical knowledge and practice, laying the groundwork for many modern medical concepts and practices.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Chaperonin 60, also known as CPN60 or HSP60 (heat shock protein 60), is a type of molecular chaperone found in the mitochondria of eukaryotic cells. Molecular chaperones are proteins that assist in the proper folding and assembly of other proteins. Chaperonin 60 is a member of the HSP (heat shock protein) family, which are proteins that are upregulated in response to stressful conditions such as heat shock or oxidative stress.

Chaperonin 60 forms a large complex with a barrel-shaped structure that provides a protected environment for unfolded or misfolded proteins to fold properly. The protein substrate is bound inside the central cavity of the chaperonin complex, and then undergoes a series of conformational changes that facilitate its folding. Chaperonin 60 has been shown to play important roles in mitochondrial protein import, folding, and assembly, as well as in the regulation of apoptosis (programmed cell death).

Defects in chaperonin 60 have been linked to a variety of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Chaperonins are a type of molecular chaperone found in cells that assist in the proper folding of other proteins. They are large, complex protein assemblies that form a protective cage-like structure around unfolded polypeptides, providing a protected environment for them to fold into their correct three-dimensional shape.

Chaperonins are classified into two groups: Group I chaperonins, which are found in bacteria and archaea, and Group II chaperonins, which are found in eukaryotes (including humans). Both types of chaperonins share a similar overall structure, consisting of two rings stacked on top of each other, with each ring containing multiple subunits.

Group I chaperonins, such as GroEL in bacteria, function by binding to unfolded proteins and encapsulating them within their central cavity. The chaperonin then undergoes a series of conformational changes that help to facilitate the folding of the encapsulated protein. Once folding is complete, the chaperonin releases the now-folded protein.

Group II chaperonins, such as TCP-1 ring complex (TRiC) in humans, function similarly but have a more complex mechanism of action. They not only assist in protein folding but also help to prevent protein aggregation and misfolding. Group II chaperonins are involved in various cellular processes, including protein quality control, protein trafficking, and the regulation of cell signaling pathways.

Defects in chaperonin function have been linked to several human diseases, including neurodegenerative disorders, cancer, and cardiovascular disease.

Multibacillary (MB) leprosy, also known as lepromatous leprosy, is a type of leprosy that is characterized by the widespread dissemination of the bacterium Mycobacterium leprae throughout the body. It is one of two major forms of leprosy, with the other being paucibacillary (PB) leprosy.

In MB leprosy, there are typically numerous skin lesions that may be widespread and often have a symmetrical distribution. The lesions can appear as nodules, plaques, or macules and can be hypopigmented or erythematous. They may also have a characteristic appearance with loss of sensation due to nerve damage.

MB leprosy is characterized by the presence of large numbers of bacilli in the skin lesions and nasal mucosa, as well as involvement of multiple nerves leading to deformities and disabilities if left untreated. The diagnosis of MB leprosy is usually made based on clinical examination, skin smears, and/or biopsy.

MB leprosy is treated with a multidrug therapy (MDT) regimen recommended by the World Health Organization (WHO), which includes rifampicin, dapsone, and clofazimine for at least 12 months. Early diagnosis and treatment of MB leprosy can prevent disability and reduce transmission.

Schwann cells, also known as neurolemmocytes, are a type of glial cell that form the myelin sheath around peripheral nervous system (PNS) axons, allowing for the rapid and efficient transmission of nerve impulses. These cells play a crucial role in the maintenance and function of the PNS.

Schwann cells originate from the neural crest during embryonic development and migrate to the developing nerves. They wrap around the axons in a spiral fashion, forming multiple layers of myelin, which insulates the nerve fibers and increases the speed of electrical impulse transmission. Each Schwann cell is responsible for myelinating a single segment of an axon, with the gaps between these segments called nodes of Ranvier.

Schwann cells also provide structural support to the neurons and contribute to the regeneration of injured peripheral nerves by helping to guide the regrowth of axons to their targets. Additionally, Schwann cells can participate in immune responses within the PNS, such as releasing cytokines and chemokines to recruit immune cells during injury or infection.

Delayed hypersensitivity, also known as type IV hypersensitivity, is a type of immune response that takes place several hours to days after exposure to an antigen. It is characterized by the activation of T cells (a type of white blood cell) and the release of various chemical mediators, leading to inflammation and tissue damage. This reaction is typically associated with chronic inflammatory diseases, such as contact dermatitis, granulomatous disorders (e.g. tuberculosis), and certain autoimmune diseases.

The reaction process involves the following steps:

1. Sensitization: The first time an individual is exposed to an antigen, T cells are activated and become sensitized to it. This process can take several days.
2. Memory: Some of the activated T cells differentiate into memory T cells, which remain in the body and are ready to respond quickly if the same antigen is encountered again.
3. Effector phase: Upon subsequent exposure to the antigen, the memory T cells become activated and release cytokines, which recruit other immune cells (e.g. macrophages) to the site of inflammation. These cells cause tissue damage through various mechanisms, such as phagocytosis, degranulation, and the release of reactive oxygen species.
4. Chronic inflammation: The ongoing immune response can lead to chronic inflammation, which may result in tissue destruction and fibrosis (scarring).

Examples of conditions associated with delayed hypersensitivity include:

* Contact dermatitis (e.g. poison ivy, nickel allergy)
* Tuberculosis
* Leprosy
* Sarcoidosis
* Rheumatoid arthritis
* Type 1 diabetes mellitus
* Multiple sclerosis
* Inflammatory bowel disease (e.g. Crohn's disease, ulcerative colitis)

Macrophages are a type of white blood cell that are an essential part of the immune system. They are large, specialized cells that engulf and destroy foreign substances, such as bacteria, viruses, parasites, and fungi, as well as damaged or dead cells. Macrophages are found throughout the body, including in the bloodstream, lymph nodes, spleen, liver, lungs, and connective tissues. They play a critical role in inflammation, immune response, and tissue repair and remodeling.

Macrophages originate from monocytes, which are a type of white blood cell produced in the bone marrow. When monocytes enter the tissues, they differentiate into macrophages, which have a larger size and more specialized functions than monocytes. Macrophages can change their shape and move through tissues to reach sites of infection or injury. They also produce cytokines, chemokines, and other signaling molecules that help coordinate the immune response and recruit other immune cells to the site of infection or injury.

Macrophages have a variety of surface receptors that allow them to recognize and respond to different types of foreign substances and signals from other cells. They can engulf and digest foreign particles, bacteria, and viruses through a process called phagocytosis. Macrophages also play a role in presenting antigens to T cells, which are another type of immune cell that helps coordinate the immune response.

Overall, macrophages are crucial for maintaining tissue homeostasis, defending against infection, and promoting wound healing and tissue repair. Dysregulation of macrophage function has been implicated in a variety of diseases, including cancer, autoimmune disorders, and chronic inflammatory conditions.

Intradermal tests are a type of allergy test that involves the injection of a small amount of allergen extract directly into the skin, usually the forearm or back. This is different from other types of allergy tests such as scratch tests or blood tests, which measure immune system responses to allergens in other ways.

During an intradermal test, a healthcare professional uses a fine needle to inject a small amount of allergen extract just beneath the surface of the skin. This creates a small wheal or bubble, and the area is then observed for signs of a reaction such as redness, swelling, or itching. These reactions indicate that the person has antibodies to the allergen and may be allergic to it.

Intradermal tests are often used when other types of allergy tests have been inconclusive or when a healthcare professional wants to confirm the results of a previous test. They can be used to diagnose a variety of allergies, including those to insect venom, medications, and environmental allergens such as pollen or mold.

It's important to note that intradermal tests carry a higher risk of causing a severe allergic reaction than other types of allergy tests, so they should only be performed by trained healthcare professionals in a medical setting where appropriate treatments are available.

Paucibacillary leprosy is a type of leprosy that is characterized by the presence of fewer than 5 skin lesions and no bacterial growth in slit skin smears or biopsies. It is also known as tuberculoid leprosy and is caused by the Mycobacterium leprae bacteria. The condition primarily affects the nerves and skin, leading to numbness, muscle weakness, and disfigurement if left untreated. Paucibacillary leprosy tends to have a better prognosis compared to multibacillary leprosy, which is characterized by more numerous skin lesions and bacterial growth.

Tuberculin is not a medical condition but a diagnostic tool used in the form of a purified protein derivative (PPD) to detect tuberculosis infection. It is prepared from the culture filtrate of Mycobacterium tuberculosis, the bacterium that causes TB. The PPD tuberculin is injected intradermally, and the resulting skin reaction is measured after 48-72 hours to determine if a person has developed an immune response to the bacteria, indicating a past or present infection with TB. It's important to note that a positive tuberculin test does not necessarily mean that active disease is present, but it does indicate that further evaluation is needed.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Skin tests are medical diagnostic procedures that involve the application of a small amount of a substance to the skin, usually through a scratch, prick, or injection, to determine if the body has an allergic reaction to it. The most common type of skin test is the patch test, which involves applying a patch containing a small amount of the suspected allergen to the skin and observing the area for signs of a reaction, such as redness, swelling, or itching, over a period of several days. Another type of skin test is the intradermal test, in which a small amount of the substance is injected just beneath the surface of the skin. Skin tests are used to help diagnose allergies, including those to pollen, mold, pets, and foods, as well as to identify sensitivities to medications, chemicals, and other substances.

Interferon-gamma (IFN-γ) is a soluble cytokine that is primarily produced by the activation of natural killer (NK) cells and T lymphocytes, especially CD4+ Th1 cells and CD8+ cytotoxic T cells. It plays a crucial role in the regulation of the immune response against viral and intracellular bacterial infections, as well as tumor cells. IFN-γ has several functions, including activating macrophages to enhance their microbicidal activity, increasing the presentation of major histocompatibility complex (MHC) class I and II molecules on antigen-presenting cells, stimulating the proliferation and differentiation of T cells and NK cells, and inducing the production of other cytokines and chemokines. Additionally, IFN-γ has direct antiproliferative effects on certain types of tumor cells and can enhance the cytotoxic activity of immune cells against infected or malignant cells.

Minisatellites, also known as VNTRs (Variable Number Tandem Repeats), are repetitive DNA sequences that consist of a core repeat unit of 10-60 base pairs, arranged in a head-to-tail fashion. They are often found in non-coding regions of the genome and can vary in the number of times the repeat unit is present in an individual's DNA. This variation in repeat number can occur both within and between individuals, making minisatellites useful as genetic markers for identification and forensic applications. They are also associated with certain genetic disorders and play a role in genome instability.

Cross reactions, in the context of medical diagnostics and immunology, refer to a situation where an antibody or a immune response directed against one antigen also reacts with a different antigen due to similarities in their molecular structure. This can occur in allergy testing, where a person who is allergic to a particular substance may have a positive test result for a different but related substance because of cross-reactivity between them. For example, some individuals who are allergic to birch pollen may also have symptoms when eating certain fruits, such as apples, due to cross-reactive proteins present in both.

Bacterial vaccines are types of vaccines that are created using bacteria or parts of bacteria as the immunogen, which is the substance that triggers an immune response in the body. The purpose of a bacterial vaccine is to stimulate the immune system to develop protection against specific bacterial infections.

There are several types of bacterial vaccines, including:

1. Inactivated or killed whole-cell vaccines: These vaccines contain entire bacteria that have been killed or inactivated through various methods, such as heat or chemicals. The bacteria can no longer cause disease, but they still retain the ability to stimulate an immune response.
2. Subunit, protein, or polysaccharide vaccines: These vaccines use specific components of the bacterium, such as proteins or polysaccharides, that are known to trigger an immune response. By using only these components, the vaccine can avoid using the entire bacterium, which may reduce the risk of adverse reactions.
3. Live attenuated vaccines: These vaccines contain live bacteria that have been weakened or attenuated so that they cannot cause disease but still retain the ability to stimulate an immune response. This type of vaccine can provide long-lasting immunity, but it may not be suitable for people with weakened immune systems.

Bacterial vaccines are essential tools in preventing and controlling bacterial infections, reducing the burden of diseases such as tuberculosis, pneumococcal disease, meningococcal disease, and Haemophilus influenzae type b (Hib) disease. They work by exposing the immune system to a harmless form of the bacteria or its components, which triggers the production of antibodies and memory cells that can recognize and fight off future infections with that same bacterium.

It's important to note that while vaccines are generally safe and effective, they may cause mild side effects such as pain, redness, or swelling at the injection site, fever, or fatigue. Serious side effects are rare but can occur, so it's essential to consult with a healthcare provider before receiving any vaccine.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Acedapsone is not a recognized or established medical term. It does not have a specific medical definition in the context of pharmacology, clinical medicine, or medical research.

However, Acedapsone is an investigational antibiotic that has been studied in clinical trials for its potential to treat various bacterial infections. It is a nitrofuran derivative and functions as an inhibitor of bacterial DNA synthesis. Despite some promising results from early studies, further development of Acedapsone as a therapeutic agent seems to have stalled, and it is not currently approved for use in any country.

In summary, while Acedapsone has been explored as a potential antibiotic, it does not have an official medical definition and is not widely used in clinical practice.

Bacteriological techniques refer to the various methods and procedures used in the laboratory for the cultivation, identification, and study of bacteria. These techniques are essential in fields such as medicine, biotechnology, and research. Here are some common bacteriological techniques:

1. **Sterilization**: This is a process that eliminates or kills all forms of life, including bacteria, viruses, fungi, and spores. Common sterilization methods include autoclaving (using steam under pressure), dry heat (in an oven), chemical sterilants, and radiation.

2. **Aseptic Technique**: This refers to practices used to prevent contamination of sterile materials or environments with microorganisms. It includes the use of sterile equipment, gloves, and lab coats, as well as techniques such as flaming, alcohol swabbing, and using aseptic transfer devices.

3. **Media Preparation**: This involves the preparation of nutrient-rich substances that support bacterial growth. There are various types of media, including solid (agar), liquid (broth), and semi-solid (e.g., stab agar). The choice of medium depends on the type of bacteria being cultured and the purpose of the investigation.

4. **Inoculation**: This is the process of introducing a bacterial culture into a medium. It can be done using a loop, swab, or needle. The inoculum should be taken from a pure culture to avoid contamination.

5. **Incubation**: After inoculation, the bacteria are allowed to grow under controlled conditions of temperature, humidity, and atmospheric composition. This process is called incubation.

6. **Staining and Microscopy**: Bacteria are too small to be seen with the naked eye. Therefore, they need to be stained and observed under a microscope. Gram staining is a common method used to differentiate between two major groups of bacteria based on their cell wall composition.

7. **Biochemical Tests**: These are tests used to identify specific bacterial species based on their biochemical characteristics, such as their ability to ferment certain sugars, produce particular enzymes, or resist certain antibiotics.

8. **Molecular Techniques**: Advanced techniques like PCR and DNA sequencing can provide more precise identification of bacteria. They can also be used for genetic analysis and epidemiological studies.

Remember, handling microorganisms requires careful attention to biosafety procedures to prevent accidental infection or environmental contamination.

Isoniazid is an antimicrobial medication used for the prevention and treatment of tuberculosis (TB). It is a first-line medication, often used in combination with other TB drugs, to kill the Mycobacterium tuberculosis bacteria that cause TB. Isoniazid works by inhibiting the synthesis of mycolic acids, which are essential components of the bacterial cell wall. This leads to bacterial death and helps to control the spread of TB.

Isoniazid is available in various forms, including tablets, capsules, and liquid solutions. It can be taken orally or given by injection. The medication is generally well-tolerated, but it can cause side effects such as peripheral neuropathy, hepatitis, and skin rashes. Regular monitoring of liver function tests and supplementation with pyridoxine (vitamin B6) may be necessary to prevent or manage these side effects.

It is important to note that Isoniazid is not effective against drug-resistant strains of TB, and its use should be guided by the results of drug susceptibility testing. Additionally, it is essential to complete the full course of treatment as prescribed to ensure the successful eradication of the bacteria and prevent the development of drug-resistant strains.

Lymphocyte activation is the process by which B-cells and T-cells (types of lymphocytes) become activated to perform effector functions in an immune response. This process involves the recognition of specific antigens presented on the surface of antigen-presenting cells, such as dendritic cells or macrophages.

The activation of B-cells leads to their differentiation into plasma cells that produce antibodies, while the activation of T-cells results in the production of cytotoxic T-cells (CD8+ T-cells) that can directly kill infected cells or helper T-cells (CD4+ T-cells) that assist other immune cells.

Lymphocyte activation involves a series of intracellular signaling events, including the binding of co-stimulatory molecules and the release of cytokines, which ultimately result in the expression of genes involved in cell proliferation, differentiation, and effector functions. The activation process is tightly regulated to prevent excessive or inappropriate immune responses that can lead to autoimmunity or chronic inflammation.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

Pseudogenes are defined in medical and genetics terminology as non-functional segments of DNA that resemble functional genes, such as protein-coding genes or RNA genes, but have lost their ability to be expressed or produce a functional product. They are often characterized by the presence of mutations, such as frameshifts, premature stop codons, or deletions, that prevent them from being transcribed or translated into functional proteins or RNAs.

Pseudogenes can arise through various mechanisms, including gene duplication followed by degenerative mutations, retrotransposition of processed mRNA, and the insertion of transposable elements. While they were once considered "genomic fossils" with no biological relevance, recent research has shown that pseudogenes may play important roles in regulating gene expression, modulating protein function, and contributing to disease processes.

It's worth noting that there is ongoing debate in the scientific community about the precise definition and functional significance of pseudogenes, as some may still retain residual functions or regulatory potential.

In medical terms, the foot is the part of the lower limb that is distal to the leg and below the ankle, extending from the tarsus to the toes. It is primarily responsible for supporting body weight and facilitating movement through push-off during walking or running. The foot is a complex structure made up of 26 bones, 33 joints, and numerous muscles, tendons, ligaments, and nerves that work together to provide stability, balance, and flexibility. It can be divided into three main parts: the hindfoot, which contains the talus and calcaneus (heel) bones; the midfoot, which includes the navicular, cuboid, and cuneiform bones; and the forefoot, which consists of the metatarsals and phalanges that form the toes.

Mycobacterium scrofulaceum is a species of mycobacteria that was previously known to cause a type of infection called scrofula, which is a form of tuberculosis affecting the lymph nodes in the neck. However, it's important to note that this organism has rarely been implicated in human disease in recent years, and its clinical significance is currently unclear.

Mycobacterium scrofulaceum is an environmental mycobacteria, which means it can be found in soil and water, and it is not typically transmitted from person to person. Infections caused by this organism are usually acquired through the ingestion of contaminated food or water or through inhalation of aerosolized particles.

The symptoms of infection with Mycobacterium scrofulaceum depend on the site of infection and can include swollen lymph nodes, cough, fever, and weight loss. Treatment typically involves a combination of antibiotics, but the optimal treatment regimen has not been well-studied due to the rarity of infections caused by this organism.

In medical terms, the skin is the largest organ of the human body. It consists of two main layers: the epidermis (outer layer) and dermis (inner layer), as well as accessory structures like hair follicles, sweat glands, and oil glands. The skin plays a crucial role in protecting us from external factors such as bacteria, viruses, and environmental hazards, while also regulating body temperature and enabling the sense of touch.

An epitope is a specific region on the surface of an antigen (a molecule that can trigger an immune response) that is recognized by an antibody, B-cell receptor, or T-cell receptor. It is also commonly referred to as an antigenic determinant. Epitopes are typically composed of linear amino acid sequences or conformational structures made up of discontinuous amino acids in the antigen. They play a crucial role in the immune system's ability to differentiate between self and non-self molecules, leading to the targeted destruction of foreign substances like viruses and bacteria. Understanding epitopes is essential for developing vaccines, diagnostic tests, and immunotherapies.

A cell wall is a rigid layer found surrounding the plasma membrane of plant cells, fungi, and many types of bacteria. It provides structural support and protection to the cell, maintains cell shape, and acts as a barrier against external factors such as chemicals and mechanical stress. The composition of the cell wall varies among different species; for example, in plants, it is primarily made up of cellulose, hemicellulose, and pectin, while in bacteria, it is composed of peptidoglycan.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

Bacterial typing techniques are methods used to identify and differentiate bacterial strains or isolates based on their unique characteristics. These techniques are essential in epidemiological studies, infection control, and research to understand the transmission dynamics, virulence, and antibiotic resistance patterns of bacterial pathogens.

There are various bacterial typing techniques available, including:

1. **Bacteriophage Typing:** This method involves using bacteriophages (viruses that infect bacteria) to identify specific bacterial strains based on their susceptibility or resistance to particular phages.
2. **Serotyping:** It is a technique that differentiates bacterial strains based on the antigenic properties of their cell surface components, such as capsules, flagella, and somatic (O) and flagellar (H) antigens.
3. **Biochemical Testing:** This method uses biochemical reactions to identify specific metabolic pathways or enzymes present in bacterial strains, which can be used for differentiation. Commonly used tests include the catalase test, oxidase test, and various sugar fermentation tests.
4. **Molecular Typing Techniques:** These methods use genetic markers to identify and differentiate bacterial strains at the DNA level. Examples of molecular typing techniques include:
* **Pulsed-Field Gel Electrophoresis (PFGE):** This method uses restriction enzymes to digest bacterial DNA, followed by electrophoresis in an agarose gel under pulsed electrical fields. The resulting banding patterns are analyzed and compared to identify related strains.
* **Multilocus Sequence Typing (MLST):** It involves sequencing specific housekeeping genes to generate unique sequence types that can be used for strain identification and phylogenetic analysis.
* **Whole Genome Sequencing (WGS):** This method sequences the entire genome of a bacterial strain, providing the most detailed information on genetic variation and relatedness between strains. WGS data can be analyzed using various bioinformatics tools to identify single nucleotide polymorphisms (SNPs), gene deletions or insertions, and other genetic changes that can be used for strain differentiation.

These molecular typing techniques provide higher resolution than traditional methods, allowing for more accurate identification and comparison of bacterial strains. They are particularly useful in epidemiological investigations to track the spread of pathogens and identify outbreaks.

"Mycobacterium xenopi" is a slow-growing, non-tuberculous mycobacterium (NTM) species that is commonly found in the environment, particularly in water sources such as tap water and natural waterways. It is named after the South African frog (Xenopus laevis) from which it was first isolated.

"Mycobacterium xenopi" can cause pulmonary infections, especially in individuals with pre-existing lung conditions such as chronic obstructive pulmonary disease (COPD), bronchiectasis, or prior tuberculosis infection. The symptoms of "M. xenopi" infection are similar to those of tuberculosis and can include cough, fever, night sweats, fatigue, and weight loss.

Diagnosis of "M. xenopi" infection typically requires the isolation and identification of the organism from clinical specimens such as sputum or bronchoalveolar lavage fluid. Treatment usually involves a combination of antibiotics such as macrolides, rifamycins, and aminoglycosides, and may require prolonged therapy for several months to a year or more.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

Paratuberculosis is a chronic infectious disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis (MAP). It primarily affects ruminants, such as cattle, sheep, and goats, although other animal species, including humans, can also be infected. The disease is characterized by chronic inflammation of the intestines, leading to diarrhea, weight loss, and decreased milk production in affected animals.

Infection typically occurs through ingestion of contaminated feed or water, and the incubation period can range from several months to years. The bacteria are resistant to environmental degradation and can survive in soil, water, and feces for long periods, making control and eradication challenging.

While paratuberculosis is not considered a significant zoonotic disease, there is ongoing research into the potential link between MAP infection and Crohn's disease in humans, although this association remains controversial and unproven.

Ethambutol is an antimycobacterial medication used for the treatment of tuberculosis (TB). It works by inhibiting the synthesis of mycobacterial cell walls, which leads to the death of the bacteria. Ethambutol is often used in combination with other TB drugs, such as isoniazid and rifampin, to prevent the development of drug-resistant strains of the bacteria.

The most common side effect of ethambutol is optic neuritis, which can cause visual disturbances such as decreased vision, color blindness, or blurred vision. This side effect is usually reversible if the medication is stopped promptly. Other potential side effects include skin rashes, joint pain, and gastrointestinal symptoms such as nausea and vomiting.

Ethambutol is available in oral tablet and solution forms, and is typically taken once or twice daily. The dosage of ethambutol is based on the patient's weight, and it is important to follow the healthcare provider's instructions carefully to avoid toxicity. Regular monitoring of visual acuity and liver function is recommended during treatment with ethambutol.

A bacterial genome is the complete set of genetic material, including both DNA and RNA, found within a single bacterium. It contains all the hereditary information necessary for the bacterium to grow, reproduce, and survive in its environment. The bacterial genome typically includes circular chromosomes, as well as plasmids, which are smaller, circular DNA molecules that can carry additional genes. These genes encode various functional elements such as enzymes, structural proteins, and regulatory sequences that determine the bacterium's characteristics and behavior.

Bacterial genomes vary widely in size, ranging from around 130 kilobases (kb) in Mycoplasma genitalium to over 14 megabases (Mb) in Sorangium cellulosum. The complete sequencing and analysis of bacterial genomes have provided valuable insights into the biology, evolution, and pathogenicity of bacteria, enabling researchers to better understand their roles in various diseases and potential applications in biotechnology.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Cellular immunity, also known as cell-mediated immunity, is a type of immune response that involves the activation of immune cells, such as T lymphocytes (T cells), to protect the body against infected or damaged cells. This form of immunity is important for fighting off infections caused by viruses and intracellular bacteria, as well as for recognizing and destroying cancer cells.

Cellular immunity involves a complex series of interactions between various immune cells and molecules. When a pathogen infects a cell, the infected cell displays pieces of the pathogen on its surface in a process called antigen presentation. This attracts T cells, which recognize the antigens and become activated. Activated T cells then release cytokines, chemicals that help coordinate the immune response, and can directly attack and kill infected cells or help activate other immune cells to do so.

Cellular immunity is an important component of the adaptive immune system, which is able to learn and remember specific pathogens in order to mount a faster and more effective response upon subsequent exposure. This form of immunity is also critical for the rejection of transplanted organs, as the immune system recognizes the transplanted tissue as foreign and attacks it.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

A granuloma is a small, nodular inflammatory lesion that occurs in various tissues in response to chronic infection, foreign body reaction, or autoimmune conditions. Histologically, it is characterized by the presence of epithelioid macrophages, which are specialized immune cells with enlarged nuclei and abundant cytoplasm, often arranged in a palisading pattern around a central area containing necrotic debris, microorganisms, or foreign material.

Granulomas can be found in various medical conditions such as tuberculosis, sarcoidosis, fungal infections, and certain autoimmune disorders like Crohn's disease. The formation of granulomas is a complex process involving both innate and adaptive immune responses, which aim to contain and eliminate the offending agent while minimizing tissue damage.

Scholia has a topic profile for Mycobacterium leprae. The genome of Mycobacterium leprae "Mycobacterium leprae". NCBI Taxonomy ... Mycobacterium leprae contains the highest number of pseudogens (>1000). Many of the pseudogenes in Mycobacterium leprae arose ... tuberculosis have been lost in the Mycobacterium leprae genome. Due to Mycobacterium leprae's reliance on a host organism, many ... nasal mucosa and peripheral nerves primary targets for infection by Mycobacterium leprae. Mycobacterium leprae has a narrow ...
One study conducted by Eddy included finding new mediums on which to culture Mycobacterium leprae in labs. Another notable ... In 1937, Eddy and her colleagues studied multiple aspects of Mycobacterium leprae, the bacteria that causes leprosy, to gain ... Soule, M. H. (1934-06-01). "Cultivation of Mycobacterium Leprae. III". Experimental Biology and Medicine. 31 (9): 1197-1199. ...
Irgens, LM (1984). "The Discovery of Mycobacterium Leprae. A Medical Achievement in the Light of Evolving Scientific Methods". ... Det kom] lovpålegg om smitteisolasjon, slik som for eksempel ved lepra i 1877 og tuberkulose i 1900. "Tromsø Study Documents ...
In 1873, he announced the discovery of Mycobacterium leprae in the tissues of all people with the condition, although he did ... Irgens L; Rabson, S. M. (1984). "The discovery of Mycobacterium leprae. A medical achievement in the light of evolving ... remembered for his identification of the bacterium Mycobacterium leprae in 1873 as the causative agent of leprosy. His ... Bergenseren som løste lepra-gåten Aaftenposten . 16 September 2012 Ole Didrik Lærum. "Gerhard Armauer Hansen, Lege". Norsk ...
Whereas Mycobacterium tuberculosis and M. leprae are pathogenic, most mycobacteria do not cause disease unless they enter skin ... Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of ... The development of Leprosy is caused by infection with either Mycobacterium leprae or Mycobacterium lepromatosis, two closely ... The genome sizes of mycobacteria range from relatively small ones (e.g. in M. leprae) to quite large ones, such as that as M. ...
... with Mycobacterium leprae and Mycobacterium lepromatosis appearing in different populations. The Mycobacteria leprae strain ... M. leprae is surrounded by the waxy cell envelope coating characteristic of the genus Mycobacterium. Genetically, M. leprae and ... Leprosy, also known as Hansen's disease (HD), is a long-term infection by the bacteria Mycobacterium leprae or Mycobacterium ... A pre-Norman era skull excavated in Hoxne, Suffolk, in 2017 was found to carry DNA from a strain of Mycobacterium leprae, which ...
A famous example for such gene decay is the genome of Mycobacterium leprae, the causative agent of leprosy. M. leprae has lost ... Good examples are the genomes of Mycobacterium tuberculosis and Mycobacterium leprae, the latter of which has a dramatically ... This is evident in looking at its closest ancestor Mycobacterium tuberculosis. M. leprae lives and replicates inside of a host ... Singh P, Cole ST (January 2011). "Mycobacterium leprae: genes, pseudogenes and genetic diversity". Future Microbiology. 6 (1): ...
Mungroo MR, Khan NA, Siddiqui R (December 2020). "Mycobacterium leprae: Pathogenesis, diagnosis, and treatment options". ...
"Genome-Wide Comparison of Medieval and Modern Mycobacterium leprae". Science. 341 (6142): 179-183. Bibcode:2013Sci...341..179S ...
Leprosy is a chronic disease caused by mycobacterium leprae. An effective therapy was discovered in 1941 by Faget, after ...
In particular, it is not used to treat other mycobacteria; Mycobacterium bovis and Mycobacterium leprae are innately resistant ... Pyrazinamide is only used in combination with other drugs such as isoniazid and rifampicin in the treatment of Mycobacterium ... Speirs RJ, Welch JT, Cynamon MH (June 1995). "Activity of n-propyl pyrazinoate against pyrazinamide-resistant Mycobacterium ... Klemens SP, Sharpe CA, Cynamon MH (January 1996). "Activity of pyrazinamide in a murine model against Mycobacterium ...
Rojas-Espinosa O, Løvik M (2001). "Mycobacterium leprae and Mycobacterium lepraemurium infections in domestic and wild animals ... Sooty mangabeys can also contract leprosy, caused by the bacterium Mycobacterium leprae. It is one of several species in which ...
In 1987, Convit added killed Mycobacterium leprae to the BCG vaccine. The combined vaccine was tested worldwide, but was not ...
Neisser also co-discovered the pathogen that causes leprosy, Mycobacterium leprae. These discoveries were made possible by the ...
In 1987, Convit added killed Mycobacterium leprae to the BCG vaccine. The combined vaccine was tested worldwide, but was not ...
December 1998). "Role of alpha-dystroglycan as a Schwann cell receptor for Mycobacterium leprae". Science. 282 (5396): 2076- ...
Leprosy is a chronic infectious disease caused by the bacteria Mycobacterium leprae. M. leprae is unculturable on artificial ... Some of these include the bacterium Mycobacterium leprae, which is the causative of leprosy, the organism Trypanosoma cruzi, ... The nine-banded armadillo's enhanced ability to grow M. leprae has led to suggestions that armadillo species are more ... Soon after, Convit and Pinardi incurred a second successful inoculation of M. leprae into Dasypus sabanicola. The armadillo ...
Mycobacterium leprae antigen-induced suppression of T cell proliferation in vitro. J. Immunol. 138:3028-3034. Sibley, L. D., L ... Phosphatidylmyo-inositol Mannosides (PIMs) are a family of glycolipids found in the cell wall of Mycobacterium tuberculosis. ... Liposomes as a carrier for mannophosphoinositide antigens of mycobacteria. Indian J. Biochem. Biophys. 30:160-165. Fratti, R. A ... Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol ...
Leprosy, also known as Hansen's Disease, is caused by a bacillus, Mycobacterium leprae. It is a chronic disease with an ... The bacterium that causes tuberculosis, Mycobacterium tuberculosis, is generally spread when an infected person coughs and ...
In biology, some bacteria are thermophobic, such as mycobacterium leprae which causes leprosy. Thermophobic response in living ...
She showed that a Mycobacterium leprae lipid causes nerve damage by inciting abnormal responses in the macrophages. In addition ... "A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy". Cell. 170 (5): 973-985. ... Ramakrishnan and her research group showed that two lipids (a type of fatty molecule) on the surface of the mycobacteria work ... Working with Stanley Falkow at Stanford, she developed the strategy of using Mycobacterium marinum infection as a model for ...
Analysis of the 16S rRNA gene confirms that the species is distinct from Mycobacterium leprae. Members of the Mycobacterium ... October 2009). "Comparative sequence analysis of Mycobacterium leprae and the new leprosy-causing Mycobacterium lepromatosis". ... October 2009). "Comparative sequence analysis of Mycobacterium leprae and the new leprosy-causing Mycobacterium lepromatosis". ... Similar to its close relative, Mycobacterium leprae, M. lepromatosis is a facultative intracellular parasite that only ...
Measles viruses Mycobacterium leprae (leprosy) Mycobacterium tuberculosis (tuberculosis) Neisseria gonorrhoeae (gonorrhoea) ... "Nasal carriage of Mycobacterium leprae DNA in healthy individuals in Lega Robi village, Ethiopia". Epidemiology and Infection. ... For example, hosts of Mycobacterium tuberculosis bacteria will only develop active tuberculosis in approximately one-tenth of ...
Leprosy is frequently characterized by direct neural infection by the causative organism, mycobacterium leprae. Leprosy ...
In this form of leprosy Mycobacterium leprae are found in lesion in large numbers. This is the most unfavorable clinical ... The disease is believed to be spread through respiratory droplets in close quarters like its relative Mycobacterium ... 346 It results from the failure of Th1 cell activation which is necessary to eradicate the mycobacteria (Th1 response is ...
"Involvement of 9-O-Acetyl GD3 Ganglioside in Mycobacterium leprae Infection of Schwann Cells". J. Biol. Chem. 285 (44): 34086- ...
Babu M (1999). "Annotation of Chorismate Mutase from the Mycobacterium tuberculosis and the Mycobacterium leprae genome" (PDF ... "The 2.15 A crystal structure of Mycobacterium tuberculosis chorismate mutase reveals an unexpected gene duplication and ...
"Involvement of 9-O-Acetyl GD3 ganglioside in Mycobacterium leprae infection of Schwann cells". Journal of Biological Chemistry ...
Other known pathogenic mycobacteria include M. leprae, M. avium, and M. kansasii. The latter two species are classified as " ... Mycobacteria infect many different animals, including birds, fish, rodents, and reptiles. The subspecies Mycobacterium ... "nontuberculous mycobacteria" (NTM) or atypical mycobacteria. NTM cause neither TB nor leprosy, but they do cause lung diseases ... Mycobacteria have an outer membrane lipid bilayer. If a Gram stain is performed, MTB either stains very weakly "Gram-positive" ...
Common examples of species with reduced genomes include Buchnera aphidicola, Rickettsia prowazekii, and Mycobacterium leprae. ...
Scholia has a topic profile for Mycobacterium leprae. The genome of Mycobacterium leprae "Mycobacterium leprae". NCBI Taxonomy ... Mycobacterium leprae contains the highest number of pseudogens (>1000). Many of the pseudogenes in Mycobacterium leprae arose ... tuberculosis have been lost in the Mycobacterium leprae genome. Due to Mycobacterium lepraes reliance on a host organism, many ... nasal mucosa and peripheral nerves primary targets for infection by Mycobacterium leprae. Mycobacterium leprae has a narrow ...
All about Leprosy (Mycobacterium leprae). FACTS: Leprosy is an ancient disease which manifests itself as nerve damage, bulbous ... The bacteria, Mycobacterium leprae, ranges from 1-8 micrometres in length and 0.2-0.5 micrometres in diameter.. ... Armauer Hansen of Norway discovered Mycobacterium leprae by looking under a microscope.. Dapsone was developed when German ... Leprosy (Mycobacterium leprae). Leprosy (Mycobacterium leprae) GMUS-PD-0452 $12.95 Out of stock ...
Antibodies to lipoarabinomannan antigen in sooty mangabey monkeys experimentally inoculated with Mycobacterium leprae. Download ... Antibodies to lipoarabinomannan antigen in sooty mangabey monkeys experimentally inoculated with Mycobacterium leprae. Int J ... Antibodies to Lipoarabinomannan Antigen in Sooty Mangabey Monkeys Experimentally Inoculated With Mycobacterium Leprae. Int J ... Antibodies to lipoarabinomannan antigen in sooty mangabey monkeys experimentally inoculated with Mycobacterium leprae.. Int J ...
Leprosy (or Hansens disease) is a curable chronic infectious disease caused by the acid-fast bacillus Mycobacterium leprae. ...
Leprosy is an infectious disease caused by Mycobacterium leprae and is endemic in many developing countries. The World Health ... Population survey to determine risk factors for Mycobacterium leprae transmission and infection. Publication ... An Approach to Understanding the Transmissionof Mycobacterium leprae Using Molecular and Immunological Methods: Results from ... Download Population survey to determine risk factors for Mycobacterium leprae transmission and infection. ...
Mycobacterium leprae TN). Find diseases associated with this biological target and compounds tested against it in bioassay ...
GSMN-ML- a genome scale metabolic network reconstruction of the obligate human pathogen Mycobacterium leprae. Khushboo Borah, ... Author Summary Mycobacterium leprae, the obligate human pathogen is uncultivable in axenic growth medium, and this hinders ... Leprosy, caused by Mycobacterium leprae, has plagued humanity for thousands of years and continues to cause morbidity, ... GSMN-ML- a genome scale metabolic network reconstruction of the obligate human pathogen Mycobacterium leprae ...
Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. In: Cell. 2000 ; Vol ... Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. Cell. 2000 Oct 27;103 ... Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. / Ng, V; Zanazzi, G; ... title = "Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae", ...
2017) Innovative tools and approaches to end the transmission of Mycobacterium leprae. The Lancet Infectious Diseases, 17 (9). ... WRAP-innovative-tools-approaches-transmission-Mycobacterium-leprae-Hollingsworth-2017.pdf - Accepted Version - Requires a PDF ... we comment on efforts to develop tools and approaches to detect leprosy and to stop the transmission of Mycobacterium leprae, ... believe that sustained innovation is needed and that only a combination of tools and approaches holds promise to end M leprae ...
Mycobacterium Leprae Placental Barrier Pregnant Woman Research Letter Tuberculosis And Other Mycobacteria ... "Intact Mycobacterium leprae Isolated from Placenta of a Pregnant Woman, China" 25, no. 8 (2019). Chen, Zhiming et al. "Intact ... Whether Mycobacterium leprae transmits from placenta to fetus remains unknown. We describe the case of a pregnant woman with ... 2019). Intact Mycobacterium leprae Isolated from Placenta of a Pregnant Woman, China. 25(8). Chen, Zhiming et al. " ...
mycobacterium leprae. Antibodies from healthy or paratuberculosis infected cows have different effects on Mycobacterium avium ... In this work, we used a calf ileal loop model to evaluate whether the preincubation of Mycobacterium avium subspecies ... Antibodies from healthy or paratuberculosis infected cows have different effects on Mycobacterium avium subspecies ...
activities alcohol allergic Avoid clothes that are too tight bacteria bacterium mycobacterium leprae diphenhydramine diphtheria ... Hansens disease, also known as leprosy, is an infection caused by the slowly growing bacterium Mycobacterium leprae. The cause ... Health care assistance Heart Surgery help you sleep better honey hot soup hot tea human service agencies leakky heart leprae ...
Mycobacterium leprae) case definitions; uniform criteria used to define a disease for public health surveillance. ... Hansens Disease / Leprosy (Mycobacterium leprae) , 2013 Case Definition. *Hansens Disease / Leprosy (Mycobacterium leprae) , ...
Mycobacterium leprae) case definitions; uniform criteria used to define a disease for public health surveillance. ... Hansens Disease / Leprosy (Mycobacterium leprae) , 2013 Case Definition. *Hansens Disease / Leprosy (Mycobacterium leprae) , ...
General information about Mycobacterium leprae (MYCBLE)
Mycobacterium leprae Resumo. A utilização da bolsa jugal do hamster, foi avaliada pela inoculação de 6,0x108 M. leprae/ml no ... SU, D.W.P., YANG, H.Y., SKINSNES, O.K. The e f f e c t o f n e o n a t a l t h y m e c t o m y o n Mycobacterium leprae ... mice to Mycobacterium leprae: multiplication of M. leprae inoculated into both hind feet at an early stage. Int. J. Leprosy, v ... Inoculação de Mycobacterium leprae na bolsa júgal do hamster Autores. * Maria Esther Salles Nogueira Pesquisadora Científica IV ...
Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding ... Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. lepraes genetic variation in Europe, with a ... leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. Our findings allow us to detect ... By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M ...
title = "Protein antigens of Mycobacterium leprae",. abstract = "Protein antigens of Mycobacterium leprae have been identified ... Protein antigens of Mycobacterium leprae have been identified by screening the λgt11, pYA626 and pHC79::M. leprae genomic ... N2 - Protein antigens of Mycobacterium leprae have been identified by screening the λgt11, pYA626 and pHC79::M. leprae genomic ... AB - Protein antigens of Mycobacterium leprae have been identified by screening the λgt11, pYA626 and pHC79::M. leprae genomic ...
... P. ASCENZI;E. DE MARINIS;M. COLETTA;VISCA, PAOLO 2008- ... which could be responsible for the oxidative damage of the mycobacterium. Therefore, Mycobacterium leprae trHbO could be ... which could be responsible for the oxidative damage of the mycobacterium. Therefore, Mycobacterium leprae trHbO could be ... Kinetics of ferric Mycobacterium leprae truncated hemoglobin O (trHbOFe(III)) oxidation by H2O2 and of trHbOFe(IV)O reduction ...
Although it is now well established that M. leprae prefers cooler temperatures, slightly acidic microaerophilic conditions, and ... Introduction Mycobacterium leprae, despite being recognized as a human pathogen over 140 years ago, remains uncultivable in ... Metabolism of Mycobacterium leprae in macrophages. Infect Immun 55:1203-1206.. *^ Ramasesh N, Krahenbuhl JL, Hastings RC. 1989 ... Pyrimidine scavenging by Mycobacterium leprae. FEMS Microbiol Lett 48:179-184.. *^ Haas M, Lindner B, Seydel U, Levy L. 1993. ...
ABDALLA, Ligia Fernandes et al. Mycobacterium leprae in the periodontium, saliva and skin smears of leprosy patients. Rev. ... PURPOSE: To verify the presence of M. leprae in the periodontium, saliva and skin slit smears of leprosy patients. To correlate ... PCR positive results for the detection of M. leprae in PB patients can be increased by collecting slit skin smears, ... CONCLUSION: There was no correlation between periodontal disease and the presence of M. leprae. Bacteriological examination did ...
Mycobacterium leprae causes leprosy, Corynebacterium diphtheria causes diphtheria and Vibrio comma causes ... Mycobacterium leprae causes leprosy, Corynebacterium diphtheria causes diphtheria and Vibrio comma causes ...
The Death of Mycobacterium Leprae during Treatment with 4,4′-Diaminodiphenylsulfone (DDS) Initial Rate in Patients ... The Sensitivity to Dapsone (DDS) of Mycobacterium Leprae from Patients with and without Previous Treatment ... The Death Rate of Mycobacterium Leprae during Treatment of Lepromatous Leprosy with Acedapsone (DADDS) ... Further Experience with the Rapid Bactericidal Effect of Rifampin on Mycobacterium Leprae ...
i,Mycobacterium leprae,/i, Infection in Ticks and Tick-Derived Cells. Mycobacterium leprae Infection in Ticks and Tick-Derived ... Mycobacterium leprae DNA was detected in multiple tick life cycle stages. Likewise, freshly isolated M. leprae (Thai-53) was ... The majority of patients presenting with zoonotic strains of Mycobacterium leprae note extensive outdoor activity but only ... The objectives of this study were to assess the potential for ticks to transmit M. leprae and to test if viable M. leprae can ...
Mycobacterium leprae reverts its host to a stem cell-like state. Mycobacterium leprae, which causes leprosy, takes cell ... By contrast, obligate intracellular bacteria such as Chlamydia trachomatis and Mycobacterium leprae do, and this trait makes ... The University of Edinburghs Anura Rambukkana has studied reprogramming by Mycobacterium leprae, which causes leprosy. These ... This tweaking of gene expression seems to aid M. lepraes spread in at least two ways. First, altered cells can go on to ...
specific to Mycobacteria leprae. The combined effect of the gene variations, as well as nongenetic factors that are not well ... It is caused by bacteria called Mycobacterium leprae and is contagious, which means that it can be passed from person to person ... If this is followed by an immune system response specific to Mycobacterium leprae infection (adaptive immune response) that ... However, it is not highly transmissible, and approximately 95 percent of individuals who are exposed to Mycobacterium leprae ...
DETEKSI DINI MYCOBACTERIUM LEPRAE PADA KONTAK SERUMAH PENDERITA PENYAKIT KUSTA PASCA MENJALANI PENGOBATAN ... DETEKSI DINI MYCOBACTERIUM LEPRAE PADA KONTAK SERUMAH PENDERITA PENYAKIT KUSTA PASCA MENJALANI PENGOBATAN. ... Hasil pemeriksaan basil tahan asam pada deteksi dini Mycobacterium leprae pada kontak serumah penderita penyakit kusta dengan ... Tujuan penelitian ini untuk mengetahui keberadaan Mycobacterium leprae pada hasil pewarnaan kontak serumah penderita kusta ...

No FAQ available that match "mycobacterium leprae"

No images available that match "mycobacterium leprae"