Clonal hematopoietic stem cell disorders characterized by dysplasia in one or more hematopoietic cell lineages. They predominantly affect patients over 60, are considered preleukemic conditions, and have high probability of transformation into ACUTE MYELOID LEUKEMIA.
A severe sometimes chronic anemia, usually macrocytic in type, that does not respond to ordinary antianemic therapy.
Chronic refractory anemia with granulocytopenia, and/or thrombocytopenia. Myeloblasts and progranulocytes constitute 5 to 40 percent of the nucleated marrow cells.
A characteristic symptom complex.
A myelodysplastic-myeloproliferative disease characterized by monocytosis, increased monocytes in the bone marrow, variable degrees of dysplasia, but an absence of immature granulocytes in the blood.
Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES.
One of the two pairs of human chromosomes in the group B class (CHROMOSOMES, HUMAN, 4-5).
Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites.
A pyrimidine analogue that inhibits DNA methyltransferase, impairing DNA methylation. It is also an antimetabolite of cytidine, incorporated primarily into RNA. Azacytidine has been used as an antineoplastic agent.
Anemia characterized by the presence of erythroblasts containing excessive deposits of iron in the marrow.
The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells.
Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS.
Mapping of the KARYOTYPE of a cell.
The condition in which one chromosome of a pair is missing. In a normally diploid cell it is represented symbolically as 2N-1.
A piperidinyl isoindole originally introduced as a non-barbiturate hypnotic, but withdrawn from the market due to teratogenic effects. It has been reintroduced and used for a number of immunological and inflammatory disorders. Thalidomide displays immunosuppressive and anti-angiogenic activity. It inhibits release of TUMOR NECROSIS FACTOR-ALPHA from monocytes, and modulates other cytokine action.
Conditions in which the abnormalities in the peripheral blood or bone marrow represent the early manifestations of acute leukemia, but in which the changes are not of sufficient magnitude or specificity to permit a diagnosis of acute leukemia by the usual clinical criteria.
Conditions which cause proliferation of hemopoietically active tissue or of tissue which has embryonic hemopoietic potential. They all involve dysregulation of multipotent MYELOID PROGENITOR CELLS, most often caused by a mutation in the JAK2 PROTEIN TYROSINE KINASE.
Clonal myeloid disorders that possess both dysplastic and proliferative features but are not properly classified as either MYELODYSPLASTIC SYNDROMES or MYELOPROLIFERATIVE DISORDERS.
Deficiency of all three cell elements of the blood, erythrocytes, leukocytes and platelets.
A form of anemia in which the bone marrow fails to produce adequate numbers of peripheral blood elements.
A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.
Examination of CHROMOSOMES to diagnose, classify, screen for, or manage genetic diseases and abnormalities. Following preparation of the sample, KARYOTYPING is performed and/or the specific chromosomes are analyzed.
A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations.
Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells.
A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006)
Disease having a short and relatively severe course.
Actual loss of portion of a chromosome.
The cells in the granulocytic series that give rise to mature granulocytes (NEUTROPHILS; EOSINOPHILS; and BASOPHILS). These precursor cells include myeloblasts, promyelocytes, myelocytes and metamyelocytes.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
Abnormal growths of tissue that follow a previous neoplasm but are not metastases of the latter. The second neoplasm may have the same or different histological type and can occur in the same or different organs as the previous neoplasm but in all cases arises from an independent oncogenic event. The development of the second neoplasm may or may not be related to the treatment for the previous neoplasm since genetic risk or predisposing factors may actually be the cause.
Bone marrow diseases, also known as hematologic or blood disorders, refer to conditions that affect the production and function of blood cells within the bone marrow, such as leukemia, lymphoma, myeloma, and aplastic anemia, potentially leading to complications like anemia, neutropenia, thrombocytopenia, and increased susceptibility to infections or bleeding.
Transfer of HEMATOPOIETIC STEM CELLS from BONE MARROW or BLOOD between individuals within the same species (TRANSPLANTATION, HOMOLOGOUS) or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS). Hematopoietic stem cell transplantation has been used as an alternative to BONE MARROW TRANSPLANTATION in the treatment of a variety of neoplasms.
An excessive accumulation of iron in the body due to a greater than normal absorption of iron from the gastrointestinal tract or from parenteral injection. This may arise from idiopathic hemochromatosis, excessive iron intake, chronic alcoholism, certain types of refractory anemia, or transfusional hemosiderosis. (From Churchill's Illustrated Medical Dictionary, 1989)
The possession of a third chromosome of any one type in an otherwise diploid cell.
Antimetabolites that are useful in cancer chemotherapy.
A subdiscipline of genetics which deals with the cytological and molecular analysis of the CHROMOSOMES, and location of the GENES on chromosomes, and the movements of chromosomes during the CELL CYCLE.
The transfer of erythrocytes from a donor to a recipient or reinfusion to the donor.
Drugs that act on blood and blood-forming organs and those that affect the hemostatic system.
Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals.
Progenitor cells from which all blood cells derive.
Therapy of heavy metal poisoning using agents which sequester the metal from organs or tissues and bind it firmly within the ring structure of a new compound which can be eliminated from the body.
A class of statistical procedures for estimating the survival function (function of time, starting with a population 100% well at a given time and providing the percentage of the population still well at later times). The survival analysis is then used for making inferences about the effects of treatments, prognostic factors, exposures, and other covariates on the function.
Glycoproteins found on immature hematopoietic cells and endothelial cells. They are the only molecules to date whose expression within the blood system is restricted to a small number of progenitor cells in the bone marrow.
Glycoprotein hormone, secreted chiefly by the KIDNEY in the adult and the LIVER in the FETUS, that acts on erythroid stem cells of the BONE MARROW to stimulate proliferation and differentiation.
The introduction of whole blood or blood component directly into the blood stream. (Dorland, 27th ed)
A chromosome disorder associated either with an extra chromosome 21 or an effective trisomy for chromosome 21. Clinical manifestations include hypotonia, short stature, brachycephaly, upslanting palpebral fissures, epicanthus, Brushfield spots on the iris, protruding tongue, small ears, short, broad hands, fifth finger clinodactyly, Simian crease, and moderate to severe INTELLECTUAL DISABILITY. Cardiac and gastrointestinal malformations, a marked increase in the incidence of LEUKEMIA, and the early onset of ALZHEIMER DISEASE are also associated with this condition. Pathologic features include the development of NEUROFIBRILLARY TANGLES in neurons and the deposition of AMYLOID BETA-PROTEIN, similar to the pathology of ALZHEIMER DISEASE. (Menkes, Textbook of Child Neurology, 5th ed, p213)
A pyrimidine nucleoside analog that is used mainly in the treatment of leukemia, especially acute non-lymphoblastic leukemia. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. Its actions are specific for the S phase of the cell cycle. It also has antiviral and immunosuppressant properties. (From Martindale, The Extra Pharmacopoeia, 30th ed, p472)
A cluster of metabolic risk factors for CARDIOVASCULAR DISEASES and TYPE 2 DIABETES MELLITUS. The major components of metabolic syndrome X include excess ABDOMINAL FAT; atherogenic DYSLIPIDEMIA; HYPERTENSION; HYPERGLYCEMIA; INSULIN RESISTANCE; a proinflammatory state; and a prothrombotic (THROMBOSIS) state. (from AHA/NHLBI/ADA Conference Proceedings, Circulation 2004; 109:551-556)
Therapeutic act or process that initiates a response to a complete or partial remission level.
An advanced phase of chronic myelogenous leukemia, characterized by a rapid increase in the proportion of immature white blood cells (blasts) in the blood and bone marrow to greater than 30%.
Preparative treatment of transplant recipient with various conditioning regimens including radiation, immune sera, chemotherapy, and/or immunosuppressive agents, prior to transplantation. Transplantation conditioning is very common before bone marrow transplantation.
Removal of bone marrow and evaluation of its histologic picture.
A subnormal level of BLOOD PLATELETS.
The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY).
The number of LEUKOCYTES and ERYTHROCYTES per unit volume in a sample of venous BLOOD. A complete blood count (CBC) also includes measurement of the HEMOGLOBIN; HEMATOCRIT; and ERYTHROCYTE INDICES.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A nucleoside antibiotic isolated from Streptomyces antibioticus. It has some antineoplastic properties and has broad spectrum activity against DNA viruses in cell cultures and significant antiviral activity against infections caused by a variety of viruses such as the herpes viruses, the VACCINIA VIRUS and varicella zoster virus.
The proportion of survivors in a group, e.g., of patients, studied and followed over a period, or the proportion of persons in a specified group alive at the beginning of a time interval who survive to the end of the interval. It is often studied using life table methods.
Condition characterized by large, rapidly extending, erythematous, tender plaques on the upper body usually accompanied by fever and dermal infiltration of neutrophilic leukocytes. It occurs mostly in middle-aged women, is often preceded by an upper respiratory infection, and clinically resembles ERYTHEMA MULTIFORME. Sweet syndrome is associated with LEUKEMIA.
A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei.
Anemia characterized by larger than normal erythrocytes, increased mean corpuscular volume (MCV) and increased mean corpuscular hemoglobin (MCH).
A glycoprotein of MW 25 kDa containing internal disulfide bonds. It induces the survival, proliferation, and differentiation of neutrophilic granulocyte precursor cells and functionally activates mature blood neutrophils. Among the family of colony-stimulating factors, G-CSF is the most potent inducer of terminal differentiation to granulocytes and macrophages of leukemic myeloid cell lines.
Disorders of the blood and blood forming tissues.
The worsening of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis.
A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.
Substances that inhibit or prevent the proliferation of NEOPLASMS.
A transcription factor that dimerizes with the cofactor CORE BINDING FACTOR BETA SUBUNIT to form core binding factor. It contains a highly conserved DNA-binding domain known as the runt domain. Runx1 is frequently mutated in human LEUKEMIAS.
A reduction in the number of circulating ERYTHROCYTES or in the quantity of HEMOGLOBIN.
Clinical conditions caused by an abnormal chromosome constitution in which there is extra or missing chromosome material (either a whole chromosome or a chromosome segment). (from Thompson et al., Genetics in Medicine, 5th ed, p429)
A copy number variation that results in reduced GENE DOSAGE due to any loss-of-function mutation. The loss of heterozygosity is associated with abnormal phenotypes or diseased states because the remaining gene is insufficient.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
The full set of CHROMOSOMES presented as a systematized array of METAPHASE chromosomes from a photomicrograph of a single CELL NUCLEUS arranged in pairs in descending order of size and according to the position of the CENTROMERE. (From Stedman, 25th ed)
The cells in the erythroid series derived from MYELOID PROGENITOR CELLS or from the bi-potential MEGAKARYOCYTE-ERYTHROID PROGENITOR CELLS which eventually give rise to mature RED BLOOD CELLS. The erythroid progenitor cells develop in two phases: erythroid burst-forming units (BFU-E) followed by erythroid colony-forming units (CFU-E); BFU-E differentiate into CFU-E on stimulation by ERYTHROPOIETIN, and then further differentiate into ERYTHROBLASTS when stimulated by other factors.
A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome.
A specific pair of GROUP F CHROMOSOMES of the human chromosome classification.
Neoplasms located in the blood and blood-forming tissue (the bone marrow and lymphatic tissue). The commonest forms are the various types of LEUKEMIA, of LYMPHOMA, and of the progressive, life-threatening forms of the MYELODYSPLASTIC SYNDROMES.
A de novo myeloproliferation arising from an abnormal stem cell. It is characterized by the replacement of bone marrow by fibrous tissue, a process that is mediated by CYTOKINES arising from the abnormal clone.
Organic chemicals that form two or more coordination links with an iron ion. Once coordination has occurred, the complex formed is called a chelate. The iron-binding porphyrin group of hemoglobin is an example of a metal chelate found in biological systems.
Agents which improve the quality of the blood, increasing the hemoglobin level and the number of erythrocytes. They are used in the treatment of anemias.
A pediatric acute myeloid leukemia involving both myeloid and monocytoid precursors. At least 20% of non-erythroid cells are of monocytic origin.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
The series of cells in the red blood cell lineage at various stages of differentiation.
The transference of BONE MARROW from one human or animal to another for a variety of purposes including HEMATOPOIETIC STEM CELL TRANSPLANTATION or MESENCHYMAL STEM CELL TRANSPLANTATION.
Immature, nucleated ERYTHROCYTES occupying the stage of ERYTHROPOIESIS that follows formation of ERYTHROID PRECURSOR CELLS and precedes formation of RETICULOCYTES. The normal series is called normoblasts. Cells called MEGALOBLASTS are a pathologic series of erythroblasts.
Enzymes that are part of the restriction-modification systems. They are responsible for producing a species-characteristic methylation pattern, on either adenine or cytosine residues, in a specific short base sequence in the host cell's own DNA. This methylated sequence will occur many times in the host-cell DNA and remain intact for the lifetime of the cell. Any DNA from another species which gains entry into a living cell and lacks the characteristic methylation pattern will be recognized by the restriction endonucleases of similar specificity and destroyed by cleavage. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms.
A condition characterized by the recurrence of HEMOGLOBINURIA caused by intravascular HEMOLYSIS. In cases occurring upon cold exposure (paroxysmal cold hemoglobinuria), usually after infections, there is a circulating antibody which is also a cold hemolysin. In cases occurring during or after sleep (paroxysmal nocturnal hemoglobinuria), the clonal hematopoietic stem cells exhibit a global deficiency of cell membrane proteins.
Process of classifying cells of the immune system based on structural and functional differences. The process is commonly used to analyze and sort T-lymphocytes into subsets based on CD antigens by the technique of flow cytometry.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
Serum containing GAMMA-GLOBULINS which are antibodies for lymphocyte ANTIGENS. It is used both as a test for HISTOCOMPATIBILITY and therapeutically in TRANSPLANTATION.
An alkylating agent having a selective immunosuppressive effect on BONE MARROW. It has been used in the palliative treatment of chronic myeloid leukemia (MYELOID LEUKEMIA, CHRONIC), but although symptomatic relief is provided, no permanent remission is brought about. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), busulfan is listed as a known carcinogen.
Death resulting from the presence of a disease in an individual, as shown by a single case report or a limited number of patients. This should be differentiated from DEATH, the physiological cessation of life and from MORTALITY, an epidemiological or statistical concept.
Metacentric chromosomes produced during MEIOSIS or MITOSIS when the CENTROMERE splits transversely instead of longitudinally. The chromosomes produced by this abnormal division are one chromosome having the two long arms of the original chromosome, but no short arms, and the other chromosome consisting of the two short arms and no long arms. Each of these isochromosomes constitutes a simultaneous duplication and deletion.
HLA-DR antigen subtypes that have been classified according to their affinity to specific ANTIBODIES. The DNA sequence analyses of HLA-DR ALPHA-CHAINS and HLA-DR BETA-CHAINS has for the most part revealed the specific alleles that are responsible for each serological subtype.
The return of a sign, symptom, or disease after a remission.
Stem cells derived from HEMATOPOIETIC STEM CELLS. Derived from these myeloid progenitor cells are the MEGAKARYOCYTES; ERYTHROID CELLS; MYELOID CELLS; and some DENDRITIC CELLS.
The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction.
A nuclear RNA-protein complex that plays a role in RNA processing. In the nucleoplasm, the U2 snRNP along with other small nuclear ribonucleoproteins (U1, U4-U6, and U5) assemble into SPLICEOSOMES that remove introns from pre-mRNA by splicing. The U2 snRNA forms base pairs with conserved sequence motifs at the branch point, which associates with a heat- and RNAase-sensitive factor in an early step of splicing.
Biochemical identification of mutational changes in a nucleotide sequence.
The use of two or more chemicals simultaneously or sequentially in the drug therapy of neoplasms. The drugs need not be in the same dosage form.
Increased numbers of platelets in the peripheral blood. (Dorland, 27th ed)
A condition characterized by severe PROTEINURIA, greater than 3.5 g/day in an average adult. The substantial loss of protein in the urine results in complications such as HYPOPROTEINEMIA; generalized EDEMA; HYPERTENSION; and HYPERLIPIDEMIAS. Diseases associated with nephrotic syndrome generally cause chronic kidney dysfunction.
Nucleosides containing arabinose as their sugar moiety.
Clonal hematopoetic disorder caused by an acquired genetic defect in PLURIPOTENT STEM CELLS. It starts in MYELOID CELLS of the bone marrow, invades the blood and then other organs. The condition progresses from a stable, more indolent, chronic phase (LEUKEMIA, MYELOID, CHRONIC PHASE) lasting up to 7 years, to an advanced phase composed of an accelerated phase (LEUKEMIA, MYELOID, ACCELERATED PHASE) and BLAST CRISIS.
Very large BONE MARROW CELLS which release mature BLOOD PLATELETS.
Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor.
A dual specificity phosphatase subtype that plays a role in intracellular signal transduction by inactivating MITOGEN-ACTIVATED PROTEIN KINASES. It has specificity for EXTRACELLULAR SIGNAL-REGULATED MAP KINASES and is primarily localized to the CELL NUCLEUS.
Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill.
An orally administered anthracycline antineoplastic. The compound has shown activity against BREAST NEOPLASMS; LYMPHOMA; and LEUKEMIA.
Period after successful treatment in which there is no appearance of the symptoms or effects of the disease.
Leukemia produced by exposure to IONIZING RADIATION or NON-IONIZING RADIATION.
Chronic inflammatory and autoimmune disease in which the salivary and lacrimal glands undergo progressive destruction by lymphocytes and plasma cells resulting in decreased production of saliva and tears. The primary form, often called sicca syndrome, involves both KERATOCONJUNCTIVITIS SICCA and XEROSTOMIA. The secondary form includes, in addition, the presence of a connective tissue disease, usually rheumatoid arthritis.
The presence in a cell of two paired chromosomes from the same parent, with no chromosome of that pair from the other parent. This chromosome composition stems from non-disjunction (NONDISJUNCTION, GENETIC) events during MEIOSIS. The disomy may be composed of both homologous chromosomes from one parent (heterodisomy) or a duplicate of one chromosome (isodisomy).
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS.
Suppression of erythropoiesis with little or no abnormality of leukocyte or platelet production.
The clinical entity characterized by anorexia, diarrhea, loss of hair, leukopenia, thrombocytopenia, growth retardation, and eventual death brought about by the GRAFT VS HOST REACTION.
A variation from the normal set of chromosomes characteristic of a species.
A myelodysplastic/myeloproliferative disorder characterized by myelodysplasia associated with bone marrow and peripheral blood patterns similar to CHRONIC MYELOID LEUKEMIA, but cytogenetically lacking a PHILADELPHIA CHROMOSOME or bcr/abl fusion gene (GENES, ABL).
A receptor tyrosine kinase that is involved in HEMATOPOIESIS. It is closely related to FMS PROTO-ONCOGENE PROTEIN and is commonly mutated in acute MYELOID LEUKEMIA.
Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging.
A specific pair of GROUP G CHROMOSOMES of the human chromosome classification.
Transplantation of an individual's own tissue from one site to another site.
A decrease in the number of NEUTROPHILS found in the blood.
A subspecialty of internal medicine concerned with morphology, physiology, and pathology of the blood and blood-forming tissues.
Irradiation of the whole body with ionizing or non-ionizing radiation. It is applicable to humans or animals but not to microorganisms.
The probability that an event will occur. It encompasses a variety of measures of the probability of a generally unfavorable outcome.
The number of PLATELETS per unit volume in a sample of venous BLOOD.
An idiopathic, rapidly evolving, and severely debilitating disease occurring most commonly in association with chronic ulcerative colitis. It is characterized by the presence of boggy, purplish ulcers with undermined borders, appearing mostly on the legs. The majority of cases are in people between 40 and 60 years old. Its etiology is unknown.
Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience.
A heterogeneous group of diseases characterized by inflammation and necrosis of the blood vessel walls.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
A 67-kDa sialic acid binding lectin that is specific for MYELOID CELLS and MONOCYTE-MACROPHAGE PRECURSOR CELLS. This protein is the smallest siglec subtype and contains a single immunoglobulin C2-set domain. It may play a role in intracellular signaling via its interaction with SHP-1 PROTEIN-TYROSINE PHOSPHATASE and SHP-2 PROTEIN-TYROSINE PHOSPHATASE.
Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer.
A humoral factor that stimulates the production of thrombocytes (BLOOD PLATELETS). Thrombopoietin stimulates the proliferation of bone marrow MEGAKARYOCYTES and their release of blood platelets. The process is called THROMBOPOIESIS.
Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping.
A cytologic technique for measuring the functional capacity of stem cells by assaying their activity.
The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells.
The theory that T-cells monitor cell surfaces and detect structural changes in the plasma membrane and/or surface antigens of virally or neoplastically transformed cells.
A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification.
Studies in which subsets of a defined population are identified. These groups may or may not be exposed to factors hypothesized to influence the probability of the occurrence of a particular disease or other outcome. Cohorts are defined populations which, as a whole, are followed in an attempt to determine distinguishing subgroup characteristics.
An aspartate aminotransferase found in the CYTOPLASM.
A phosphorothioate proposed as a radiation-protective agent. It causes splenic vasodilation and may block autonomic ganglia.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
A nonparametric method of compiling LIFE TABLES or survival tables. It combines calculated probabilities of survival and estimates to allow for observations occurring beyond a measurement threshold, which are assumed to occur randomly. Time intervals are defined as ending each time an event occurs and are therefore unequal. (From Last, A Dictionary of Epidemiology, 1995)
A syndrome of defective gonadal development in phenotypic females associated with the karyotype 45,X (or 45,XO). Patients generally are of short stature with undifferentiated GONADS (streak gonads), SEXUAL INFANTILISM, HYPOGONADISM, webbing of the neck, cubitus valgus, elevated GONADOTROPINS, decreased ESTRADIOL level in blood, and CONGENITAL HEART DEFECTS. NOONAN SYNDROME (also called Pseudo-Turner Syndrome and Male Turner Syndrome) resembles this disorder; however, it occurs in males and females with a normal karyotype and is inherited as an autosomal dominant.
An acquired disease of unknown etiology, chronic course, and tendency to recur. It is characterized by inflammation and degeneration of cartilage and can result in deformities such as floppy ear and saddle nose. Loss of cartilage in the respiratory tract can lead to respiratory obstruction.
Elements of limited time intervals, contributing to particular results or situations.
Tests used in the analysis of the hemic system.

Expression and function of leptin receptor isoforms in myeloid leukemia and myelodysplastic syndromes: proliferative and anti-apoptotic activities. (1/1945)

The receptor for the gene product of the obesity gene, leptin, was recently reported to be expressed on murine and human hematopoietic progenitor cells. Therefore, we studied the expression of the leptin receptor, OB-R, in normal myeloid precursors, human leukemia cell lines, and primary leukemic cells using reverse-transcriptase polymerase chain reaction. In normal hematopoiesis, OB-R was expressed in CD34(+) cells. Normal promyelocytes (CD34(-)33(+) and CD34(-)13(+)) expressed only very low levels of the short, presumably nonsignaling isoform. Both the long and short isoforms of OB-R were expressed in 10 of 22 samples from patients with newly diagnosed primary or secondary acute myeloid leukemia (AML), with a higher incidence of the long isoform in primary AML (87.6% v 28.6%; P =.01). The incidence of OB-R expression was higher in recurrent than in newly diagnosed AML (P <.001), and samples from four patients with refractory AML showed strong expression of both isoforms. Both OB-R isoforms were also expressed in newly diagnosed and recurrent acute promyelocytic leukemia cells but were essentially absent in samples of chronic or acute lymphocytic leukemia. In vitro growth of myeloid leukemic cell lines and of blasts from 14 primary AMLs demonstrated that recombinant human leptin alone induced low level proliferation, significantly (P <.05) increased proliferation induced by recombinant human granulocyte colony-stimulating factor, interleukin 3, and stem cell factor in a subset of AML and increased colony formation (P <.005). Also, leptin reduced apoptosis induced by cytokine withdrawal in MO7E and TF-1 cells. Serum leptin levels correlated only with body mass index (P <. 001) and gender (P =.03). Results confirm the reported expression of leptin receptor in normal CD34(+) cells and demonstrate the frequent expression of leptin receptors in AML blasts. While normal promyelocytes lack receptor expression, leukemic promyelocytes express both isoforms. We also demonstrate proliferative effects of leptin alone and in combination with other physiologic cytokines, and anti-apoptotic properties of leptin. These findings could have implications for the pathophysiology of AML.  (+info)

Bone marrow transplantation in pediatric patients with therapy-related myelodysplasia and leukemia. (2/1945)

Eleven children underwent BMT for therapy-related MDS or leukemia, four from HLA-identical siblings and seven from unrelated donors. Ten of the 11 were conditioned with busulfan and cyclophosphamide as the majority had received prior irradiation to the chest and/or abdomen. All patients engrafted. Regimen-related toxicity was more common when compared to historical controls. Eight patients developed acute GVHD and four of eight who survived 100 days post transplant developed extensive chronic GVHD. Non-relapse related mortality occurred in three patients. Five patients developed recurrent malignancy: one died from recurrence of osteosarcoma, three died of recurrent leukemia or MDS and another developed two subsequent malignancies (duodenal carcinoma and anaplastic astrocytoma). Three survive disease-free at 14+, 22+ and 43+ months for a 2 year actuarial cancer-free survival of 24% (95% confidence interval = 5-53%). Although allogeneic BMT can be curative, regimen-related toxicity is frequent and recurrent malignancy remains the major obstacle.  (+info)

'Common' uncommon anemias. (3/1945)

Of the uncommon anemias, "common" types include the anemia of renal disease, thalassemia, myelodysplastic syndrome and the anemia of chronic disease. These conditions may be suggested by the clinical presentation, laboratory test values and peripheral blood smear, or by failure of the anemia to respond to iron supplements or nutrient replacement. The principal cause of the anemia of renal disease is a decreased production of red blood cells related to a relative deficiency of erythropoietin. When treatment is required, erythropoietin is administered, often with iron supplementation. In the anemia of chronic disease, impaired iron transport decreases red blood cell production. Treatment is predominantly directed at the underlying condition. Since iron stores are usually normal, iron administration is not beneficial. Thalassemia minor results from a congenital abnormality of hemoglobin synthesis. The disorder may masquerade as mild iron deficiency anemia, but iron therapy and transfusions are often not indicated. In the myelodysplastic syndrome, blood cell components fail to mature, and the condition may progress to acute nonlymphocytic leukemia. The rate of progression depends on the subtype of myelodysplasia, but the leukemia is usually resistant to therapy.  (+info)

Therapy-related leukemia and myelodysplastic syndrome in breast cancer patients treated with cyclophosphamide or anthracyclines. (4/1945)

BACKGROUND: Accumulation of data regarding therapy-related leukemia (TRL) or myelodysplastic syndrome (t-MDS) is critical for assessing the risk of developing such diseases and for subsequent decision-making processes for better treatment. METHODS: We evaluated the clinical characteristics of patients with TRL/t-MDS diagnosed at the National Cancer Center Hospital between January 1989 and September 1997. This report is concerned with those patients who initially had been treated with chemotherapeutic agents for breast cancer. RESULTS: Thirteen patients (median age, 55 years) developed TRL (n = 4) or t-MDS (n = 9). The median interval between the development of TRL/t-MDS and initial treatment was 94 months (range 23-190 months). For the primary therapy, all patients had received intense and prolonged treatment with cyclophosphamide (CPA) and/or anthracyclines including doxorubicin (DOX), with a median cumulative dose of 55 g/body (range 16.4-288.5 g) for CPA and 480 mg/m2 (range 395-625.5 mg/m2) for DOX. Seven patients were subsequently treated by chemotherapy and one received an allogeneic bone marrow transplantation. CONCLUSIONS: Clinicians must remain alert to the risks associated with unproven medical practices which include long-term administration of alkylating agents. Selected patients with TRL/t-MDS may respond to intense salvage combination chemotherapy.  (+info)

Secondary leukemia or myelodysplastic syndrome after treatment with epipodophyllotoxins. (5/1945)

PURPOSE: The incidence of secondary leukemia after epipodophyllotoxin treatment and the relationship between epipodophyllotoxin cumulative dose and risk are not well characterized. The Cancer Therapy Evaluation Program (CTEP) of the National Cancer Institute (NCI) has developed a monitoring plan to obtain reliable estimates of the risk of secondary leukemia after epipodophyllotoxin treatment. METHODS: Twelve NCI-supported cooperative group clinical trials were identified that use epipodophyllotoxins at low (<1.5 g/m2 etoposide), moderate (1.5 to 2.99 g/m2 etoposide), or higher (> or =3.0 g/m2 etoposide) cumulative doses. Cases of secondary leukemia (including treatment-related myelodysplastic syndrome) occurring on these trials have been reported to CTEP, as has duration of follow-up for all patients, thereby allowing calculation of cumulative 6-year incidence rates of secondary leukemia for each etoposide dose group. RESULTS: The calculated cumulative 6-year risks for development of secondary leukemia for the low, moderate, and higher cumulative dose groups were 3.3%, (95% upper confidence bound of 5.9%), 0.7% (95% upper confidence bound of 1.6%), and 2.2%, (95% upper confidence bound of 4.6%), respectively. CONCLUSION: Within the context of the epipodophyllotoxin cumulative dose range and schedules of administration encompassed by the monitoring plan regimens, and within the context of multiagent chemotherapy regimens that include alkylating agents, doxorubicin, and other agents, factors other than epipodophyllotoxin cumulative dose seem to be of primary importance in determining the risk of secondary leukemia. Data obtained by the CTEP secondary leukemia monitoring plan support the relative safety of using epipodophyllotoxins according to the therapeutic plans outlined in the monitored protocols.  (+info)

The myelodysplastic syndromes: predictive value of eight prognostic systems in 143 cases from a single institution. (6/1945)

BACKGROUND AND OBJECTIVE: Despite the fact that several prognostic systems for myelodysplastic syndromes (MDS) have been proposed, few studies have been designed to test their effectiveness in independent patient populations. The aim of this study was to compare the prognostic value of 8 previously described prognostic systems in a series of consecutive MDS patients observed at a single institution over a 10-year period. DESIGN AND METHODS: One hundred and forty-three patients were diagnosed as having myelodysplastic syndrome (MDS) according to the French-American-British (FAB) criteria. They were studied retrospectively in order to assess the prognostic value of the FAB classification and 7 other prognostic systems. RESULTS: On the basis of data at diagnosis, all investigated systems effectively stratified patients into groups with different life expectancies and identified a subset of patients with poor clinical outcome. However, the systems had different outcomes concerning median survival of patients classified as low-risk, ranging from less than 3 years for the Mufti scoring system to more than 8 years for the FAB classification modified according to Rosati et al. Moreover, patient distribution into different risk categories was quite different with the different prognostic systems. INTERPRETATION AND CONCLUSIONS: When applied to our case series, some of the prognostic systems had a much lower prognostic value than in the patient population from which they derived. This evidence suggests that testing of prognostic systems in independent case series is necessary before using the systems in clinical practice.  (+info)

An unusual cutaneous manifestation of myelodysplastic syndrome: "pseudo-Koebner phenomenon". (7/1945)

An unusual and hitherto unreported complication of myelodysplastic syndrome is reported: the "pseudo-Koebner phenomenon." The skin lesions were characterised by exuberant "fleshy" masses at the sites of intravenous cannulation and skin trauma, and by histological evidence of chronic inflammation with focal necrosis and abscess formation. No evidence of dermal infiltration by malignant haemopoietic cells was seen. The exact aetiopathology of the phenomenon is unclear but an inappropriate and exaggerated inflammatory response owing to aberrant mediator mechanisms that are known to occur in some cases of myelodysplastic syndrome may be implicated.  (+info)

Randomized phase II study of fludarabine + cytosine arabinoside + idarubicin +/- all-trans retinoic acid +/- granulocyte colony-stimulating factor in poor prognosis newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. (8/1945)

Preclinical data suggest that retinoids, eg, all-trans retinoic acid (ATRA), lower concentrations of antiapoptotic proteins such as bcl-2, possibly thereby improving the outcome of anti-acute myeloid leukemia (AML) chemotherapy. Granulocyte colony-stimulating factor (G-CSF) has been considered to be potentially synergistic with ATRA in this regard. Accordingly, we randomized 215 patients with newly diagnosed AML (153 patients) or high-risk myelodysplastic syndrome (MDS) (refractory anemia with excess blasts [RAEB] or RAEB-t, 62 patients) to receive fludarabine + ara-C + idarubicin (FAI) alone, FAI + ATRA, FAI + G-CSF, or FAI + ATRA + G-CSF. Eligibility required one of the following: age over 71 years, a history of abnormal blood counts before M.D. Anderson (MDA) presentation, secondary AML/MDS, failure to respond to one prior course of chemotherapy given outside MDA, or abnormal renal or hepatic function. For the two treatment arms containing ATRA, ATRA was given 2 days (day-2) before beginning and continued for 3 days after completion of FAI. For the two treatment arms including G-CSF, G-CSF began on day-1 and continued until neutrophil recovery. Patients with white blood cell (WBC) counts >50,000/microL began ATRA on day 1 and G-CSF on day 2. Events (death, failure to achieve complete remission [CR], or relapse from CR) have occurred in 77% of the 215 patients. Reflecting the poor prognosis of the patients entered, the CR rate was only 51%, median event-free survival (EFS) time once in CR was 36 weeks, and median survival time was 28 weeks. A Cox regression analysis indicated that, after accounting for patient prognostic variables, none of the three adjuvant treatment combinations (FAI + ATRA, FAI + G, FAI + ATRA + G) affected survival, EFS, or EFS once in CR compared with FAI. Similarly, there were no significant effects of either ATRA ignoring G-CSF, or of G-CSF ignoring ATRA. As previously found, a diagnosis of RAEB or RAEB-t rather than AML was insignificant. There were no indications that the effect of ATRA differed according to cytogenetic group, diagnosis (AML or MDS), or treatment schedule. Logistic regression analysis indicated that, after accounting for prognosis, addition of G-CSF +/- ATRA to FAI improved CR rate versus either FAI or FAI + ATRA, but G-CSF had no effect on the other outcomes. We conclude that addition of ATRA +/- G-CSF to FAI had no effect on CR rate, survival, EFS, or EFS in CR in poor prognosis, newly diagnosed AML or high-risk MDS.  (+info)

Myelodysplastic syndromes (MDS) are a group of diverse bone marrow disorders characterized by dysplasia (abnormal development or maturation) of one or more types of blood cells or by ineffective hematopoiesis, resulting in cytopenias (lower than normal levels of one or more types of blood cells). MDS can be classified into various subtypes based on the number and type of cytopenias, the degree of dysplasia, the presence of ring sideroblasts, and cytogenetic abnormalities.

The condition primarily affects older adults, with a median age at diagnosis of around 70 years. MDS can evolve into acute myeloid leukemia (AML) in approximately 30-40% of cases. The pathophysiology of MDS involves genetic mutations and chromosomal abnormalities that lead to impaired differentiation and increased apoptosis of hematopoietic stem and progenitor cells, ultimately resulting in cytopenias and an increased risk of developing AML.

The diagnosis of MDS typically requires a bone marrow aspiration and biopsy, along with cytogenetic and molecular analyses to identify specific genetic mutations and chromosomal abnormalities. Treatment options for MDS depend on the subtype, severity of cytopenias, and individual patient factors. These may include supportive care measures, such as transfusions and growth factor therapy, or more aggressive treatments, such as chemotherapy and stem cell transplantation.

Refractory anemia is a type of anemia that does not respond to typical treatments, such as iron supplements or hormonal therapy. It is often associated with various bone marrow disorders, including myelodysplastic syndromes (MDS), a group of conditions characterized by abnormal blood cell production in the bone marrow.

In refractory anemia, the bone marrow fails to produce enough healthy red blood cells, leading to symptoms such as fatigue, weakness, shortness of breath, and pale skin. The condition can be difficult to treat, and treatment options may include more aggressive therapies such as immunosuppressive drugs, chemotherapy, or stem cell transplantation.

It is important to note that the term "refractory" in this context refers specifically to the lack of response to initial treatments, rather than a specific severity or type of anemia.

Refractory anemia with excess blasts is a type of blood disorder that is characterized by the presence of increased numbers of immature blood cells, or "blasts," in the bone marrow and peripheral blood. This condition is considered a subtype of myelodysplastic syndrome (MDS), which is a group of disorders caused by abnormalities in the production of blood cells in the bone marrow.

In refractory anemia with excess blasts, the bone marrow fails to produce sufficient numbers of healthy red blood cells, white blood cells, and platelets. This results in anemia (low red blood cell count), neutropenia (low white blood cell count), and thrombocytopenia (low platelet count). Additionally, there is an increased number of blasts in the bone marrow and peripheral blood, which can indicate the development of acute myeloid leukemia (AML), a more aggressive form of blood cancer.

Refractory anemia with excess blasts is considered "refractory" because it does not respond well to treatment, including chemotherapy and stem cell transplantation. The prognosis for this condition varies depending on the severity of the disease and other individual factors, but it is generally poor, with many patients progressing to AML within a few years.

A syndrome, in medical terms, is a set of symptoms that collectively indicate or characterize a disease, disorder, or underlying pathological process. It's essentially a collection of signs and/or symptoms that frequently occur together and can suggest a particular cause or condition, even though the exact physiological mechanisms might not be fully understood.

For example, Down syndrome is characterized by specific physical features, cognitive delays, and other developmental issues resulting from an extra copy of chromosome 21. Similarly, metabolic syndromes like diabetes mellitus type 2 involve a group of risk factors such as obesity, high blood pressure, high blood sugar, and abnormal cholesterol or triglyceride levels that collectively increase the risk of heart disease, stroke, and diabetes.

It's important to note that a syndrome is not a specific diagnosis; rather, it's a pattern of symptoms that can help guide further diagnostic evaluation and management.

Chronic myelomonocytic leukemia (CMML) is a type of cancer that affects the blood-forming cells of the bone marrow. It is characterized by an overproduction of white blood cells, specifically monocytes and myeloid cells. These abnormal cells accumulate in the bone marrow and interfere with normal blood cell production, leading to a shortage of red blood cells, platelets, and normal white blood cells.

CMML is considered a myelodysplastic/myeloproliferative neoplasm (MDS/MPN), which means it has features of both myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN). MDS are conditions in which the bone marrow does not produce enough healthy blood cells, while MPNs are conditions in which the bone marrow produces too many abnormal blood cells.

In CMML, the myelomonocytic cells may accumulate in various organs and tissues, leading to enlargement of the spleen (splenomegaly) and liver (hepatomegaly), as well as an increased risk of infections, bleeding, and anemia. The symptoms of CMML can vary widely depending on the severity of the disease and the specific organs affected.

CMML is typically a disease of older adults, with a median age at diagnosis of around 70 years. It is slightly more common in men than in women. The exact cause of CMML is not known, but it is thought to be related to genetic mutations that occur over time and are associated with aging. Treatment options for CMML depend on the stage and severity of the disease, as well as the patient's overall health and preferences.

Acute myeloid leukemia (AML) is a type of cancer that originates in the bone marrow, the soft inner part of certain bones where new blood cells are made. In AML, the immature cells, called blasts, in the bone marrow fail to mature into normal blood cells. Instead, these blasts accumulate and interfere with the production of normal blood cells, leading to a shortage of red blood cells (anemia), platelets (thrombocytopenia), and normal white blood cells (leukopenia).

AML is called "acute" because it can progress quickly and become severe within days or weeks without treatment. It is a type of myeloid leukemia, which means that it affects the myeloid cells in the bone marrow. Myeloid cells are a type of white blood cell that includes monocytes and granulocytes, which help fight infection and defend the body against foreign invaders.

In AML, the blasts can build up in the bone marrow and spread to other parts of the body, including the blood, lymph nodes, liver, spleen, and brain. This can cause a variety of symptoms, such as fatigue, fever, frequent infections, easy bruising or bleeding, and weight loss.

AML is typically treated with a combination of chemotherapy, radiation therapy, and/or stem cell transplantation. The specific treatment plan will depend on several factors, including the patient's age, overall health, and the type and stage of the leukemia.

Human chromosome pair 5 consists of two rod-shaped structures present in the nucleus of human cells, which contain genetic material in the form of DNA and proteins. Each member of chromosome pair 5 is a single chromosome, and humans typically have 23 pairs of chromosomes for a total of 46 chromosomes in every cell of their body (except gametes or sex cells, which contain 23 chromosomes).

Chromosome pair 5 is one of the autosomal pairs, meaning it is not a sex chromosome. Each member of chromosome pair 5 is approximately 197 million base pairs in length and contains around 800-900 genes that provide instructions for making proteins and regulating various cellular processes.

Chromosome pair 5 is associated with several genetic disorders, including cri du chat syndrome (resulting from a deletion on the short arm of chromosome 5), Prader-Willi syndrome and Angelman syndrome (both resulting from abnormalities in gene expression on the long arm of chromosome 5).

Leukemia, myeloid is a type of cancer that originates in the bone marrow, where blood cells are produced. Myeloid leukemia affects the myeloid cells, which include red blood cells, platelets, and most types of white blood cells. In this condition, the bone marrow produces abnormal myeloid cells that do not mature properly and accumulate in the bone marrow and blood. These abnormal cells hinder the production of normal blood cells, leading to various symptoms such as anemia, fatigue, increased risk of infections, and easy bruising or bleeding.

There are several types of myeloid leukemias, including acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). AML progresses rapidly and requires immediate treatment, while CML tends to progress more slowly. The exact causes of myeloid leukemia are not fully understood, but risk factors include exposure to radiation or certain chemicals, smoking, genetic disorders, and a history of chemotherapy or other cancer treatments.

Azacitidine is a medication that is primarily used to treat myelodysplastic syndrome (MDS), a type of cancer where the bone marrow does not produce enough healthy blood cells. It is also used to treat acute myeloid leukemia (AML) in some cases.

Azacitidine is a type of drug known as a hypomethylating agent, which means that it works by modifying the way that genes are expressed in cancer cells. Specifically, azacitidine inhibits the activity of an enzyme called DNA methyltransferase, which adds methyl groups to the DNA molecule and can silence the expression of certain genes. By inhibiting this enzyme, azacitidine can help to restore the normal function of genes that have been silenced in cancer cells.

Azacitidine is typically given as a series of subcutaneous (under the skin) or intravenous (into a vein) injections over a period of several days, followed by a rest period of several weeks before the next cycle of treatment. The specific dosage and schedule may vary depending on the individual patient's needs and response to treatment.

Like all medications, azacitidine can have side effects, which may include nausea, vomiting, diarrhea, constipation, fatigue, fever, and decreased appetite. More serious side effects are possible, but relatively rare, and may include bone marrow suppression, infections, and liver damage. Patients receiving azacitidine should be closely monitored by their healthcare provider to manage any side effects that may occur.

Sideroblastic anemia is a type of anemia characterized by the presence of ringed sideroblasts in the bone marrow. Ringed sideroblasts are red blood cell precursors that have an abnormal amount of iron accumulated in their mitochondria, which forms a ring around the nucleus. This results in the production of abnormal hemoglobin and impaired oxygen transport.

Sideroblastic anemia can be classified as congenital or acquired. Congenital sideroblastic anemias are caused by genetic defects that affect heme synthesis or mitochondrial function, while acquired sideroblastic anemias are associated with various conditions such as myelodysplastic syndromes, chronic alcoholism, lead toxicity, and certain medications.

Symptoms of sideroblastic anemia may include fatigue, weakness, shortness of breath, and pallor. Diagnosis is typically made through a bone marrow aspiration and biopsy, which can identify the presence of ringed sideroblasts. Treatment depends on the underlying cause but may include iron chelation therapy, vitamin B6 supplementation, or blood transfusions.

Bone marrow is the spongy tissue found inside certain bones in the body, such as the hips, thighs, and vertebrae. It is responsible for producing blood-forming cells, including red blood cells, white blood cells, and platelets. There are two types of bone marrow: red marrow, which is involved in blood cell production, and yellow marrow, which contains fatty tissue.

Red bone marrow contains hematopoietic stem cells, which can differentiate into various types of blood cells. These stem cells continuously divide and mature to produce new blood cells that are released into the circulation. Red blood cells carry oxygen throughout the body, white blood cells help fight infections, and platelets play a crucial role in blood clotting.

Bone marrow also serves as a site for immune cell development and maturation. It contains various types of immune cells, such as lymphocytes, macrophages, and dendritic cells, which help protect the body against infections and diseases.

Abnormalities in bone marrow function can lead to several medical conditions, including anemia, leukopenia, thrombocytopenia, and various types of cancer, such as leukemia and multiple myeloma. Bone marrow aspiration and biopsy are common diagnostic procedures used to evaluate bone marrow health and function.

Chromosome aberrations refer to structural and numerical changes in the chromosomes that can occur spontaneously or as a result of exposure to mutagenic agents. These changes can affect the genetic material encoded in the chromosomes, leading to various consequences such as developmental abnormalities, cancer, or infertility.

Structural aberrations include deletions, duplications, inversions, translocations, and rings, which result from breaks and rearrangements of chromosome segments. Numerical aberrations involve changes in the number of chromosomes, such as aneuploidy (extra or missing chromosomes) or polyploidy (multiples of a complete set of chromosomes).

Chromosome aberrations can be detected and analyzed using various cytogenetic techniques, including karyotyping, fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH). These methods allow for the identification and characterization of chromosomal changes at the molecular level, providing valuable information for genetic counseling, diagnosis, and research.

Karyotyping is a medical laboratory test used to study the chromosomes in a cell. It involves obtaining a sample of cells from a patient, usually from blood or bone marrow, and then staining the chromosomes so they can be easily seen under a microscope. The chromosomes are then arranged in pairs based on their size, shape, and other features to create a karyotype. This visual representation allows for the identification and analysis of any chromosomal abnormalities, such as extra or missing chromosomes, or structural changes like translocations or inversions. These abnormalities can provide important information about genetic disorders, diseases, and developmental problems.

Monosomy is a type of chromosomal abnormality in which there is only one copy of a particular chromosome instead of the usual pair in a diploid cell. In monosomy, an individual has one less chromosome than the normal diploid number (46 chromosomes) due to the absence of one member of a chromosome pair. This condition arises from the loss of one chromosome in an egg or sperm during gamete formation or at conception.

Examples of monosomy include Turner syndrome, which is characterized by the presence of only one X chromosome (45,X), and Cri du Chat syndrome, which results from a deletion of a portion of the short arm of chromosome 5 (46,del(5)(p15.2)). Monosomy can lead to developmental abnormalities, physical defects, intellectual disabilities, and various health issues depending on the chromosome involved.

Thalidomide is a pharmaceutical drug that was initially developed and marketed as a sedative and treatment for morning sickness in pregnant women. However, it was later found to cause severe birth defects when given during pregnancy, particularly damage to the limbs, ears, and eyes of the developing fetus. As a result, thalidomide was banned in many countries in the 1960s.

In recent years, thalidomide has been reintroduced as a treatment for certain medical conditions, including multiple myeloma (a type of cancer that affects plasma cells) and leprosy. It is also being studied as a potential treatment for other diseases, such as rheumatoid arthritis and Crohn's disease.

Thalidomide works by suppressing the immune system and inhibiting the formation of new blood vessels (angiogenesis). However, its use is tightly regulated due to its teratogenic effects, meaning it can cause birth defects if taken during pregnancy. Women who are pregnant or planning to become pregnant should not take thalidomide, and healthcare providers must follow strict guidelines when prescribing the drug to ensure that it is used safely and effectively.

"Preleukemia" is a term that was used historically to describe conditions characterized by the presence of preleukemic cells or certain genetic changes that could potentially progress into acute leukemia. However, this terminology has largely been replaced in modern medicine.

Currently, the preferred terms are "clonal hematopoiesis" or "clonal cytopenias of undetermined significance (CCUS)" for conditions where there is an expansion of blood cells with certain genetic mutations but without evidence of progression to acute leukemia.

One example of this is a condition called "clonal hematopoiesis of indeterminate potential" (CHIP), which is defined by the presence of certain somatic mutations in hematopoietic stem cells, but without evidence of cytopenias or progression to malignancy.

It's important to note that not all individuals with CHIP will develop leukemia, and many may never experience any symptoms related to this condition. However, the presence of CHIP has been associated with an increased risk of hematologic cancers, as well as cardiovascular disease.

Myeloproliferative disorders (MPDs) are a group of rare, chronic blood cancers that originate from the abnormal proliferation or growth of one or more types of blood-forming cells in the bone marrow. These disorders result in an overproduction of mature but dysfunctional blood cells, which can lead to serious complications such as blood clots, bleeding, and organ damage.

There are several subtypes of MPDs, including:

1. Chronic Myeloid Leukemia (CML): A disorder characterized by the overproduction of mature granulocytes (a type of white blood cell) in the bone marrow, leading to an increased number of these cells in the blood. CML is caused by a genetic mutation that results in the formation of the BCR-ABL fusion protein, which drives uncontrolled cell growth and division.
2. Polycythemia Vera (PV): A disorder characterized by the overproduction of all three types of blood cells - red blood cells, white blood cells, and platelets - in the bone marrow. This can lead to an increased risk of blood clots, bleeding, and enlargement of the spleen.
3. Essential Thrombocythemia (ET): A disorder characterized by the overproduction of platelets in the bone marrow, leading to an increased risk of blood clots and bleeding.
4. Primary Myelofibrosis (PMF): A disorder characterized by the replacement of normal bone marrow tissue with scar tissue, leading to impaired blood cell production and anemia, enlargement of the spleen, and increased risk of infections and bleeding.
5. Chronic Neutrophilic Leukemia (CNL): A rare disorder characterized by the overproduction of neutrophils (a type of white blood cell) in the bone marrow, leading to an increased number of these cells in the blood. CNL can lead to an increased risk of infections and organ damage.

MPDs are typically treated with a combination of therapies, including chemotherapy, targeted therapy, immunotherapy, and stem cell transplantation. The choice of treatment depends on several factors, including the subtype of MPD, the patient's age and overall health, and the presence of any comorbidities.

Myelodysplastic-myeloproliferative diseases (MDS/MPD) are a group of rare and complex bone marrow disorders that exhibit features of both myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN). MDS is characterized by ineffective hematopoiesis, leading to cytopenias, and dysplastic changes in the bone marrow. MPNs are clonal disorders of the hematopoietic stem cells resulting in increased proliferation of one or more cell lines, often leading to elevated blood counts.

MDS/MPD share features of both these entities, with patients showing signs of both ineffective hematopoiesis and increased cell production. These disorders have overlapping clinical, laboratory, and morphological characteristics, making their classification challenging. The World Health Organization (WHO) has recognized several MDS/MPD subtypes, including chronic myelomonocytic leukemia (CMML), juvenile myelomonocytic leukemia (JMML), atypical chronic myeloid leukemia (aCML), and myelodysplastic/myeloproliferative neoplasm, unclassifiable (MDS/MPN, U).

The pathogenesis of MDS/MPD involves genetic mutations that affect various cellular processes, such as signal transduction, epigenetic regulation, and splicing machinery. The prognosis for patients with MDS/MPD varies depending on the specific subtype, age, performance status, and the presence of certain genetic abnormalities. Treatment options may include supportive care, chemotherapy, targeted therapy, or stem cell transplantation.

Pancytopenia is a medical condition characterized by a reduction in the number of all three types of blood cells in the peripheral blood: red blood cells (anemia), white blood cells (leukopenia), and platelets (thrombocytopenia). This condition can be caused by various underlying diseases, including bone marrow disorders, viral infections, exposure to toxic substances or radiation, vitamin deficiencies, and certain medications. Symptoms of pancytopenia may include fatigue, weakness, increased susceptibility to infections, and easy bruising or bleeding.

Aplastic anemia is a medical condition characterized by pancytopenia (a decrease in all three types of blood cells: red blood cells, white blood cells, and platelets) due to the failure of bone marrow to produce new cells. It is called "aplastic" because the bone marrow becomes hypocellular or "aplastic," meaning it contains few or no blood-forming stem cells.

The condition can be acquired or inherited, with acquired aplastic anemia being more common. Acquired aplastic anemia can result from exposure to toxic chemicals, radiation, drugs, viral infections, or autoimmune disorders. Inherited forms of the disease include Fanconi anemia and dyskeratosis congenita.

Symptoms of aplastic anemia may include fatigue, weakness, shortness of breath, pale skin, easy bruising or bleeding, frequent infections, and fever. Treatment options for aplastic anemia depend on the severity of the condition and its underlying cause. They may include blood transfusions, immunosuppressive therapy, and stem cell transplantation.

Human chromosome pair 7 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each member of the pair is a single chromosome, and together they contain the genetic material that is inherited from both parents. They are identical in size, shape, and banding pattern and are therefore referred to as homologous chromosomes.

Chromosome 7 is one of the autosomal chromosomes, meaning it is not a sex chromosome (X or Y). It is composed of double-stranded DNA that contains approximately 159 million base pairs and around 1,200 genes. Chromosome 7 contains several important genes associated with human health and disease, including those involved in the development of certain types of cancer, such as colon cancer and lung cancer, as well as genetic disorders such as Williams-Beuren syndrome and Charcot-Marie-Tooth disease.

Abnormalities in chromosome 7 have been linked to various genetic conditions, including deletions, duplications, translocations, and other structural changes. These abnormalities can lead to developmental delays, intellectual disabilities, physical abnormalities, and increased risk of certain types of cancer.

Cytogenetic analysis is a laboratory technique used to identify and study the structure and function of chromosomes, which are the structures in the cell that contain genetic material. This type of analysis involves examining the number, size, shape, and banding pattern of chromosomes in cells, typically during metaphase when they are at their most condensed state.

There are several methods used for cytogenetic analysis, including karyotyping, fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH). Karyotyping involves staining the chromosomes with a dye to visualize their banding patterns and then arranging them in pairs based on their size and shape. FISH uses fluorescent probes to label specific DNA sequences, allowing for the detection of genetic abnormalities such as deletions, duplications, or translocations. CGH compares the DNA content of two samples to identify differences in copy number, which can be used to detect chromosomal imbalances.

Cytogenetic analysis is an important tool in medical genetics and is used for a variety of purposes, including prenatal diagnosis, cancer diagnosis and monitoring, and the identification of genetic disorders.

Prognosis is a medical term that refers to the prediction of the likely outcome or course of a disease, including the chances of recovery or recurrence, based on the patient's symptoms, medical history, physical examination, and diagnostic tests. It is an important aspect of clinical decision-making and patient communication, as it helps doctors and patients make informed decisions about treatment options, set realistic expectations, and plan for future care.

Prognosis can be expressed in various ways, such as percentages, categories (e.g., good, fair, poor), or survival rates, depending on the nature of the disease and the available evidence. However, it is important to note that prognosis is not an exact science and may vary depending on individual factors, such as age, overall health status, and response to treatment. Therefore, it should be used as a guide rather than a definitive forecast.

Bone marrow cells are the types of cells found within the bone marrow, which is the spongy tissue inside certain bones in the body. The main function of bone marrow is to produce blood cells. There are two types of bone marrow: red and yellow. Red bone marrow is where most blood cell production takes place, while yellow bone marrow serves as a fat storage site.

The three main types of bone marrow cells are:

1. Hematopoietic stem cells (HSCs): These are immature cells that can differentiate into any type of blood cell, including red blood cells, white blood cells, and platelets. They have the ability to self-renew, meaning they can divide and create more hematopoietic stem cells.
2. Red blood cell progenitors: These are immature cells that will develop into mature red blood cells, also known as erythrocytes. Red blood cells carry oxygen from the lungs to the body's tissues and carbon dioxide back to the lungs.
3. Myeloid and lymphoid white blood cell progenitors: These are immature cells that will develop into various types of white blood cells, which play a crucial role in the body's immune system by fighting infections and diseases. Myeloid progenitors give rise to granulocytes (neutrophils, eosinophils, and basophils), monocytes, and megakaryocytes (which eventually become platelets). Lymphoid progenitors differentiate into B cells, T cells, and natural killer (NK) cells.

Bone marrow cells are essential for maintaining a healthy blood cell count and immune system function. Abnormalities in bone marrow cells can lead to various medical conditions, such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis, depending on the specific type of blood cell affected. Additionally, bone marrow cells are often used in transplantation procedures to treat patients with certain types of cancer, such as leukemia and lymphoma, or other hematologic disorders.

Leukemia is a type of cancer that originates from the bone marrow - the soft, inner part of certain bones where new blood cells are made. It is characterized by an abnormal production of white blood cells, known as leukocytes or blasts. These abnormal cells accumulate in the bone marrow and interfere with the production of normal blood cells, leading to a decrease in red blood cells (anemia), platelets (thrombocytopenia), and healthy white blood cells (leukopenia).

There are several types of leukemia, classified based on the specific type of white blood cell affected and the speed at which the disease progresses:

1. Acute Leukemias - These types of leukemia progress rapidly, with symptoms developing over a few weeks or months. They involve the rapid growth and accumulation of immature, nonfunctional white blood cells (blasts) in the bone marrow and peripheral blood. The two main categories are:
- Acute Lymphoblastic Leukemia (ALL) - Originates from lymphoid progenitor cells, primarily affecting children but can also occur in adults.
- Acute Myeloid Leukemia (AML) - Develops from myeloid progenitor cells and is more common in older adults.

2. Chronic Leukemias - These types of leukemia progress slowly, with symptoms developing over a period of months to years. They involve the production of relatively mature, but still abnormal, white blood cells that can accumulate in large numbers in the bone marrow and peripheral blood. The two main categories are:
- Chronic Lymphocytic Leukemia (CLL) - Affects B-lymphocytes and is more common in older adults.
- Chronic Myeloid Leukemia (CML) - Originates from myeloid progenitor cells, characterized by the presence of a specific genetic abnormality called the Philadelphia chromosome. It can occur at any age but is more common in middle-aged and older adults.

Treatment options for leukemia depend on the type, stage, and individual patient factors. Treatments may include chemotherapy, targeted therapy, immunotherapy, stem cell transplantation, or a combination of these approaches.

An acute disease is a medical condition that has a rapid onset, develops quickly, and tends to be short in duration. Acute diseases can range from minor illnesses such as a common cold or flu, to more severe conditions such as pneumonia, meningitis, or a heart attack. These types of diseases often have clear symptoms that are easy to identify, and they may require immediate medical attention or treatment.

Acute diseases are typically caused by an external agent or factor, such as a bacterial or viral infection, a toxin, or an injury. They can also be the result of a sudden worsening of an existing chronic condition. In general, acute diseases are distinct from chronic diseases, which are long-term medical conditions that develop slowly over time and may require ongoing management and treatment.

Examples of acute diseases include:

* Acute bronchitis: a sudden inflammation of the airways in the lungs, often caused by a viral infection.
* Appendicitis: an inflammation of the appendix that can cause severe pain and requires surgical removal.
* Gastroenteritis: an inflammation of the stomach and intestines, often caused by a viral or bacterial infection.
* Migraine headaches: intense headaches that can last for hours or days, and are often accompanied by nausea, vomiting, and sensitivity to light and sound.
* Myocardial infarction (heart attack): a sudden blockage of blood flow to the heart muscle, often caused by a buildup of plaque in the coronary arteries.
* Pneumonia: an infection of the lungs that can cause coughing, chest pain, and difficulty breathing.
* Sinusitis: an inflammation of the sinuses, often caused by a viral or bacterial infection.

It's important to note that while some acute diseases may resolve on their own with rest and supportive care, others may require medical intervention or treatment to prevent complications and promote recovery. If you are experiencing symptoms of an acute disease, it is always best to seek medical attention to ensure proper diagnosis and treatment.

A chromosome deletion is a type of genetic abnormality that occurs when a portion of a chromosome is missing or deleted. Chromosomes are thread-like structures located in the nucleus of cells that contain our genetic material, which is organized into genes.

Chromosome deletions can occur spontaneously during the formation of reproductive cells (eggs or sperm) or can be inherited from a parent. They can affect any chromosome and can vary in size, from a small segment to a large portion of the chromosome.

The severity of the symptoms associated with a chromosome deletion depends on the size and location of the deleted segment. In some cases, the deletion may be so small that it does not cause any noticeable symptoms. However, larger deletions can lead to developmental delays, intellectual disabilities, physical abnormalities, and various medical conditions.

Chromosome deletions are typically detected through a genetic test called karyotyping, which involves analyzing the number and structure of an individual's chromosomes. Other more precise tests, such as fluorescence in situ hybridization (FISH) or chromosomal microarray analysis (CMA), may also be used to confirm the diagnosis and identify the specific location and size of the deletion.

Granulocyte precursor cells, also known as myeloid precursors or myeloblasts, are early-stage cells found in the bone marrow. These cells are part of the production process for granulocytes, a type of white blood cell that plays a crucial role in fighting off infections.

Granulocyte precursor cells differentiate and mature into three main types of granulocytes: neutrophils, eosinophils, and basophils. These cells have distinct functions in the immune response, such as neutralizing and destroying invading pathogens (neutrophils), regulating inflammation and fighting parasitic infections (eosinophils), and mediating allergic reactions and inflammation (basophils).

Abnormalities in granulocyte precursor cells can lead to various medical conditions, such as leukemia, where these cells become cancerous and multiply uncontrollably. Monitoring granulocyte precursor cells is essential for diagnosing and managing hematological disorders.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

A "second primary neoplasm" is a distinct, new cancer or malignancy that develops in a person who has already had a previous cancer. It is not a recurrence or metastasis of the original tumor, but rather an independent cancer that arises in a different location or organ system. The development of second primary neoplasms can be influenced by various factors such as genetic predisposition, environmental exposures, and previous treatments like chemotherapy or radiation therapy.

It is important to note that the definition of "second primary neoplasm" may vary slightly depending on the specific source or context. In general medical usage, it refers to a new, separate cancer; however, in some research or clinical settings, there might be more precise criteria for defining and diagnosing second primary neoplasms.

Bone marrow diseases, also known as hematologic disorders, are conditions that affect the production and function of blood cells in the bone marrow. The bone marrow is the spongy tissue inside bones where all blood cells are produced. There are various types of bone marrow diseases, including:

1. Leukemia: A cancer of the blood-forming tissues, including the bone marrow. Leukemia causes the body to produce large numbers of abnormal white blood cells, which can crowd out healthy blood cells and impair their function.
2. Lymphoma: A cancer that starts in the lymphatic system, which is part of the immune system. Lymphoma can affect the bone marrow and cause an overproduction of abnormal white blood cells.
3. Multiple myeloma: A cancer of the plasma cells, a type of white blood cell found in the bone marrow. Multiple myeloma causes an overproduction of abnormal plasma cells, which can lead to bone pain, fractures, and other complications.
4. Aplastic anemia: A condition in which the bone marrow does not produce enough new blood cells. This can lead to symptoms such as fatigue, weakness, and an increased risk of infection.
5. Myelodysplastic syndromes (MDS): A group of disorders in which the bone marrow does not produce enough healthy blood cells. MDS can lead to anemia, infections, and bleeding.
6. Myeloproliferative neoplasms (MPNs): A group of disorders in which the bone marrow produces too many abnormal white or red blood cells, or platelets. MPNs can lead to symptoms such as fatigue, itching, and an increased risk of blood clots.

Treatment for bone marrow diseases depends on the specific condition and its severity. Treatment options may include chemotherapy, radiation therapy, stem cell transplantation, or targeted therapies that target specific genetic mutations.

Hematopoietic Stem Cell Transplantation (HSCT) is a medical procedure where hematopoietic stem cells (immature cells that give rise to all blood cell types) are transplanted into a patient. This procedure is often used to treat various malignant and non-malignant disorders affecting the hematopoietic system, such as leukemias, lymphomas, multiple myeloma, aplastic anemia, inherited immune deficiency diseases, and certain genetic metabolic disorders.

The transplantation can be autologous (using the patient's own stem cells), allogeneic (using stem cells from a genetically matched donor, usually a sibling or unrelated volunteer), or syngeneic (using stem cells from an identical twin).

The process involves collecting hematopoietic stem cells, most commonly from the peripheral blood or bone marrow. The collected cells are then infused into the patient after the recipient's own hematopoietic system has been ablated (or destroyed) using high-dose chemotherapy and/or radiation therapy. This allows the donor's stem cells to engraft, reconstitute, and restore the patient's hematopoietic system.

HSCT is a complex and potentially risky procedure with various complications, including graft-versus-host disease, infections, and organ damage. However, it offers the potential for cure or long-term remission in many patients with otherwise fatal diseases.

Iron overload is a condition characterized by an excessive accumulation of iron in the body's tissues and organs, particularly in the liver, heart, and pancreas. This occurs when the body absorbs more iron than it can use or eliminate, leading to iron levels that are higher than normal.

Iron overload can result from various factors, including hereditary hemochromatosis, a genetic disorder that affects how the body absorbs iron from food; frequent blood transfusions, which can cause iron buildup in people with certain chronic diseases such as sickle cell anemia or thalassemia; and excessive consumption of iron supplements or iron-rich foods.

Symptoms of iron overload may include fatigue, joint pain, abdominal discomfort, irregular heartbeat, and liver dysfunction. If left untreated, it can lead to serious complications such as cirrhosis, liver failure, diabetes, heart problems, and even certain types of cancer. Treatment typically involves regular phlebotomy (removal of blood) to reduce iron levels in the body, along with dietary modifications and monitoring by a healthcare professional.

Trisomy is a genetic condition where there is an extra copy of a particular chromosome, resulting in 47 chromosomes instead of the typical 46 in a cell. This usually occurs due to an error in cell division during the development of the egg, sperm, or embryo.

Instead of the normal pair, there are three copies (trisomy) of that chromosome. The most common form of trisomy is Trisomy 21, also known as Down syndrome, where there is an extra copy of chromosome 21. Other forms include Trisomy 13 (Patau syndrome) and Trisomy 18 (Edwards syndrome), which are associated with more severe developmental issues and shorter lifespans.

Trisomy can also occur in a mosaic form, where some cells have the extra chromosome while others do not, leading to varying degrees of symptoms depending on the proportion of affected cells.

Antimetabolites are a class of antineoplastic (chemotherapy) drugs that interfere with the metabolism of cancer cells and inhibit their growth and proliferation. These agents are structurally similar to naturally occurring metabolites, such as amino acids, nucleotides, and folic acid, which are essential for cellular replication and growth. Antimetabolites act as false analogs and get incorporated into the growing cells' DNA or RNA, causing disruption of the normal synthesis process, leading to cell cycle arrest and apoptosis (programmed cell death).

Examples of antimetabolite drugs include:

1. Folate antagonists: Methotrexate, Pemetrexed
2. Purine analogs: Mercaptopurine, Thioguanine, Fludarabine, Cladribine
3. Pyrimidine analogs: 5-Fluorouracil (5-FU), Capecitabine, Cytarabine, Gemcitabine

These drugs are used to treat various types of cancers, such as leukemias, lymphomas, breast, ovarian, and gastrointestinal cancers. Due to their mechanism of action, antimetabolites can also affect normal, rapidly dividing cells in the body, leading to side effects like myelosuppression (decreased production of blood cells), mucositis (inflammation and ulceration of the gastrointestinal tract), and alopecia (hair loss).

Cytogenetics is a branch of genetics that deals with the study of chromosomes and their structure, function, and abnormalities. It involves the examination of chromosome number and structure in the cells of an organism, usually through microscopic analysis of chromosomes prepared from cell cultures or tissue samples. Cytogenetic techniques can be used to identify chromosomal abnormalities associated with genetic disorders, cancer, and other diseases.

The process of cytogenetics typically involves staining the chromosomes to make them visible under a microscope, and then analyzing their number, size, shape, and banding pattern. Chromosomal abnormalities such as deletions, duplications, inversions, translocations, and aneuploidy (abnormal number of chromosomes) can be detected through cytogenetic analysis.

Cytogenetics is an important tool in medical genetics and has many clinical applications, including prenatal diagnosis, cancer diagnosis and monitoring, and identification of genetic disorders. Advances in molecular cytogenetic techniques, such as fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH), have improved the resolution and accuracy of chromosome analysis and expanded its clinical applications.

An erythrocyte transfusion, also known as a red blood cell (RBC) transfusion, is the process of transferring compatible red blood cells from a donor to a recipient. This procedure is typically performed to increase the recipient's oxygen-carrying capacity, usually in situations where there is significant blood loss, anemia, or impaired red blood cell production.

During the transfusion, the donor's red blood cells are collected, typed, and tested for compatibility with the recipient's blood to minimize the risk of a transfusion reaction. Once compatible units are identified, they are infused into the recipient's circulation through a sterile intravenous (IV) line. The recipient's body will eventually eliminate the donated red blood cells within 100-120 days as part of its normal turnover process.

Erythrocyte transfusions can be lifesaving in various clinical scenarios, such as trauma, surgery, severe anemia due to chronic diseases, and hematologic disorders. However, they should only be used when necessary, as there are potential risks associated with the procedure, including allergic reactions, transmission of infectious diseases, transfusion-related acute lung injury (TRALI), and iron overload in cases of multiple transfusions.

Hematologic agents are a class of drugs that affect the formation, function, or destruction of blood cells and related proteins. They include:

1. Hematopoietic growth factors: These are substances that stimulate the production of blood cells in the bone marrow. Examples include erythropoiesis-stimulating agents (ESAs) like epoetin alfa and darbepoetin alfa, which stimulate red blood cell production, and granulocyte colony-stimulating factors (G-CSFs) like filgrastim and pegfilgrastim, which stimulate white blood cell production.
2. Anticoagulants: These are drugs that prevent blood clots from forming or growing larger. Examples include heparin, warfarin, direct oral anticoagulants (DOACs) like apixaban and rivaroxaban, and antiplatelet agents like aspirin and clopidogrel.
3. Hemostatic agents: These are drugs that promote blood clotting to stop bleeding. Examples include fibrin glue, thrombin, and factor VIIa.
4. Hematological malignancy therapies: These are drugs used to treat cancers of the blood and bone marrow, such as leukemia, lymphoma, and multiple myeloma. They include chemotherapeutic agents, targeted therapies like monoclonal antibodies, immunomodulatory drugs, and proteasome inhibitors.
5. Iron chelators: These are drugs used to remove excess iron from the body in patients with conditions that cause iron overload, such as thalassemia and sickle cell disease. Examples include deferoxamine, deferasirox, and deferiprone.
6. Hemophilia therapies: These are drugs used to treat hemophilia, a genetic disorder that affects blood clotting. They include factor VIII replacement therapy for hemophilia A and factor IX replacement therapy for hemophilia B.

Homologous transplantation is a type of transplant surgery where organs or tissues are transferred between two genetically non-identical individuals of the same species. The term "homologous" refers to the similarity in structure and function of the donated organ or tissue to the recipient's own organ or tissue.

For example, a heart transplant from one human to another is an example of homologous transplantation because both organs are hearts and perform the same function. Similarly, a liver transplant, kidney transplant, lung transplant, and other types of organ transplants between individuals of the same species are also considered homologous transplantations.

Homologous transplantation is in contrast to heterologous or xenogeneic transplantation, where organs or tissues are transferred from one species to another, such as a pig heart transplanted into a human. Homologous transplantation is more commonly performed than heterologous transplantation due to the increased risk of rejection and other complications associated with xenogeneic transplants.

Hematopoietic stem cells (HSCs) are immature, self-renewing cells that give rise to all the mature blood and immune cells in the body. They are capable of both producing more hematopoietic stem cells (self-renewal) and differentiating into early progenitor cells that eventually develop into red blood cells, white blood cells, and platelets. HSCs are found in the bone marrow, umbilical cord blood, and peripheral blood. They have the ability to repair damaged tissues and offer significant therapeutic potential for treating various diseases, including hematological disorders, genetic diseases, and cancer.

Chelation therapy is a medical treatment that involves the use of chelating agents to remove heavy metals and minerals from the body. A chelating agent is a molecule that bonds with the metal ions, forming a stable, water-soluble complex that can be excreted through urine or stool.

The most common chelating agent used in medical settings is ethylene diamine tetraacetic acid (EDTA), which is administered intravenously. EDTA binds with metals such as lead, mercury, iron, and calcium, and helps to eliminate them from the body.

Chelation therapy is primarily used to treat heavy metal poisoning, such as lead or mercury toxicity. It may also be used in some cases to treat cardiovascular disease, although its effectiveness for this use is still a matter of debate and controversy.

It's important to note that chelation therapy should only be administered under the supervision of a qualified healthcare professional, as improper use can lead to serious side effects and complications.

Survival analysis is a branch of statistics that deals with the analysis of time to event data. It is used to estimate the time it takes for a certain event of interest to occur, such as death, disease recurrence, or treatment failure. The event of interest is called the "failure" event, and survival analysis estimates the probability of not experiencing the failure event until a certain point in time, also known as the "survival" probability.

Survival analysis can provide important information about the effectiveness of treatments, the prognosis of patients, and the identification of risk factors associated with the event of interest. It can handle censored data, which is common in medical research where some participants may drop out or be lost to follow-up before the event of interest occurs.

Survival analysis typically involves estimating the survival function, which describes the probability of surviving beyond a certain time point, as well as hazard functions, which describe the instantaneous rate of failure at a given time point. Other important concepts in survival analysis include median survival times, restricted mean survival times, and various statistical tests to compare survival curves between groups.

CD34 is a type of antigen that is found on the surface of certain cells in the human body. Specifically, CD34 antigens are present on hematopoietic stem cells, which are immature cells that can develop into different types of blood cells. These stem cells are found in the bone marrow and are responsible for producing red blood cells, white blood cells, and platelets.

CD34 antigens are a type of cell surface marker that is used in medical research and clinical settings to identify and isolate hematopoietic stem cells. They are also used in the development of stem cell therapies and transplantation procedures. CD34 antigens can be detected using various laboratory techniques, such as flow cytometry or immunohistochemistry.

It's important to note that while CD34 is a useful marker for identifying hematopoietic stem cells, it is not exclusive to these cells and can also be found on other cell types, such as endothelial cells that line blood vessels. Therefore, additional markers are often used in combination with CD34 to more specifically identify and isolate hematopoietic stem cells.

Erythropoietin (EPO) is a hormone that is primarily produced by the kidneys and plays a crucial role in the production of red blood cells in the body. It works by stimulating the bone marrow to produce more red blood cells, which are essential for carrying oxygen to various tissues and organs.

EPO is a glycoprotein that is released into the bloodstream in response to low oxygen levels in the body. When the kidneys detect low oxygen levels, they release EPO, which then travels to the bone marrow and binds to specific receptors on immature red blood cells called erythroblasts. This binding triggers a series of events that promote the maturation and proliferation of erythroblasts, leading to an increase in the production of red blood cells.

In addition to its role in regulating red blood cell production, EPO has also been shown to have neuroprotective effects and may play a role in modulating the immune system. Abnormal levels of EPO have been associated with various medical conditions, including anemia, kidney disease, and certain types of cancer.

EPO is also used as a therapeutic agent for the treatment of anemia caused by chronic kidney disease, chemotherapy, or other conditions that affect red blood cell production. Recombinant human EPO (rhEPO) is a synthetic form of the hormone that is produced using genetic engineering techniques and is commonly used in clinical practice to treat anemia. However, misuse of rhEPO for performance enhancement in sports has been a subject of concern due to its potential to enhance oxygen-carrying capacity and improve endurance.

A blood transfusion is a medical procedure in which blood or its components are transferred from one individual (donor) to another (recipient) through a vein. The donated blood can be fresh whole blood, packed red blood cells, platelets, plasma, or cryoprecipitate, depending on the recipient's needs. Blood transfusions are performed to replace lost blood due to severe bleeding, treat anemia, support patients undergoing major surgeries, or manage various medical conditions such as hemophilia, thalassemia, and leukemia. The donated blood must be carefully cross-matched with the recipient's blood type to minimize the risk of transfusion reactions.

Down syndrome is a genetic disorder caused by the presence of all or part of a third copy of chromosome 21. It is characterized by intellectual and developmental disabilities, distinctive facial features, and sometimes physical growth delays and health problems. The condition affects approximately one in every 700 babies born in the United States.

Individuals with Down syndrome have varying degrees of cognitive impairment, ranging from mild to moderate or severe. They may also have delayed development, including late walking and talking, and may require additional support and education services throughout their lives.

People with Down syndrome are at increased risk for certain health conditions, such as congenital heart defects, respiratory infections, hearing loss, vision problems, gastrointestinal issues, and thyroid disorders. However, many individuals with Down syndrome live healthy and fulfilling lives with appropriate medical care and support.

The condition is named after John Langdon Down, an English physician who first described the syndrome in 1866.

Cytarabine is a chemotherapeutic agent used in the treatment of various types of cancer, including leukemias and lymphomas. Its chemical name is cytosine arabinoside, and it works by interfering with the DNA synthesis of cancer cells, which ultimately leads to their death.

Cytarabine is often used in combination with other chemotherapy drugs and may be administered through various routes, such as intravenous (IV) or subcutaneous injection, or orally. The specific dosage and duration of treatment will depend on the type and stage of cancer being treated, as well as the patient's overall health status.

Like all chemotherapy drugs, cytarabine can cause a range of side effects, including nausea, vomiting, diarrhea, hair loss, and an increased risk of infection. It may also cause more serious side effects, such as damage to the liver, kidneys, or nervous system, and it is important for patients to be closely monitored during treatment to minimize these risks.

It's important to note that medical treatments should only be administered under the supervision of a qualified healthcare professional, and this information should not be used as a substitute for medical advice.

Metabolic syndrome, also known as Syndrome X, is a cluster of conditions that increase the risk of heart disease, stroke, and diabetes. It is not a single disease but a group of risk factors that often co-occur. According to the American Heart Association and the National Heart, Lung, and Blood Institute, a person has metabolic syndrome if they have any three of the following five conditions:

1. Abdominal obesity (waist circumference of 40 inches or more in men, and 35 inches or more in women)
2. Triglyceride level of 150 milligrams per deciliter of blood (mg/dL) or greater
3. HDL cholesterol level of less than 40 mg/dL in men or less than 50 mg/dL in women
4. Systolic blood pressure of 130 millimeters of mercury (mmHg) or greater, or diastolic blood pressure of 85 mmHg or greater
5. Fasting glucose level of 100 mg/dL or greater

Metabolic syndrome is thought to be caused by a combination of genetic and lifestyle factors, such as physical inactivity and a diet high in refined carbohydrates and unhealthy fats. Treatment typically involves making lifestyle changes, such as eating a healthy diet, getting regular exercise, and losing weight if necessary. In some cases, medication may also be needed to manage individual components of the syndrome, such as high blood pressure or high cholesterol.

Remission induction is a treatment approach in medicine, particularly in the field of oncology and hematology. It refers to the initial phase of therapy aimed at reducing or eliminating the signs and symptoms of active disease, such as cancer or autoimmune disorders. The primary goal of remission induction is to achieve a complete response (disappearance of all detectable signs of the disease) or a partial response (a decrease in the measurable extent of the disease). This phase of treatment is often intensive and may involve the use of multiple drugs or therapies, including chemotherapy, immunotherapy, or targeted therapy. After remission induction, patients may receive additional treatments to maintain the remission and prevent relapse, known as consolidation or maintenance therapy.

A blast crisis is a severe and life-threatening complication that can occur in patients with certain types of blood cancer, such as chronic myelogenous leukemia (CML) or acute lymphoblastic leukemia (ALL). It is characterized by the rapid growth and accumulation of immature blood cells, known as blasts, in the bone marrow and peripheral blood.

In a blast crisis, the blasts crowd out normal blood-forming cells in the bone marrow, leading to a significant decrease in the production of healthy red blood cells, white blood cells, and platelets. This can result in symptoms such as anemia, fatigue, infection, easy bruising or bleeding, and an enlarged spleen.

Blast crisis is often treated with aggressive chemotherapy, targeted therapy, or stem cell transplantation to eliminate the abnormal blasts and restore normal blood cell production. The prognosis for patients in blast crisis can be poor, depending on the type of leukemia, the patient's age and overall health, and the response to treatment.

Transplantation conditioning, also known as preparative regimen or immunoablative therapy, refers to the use of various treatments prior to transplantation of cells, tissues or organs. The main goal of transplantation conditioning is to suppress the recipient's immune system, allowing for successful engraftment and minimizing the risk of rejection of the donor tissue.

There are two primary types of transplantation conditioning: myeloablative and non-myeloablative.

1. Myeloablative conditioning is a more intensive regimen that involves the use of high-dose chemotherapy, radiation therapy or both. This approach eliminates not only immune cells but also stem cells in the bone marrow, requiring the recipient to receive a hematopoietic cell transplant (HCT) from the donor to reconstitute their blood and immune system.
2. Non-myeloablative conditioning is a less intensive regimen that primarily targets immune cells while sparing the stem cells in the bone marrow. This approach allows for mixed chimerism, where both recipient and donor immune cells coexist, reducing the risk of severe complications associated with myeloablative conditioning.

The choice between these two types of transplantation conditioning depends on various factors, including the type of transplant, patient's age, overall health, and comorbidities. Both approaches carry risks and benefits, and the decision should be made carefully by a multidisciplinary team of healthcare professionals in consultation with the patient.

A bone marrow examination is a medical procedure in which a sample of bone marrow, the spongy tissue inside bones where blood cells are produced, is removed and examined. This test is used to diagnose or monitor various conditions affecting blood cell production, such as infections, leukemia, anemia, and other disorders of the bone marrow.

The sample is typically taken from the hipbone (iliac crest) or breastbone (sternum) using a special needle. The procedure may be done under local anesthesia or with sedation to minimize discomfort. Once the sample is obtained, it is examined under a microscope for the presence of abnormal cells, changes in cell size and shape, and other characteristics that can help diagnose specific conditions. Various stains, cultures, and other tests may also be performed on the sample to provide additional information.

Bone marrow examination is an important diagnostic tool in hematology and oncology, as it allows for a detailed assessment of blood cell production and can help guide treatment decisions for patients with various blood disorders.

Thrombocytopenia is a medical condition characterized by an abnormally low platelet count (thrombocytes) in the blood. Platelets are small cell fragments that play a crucial role in blood clotting, helping to stop bleeding when a blood vessel is damaged. A healthy adult typically has a platelet count between 150,000 and 450,000 platelets per microliter of blood. Thrombocytopenia is usually diagnosed when the platelet count falls below 150,000 platelets/µL.

Thrombocytopenia can be classified into three main categories based on its underlying cause:

1. Immune thrombocytopenia (ITP): An autoimmune disorder where the immune system mistakenly attacks and destroys its own platelets, leading to a decreased platelet count. ITP can be further divided into primary or secondary forms, depending on whether it occurs alone or as a result of another medical condition or medication.
2. Decreased production: Thrombocytopenia can occur when there is insufficient production of platelets in the bone marrow due to various causes, such as viral infections, chemotherapy, radiation therapy, leukemia, aplastic anemia, or vitamin B12 or folate deficiency.
3. Increased destruction or consumption: Thrombocytopenia can also result from increased platelet destruction or consumption due to conditions like disseminated intravascular coagulation (DIC), thrombotic thrombocytopenic purpura (TTP), hemolytic uremic syndrome (HUS), or severe bacterial infections.

Symptoms of thrombocytopenia may include easy bruising, prolonged bleeding from cuts, spontaneous nosebleeds, bleeding gums, blood in urine or stools, and skin rashes like petechiae (small red or purple spots) or purpura (larger patches). The severity of symptoms can vary depending on the degree of thrombocytopenia and the presence of any underlying conditions. Treatment for thrombocytopenia depends on the cause and may include medications, transfusions, or addressing the underlying condition.

Hematopoiesis is the process of forming and developing blood cells. It occurs in the bone marrow and includes the production of red blood cells (erythropoiesis), white blood cells (leukopoiesis), and platelets (thrombopoiesis). This process is regulated by various growth factors, hormones, and cytokines. Hematopoiesis begins early in fetal development and continues throughout a person's life. Disorders of hematopoiesis can result in conditions such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis.

A "Blood Cell Count" is a medical laboratory test that measures the number of red blood cells (RBCs), white blood cells (WBCs), and platelets in a sample of blood. This test is often used as a part of a routine check-up or to help diagnose various medical conditions, such as anemia, infection, inflammation, and many others.

The RBC count measures the number of oxygen-carrying cells in the blood, while the WBC count measures the number of immune cells that help fight infections. The platelet count measures the number of cells involved in clotting. Abnormal results in any of these counts may indicate an underlying medical condition and further testing may be required for diagnosis and treatment.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Vidarabine is an antiviral medication used to treat herpes simplex infections, particularly severe cases such as herpes encephalitis (inflammation of the brain caused by the herpes simplex virus). It works by interfering with the DNA replication of the virus.

In medical terms, vidarabine is a nucleoside analogue that is phosphorylated intracellularly to the active form, vidarabine triphosphate. This compound inhibits viral DNA polymerase and incorporates into viral DNA, causing termination of viral DNA synthesis.

Vidarabine was previously used as an injectable medication but has largely been replaced by more modern antiviral drugs such as acyclovir due to its greater efficacy and lower toxicity.

Medical survival rate is a statistical measure used to determine the percentage of patients who are still alive for a specific period of time after their diagnosis or treatment for a certain condition or disease. It is often expressed as a five-year survival rate, which refers to the proportion of people who are alive five years after their diagnosis. Survival rates can be affected by many factors, including the stage of the disease at diagnosis, the patient's age and overall health, the effectiveness of treatment, and other health conditions that the patient may have. It is important to note that survival rates are statistical estimates and do not necessarily predict an individual patient's prognosis.

Sweet syndrome, also known as acute febrile neutrophilic dermatosis, is a skin condition characterized by the rapid onset of painful, red, and swollen skin lesions. The lesions are often accompanied by fever and elevated white blood cell count, particularly an increase in neutrophils.

The medical definition of Sweet syndrome includes the following criteria:

1. Abrupt onset of painful, erythematous (red), and edematous (swollen) papules, plaques, or nodules.
2. Fever greater than 38°C (100.4°F).
3. Leukocytosis with a predominance of neutrophils in the peripheral blood.
4. Histopathological evidence of a dense dermal infiltrate of neutrophils without evidence of vasculitis.
5. Rapid response to systemic corticosteroids.

Sweet syndrome can be associated with various medical conditions, such as infections, malignancies, and inflammatory diseases, or it can occur without an identifiable underlying cause (idiopathic).

In situ hybridization, fluorescence (FISH) is a type of molecular cytogenetic technique used to detect and localize the presence or absence of specific DNA sequences on chromosomes through the use of fluorescent probes. This technique allows for the direct visualization of genetic material at a cellular level, making it possible to identify chromosomal abnormalities such as deletions, duplications, translocations, and other rearrangements.

The process involves denaturing the DNA in the sample to separate the double-stranded molecules into single strands, then adding fluorescently labeled probes that are complementary to the target DNA sequence. The probe hybridizes to the complementary sequence in the sample, and the location of the probe is detected by fluorescence microscopy.

FISH has a wide range of applications in both clinical and research settings, including prenatal diagnosis, cancer diagnosis and monitoring, and the study of gene expression and regulation. It is a powerful tool for identifying genetic abnormalities and understanding their role in human disease.

Macrocytic anemia is a type of anemia in which the red blood cells are larger than normal in size (macrocytic). This condition can be caused by various factors such as deficiency of vitamin B12 or folate, alcohol abuse, certain medications, bone marrow disorders, and some inherited genetic conditions.

The large red blood cells may not function properly, leading to symptoms such as fatigue, weakness, shortness of breath, pale skin, and a rapid heartbeat. Macrocytic anemia can be diagnosed through a complete blood count (CBC) test, which measures the size and number of red blood cells in the blood.

Treatment for macrocytic anemia depends on the underlying cause. In cases of vitamin B12 or folate deficiency, supplements or dietary changes may be recommended. If the anemia is caused by medication, a different medication may be prescribed. In severe cases, blood transfusions or injections of vitamin B12 may be necessary.

Granulocyte Colony-Stimulating Factor (G-CSF) is a type of growth factor that specifically stimulates the production and survival of granulocytes, a type of white blood cell crucial for fighting off infections. G-CSF works by promoting the proliferation and differentiation of hematopoietic stem cells into mature granulocytes, primarily neutrophils, in the bone marrow.

Recombinant forms of G-CSF are used clinically as a medication to boost white blood cell production in patients undergoing chemotherapy or radiation therapy for cancer, those with congenital neutropenia, and those who have had a bone marrow transplant. By increasing the number of circulating neutrophils, G-CSF helps reduce the risk of severe infections during periods of intense immune suppression.

Examples of recombinant G-CSF medications include filgrastim (Neupogen), pegfilgrastim (Neulasta), and lipegfilgrastim (Lonquex).

Hematologic diseases, also known as hematological disorders, refer to a group of conditions that affect the production, function, or destruction of blood cells or blood-related components, such as plasma. These diseases can affect erythrocytes (red blood cells), leukocytes (white blood cells), and platelets (thrombocytes), as well as clotting factors and hemoglobin.

Hematologic diseases can be broadly categorized into three main types:

1. Anemia: A condition characterized by a decrease in the total red blood cell count, hemoglobin, or hematocrit, leading to insufficient oxygen transport to tissues and organs. Examples include iron deficiency anemia, sickle cell anemia, and aplastic anemia.
2. Leukemia and other disorders of white blood cells: These conditions involve the abnormal production or function of leukocytes, which can lead to impaired immunity and increased susceptibility to infections. Examples include leukemias (acute lymphoblastic leukemia, chronic myeloid leukemia), lymphomas, and myelodysplastic syndromes.
3. Platelet and clotting disorders: These diseases affect the production or function of platelets and clotting factors, leading to abnormal bleeding or clotting tendencies. Examples include hemophilia, von Willebrand disease, thrombocytopenia, and disseminated intravascular coagulation (DIC).

Hematologic diseases can have various causes, including genetic defects, infections, autoimmune processes, environmental factors, or malignancies. Proper diagnosis and management of these conditions often require the expertise of hematologists, who specialize in diagnosing and treating disorders related to blood and its components.

Disease progression is the worsening or advancement of a medical condition over time. It refers to the natural course of a disease, including its development, the severity of symptoms and complications, and the impact on the patient's overall health and quality of life. Understanding disease progression is important for developing appropriate treatment plans, monitoring response to therapy, and predicting outcomes.

The rate of disease progression can vary widely depending on the type of medical condition, individual patient factors, and the effectiveness of treatment. Some diseases may progress rapidly over a short period of time, while others may progress more slowly over many years. In some cases, disease progression may be slowed or even halted with appropriate medical interventions, while in other cases, the progression may be inevitable and irreversible.

In clinical practice, healthcare providers closely monitor disease progression through regular assessments, imaging studies, and laboratory tests. This information is used to guide treatment decisions and adjust care plans as needed to optimize patient outcomes and improve quality of life.

Human chromosome pair 8 consists of two rod-shaped structures present in the nucleus of each cell of the human body. Each chromosome is made up of DNA tightly coiled around histone proteins, forming a complex structure known as a chromatin.

Human cells have 23 pairs of chromosomes, for a total of 46 chromosomes. Pair 8 is one of the autosomal pairs, meaning that it is not a sex chromosome (X or Y). Each member of chromosome pair 8 has a similar size, shape, and banding pattern, and they are identical in males and females.

Chromosome pair 8 contains several genes that are essential for various cellular functions and human development. Some of the genes located on chromosome pair 8 include those involved in the regulation of metabolism, nerve function, immune response, and cell growth and division.

Abnormalities in chromosome pair 8 can lead to genetic disorders such as Wolf-Hirschhorn syndrome, which is caused by a partial deletion of the short arm of chromosome 4, or partial trisomy 8, which results from an extra copy of all or part of chromosome 8. Both of these conditions are associated with developmental delays, intellectual disability, and various physical abnormalities.

Antineoplastic agents are a class of drugs used to treat malignant neoplasms or cancer. These agents work by inhibiting the growth and proliferation of cancer cells, either by killing them or preventing their division and replication. Antineoplastic agents can be classified based on their mechanism of action, such as alkylating agents, antimetabolites, topoisomerase inhibitors, mitotic inhibitors, and targeted therapy agents.

Alkylating agents work by adding alkyl groups to DNA, which can cause cross-linking of DNA strands and ultimately lead to cell death. Antimetabolites interfere with the metabolic processes necessary for DNA synthesis and replication, while topoisomerase inhibitors prevent the relaxation of supercoiled DNA during replication. Mitotic inhibitors disrupt the normal functioning of the mitotic spindle, which is essential for cell division. Targeted therapy agents are designed to target specific molecular abnormalities in cancer cells, such as mutated oncogenes or dysregulated signaling pathways.

It's important to note that antineoplastic agents can also affect normal cells and tissues, leading to various side effects such as nausea, vomiting, hair loss, and myelosuppression (suppression of bone marrow function). Therefore, the use of these drugs requires careful monitoring and management of their potential adverse effects.

Core Binding Factor Alpha 2 Subunit, also known as CBF-A2 or CEBP-α, is a protein that forms a complex with other proteins to act as a transcription factor. Transcription factors are proteins that help regulate the expression of genes by binding to specific DNA sequences and controlling the rate of transcription of genetic information from DNA to RNA.

CBF-A2 is a member of the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors, which are important in regulating various biological processes such as cell growth, development, and inflammation. CBF-A2 forms a heterodimer with Core Binding Factor Beta (CBF-β) to form the active transcription factor complex known as the core binding factor (CBF).

The CBF complex binds to the CCAAT box, a specific DNA sequence found in the promoter regions of many genes. By binding to this sequence, the CBF complex can either activate or repress the transcription of target genes, depending on the context and the presence of other regulatory factors.

Mutations in the gene encoding CBF-A2 have been associated with several human diseases, including acute myeloid leukemia (AML) and multiple myeloma. In AML, mutations in the CBF-A2 gene can lead to the formation of abnormal CBF complexes that disrupt normal gene expression patterns and contribute to the development of leukemia.

Anemia is a medical condition characterized by a lower than normal number of red blood cells or lower than normal levels of hemoglobin in the blood. Hemoglobin is an important protein in red blood cells that carries oxygen from the lungs to the rest of the body. Anemia can cause fatigue, weakness, shortness of breath, and a pale complexion because the body's tissues are not getting enough oxygen.

Anemia can be caused by various factors, including nutritional deficiencies (such as iron, vitamin B12, or folate deficiency), blood loss, chronic diseases (such as kidney disease or rheumatoid arthritis), inherited genetic disorders (such as sickle cell anemia or thalassemia), and certain medications.

There are different types of anemia, classified based on the underlying cause, size and shape of red blood cells, and the level of hemoglobin in the blood. Treatment for anemia depends on the underlying cause and may include dietary changes, supplements, medication, or blood transfusions.

Chromosome disorders are a group of genetic conditions caused by abnormalities in the number or structure of chromosomes. Chromosomes are thread-like structures located in the nucleus of cells that contain most of the body's genetic material, which is composed of DNA and proteins. Normally, humans have 23 pairs of chromosomes, for a total of 46 chromosomes.

Chromosome disorders can result from changes in the number of chromosomes (aneuploidy) or structural abnormalities in one or more chromosomes. Some common examples of chromosome disorders include:

1. Down syndrome: a condition caused by an extra copy of chromosome 21, resulting in intellectual disability, developmental delays, and distinctive physical features.
2. Turner syndrome: a condition that affects only females and is caused by the absence of all or part of one X chromosome, resulting in short stature, lack of sexual development, and other symptoms.
3. Klinefelter syndrome: a condition that affects only males and is caused by an extra copy of the X chromosome, resulting in tall stature, infertility, and other symptoms.
4. Cri-du-chat syndrome: a condition caused by a deletion of part of the short arm of chromosome 5, resulting in intellectual disability, developmental delays, and a distinctive cat-like cry.
5. Fragile X syndrome: a condition caused by a mutation in the FMR1 gene on the X chromosome, resulting in intellectual disability, behavioral problems, and physical symptoms.

Chromosome disorders can be diagnosed through various genetic tests, such as karyotyping, chromosomal microarray analysis (CMA), or fluorescence in situ hybridization (FISH). Treatment for these conditions depends on the specific disorder and its associated symptoms and may include medical interventions, therapies, and educational support.

Haploinsufficiency is a genetic concept referring to the situation where an individual with only one functional copy of a gene, out of the two copies (one inherited from each parent) that most genes have, exhibits a phenotype or clinical features associated with the gene. This means that having just one working copy of the gene is not enough to ensure normal function, and a reduction in the dosage of the gene's product leads to a negative effect on the organism.

Haploinsufficiency can occur due to various genetic mechanisms such as point mutations, deletions, or other types of alterations that affect the expression or function of the gene. This concept is important in genetics and genomics research, particularly in the study of genetic disorders and diseases, including cancer, where haploinsufficiency of tumor suppressor genes can contribute to tumor development and progression.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

A karyotype is a method used in genetics to describe the number and visual appearance of chromosomes in the nucleus of a cell. It includes the arrangement of the chromosomes by length, position of the centromeres, and banding pattern. A karyotype is often represented as a photograph or image of an individual's chromosomes, arranged in pairs from largest to smallest, that has been stained to show the bands of DNA. This information can be used to identify genetic abnormalities, such as extra or missing chromosomes, or structural changes, such as deletions, duplications, or translocations. A karyotype is typically obtained by culturing cells from a sample of blood or tissue, then arresting the cell division at metaphase and staining the chromosomes to make them visible for analysis.

Erythroid precursor cells, also known as erythroblasts or normoblasts, are early stage cells in the process of producing mature red blood cells (erythrocytes) in the bone marrow. These cells are derived from hematopoietic stem cells and undergo a series of maturation stages, including proerythroblast, basophilic erythroblast, polychromatophilic erythroblast, and orthochromatic erythroblast, before becoming reticulocytes and then mature red blood cells. During this maturation process, the cells lose their nuclei and become enucleated, taking on the biconcave shape and flexible membrane that allows them to move through small blood vessels and deliver oxygen to tissues throughout the body.

Translocation, genetic, refers to a type of chromosomal abnormality in which a segment of a chromosome is transferred from one chromosome to another, resulting in an altered genome. This can occur between two non-homologous chromosomes (non-reciprocal translocation) or between two homologous chromosomes (reciprocal translocation). Genetic translocations can lead to various clinical consequences, depending on the genes involved and the location of the translocation. Some translocations may result in no apparent effects, while others can cause developmental abnormalities, cancer, or other genetic disorders. In some cases, translocations can also increase the risk of having offspring with genetic conditions.

Human chromosome pair 20 is one of the 23 pairs of human chromosomes present in every cell of the body, except for the sperm and egg cells which contain only 23 individual chromosomes. Chromosomes are thread-like structures that carry genetic information in the form of genes.

Human chromosome pair 20 is an acrocentric chromosome, meaning it has a short arm (p arm) and a long arm (q arm), with the centromere located near the junction of the two arms. The short arm of chromosome 20 is very small and contains few genes, while the long arm contains several hundred genes that play important roles in various biological processes.

Chromosome pair 20 is associated with several genetic disorders, including DiGeorge syndrome, which is caused by a deletion of a portion of the long arm of chromosome 20. This syndrome is characterized by birth defects affecting the heart, face, and immune system. Other conditions associated with abnormalities of chromosome pair 20 include some forms of intellectual disability, autism spectrum disorder, and cancer.

Hematologic neoplasms, also known as hematological malignancies, are a group of diseases characterized by the uncontrolled growth and accumulation of abnormal blood cells or bone marrow cells. These disorders can originate from the myeloid or lymphoid cell lines, which give rise to various types of blood cells, including red blood cells, white blood cells, and platelets.

Hematologic neoplasms can be broadly classified into three categories:

1. Leukemias: These are cancers that primarily affect the bone marrow and blood-forming tissues. They result in an overproduction of abnormal white blood cells, which interfere with the normal functioning of the blood and immune system. There are several types of leukemia, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML).
2. Lymphomas: These are cancers that develop from the lymphatic system, which is a part of the immune system responsible for fighting infections. Lymphomas can affect lymph nodes, spleen, bone marrow, and other organs. The two main types of lymphoma are Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL).
3. Myelomas: These are cancers that arise from the plasma cells, a type of white blood cell responsible for producing antibodies. Multiple myeloma is the most common type of myeloma, characterized by an excessive proliferation of malignant plasma cells in the bone marrow, leading to the production of abnormal amounts of monoclonal immunoglobulins (M proteins) and bone destruction.

Hematologic neoplasms can have various symptoms, such as fatigue, weakness, frequent infections, easy bruising or bleeding, weight loss, swollen lymph nodes, and bone pain. The diagnosis typically involves a combination of medical history, physical examination, laboratory tests, imaging studies, and sometimes bone marrow biopsy. Treatment options depend on the type and stage of the disease and may include chemotherapy, radiation therapy, targeted therapy, immunotherapy, stem cell transplantation, or a combination of these approaches.

Primary myelofibrosis (PMF) is a rare, chronic bone marrow disorder characterized by the replacement of normal bone marrow tissue with fibrous scar tissue, leading to impaired production of blood cells. This results in cytopenias (anemia, leukopenia, thrombocytopenia), which can cause fatigue, infection susceptibility, and bleeding tendencies. Additionally, PMF is often accompanied by the proliferation of abnormal megakaryocytes (large, atypical bone marrow cells that produce platelets) and extramedullary hematopoiesis (blood cell formation outside the bone marrow, typically in the spleen and liver).

PMF is a type of myeloproliferative neoplasm (MPN), which is a group of clonal stem cell disorders characterized by excessive proliferation of one or more types of blood cells. PMF can present with various symptoms such as fatigue, weight loss, night sweats, abdominal discomfort due to splenomegaly (enlarged spleen), and bone pain. In some cases, PMF may progress to acute myeloid leukemia (AML).

The exact cause of PMF remains unclear; however, genetic mutations are known to play a significant role in its development. The Janus kinase 2 (JAK2), calreticulin (CALR), and MPL genes have been identified as commonly mutated in PMF patients. These genetic alterations contribute to the dysregulated production of blood cells and the activation of signaling pathways that promote fibrosis.

Diagnosis of PMF typically involves a combination of clinical evaluation, complete blood count (CBC), bone marrow aspiration and biopsy, cytogenetic analysis, and molecular testing to identify genetic mutations. Treatment options depend on the individual patient's symptoms, risk stratification, and disease progression. They may include observation, supportive care, medications to manage symptoms and control the disease (such as JAK inhibitors), and stem cell transplantation for eligible patients.

Iron chelating agents are medications that bind to iron in the body, forming a stable complex that can then be excreted from the body. These agents are primarily used to treat iron overload, a condition that can occur due to frequent blood transfusions or certain genetic disorders such as hemochromatosis. By reducing the amount of iron in the body, these medications can help prevent or reduce damage to organs such as the heart and liver. Examples of iron chelating agents include deferoxamine, deferasirox, and deferiprone.

Hematinics are a class of medications and dietary supplements that are used to enhance the production of red blood cells or hemoglobin in the body. They typically contain iron, vitamin B12, folic acid, or other nutrients that are essential for the synthesis of hemoglobin and the formation of red blood cells.

Iron is a critical component of hematinics because it plays a central role in the production of hemoglobin, which is the protein in red blood cells that carries oxygen throughout the body. Vitamin B12 and folic acid are also important nutrients for red blood cell production, as they help to regulate the growth and division of red blood cells in the bone marrow.

Hematinics are often prescribed to treat anemia, which is a condition characterized by a low red blood cell count or abnormally low levels of hemoglobin in the blood. Anemia can be caused by a variety of factors, including nutritional deficiencies, chronic diseases, and inherited genetic disorders.

Examples of hematinics include ferrous sulfate (an iron supplement), cyanocobalamin (vitamin B12), and folic acid. These medications are available in various forms, such as tablets, capsules, and liquids, and can be taken orally or by injection. It is important to follow the dosage instructions carefully and to inform your healthcare provider of any other medications you are taking, as hematinics can interact with certain drugs and may cause side effects.

Acute Myelomonocytic Leukemia (AML-M4) is a subtype of acute myeloid leukemia, which is a type of cancer that affects the blood and bone marrow. In AML-M4, there is an overproduction of immature white blood cells called myeloblasts and monoblasts, which accumulate in the bone marrow and interfere with normal blood cell production.

These abnormal cells can also spread to other parts of the body, such as the skin, lymph nodes, and organs. Symptoms of AML-M4 may include fatigue, fever, frequent infections, easy bruising or bleeding, and shortness of breath. Treatment typically involves chemotherapy, radiation therapy, and/or stem cell transplantation.

It is important to note that a diagnosis of acute myelomonocytic leukemia should be made by a qualified healthcare professional based on a thorough medical evaluation, including a review of the patient's medical history, physical examination, and diagnostic test results.

Flow cytometry is a medical and research technique used to measure physical and chemical characteristics of cells or particles, one cell at a time, as they flow in a fluid stream through a beam of light. The properties measured include:

* Cell size (light scatter)
* Cell internal complexity (granularity, also light scatter)
* Presence or absence of specific proteins or other molecules on the cell surface or inside the cell (using fluorescent antibodies or other fluorescent probes)

The technique is widely used in cell counting, cell sorting, protein engineering, biomarker discovery and monitoring disease progression, particularly in hematology, immunology, and cancer research.

Erythroid cells are a type of blood cell that develops in the bone marrow and mature into red blood cells (RBCs), also known as erythrocytes. These cells play a crucial role in the body's oxygen-carrying capacity by transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

The development of erythroid cells begins with hematopoietic stem cells, which can differentiate into various types of blood cells. Through a series of maturation stages, including proerythroblasts, basophilic erythroblasts, polychromatophilic erythroblasts, and orthochromatic erythroblasts, these cells gradually lose their nuclei and organelles to become reticulocytes. Reticulocytes are immature RBCs that still contain some residual ribosomes and are released into the bloodstream. Over time, they mature into fully functional RBCs, which have a biconcave shape and a flexible membrane that allows them to navigate through small blood vessels.

Erythroid cells are essential for maintaining adequate oxygenation of body tissues, and their production is tightly regulated by various hormones and growth factors, such as erythropoietin (EPO), which stimulates the proliferation and differentiation of erythroid progenitor cells. Abnormalities in erythroid cell development or function can lead to various blood disorders, including anemia, polycythemia, and myelodysplastic syndromes.

Bone marrow transplantation (BMT) is a medical procedure in which damaged or destroyed bone marrow is replaced with healthy bone marrow from a donor. Bone marrow is the spongy tissue inside bones that produces blood cells. The main types of BMT are autologous, allogeneic, and umbilical cord blood transplantation.

In autologous BMT, the patient's own bone marrow is used for the transplant. This type of BMT is often used in patients with lymphoma or multiple myeloma who have undergone high-dose chemotherapy or radiation therapy to destroy their cancerous bone marrow.

In allogeneic BMT, bone marrow from a genetically matched donor is used for the transplant. This type of BMT is often used in patients with leukemia, lymphoma, or other blood disorders who have failed other treatments.

Umbilical cord blood transplantation involves using stem cells from umbilical cord blood as a source of healthy bone marrow. This type of BMT is often used in children and adults who do not have a matched donor for allogeneic BMT.

The process of BMT typically involves several steps, including harvesting the bone marrow or stem cells from the donor, conditioning the patient's body to receive the new bone marrow or stem cells, transplanting the new bone marrow or stem cells into the patient's body, and monitoring the patient for signs of engraftment and complications.

BMT is a complex and potentially risky procedure that requires careful planning, preparation, and follow-up care. However, it can be a life-saving treatment for many patients with blood disorders or cancer.

Erythroblasts are immature red blood cells that are produced in the bone marrow. They are also known as normoblasts and are a stage in the development of red blood cells, or erythrocytes. Erythroblasts are larger than mature red blood cells and have a nucleus, which is lost during the maturation process. These cells are responsible for producing hemoglobin, the protein that carries oxygen in the blood. Abnormal increases or decreases in the number of erythroblasts can be indicative of certain medical conditions, such as anemia or leukemia.

DNA modification methylases are a type of enzyme that catalyze the transfer of methyl groups (-CH3) to specific nucleotides in DNA, usually cytosine or adenine residues. This process is known as DNA methylation and is an important epigenetic mechanism that regulates gene expression, genome stability, and other cellular processes.

There are several types of DNA modification methylases, including:

1. Cytosine-5 methyltransferases (CNMTs or DNMTs): These enzymes catalyze the transfer of a methyl group to the fifth carbon atom of cytosine residues in DNA, forming 5-methylcytosine (5mC). This is the most common type of DNA methylation and plays a crucial role in gene silencing, X-chromosome inactivation, and genomic imprinting.
2. N6-adenine methyltransferases (MTases): These enzymes catalyze the transfer of a methyl group to the sixth nitrogen atom of adenine residues in DNA, forming N6-methyladenine (6mA). This type of DNA methylation is less common than 5mC but has been found to be involved in various cellular processes, such as transcriptional regulation and DNA repair.
3. GpC methyltransferases: These enzymes catalyze the transfer of a methyl group to the second carbon atom of guanine residues in DNA, forming N4-methylcytosine (4mC). This type of DNA methylation is relatively rare and has been found mainly in prokaryotic genomes.

Dysregulation of DNA modification methylases has been implicated in various diseases, including cancer, neurological disorders, and immunological diseases. Therefore, understanding the function and regulation of these enzymes is essential for developing novel therapeutic strategies to treat these conditions.

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired disorder of the blood characterized by the destruction of red blood cells (hemolysis), which can cause symptoms such as fatigue, dark colored urine (especially in the morning), chest pain, shortness of breath, and an increased risk of blood clots. The hemoglobin from the lysed red blood cells appears in the urine, hence the term "hemoglobinuria."

The paroxysmal nature of the disorder refers to the sudden and recurring episodes of hemolysis that can occur at any time, although they may be more frequent at night. The condition is caused by mutations in a gene called PIG-A, which leads to the production of defective red blood cell membranes that are sensitive to destruction by complement, a component of the immune system.

PNH is a serious and potentially life-threatening condition that can lead to complications such as kidney damage, pulmonary hypertension, and thrombosis. Treatment typically involves supportive care, such as blood transfusions, and medications to manage symptoms and prevent complications. In some cases, stem cell transplantation may be considered as a curative treatment option.

Immunophenotyping is a medical laboratory technique used to identify and classify cells, usually in the context of hematologic (blood) disorders and malignancies (cancers), based on their surface or intracellular expression of various proteins and antigens. This technique utilizes specific antibodies tagged with fluorochromes, which bind to the target antigens on the cell surface or within the cells. The labeled cells are then analyzed using flow cytometry, allowing for the detection and quantification of multiple antigenic markers simultaneously.

Immunophenotyping helps in understanding the distribution of different cell types, their subsets, and activation status, which can be crucial in diagnosing various hematological disorders, immunodeficiencies, and distinguishing between different types of leukemias, lymphomas, and other malignancies. Additionally, it can also be used to monitor the progression of diseases, evaluate the effectiveness of treatments, and detect minimal residual disease (MRD) during follow-up care.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Antilymphocyte serum (ALS) is a type of immune serum that contains antibodies against human lymphocytes. It is produced by immunizing animals, such as horses or rabbits, with human lymphocytes to stimulate an immune response and the production of anti-lymphocyte antibodies. The resulting serum is then collected and can be used as a therapeutic agent to suppress the activity of the immune system in certain medical conditions.

ALS is primarily used in the treatment of transplant rejection, particularly in organ transplantation, where it helps to prevent the recipient's immune system from attacking and rejecting the transplanted organ. It can also be used in the management of autoimmune diseases, such as rheumatoid arthritis and lupus, to suppress the overactive immune response that contributes to these conditions.

It is important to note that the use of ALS carries a risk of side effects, including allergic reactions, fever, and decreased white blood cell counts. Close monitoring and appropriate management of these potential adverse events are essential during treatment with ALS.

Busulfan is a chemotherapy medication used to treat various types of cancer, including chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML). It is an alkylating agent that works by damaging the DNA of cancer cells, which prevents them from dividing and growing.

The medical definition of Busulfan is:

A white crystalline powder used in chemotherapy to treat various types of cancer. Busulfan works by alkylating and cross-linking DNA, which inhibits DNA replication and transcription, leading to cell cycle arrest and apoptosis (programmed cell death) in rapidly dividing cells, including cancer cells. It is administered orally or intravenously and is often used in combination with other chemotherapy agents. Common side effects include nausea, vomiting, diarrhea, and bone marrow suppression, which can lead to anemia, neutropenia, thrombocytopenia, and increased susceptibility to infection. Long-term use of busulfan has been associated with pulmonary fibrosis, infertility, and an increased risk of secondary malignancies.

A fatal outcome is a term used in medical context to describe a situation where a disease, injury, or illness results in the death of an individual. It is the most severe and unfortunate possible outcome of any medical condition, and is often used as a measure of the severity and prognosis of various diseases and injuries. In clinical trials and research, fatal outcome may be used as an endpoint to evaluate the effectiveness and safety of different treatments or interventions.

Isochromosomes are abnormal chromosomes that contain identical arms on both sides, instead of having one arm longer than the other. This occurs due to an error in cell division where the centromere, the region where the chromatids (the two copies of chromosome) are attached, is duplicated and then separated improperly. As a result, each new chromosome has two identical arms.

Isochromosomes can lead to genetic disorders because they can disrupt the balance of genes on the chromosome. For example, if an isochromosome forms for chromosome 18 (i(18)), there will be three copies of the genes on one arm and only one copy on the other arm, leading to an overexpression of some genes and a loss of expression of others. This can cause developmental abnormalities and intellectual disabilities.

Isochromosomes are often associated with certain types of cancer, as well as genetic disorders such as Turner syndrome and Klinefelter syndrome.

HLA-DR serological subtyping refers to the identification and classification of specific variants or subtypes of the human leukocyte antigen (HLA) class II DR antigens based on their reactivity with a panel of antibodies in serological assays. HLAs are cell surface proteins that play a crucial role in the immune system by presenting peptide antigens to T-cells. The HLA-DR molecules are involved in the presentation of foreign antigens, such as viruses and bacteria, to the immune system.

The serological subtyping of HLA-DR antigens is performed using a panel of antibodies with known specificity for different HLA-DR epitopes. The reactivity of an individual's HLA-DR antigens with these antibodies allows for the determination of their HLA-DR serological subtype. This information can be useful in various clinical settings, such as histocompatibility testing for organ transplantation and the diagnosis of certain autoimmune diseases.

It is important to note that HLA-DR serological subtyping has largely been replaced by molecular typing methods, which provide more precise and detailed information about HLA alleles. Molecular typing involves the direct sequencing or genotyping of HLA genes, allowing for the identification of specific HLA alleles and their associated amino acid sequences.

Recurrence, in a medical context, refers to the return of symptoms or signs of a disease after a period of improvement or remission. It indicates that the condition has not been fully eradicated and may require further treatment. Recurrence is often used to describe situations where a disease such as cancer comes back after initial treatment, but it can also apply to other medical conditions. The likelihood of recurrence varies depending on the type of disease and individual patient factors.

Myeloid progenitor cells are a type of precursor cells that originate from hematopoietic stem cells (HSCs) in the bone marrow. These cells have the ability to differentiate into various types of blood cells, including red blood cells, platelets, and different kinds of white blood cells, specifically granulocytes (neutrophils, eosinophils, and basophils), monocytes, and megakaryocytes. Myeloid progenitor cells are crucial for the maintenance of normal hematopoiesis and immune function. Abnormalities in myeloid progenitor cell differentiation or function can lead to various hematological disorders such as leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms.

Erythropoiesis is the process of forming and developing red blood cells (erythrocytes) in the body. It occurs in the bone marrow and is regulated by the hormone erythropoietin (EPO), which is produced by the kidneys. Erythropoiesis involves the differentiation and maturation of immature red blood cell precursors called erythroblasts into mature red blood cells, which are responsible for carrying oxygen to the body's tissues. Disorders that affect erythropoiesis can lead to anemia or other blood-related conditions.

A ribonucleoprotein, U2 small nuclear (U2 snRNP) is a type of spliceosomal small nuclear ribonucleoprotein (snRNP) complex that plays a crucial role in the pre-messenger RNA (pre-mRNA) splicing process during gene expression in eukaryotic cells.

Pre-mRNA splicing is the removal of non-coding sequences, called introns, from the pre-mRNA molecule and the joining together of the remaining coding sequences, or exons, to form a continuous mRNA sequence that can be translated into protein. U2 snRNPs are essential components of the spliceosome, the large ribonucleoprotein complex responsible for pre-mRNA splicing.

The U2 snRNP is composed of several proteins and a small nuclear RNA (snRNA) molecule called U2 small nuclear RNA (U2 snRNA). The U2 snRNA binds to specific sequences within the pre-mRNA, forming part of the intron's branch site, which helps define the boundaries of the exons and introns. This interaction facilitates the recognition and assembly of other spliceosomal components, ultimately leading to the precise excision of introns and ligation of exons in the mature mRNA molecule.

In summary, U2 snRNP is a ribonucleoprotein complex involved in pre-mRNA splicing, where it plays a critical role in recognizing and processing intron-exon boundaries during gene expression in eukaryotic cells.

DNA Mutational Analysis is a laboratory test used to identify genetic variations or changes (mutations) in the DNA sequence of a gene. This type of analysis can be used to diagnose genetic disorders, predict the risk of developing certain diseases, determine the most effective treatment for cancer, or assess the likelihood of passing on an inherited condition to offspring.

The test involves extracting DNA from a patient's sample (such as blood, saliva, or tissue), amplifying specific regions of interest using polymerase chain reaction (PCR), and then sequencing those regions to determine the precise order of nucleotide bases in the DNA molecule. The resulting sequence is then compared to reference sequences to identify any variations or mutations that may be present.

DNA Mutational Analysis can detect a wide range of genetic changes, including single-nucleotide polymorphisms (SNPs), insertions, deletions, duplications, and rearrangements. The test is often used in conjunction with other diagnostic tests and clinical evaluations to provide a comprehensive assessment of a patient's genetic profile.

It is important to note that not all mutations are pathogenic or associated with disease, and the interpretation of DNA Mutational Analysis results requires careful consideration of the patient's medical history, family history, and other relevant factors.

Antineoplastic combined chemotherapy protocols refer to a treatment plan for cancer that involves the use of more than one antineoplastic (chemotherapy) drug given in a specific sequence and schedule. The combination of drugs is used because they may work better together to destroy cancer cells compared to using a single agent alone. This approach can also help to reduce the likelihood of cancer cells becoming resistant to the treatment.

The choice of drugs, dose, duration, and frequency are determined by various factors such as the type and stage of cancer, patient's overall health, and potential side effects. Combination chemotherapy protocols can be used in various settings, including as a primary treatment, adjuvant therapy (given after surgery or radiation to kill any remaining cancer cells), neoadjuvant therapy (given before surgery or radiation to shrink the tumor), or palliative care (to alleviate symptoms and prolong survival).

It is important to note that while combined chemotherapy protocols can be effective in treating certain types of cancer, they can also cause significant side effects, including nausea, vomiting, hair loss, fatigue, and an increased risk of infection. Therefore, patients undergoing such treatment should be closely monitored and managed by a healthcare team experienced in administering chemotherapy.

Thrombocytosis is a medical condition characterized by an abnormally high platelet count (also known as thrombocytes) in the blood. Platelets are small cell fragments that play a crucial role in blood clotting. A normal platelet count ranges from 150,000 to 450,000 platelets per microliter of blood. Thrombocytosis is typically defined as a platelet count exceeding 450,000-500,000 platelets/µL.

Thrombocytosis can be classified into two types: reactive (or secondary) thrombocytosis and primary (or essential) thrombocytosis. Reactive thrombocytosis is more common and occurs as a response to an underlying condition, such as infection, inflammation, surgery, or certain types of cancer. Primary thrombocytosis, on the other hand, is caused by intrinsic abnormalities in the bone marrow cells responsible for platelet production (megakaryocytes), and it is often associated with myeloproliferative neoplasms like essential thrombocythemia.

While mild thrombocytosis may not cause any symptoms, higher platelet counts can increase the risk of blood clots (thrombosis) and bleeding disorders due to excessive platelet aggregation. Symptoms of thrombocytosis may include headaches, dizziness, visual disturbances, or chest pain if a blood clot forms in the brain or heart. Bleeding symptoms can manifest as easy bruising, nosebleeds, or gastrointestinal bleeding.

Treatment for thrombocytosis depends on the underlying cause and the severity of the condition. In cases of reactive thrombocytosis, treating the underlying disorder often resolves the high platelet count. For primary thrombocytosis, medications like aspirin or cytoreductive therapy (such as hydroxyurea) may be used to reduce the risk of blood clots and control platelet production. Regular monitoring of platelet counts is essential for managing this condition and preventing potential complications.

Nephrotic syndrome is a group of symptoms that indicate kidney damage, specifically damage to the glomeruli—the tiny blood vessel clusters in the kidneys that filter waste and excess fluids from the blood. The main features of nephrotic syndrome are:

1. Proteinuria (excess protein in urine): Large amounts of a protein called albumin leak into the urine due to damaged glomeruli, which can't properly filter proteins. This leads to low levels of albumin in the blood, causing fluid buildup and swelling.
2. Hypoalbuminemia (low blood albumin levels): As albumin leaks into the urine, the concentration of albumin in the blood decreases, leading to hypoalbuminemia. This can cause edema (swelling), particularly in the legs, ankles, and feet.
3. Edema (fluid retention and swelling): With low levels of albumin in the blood, fluids move into the surrounding tissues, causing swelling or puffiness. The swelling is most noticeable around the eyes, face, hands, feet, and abdomen.
4. Hyperlipidemia (high lipid/cholesterol levels): The kidneys play a role in regulating lipid metabolism. Damage to the glomeruli can lead to increased lipid production and high cholesterol levels in the blood.

Nephrotic syndrome can result from various underlying kidney diseases, such as minimal change disease, membranous nephropathy, or focal segmental glomerulosclerosis. Treatment depends on the underlying cause and may include medications to control inflammation, manage high blood pressure, and reduce proteinuria. In some cases, dietary modifications and lifestyle changes are also recommended.

Arabinonucleosides are glycosylamines derived from arabinose, a monosaccharide (simple sugar) that is a component of certain complex carbohydrates. In an arabinonucleoside, the arabinose molecule is linked to a nitrogenous base, such as adenine, guanine, cytosine, uracil, or thymine, through a glycosidic bond. These types of compounds are not typically found in nature but can be synthesized in the laboratory for research purposes. They may have potential applications in the development of new drugs, particularly in the area of antiviral and anticancer therapy.

Chronic myelogenous leukemia (CML), BCR-ABL positive is a specific subtype of leukemia that originates in the bone marrow and involves the excessive production of mature granulocytes, a type of white blood cell. It is characterized by the presence of the Philadelphia chromosome, which is formed by a genetic translocation between chromosomes 9 and 22, resulting in the formation of the BCR-ABL fusion gene. This gene encodes for an abnormal protein with increased tyrosine kinase activity, leading to uncontrolled cell growth and division. The presence of this genetic abnormality is used to confirm the diagnosis and guide treatment decisions.

Megakaryocytes are large, specialized bone marrow cells that are responsible for the production and release of platelets (also known as thrombocytes) into the bloodstream. Platelets play an essential role in blood clotting and hemostasis, helping to prevent excessive bleeding during injuries or trauma.

Megakaryocytes have a unique structure with multilobed nuclei and abundant cytoplasm rich in organelles called alpha-granules and dense granules, which store various proteins, growth factors, and enzymes necessary for platelet function. As megakaryocytes mature, they extend long cytoplasmic processes called proplatelets into the bone marrow sinuses, where these extensions fragment into individual platelets that are released into circulation.

Abnormalities in megakaryocyte number, size, or function can lead to various hematological disorders, such as thrombocytopenia (low platelet count), thrombocytosis (high platelet count), and certain types of leukemia.

DNA methylation is a process by which methyl groups (-CH3) are added to the cytosine ring of DNA molecules, often at the 5' position of cytospine phosphate-deoxyguanosine (CpG) dinucleotides. This modification is catalyzed by DNA methyltransferase enzymes and results in the formation of 5-methylcytosine.

DNA methylation plays a crucial role in the regulation of gene expression, genomic imprinting, X chromosome inactivation, and suppression of transposable elements. Abnormal DNA methylation patterns have been associated with various diseases, including cancer, where tumor suppressor genes are often silenced by promoter methylation.

In summary, DNA methylation is a fundamental epigenetic modification that influences gene expression and genome stability, and its dysregulation has important implications for human health and disease.

Dual specificity phosphatase 2 (DUSP2) is a type of enzyme that belongs to the dual specificity phosphatase family. This enzyme is also known as VHR (Vaccinia H1-related phosphatase) and plays a crucial role in regulating various cellular processes, including signal transduction pathways, by removing phosphate groups from both tyrosine and serine/threonine residues of proteins. DUSP2 is primarily located in the nucleus and has been shown to dephosphorylate and negatively regulate mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK) and p38 MAPK, which are involved in cell growth, differentiation, and stress responses. Dysregulation of DUSP2 has been implicated in several pathological conditions, including cancer and neurological disorders.

Neoplastic cell transformation is a process in which a normal cell undergoes genetic alterations that cause it to become cancerous or malignant. This process involves changes in the cell's DNA that result in uncontrolled cell growth and division, loss of contact inhibition, and the ability to invade surrounding tissues and metastasize (spread) to other parts of the body.

Neoplastic transformation can occur as a result of various factors, including genetic mutations, exposure to carcinogens, viral infections, chronic inflammation, and aging. These changes can lead to the activation of oncogenes or the inactivation of tumor suppressor genes, which regulate cell growth and division.

The transformation of normal cells into cancerous cells is a complex and multi-step process that involves multiple genetic and epigenetic alterations. It is characterized by several hallmarks, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabling replicative immortality, induction of angiogenesis, activation of invasion and metastasis, reprogramming of energy metabolism, and evading immune destruction.

Neoplastic cell transformation is a fundamental concept in cancer biology and is critical for understanding the molecular mechanisms underlying cancer development and progression. It also has important implications for cancer diagnosis, prognosis, and treatment, as identifying the specific genetic alterations that underlie neoplastic transformation can help guide targeted therapies and personalized medicine approaches.

Idarubicin is an anthracycline antibiotic used in the treatment of various types of cancer, including leukemia and lymphoma. It works by interfering with the DNA of cancer cells, which prevents them from dividing and growing. Idarubicin is often administered intravenously in a hospital or clinic setting. Common side effects include nausea, vomiting, hair loss, and an increased risk of infection due to lowered white blood cell counts. It can also cause damage to the heart muscle, so regular monitoring of cardiac function is necessary during treatment.

Disease-free survival (DFS) is a term used in medical research and clinical practice, particularly in the field of oncology. It refers to the length of time after primary treatment for a cancer during which no evidence of the disease can be found. This means that the patient shows no signs or symptoms of the cancer, and any imaging studies or other tests do not reveal any tumors or other indications of the disease.

DFS is often used as an important endpoint in clinical trials to evaluate the effectiveness of different treatments for cancer. By measuring the length of time until the cancer recurs or a new cancer develops, researchers can get a better sense of how well a particular treatment is working and whether it is improving patient outcomes.

It's important to note that DFS is not the same as overall survival (OS), which refers to the length of time from primary treatment until death from any cause. While DFS can provide valuable information about the effectiveness of cancer treatments, it does not necessarily reflect the impact of those treatments on patients' overall survival.

Radiation-induced leukemia is a type of cancer that affects the blood-forming tissues of the body, such as the bone marrow. It is caused by exposure to high levels of radiation, which can damage the DNA of cells and lead to their uncontrolled growth and division.

There are several types of radiation-induced leukemia, depending on the specific type of blood cell that becomes cancerous. The most common types are acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). These forms of leukemia tend to progress quickly and require prompt treatment.

Radiation-induced leukemia is a rare complication of radiation therapy, which is used to treat many types of cancer. The risk of developing this type of leukemia increases with the dose and duration of radiation exposure. It is important to note that the benefits of radiation therapy in treating cancer generally outweigh the small increased risk of developing radiation-induced leukemia.

Symptoms of radiation-induced leukemia may include fatigue, fever, frequent infections, easy bruising or bleeding, and weight loss. If you have been exposed to high levels of radiation and are experiencing these symptoms, it is important to seek medical attention promptly. A diagnosis of radiation-induced leukemia is typically made through a combination of physical exam, medical history, and laboratory tests, such as blood counts and bone marrow biopsy. Treatment may include chemotherapy, radiation therapy, and/or stem cell transplantation.

Sjögren's syndrome is a chronic autoimmune disorder in which the body's immune system mistakenly attacks its own moisture-producing glands, particularly the tear and salivary glands. This can lead to symptoms such as dry eyes, dry mouth, and dryness in other areas of the body. In some cases, it may also affect other organs, leading to a variety of complications.

There are two types of Sjögren's syndrome: primary and secondary. Primary Sjögren's syndrome occurs when the condition develops on its own, while secondary Sjögren's syndrome occurs when it develops in conjunction with another autoimmune disease, such as rheumatoid arthritis or lupus.

The exact cause of Sjögren's syndrome is not fully understood, but it is believed to involve a combination of genetic and environmental factors. Treatment typically focuses on relieving symptoms and may include artificial tears, saliva substitutes, medications to stimulate saliva production, and immunosuppressive drugs in more severe cases.

Uniparental disomy (UPD) is a chromosomal abnormality where an individual receives two copies of a chromosome, or part of a chromosome, from one parent and no copies from the other parent. This occurs when there is an error in gamete formation, such as nondisjunction or segregation defects during meiosis, resulting in the production of gametes with abnormal numbers of chromosomes.

There are two types of UPD: heterodisomy and isodisomy. Heterodisomy occurs when an individual receives two different copies of a chromosome from one parent, while isodisomy occurs when an individual receives two identical copies of a chromosome from one parent.

UPD can have significant genetic consequences, particularly if the affected chromosome contains imprinted genes, which are genes that are expressed differently depending on whether they are inherited from the mother or father. UPD can lead to abnormal gene expression and may result in developmental disorders, growth abnormalities, and increased risk of certain diseases, such as Prader-Willi syndrome and Angelman syndrome.

It is important to note that UPD is a rare event and occurs in less than 1% of the population. However, it can have serious health consequences, and genetic counseling and testing may be recommended for individuals with a family history of chromosomal abnormalities or developmental disorders.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

Granulocytes are a type of white blood cell that plays a crucial role in the body's immune system. They are called granulocytes because they contain small granules in their cytoplasm, which are filled with various enzymes and proteins that help them fight off infections and destroy foreign substances.

There are three types of granulocytes: neutrophils, eosinophils, and basophils. Neutrophils are the most abundant type and are primarily responsible for fighting bacterial infections. Eosinophils play a role in defending against parasitic infections and regulating immune responses. Basophils are involved in inflammatory reactions and allergic responses.

Granulocytes are produced in the bone marrow and released into the bloodstream, where they circulate and patrol for any signs of infection or foreign substances. When they encounter a threat, they quickly move to the site of infection or injury and release their granules to destroy the invading organisms or substances.

Abnormal levels of granulocytes in the blood can indicate an underlying medical condition, such as an infection, inflammation, or a bone marrow disorder.

Pure red cell aplasia (PRCA) is a rare hematologic disorder characterized by selective absence or severe reduction in the production of mature red blood cells (erythropoiesis) in the bone marrow, while the production of other blood cell lines such as white blood cells and platelets remains normal or near normal. This condition leads to anemia, which can be severe and require transfusions.

In PRCA, there is a specific absence or reduction of erythroblasts (immature red blood cells) in the bone marrow. The cause of this disorder can be congenital or acquired. Acquired forms are more common and can be idiopathic or associated with various conditions such as viral infections, immunological disorders, drugs, malignancies, or autoimmune diseases.

In pure red cell aplasia, the immune system often produces antibodies against erythroid progenitor cells, leading to their destruction and impaired red blood cell production. This results in anemia, which can be severe and require regular transfusions to maintain adequate hemoglobin levels.

The diagnosis of PRCA is confirmed through bone marrow aspiration and biopsy, which reveal a marked decrease or absence of erythroid precursors. Additional tests, such as immunological studies and viral serologies, may be performed to identify potential causes or associated conditions. Treatment options depend on the underlying cause and can include corticosteroids, immunosuppressive therapy, intravenous immunoglobulins, and occasionally, targeted therapies or stem cell transplantation.

Graft-versus-host disease (GVHD) is a condition that can occur after an allogeneic hematopoietic stem cell transplantation (HSCT), where the donated immune cells (graft) recognize the recipient's tissues (host) as foreign and attack them. This results in inflammation and damage to various organs, particularly the skin, gastrointestinal tract, and liver.

Acute GVHD typically occurs within 100 days of transplantation and is characterized by symptoms such as rash, diarrhea, and liver dysfunction. Chronic GVHD, on the other hand, can occur after 100 days or even years post-transplant and may present with a wider range of symptoms, including dry eyes and mouth, skin changes, lung involvement, and issues with mobility and flexibility in joints.

GVHD is a significant complication following allogeneic HSCT and can have a substantial impact on the patient's quality of life and overall prognosis. Preventative measures, such as immunosuppressive therapy, are often taken to reduce the risk of GVHD, but its management remains a challenge in transplant medicine.

An abnormal karyotype refers to an abnormal number or structure of chromosomes in a person's cells. A karyotype is a visual representation of a person's chromosomes, arranged in pairs according to their size, shape, and banding pattern. In a normal karyotype, humans have 23 pairs of chromosomes, for a total of 46 chromosomes.

An abnormal karyotype can result from an extra chromosome (as in trisomy 21 or Down syndrome), missing chromosomes (as in monosomy X or Turner syndrome), rearrangements of chromosome parts (translocations, deletions, duplications), or mosaicism (a mixture of cells with different karyotypes).

Abnormal karyotypes can be associated with various genetic disorders, developmental abnormalities, intellectual disabilities, and increased risks for certain medical conditions. They are typically detected through a procedure called chromosome analysis or karyotyping, which involves staining and visualizing the chromosomes under a microscope.

Chronic myeloid leukemia (CML), atypical, BCR-ABL negative is a rare subtype of CML that does not have the typical Philadelphia chromosome abnormality or the resulting BCR-ABL fusion gene. This means that the disease lacks the constitutively active tyrosine kinase that is targeted by imatinib mesylate (Gleevec) and other similar drugs.

The atypical form of CML is often characterized by a more aggressive clinical course, with a higher risk of transformation to acute leukemia compared to the classic form of CML. It can be difficult to diagnose and treat due to its rarity and heterogeneity. Treatment options may include chemotherapy, targeted therapy, stem cell transplantation, or a combination of these approaches. Regular follow-up with blood tests and bone marrow examinations is essential for monitoring the disease course and adjusting treatment as necessary.

FMS-like tyrosine kinase 3 (FLT3) is a type of receptor tyrosine kinase, which is a type of enzyme that plays a role in signal transduction within cells. FLT3 is found on the surface of certain types of blood cells, including hematopoietic stem cells and some types of leukemia cells.

FLT3 is activated when it binds to its ligand, FLT3L, leading to activation of various signaling pathways that are involved in cell survival, proliferation, and differentiation. Mutations in the FLT3 gene can lead to constitutive activation of the receptor, even in the absence of its ligand, resulting in uncontrolled cell growth and division. Such mutations are commonly found in certain types of leukemia, including acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), and are associated with a poor prognosis.

FLT3 inhibitors are a class of drugs that are being developed to target FLT3 mutations in leukemia cells, with the goal of blocking the abnormal signaling pathways that contribute to the growth and survival of these cancer cells.

Immunosuppressive agents are medications that decrease the activity of the immune system. They are often used to prevent the rejection of transplanted organs and to treat autoimmune diseases, where the immune system mistakenly attacks the body's own tissues. These drugs work by interfering with the immune system's normal responses, which helps to reduce inflammation and damage to tissues. However, because they suppress the immune system, people who take immunosuppressive agents are at increased risk for infections and other complications. Examples of immunosuppressive agents include corticosteroids, azathioprine, cyclophosphamide, mycophenolate mofetil, tacrolimus, and sirolimus.

Human chromosome pair 21 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each member of the pair is a single chromosome, and they are identical to each other. Chromosomes are made up of DNA, which contains genetic information that determines many of an individual's traits and characteristics.

Chromosome pair 21 is one of the 23 pairs of human autosomal chromosomes, meaning they are not sex chromosomes (X or Y). Chromosome pair 21 is the smallest of the human chromosomes, and it contains approximately 48 million base pairs of DNA. It contains around 200-300 genes that provide instructions for making proteins and regulating various cellular processes.

Down syndrome, a genetic disorder characterized by intellectual disability, developmental delays, distinct facial features, and sometimes heart defects, is caused by an extra copy of chromosome pair 21 or a part of it. This additional genetic material can lead to abnormalities in brain development and function, resulting in the characteristic symptoms of Down syndrome.

Autologous transplantation is a medical procedure where cells, tissues, or organs are removed from a person, stored and then returned back to the same individual at a later time. This is different from allogeneic transplantation where the tissue or organ is obtained from another donor. The term "autologous" is derived from the Greek words "auto" meaning self and "logos" meaning study.

In autologous transplantation, the patient's own cells or tissues are used to replace or repair damaged or diseased ones. This reduces the risk of rejection and eliminates the need for immunosuppressive drugs, which are required in allogeneic transplants to prevent the body from attacking the foreign tissue.

Examples of autologous transplantation include:

* Autologous bone marrow or stem cell transplantation, where stem cells are removed from the patient's blood or bone marrow, stored and then reinfused back into the same individual after high-dose chemotherapy or radiation therapy to treat cancer.
* Autologous skin grafting, where a piece of skin is taken from one part of the body and transplanted to another area on the same person.
* Autologous chondrocyte implantation, where cartilage cells are harvested from the patient's own knee, cultured in a laboratory and then implanted back into the knee to repair damaged cartilage.

Neutropenia is a condition characterized by an abnormally low concentration (less than 1500 cells/mm3) of neutrophils, a type of white blood cell that plays a crucial role in fighting off bacterial and fungal infections. Neutrophils are essential components of the innate immune system, and their main function is to engulf and destroy microorganisms that can cause harm to the body.

Neutropenia can be classified as mild, moderate, or severe based on the severity of the neutrophil count reduction:

* Mild neutropenia: Neutrophil count between 1000-1500 cells/mm3
* Moderate neutropenia: Neutrophil count between 500-1000 cells/mm3
* Severe neutropenia: Neutrophil count below 500 cells/mm3

Severe neutropenia significantly increases the risk of developing infections, as the body's ability to fight off microorganisms is severely compromised. Common causes of neutropenia include viral infections, certain medications (such as chemotherapy or antibiotics), autoimmune disorders, and congenital conditions affecting bone marrow function. Treatment for neutropenia typically involves addressing the underlying cause, administering granulocyte-colony stimulating factors to boost neutrophil production, and providing appropriate antimicrobial therapy to prevent or treat infections.

Hematology is a branch of medicine that deals with the study of blood, its physiology, and pathophysiology. It involves the diagnosis, treatment, and prevention of diseases related to the blood and blood-forming organs such as the bone marrow, spleen, and lymphatic system. This includes disorders of red and white blood cells, platelets, hemoglobin, blood vessels, and coagulation (blood clotting). Some common hematological diseases include anemia, leukemia, lymphoma, sickle cell disease, and bleeding disorders like hemophilia.

Whole-Body Irradiation (WBI) is a medical procedure that involves the exposure of the entire body to a controlled dose of ionizing radiation, typically used in the context of radiation therapy for cancer treatment. The purpose of WBI is to destroy cancer cells or suppress the immune system prior to a bone marrow transplant. It can be delivered using various sources of radiation, such as X-rays, gamma rays, or electrons, and is carefully planned and monitored to minimize harm to healthy tissues while maximizing the therapeutic effect on cancer cells. Potential side effects include nausea, vomiting, fatigue, and an increased risk of infection due to decreased white blood cell counts.

In the context of medicine, risk is the probability or likelihood of an adverse health effect or the occurrence of a negative event related to treatment or exposure to certain hazards. It is usually expressed as a ratio or percentage and can be influenced by various factors such as age, gender, lifestyle, genetics, and environmental conditions. Risk assessment involves identifying, quantifying, and prioritizing risks to make informed decisions about prevention, mitigation, or treatment strategies.

A platelet count is a laboratory test that measures the number of platelets, also known as thrombocytes, in a sample of blood. Platelets are small, colorless cell fragments that circulate in the blood and play a crucial role in blood clotting. They help to stop bleeding by sticking together to form a plug at the site of an injured blood vessel.

A normal platelet count ranges from 150,000 to 450,000 platelets per microliter (µL) of blood. A lower than normal platelet count is called thrombocytopenia, while a higher than normal platelet count is known as thrombocytosis.

Abnormal platelet counts can be a sign of various medical conditions, including bleeding disorders, infections, certain medications, and some types of cancer. It is important to consult with a healthcare provider if you have any concerns about your platelet count or if you experience symptoms such as easy bruising, prolonged bleeding, or excessive menstrual flow.

Pyoderma gangrenosum is a rare, inflammatory skin condition that typically begins as a small pustule or blister, which then rapidly progresses to form painful ulcers with a characteristic violaceous (bluish-purple) undermined border. The etiology of pyoderma gangrenosum is not entirely clear, but it's often associated with an underlying systemic disease, such as inflammatory bowel disease, rheumatoid arthritis, or hematologic disorders.

The pathophysiology of pyoderma gangrenosum involves a dysregulated immune response and neutrophil-mediated tissue damage. Diagnosis is often based on the clinical presentation and exclusion of other conditions with similar lesions. Treatment typically includes systemic immunosuppressive therapy, such as corticosteroids, cyclosporine, or biologic agents, along with local wound care to promote healing and prevent infection.

It's important to note that pyoderma gangrenosum can be a challenging condition to manage, and a multidisciplinary approach involving dermatologists, internists, and surgeons may be necessary for optimal care.

A "Drug Administration Schedule" refers to the plan for when and how a medication should be given to a patient. It includes details such as the dose, frequency (how often it should be taken), route (how it should be administered, such as orally, intravenously, etc.), and duration (how long it should be taken) of the medication. This schedule is often created and prescribed by healthcare professionals, such as doctors or pharmacists, to ensure that the medication is taken safely and effectively. It may also include instructions for missed doses or changes in the dosage.

Systemic vasculitis is a group of disorders characterized by inflammation of the blood vessels (vasculitis) that can affect various organs and systems throughout the body. This condition can cause damage to the walls of the blood vessels, leading to narrowing, blockage, or weakening of the vessel walls, which can further result in reduced blood flow, tissue damage, and organ dysfunction.

The symptoms of systemic vasculitis depend on the severity and location of the affected blood vessels. They may include fever, fatigue, weight loss, joint pain, skin rashes or lesions, muscle weakness, nerve damage, and organ dysfunction such as kidney failure, lung disease, or gastrointestinal bleeding.

Systemic vasculitis can be caused by various factors, including infections, autoimmune diseases, medications, and underlying medical conditions. The diagnosis of systemic vasculitis typically involves a combination of physical examination, laboratory tests, imaging studies, and sometimes biopsy of the affected tissue. Treatment may include corticosteroids, immunosuppressive drugs, and other medications to control inflammation and prevent organ damage.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Siglec-3, also known as CD33, is a type of Siglec (Sialic acid-binding immunoglobulin-like lectin) that is primarily expressed on the surface of myeloid cells, including monocytes, macrophages, and some dendritic cell subsets. It is a transmembrane protein with an extracellular domain containing an N-terminal V-set immunoglobulin-like domain, followed by one to three C2-set immunoglobulin-like domains, a transmembrane region, and a cytoplasmic tail. Siglec-3 selectively binds to sialic acid residues on glycoproteins and gangliosides, and its function is thought to regulate immune cell activation and inflammation. It has been implicated in the pathogenesis of several diseases, including cancer, Alzheimer's disease, and HIV infection.

Cyclophosphamide is an alkylating agent, which is a type of chemotherapy medication. It works by interfering with the DNA of cancer cells, preventing them from dividing and growing. This helps to stop the spread of cancer in the body. Cyclophosphamide is used to treat various types of cancer, including lymphoma, leukemia, multiple myeloma, and breast cancer. It can be given orally as a tablet or intravenously as an injection.

Cyclophosphamide can also have immunosuppressive effects, which means it can suppress the activity of the immune system. This makes it useful in treating certain autoimmune diseases, such as rheumatoid arthritis and lupus. However, this immunosuppression can also increase the risk of infections and other side effects.

Like all chemotherapy medications, cyclophosphamide can cause a range of side effects, including nausea, vomiting, hair loss, fatigue, and increased susceptibility to infections. It is important for patients receiving cyclophosphamide to be closely monitored by their healthcare team to manage these side effects and ensure the medication is working effectively.

Thrombopoietin (TPO) is a glycoprotein hormone that plays a crucial role in the regulation of platelet production, also known as thrombopoiesis. It is primarily produced by the liver and to some extent by megakaryocytes, which are the cells responsible for producing platelets.

TPO binds to its receptor, c-Mpl, on the surface of megakaryocytes and their precursor cells, stimulating their proliferation, differentiation, and maturation into platelets. By regulating the number of platelets in circulation, TPO helps maintain hemostasis, the process that prevents excessive bleeding after injury.

In addition to its role in thrombopoiesis, TPO has been shown to have potential effects on other cell types, including hematopoietic stem cells and certain immune cells. However, its primary function remains the regulation of platelet production.

Chromosome banding is a technique used in cytogenetics to identify and describe the physical structure and organization of chromosomes. This method involves staining the chromosomes with specific dyes that bind differently to the DNA and proteins in various regions of the chromosome, resulting in a distinct pattern of light and dark bands when viewed under a microscope.

The most commonly used banding techniques are G-banding (Giemsa banding) and R-banding (reverse banding). In G-banding, the chromosomes are stained with Giemsa dye, which preferentially binds to the AT-rich regions, creating a characteristic banding pattern. The bands are numbered from the centromere (the constriction point where the chromatids join) outwards, with the darker bands (rich in A-T base pairs and histone proteins) labeled as "q" arms and the lighter bands (rich in G-C base pairs and arginine-rich proteins) labeled as "p" arms.

R-banding, on the other hand, uses a different staining procedure that results in a reversed banding pattern compared to G-banding. The darker R-bands correspond to the lighter G-bands, and vice versa. This technique is particularly useful for identifying and analyzing specific regions of chromosomes that may be difficult to visualize with G-banding alone.

Chromosome banding plays a crucial role in diagnosing genetic disorders, identifying chromosomal abnormalities, and studying the structure and function of chromosomes in both clinical and research settings.

A Colony-Forming Units (CFU) assay is a type of laboratory test used to measure the number of viable, or living, cells in a sample. It is commonly used to enumerate bacteria, yeast, and other microorganisms. The test involves placing a known volume of the sample onto a nutrient-agar plate, which provides a solid growth surface for the cells. The plate is then incubated under conditions that allow the cells to grow and form colonies. Each colony that forms on the plate represents a single viable cell from the original sample. By counting the number of colonies and multiplying by the known volume of the sample, the total number of viable cells in the sample can be calculated. This information is useful in a variety of applications, including monitoring microbial populations, assessing the effectiveness of disinfection procedures, and studying microbial growth and survival.

A leukocyte count, also known as a white blood cell (WBC) count, is a laboratory test that measures the number of leukocytes in a sample of blood. Leukocytes are a vital part of the body's immune system and help fight infection and inflammation. A high or low leukocyte count may indicate an underlying medical condition, such as an infection, inflammation, or a bone marrow disorder. The normal range for a leukocyte count in adults is typically between 4,500 and 11,000 cells per microliter (mcL) of blood. However, the normal range can vary slightly depending on the laboratory and the individual's age and sex.

Immunologic surveillance is the concept that the immune system plays a critical role in monitoring and defending the body against the development of malignancies or cancers. The immune cells, particularly T-cells and natural killer (NK) cells, are constantly scanning the body for any abnormal changes in cells, such as mutations or viral infections, that could lead to cancer.

Once these abnormal cells are detected, the immune system mounts an immune response to eliminate them, preventing their proliferation and progression into full-blown cancers. This process of immunologic surveillance is a critical component of the body's defense mechanisms against cancer and helps to maintain tissue homeostasis and prevent tumorigenesis.

However, in some cases, cancer cells may evade or suppress the immune system's surveillance mechanisms, leading to the development and progression of malignancies. Therefore, understanding the mechanisms of immunologic surveillance is crucial for developing novel cancer therapies that harness the power of the immune system to fight against cancer.

Human chromosome pair 3 consists of two rod-shaped structures present in the nucleus of each cell in the human body. Each member of the pair is a single chromosome, and together they contain the genetic material that is inherited from both parents. Chromosomes are made up of DNA, which contains the instructions for the development and function of all living organisms.

Human chromosomes are numbered from 1 to 22, with an additional two sex chromosomes (X and Y) that determine biological sex. Chromosome pair 3 is one of the autosomal pairs, meaning it contains genes that are not related to sex determination. Each member of chromosome pair 3 is identical in size and shape and contains a single long DNA molecule that is coiled tightly around histone proteins to form a compact structure.

Chromosome pair 3 is associated with several genetic disorders, including Waardenburg syndrome, which affects pigmentation and hearing; Marfan syndrome, which affects the connective tissue; and some forms of retinoblastoma, a rare eye cancer that typically affects young children.

A cohort study is a type of observational study in which a group of individuals who share a common characteristic or exposure are followed up over time to determine the incidence of a specific outcome or outcomes. The cohort, or group, is defined based on the exposure status (e.g., exposed vs. unexposed) and then monitored prospectively to assess for the development of new health events or conditions.

Cohort studies can be either prospective or retrospective in design. In a prospective cohort study, participants are enrolled and followed forward in time from the beginning of the study. In contrast, in a retrospective cohort study, researchers identify a cohort that has already been assembled through medical records, insurance claims, or other sources and then look back in time to assess exposure status and health outcomes.

Cohort studies are useful for establishing causality between an exposure and an outcome because they allow researchers to observe the temporal relationship between the two. They can also provide information on the incidence of a disease or condition in different populations, which can be used to inform public health policy and interventions. However, cohort studies can be expensive and time-consuming to conduct, and they may be subject to bias if participants are not representative of the population or if there is loss to follow-up.

Aspartate aminotransferase (AST), cytoplasmic is an enzyme found primarily in the cytoplasm of hepatic cells and other tissues, including heart, muscle, and kidney. It is also known as aspartate transaminase (AST) or glutamate oxaloacetate transaminase (GOT). This enzyme plays a role in the transfer of an amino group from aspartic acid to alpha-ketoglutarate during amino acid metabolism.

When hepatic cells or other tissues are damaged or injured, AST is released into the bloodstream. Therefore, measuring the level of AST in the blood can help diagnose and monitor liver diseases, heart conditions, muscle damage, and other medical conditions. An elevated cytoplasmic AST level may indicate acute liver injury, hepatitis, cirrhosis, or other liver disorders. However, it is important to note that an isolated increase in AST alone is not specific to the liver and can be seen in various conditions affecting other organs.

In clinical settings, AST levels are often measured along with alanine aminotransferase (ALT) to assess liver function and damage. The ratio of AST to ALT can provide additional information about the type and location of tissue injury.

Amifostine is a medication that is used to protect tissues from the harmful effects of radiation therapy and certain chemotherapy drugs. It is an organic thiophosphate compound, chemically known as (3-Aminopropyl)amidophosphoric acid, and is administered intravenously.

Amifostine works by scavenging free radicals and converting them into non-reactive substances, which helps to prevent damage to normal cells during cancer treatment. It is particularly useful in protecting the kidneys from cisplatin-induced nephrotoxicity and reducing xerostomia (dry mouth) caused by radiation therapy in head and neck cancers.

The medication is typically given as a slow intravenous infusion over 15 minutes before cancer treatment, and its use should be monitored carefully due to potential side effects such as nausea, vomiting, hypotension, and allergic reactions. Healthcare professionals must consider the benefits and risks of amifostine therapy on a case-by-case basis, taking into account the patient's overall health status, cancer type, and treatment plan.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

The Kaplan-Meier estimate is a statistical method used to calculate the survival probability over time in a population. It is commonly used in medical research to analyze time-to-event data, such as the time until a patient experiences a specific event like disease progression or death. The Kaplan-Meier estimate takes into account censored data, which occurs when some individuals are lost to follow-up before experiencing the event of interest.

The method involves constructing a survival curve that shows the proportion of subjects still surviving at different time points. At each time point, the survival probability is calculated as the product of the conditional probabilities of surviving from one time point to the next. The Kaplan-Meier estimate provides an unbiased and consistent estimator of the survival function, even when censoring is present.

In summary, the Kaplan-Meier estimate is a crucial tool in medical research for analyzing time-to-event data and estimating survival probabilities over time while accounting for censored observations.

Turner Syndrome is a genetic disorder that affects females, caused by complete or partial absence of one X chromosome. The typical karyotype is 45,X0 instead of the normal 46,XX in women. This condition leads to distinctive physical features and medical issues in growth, development, and fertility. Characteristic features include short stature, webbed neck, low-set ears, and swelling of the hands and feet. Other potential symptoms can include heart defects, hearing and vision problems, skeletal abnormalities, kidney issues, and learning disabilities. Not all individuals with Turner Syndrome will have every symptom, but most will require medical interventions and monitoring throughout their lives to address various health concerns associated with the condition.

Relapsing polychondritis is a rare autoimmune disease characterized by inflammation and damage to the cartilaginous structures in the body. The condition can affect multiple organs and tissues, including the ears, nose, trachea, bronchi, joints, and cardiovascular system. It is called "relapsing" because it tends to involve recurring episodes of inflammation and damage, followed by periods of remission.

The hallmark symptom of relapsing polychondritis is pain and swelling in the ears, nose, or airways. Other symptoms may include:

* Redness, tenderness, and warmth in affected areas
* Hearing loss or tinnitus (ringing in the ears)
* Nasal congestion, runny nose, or nosebleeds
* Hoarseness or difficulty speaking
* Wheezing, shortness of breath, or coughing
* Joint pain, stiffness, or swelling
* Skin rashes or sores
* Eye inflammation or dryness
* Heart murmurs or other cardiovascular symptoms

The exact cause of relapsing polychondritis is not known, but it is thought to involve an abnormal immune response in which the body's own antibodies attack and damage cartilage and other tissues. The diagnosis of relapsing polychondritis is typically based on a combination of clinical symptoms, laboratory tests, and imaging studies.

There is no cure for relapsing polychondritis, but treatment can help manage the symptoms and prevent complications. Treatment may include corticosteroids, immunosuppressive drugs, and other medications to reduce inflammation and suppress the immune system. In severe cases, surgery may be necessary to repair or replace damaged tissues.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Hematologic tests, also known as hematology tests, are a group of diagnostic exams that evaluate the health and function of different components of blood, such as red and white blood cells, platelets, and clotting factors. These tests can detect various disorders, including anemia, infection, bleeding problems, and several types of cancer. Common hematologic tests include complete blood count (CBC), coagulation studies, peripheral smear examination, and erythrocyte sedimentation rate (ESR). The specific test or combination of tests ordered will depend on the patient's symptoms, medical history, and physical examination findings.

... at Curlie Fenaux, P., et al. (2014). Myelodysplastic syndromes: ESMO Clinical Practice Guidelines for ... "Myelodysplastic Syndromes". NORD (National Organization for Rare Disorders). Retrieved 23 May 2019. "Myelodysplastic Syndromes ... Myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes: a focused review". Hematology. 2020 (1): 460-464. doi: ... A myelodysplastic syndrome (MDS) is one of a group of cancers in which immature blood cells in the bone marrow do not mature, ...
"Myelodysplastic Syndromes". Journal of the National Comprehensive Cancer Network. 11 (7): 838-874. doi:10.6004/jnccn.2013.0104 ... which bind on erythrocytes and induce membrane expansion myeloproliferative disease myelodysplastic syndrome which most ...
"MYELODYSPLASTIC SYNDROMES". 2020. O'Hare, Ryan (28 March 2017). "Imperial blood expert recognised for a lifetime of achievement ... For example, she investigated myelodysplastic syndrome, which can evolve into acute myeloid leukaemia and dysplastic ...
In a given year, a tiny fraction of the general population will develop a hematologic cancer such as myelodysplastic syndrome ( ... Sperling, Adam S.; Gibson, Christopher J.; Ebert, Benjamin L. (2017). "The genetics of myelodysplastic syndrome: from clonal ... "Myelodysplastic Syndromes". www.cancernetwork.com. "Acute Myeloid Leukemia (AML) Number of New Cases and Deaths Per 100,000 ... "Clonal evolution in myelodysplastic syndromes". Nature Communications. 8: 15099. Bibcode:2017NatCo...815099D. doi:10.1038/ ...
Nimer SD (May 2008). "Myelodysplastic syndromes". Blood. 111 (10): 4841-4851. doi:10.1182/blood-2007-08-078139. PMID 18467609. ... with SCF to induce systemic mastocytosis in a murine model of chronic eosinophilic leukemia/hypereosinophilic syndrome". Blood ...
Less commonly, Emberger syndrome presents with the myelodysplastic syndrome and/or acute myeloid leukemia. GATA2 is a member of ... The syndrome includes as its primary symptoms: serious abnormalities of the blood such as the myelodysplastic syndrome and ... the syndrome commonly progresses rapidly or slowly to myelodysplastic syndrome followed by acute myeloid leukemia. ... The Emberger syndrome is here considered as a distinct disorder. The age of onset of the Emberger syndrome is variable with ...
"FDA Approves New Therapy for Myelodysplastic Syndromes (MDS) That Can Be Taken at Home". U.S. Food and Drug Administration (FDA ... CMML shows characteristics of a myelodysplastic syndrome (MDS); a disorder that produces abnormal looking blood cells, and a ... June 1982). "Proposals for the classification of the myelodysplastic syndromes". Br. J. Haematol. 51 (2): 189-99. CiteSeerX ... McCormack, SE; Warlick, ED (Sep 7, 2010). "Epigenetic approaches in the treatment of myelodysplastic syndromes: clinical ...
"Myelodysplastic syndromes (MDS)" (PDF). Blood Cancer UK. Retrieved 5 April 2020. "Blood Cancer UK , The High Low Show". Blood ... and other High grade non-Hodgkin lymphomas Hodgkin lymphoma Low-grade non-Hodgkin lymphoma Myelodysplastic syndromes (MDS) The ...
... myelodysplastic syndrome; melanoma; liver; ovarian and cervical; lung; brain; pancreas. Research foci: drug resistance; cancer ...
myelodysplastic syndrome. Hemoglobin, the oxygen-carrying molecule in a red blood cell, contains iron. The body has limited ... or myelodysplastic syndrome, among others. It is diagnosed with a blood transferrin test and a liver biopsy. It is treated with ...
Myelodysplastic syndrome (MDS) has remarkable clinical, morphological, and genetic heterogeneity. Cytogenetics play a decisive ... Hasse D (2008). "Cytogenetic features in myelodysplastic syndromes". Ann Hematol. 87 (7): 515-526. doi:10.1007/s00277-008-0483- ... "FISH and SNP-A karyotyping in myelodysplastic syndromes: Improving cytogenetic detection of del(5q), monosomy 7, del(7q), ... When present in the germline, they can be harmless or associated with disease, such as Prader-Willi or Angelman syndromes. Also ...
... or intermediate-1-risk myelodysplastic syndromes who have chromosome 5q deletion syndrome (5q- syndrome) with or without ... or intermediate-1-risk myelodysplastic syndromes who have 5q- deletion syndrome but no other cytogenetic abnormalities and are ... October 2006). "Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion". The New England Journal of Medicine ... February 2005). "Efficacy of lenalidomide in myelodysplastic syndromes". The New England Journal of Medicine. 352 (6): 549-57. ...
He was diagnosed with myelodysplastic syndromes. Gray was treated with chemotherapy and a bone marrow transplant from one of ...
In some cases of myelodysplastic syndromes, immature precursors might be located in the intertrabecular region and occasionally ... Tricot G (Oct 1984). "Bone marrow histology in myelodysplastic syndromes. II. Prognostic value of abnormal localization of ...
"Treatment of Myelodysplastic Syndrome". U.S. Food and Drug Administration (FDA). 2009-10-13. "Asunercep, PRIME Designation" ( ... "Myelodysplastic Syndromes Treatment (PDQ®)-Patient Version". National Cancer Institute. 18 February 2005. (Drugs with non- ... and myelodysplastic syndromes (MDS). Asunercept has been granted orphan drug status for the treatment of GBM and MDS in the EU ... "APG101 efficiently rescues erythropoiesis in lower risk myelodysplastic syndromes with severe impairment of hematopoiesis". ...
"Myelodysplastic Syndromes Treatment (PDQ®)-Patient Version". NCI. 12 August 2015. Archived from the original on 5 October 2016 ... Dysplasias on a mainly macroscopic scale include hip dysplasia, myelodysplastic syndrome, and multicystic dysplastic kidney. In ... Myelodysplastic syndromes (MDS) are a group of cancers in which immature blood cells in the bone marrow do not mature and ... Boyce AM, Florenzano P, de Castro LF, Collins MT (February 2015). "Fibrous Dysplasia/McCune-Albright Syndrome". In Adam MP, ...
He had myelodysplastic syndrome. He is buried in Arlington National Cemetery. Combat Infantryman Badge Master Parachutist Badge ... Deaths from myelodysplastic syndrome, United States Army personnel of the Vietnam War, Vietnam War prisoners of war, Burials at ...
Myelodysplastic syndromes (MDS) is a form of blood cancer found within the bone marrow in which the body no longer produces ... "What is MDS?". Myelodysplastic Syndromes Foundation, Inc. Leguit, Roos J; Jan G. van den Tweel (2010). "The pathology of bone ... Blanche, Alter (January 2018). "Cancer in the National Cancer Institute Inherited Bone Marrow Failure Syndrome Cohort After ...
West AH, Godley LA, Churpek JE (March 2014). "Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility ... Emberger syndrome; 3) familial myelodysplastic syndrome/acute myeloid leukemia (i.e. familial MDS/AML); 3) chronic ... the myelodysplastic syndrome, acute myeloblastic leukemia, or chronic myelomonocytic leukemia. Emberger syndrome presents as ... Locatelli F, Strahm B (March 2018). "How I treat myelodysplastic syndromes of childhood". Blood. 131 (13): 1406-1414. doi: ...
"MDS2 myelodysplastic syndrome 2 translocation associated". Entrez Gene. "FCHO2 FCH domain only 2". Entrez Gene. "BAZ2A ... Gangat N, Patnaik MM, Tefferi A (January 2016). "Myelodysplastic syndromes: Contemporary review and how we treat". American ... Bannon SA, DiNardo CD (May 2016). "Hereditary Predispositions to Myelodysplastic Syndrome". International Journal of Molecular ... In all events these two familial thrombocytopenia syndromes appear distinctly different than the thrombocytopenia 5 syndrome. ...
Lezon-Geyda K, Najfeld V, Johnson EM (June 2001). "Deletions of PURA, at 5q31, and PURB, at 7p13, in myelodysplastic syndrome ... PURA, located at chromosome 5 band q31, is frequently deleted in myelodysplastic syndrome (MDS), a disorder of white blood ... Hirai, H (April 2003). "Molecular mechanisms of myelodysplastic syndrome". Japanese Journal of Clinical Oncology. 33 (4): 153- ... This spectrum of brain disorders is similar to the phenotype of a central nervous system syndrome termed the 5q31.3 ...
Myelodysplastic syndromes are disorders where defective blood cells are produced by an abnormal bone marrow, resulting in ... Myelodysplastic syndromes is often only diagnosed when patients become anemic, and transfusion-dependent thalassemia is ... Heptinstall, K. (May 2007). "P124 Quality of life (QoL) in myelodysplastic syndromes (MDS): an update of results from US & ... Transfusion is also one of the treatment strategies for beta-thalassemia patients and patients with myelodysplastic syndrome ( ...
miR-632 has been identified as one of three key miRNAs associated with the anti-ageing myelodysplastic syndromes (MDS). In ... 2011). "Diagnostic microRNAs in myelodysplastic syndrome". Exp Hematol. 39 (9): 915-926.e2. doi:10.1016/j.exphem.2011.06.002. ...
... is a subgroup of myelodysplastic syndrome (MDS), having been added to the World Health ... Niemeyer, C. M.; Baumann, I (2008). "Myelodysplastic syndrome in children and adolescents". Seminars in Hematology. 45 (1): 60- ... "Classification of childhood aplastic anemia and myelodysplastic syndrome". Hematology. 2011: 84-9. doi:10.1182/asheducation- ...
miR-636 has been identified as one of three key miRNAs associated with the anti-ageing myelodysplastic syndromes (MDS). Its ... 2011). "Diagnostic microRNAs in myelodysplastic syndrome". Exp Hematol. 39 (9): 915-926.e2. doi:10.1016/j.exphem.2011.06.002. ...
July 2009). "Acquired mutations in TET2 are common in myelodysplastic syndromes". Nature Genetics. 41 (7): 838-42. doi:10.1038/ ... July 2009). "Acquired mutations in TET2 are common in myelodysplastic syndromes". Nature Genetics. 41 (7): 838-42. doi:10.1038/ ... July 2009). "Acquired mutations in TET2 are common in myelodysplastic syndromes". Nature Genetics. 41 (7): 838-42. doi:10.1038/ ... Somatic TET2 mutations are frequently observed in myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), MDS/MPN ...
Jädersten M, Hellström-Lindberg E (May 2010). "New clues to the molecular pathogenesis of myelodysplastic syndromes". ... Loss of functional miR-146 (and mir-145) could predispose an individual to suffer from chromosome 5q deletion syndrome. miR-146 ...
Irwin Cohen, 60, American judoka, amyloidosis and myelodysplastic syndromes. Tony Dumper, 88, British Anglican prelate, Bishop ... Guillain-Barré syndrome. Ra. Ki. Rangarajan, 85, Indian Tamil language writer. Jesse Robredo, 54, Filipino politician, Mayor of ...
Tiu R. V.; Sekeres M. A. (2014). "Making sense of the myelodysplastic/myeloproliferative neoplasms overlap syndromes". Current ... Loh M. L. (2010). "Childhood myelodysplastic syndrome: Focus on the approach to diagnosis and treatment of juvenile ... European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS)". Blood. 89 (10): 3534-43. PMID 9160658. Sethi N, ... the European Working Group for Myelodysplastic Syndromes (EWOG-MDS) JMML study The following procedures are used in one or both ...
This syndrome affects bone marrow cells causing treatment-resistant anemia and myelodysplastic syndromes that may lead to acute ... This chromosome abnormality is most commonly associated with the myelodysplastic syndrome. It should not be confused with " ... October 2006). "Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion". N. Engl. J. Med. 355 (14): 1456-65. ... Naeim, Faramarz; Rao, P. Nagesh; W. Grody, Wayne (2008). Chapter 8 - Myelodysplastic Syndromes in Hematopathology Morphology, ...
Myelodysplastic Syndromes (MDS) are rare. They are sometimes found during a routine blood test. Learn symptoms, risk factors, ... Myelodysplastic Syndrome Prognostic Scores (American Cancer Society) Also in Spanish * Tests for Myelodysplastic Syndromes ( ... Myelodysplastic Syndromes (MDS) (National Marrow Donor Program) * What Are Myelodysplastic Syndromes? (American Cancer Society) ... Statistics about Myelodysplastic Syndromes (American Cancer Society) Also in Spanish * Whats New in Myelodysplastic Syndrome ...
Myelodysplastic syndrome at Curlie Fenaux, P., et al. (2014). Myelodysplastic syndromes: ESMO Clinical Practice Guidelines for ... "Myelodysplastic Syndromes". NORD (National Organization for Rare Disorders). Retrieved 23 May 2019. "Myelodysplastic Syndromes ... Myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes: a focused review". Hematology. 2020 (1): 460-464. doi: ... A myelodysplastic syndrome (MDS) is one of a group of cancers in which immature blood cells in the bone marrow do not mature, ...
Myelodysplastic syndromes (MDS) are uncommon in children and have poor prognosis. Here, the authors interrogate the genomic ... Myelodysplastic syndromes (MDS) are uncommon in children and have a poor prognosis. In contrast to adult MDS, little is known ... Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N. Engl. J. Med. 376, 536-547 (2017). ... Schwartz, J.R., Ma, J., Lamprecht, T. et al. The genomic landscape of pediatric myelodysplastic syndromes. Nat Commun 8, 1557 ( ...
The original classification of myelodysplastic syndrome (MDS) was developed more than 20 years ago at an international ... Myelodysplastic syndromes (MDS) are classified using the World Health Organization (WHO) classification system, which was most ... This is discussed further in Risk Factors for Myelodysplastic Syndrome.. Identifying MDS as primary or secondary is important ... NCCN Treatment Guidelines in Oncology: Myelodysplastic Syndromes. V.1.2018. Accessed at www.nccn.org/professionals/physician_ ...
Treatment recommendations for myelodysplastic syndromes (MDS) are based on a patients International Prognostic Scoring System ... Pathology of Myelodysplastic Syndrome with Multilineage Dysplasia * Pathology of Myelodysplastic Syndrome With Single Lineage ... encoded search term (Myelodysplastic Syndromes Treatment Protocols) and Myelodysplastic Syndromes Treatment Protocols What to ... and the Myelodysplastic Syndrome-003 Study Investigators. Lenalidomide in the myelodysplastic syndrome with chromosome 5q ...
Blood transfusions are a common treatment for myelodysplastic syndromes (MDS). Over time, frequent transfusions can result in ... What Are Myelodysplastic Syndromes (MDS)?. Myelodysplastic syndromes (MDS) are a group of blood cancers that interfere with ... Myelodysplastic Syndrome (MDS). Learn about myelodysplastic syndrome (MDS), including the different types, symptoms, diagnostic ... What are myelodysplastic syndromes? (2018).. https://www.cancer.org/cancer/types/myelodysplastic-syndrome/about/what-is-mds. ...
Myelodysplastic syndrome (MDS) is a blood cancer where bone marrow doesnt produce enough mature blood cells. Different ... What Is Myelodysplastic Syndrome?. Myelodysplastic syndrome (MDS) is a rare group of blood cancers. Well look at common ... Myelodysplastic syndromes. (n.d.).. https://www.cancer.org/cancer/myelodysplastic-syndrome.html. ... Symptoms of Myelodysplastic Syndrome. MDS can vary depending on which type (or types) of blood cells are affected. Many people ...
Learn about the symptoms of myelodysplastic syndrome (MDS), and why its important to contact your doctor if you are ... especially important for a patient to discuss these symptoms with a physician who is familiar with myelodysplastic syndromes - ...
What are aplastic anemia and myelodysplastic syndromes (MDS)?. Aplastic anemia and myelodysplastic syndromes (MDS) are rare but ... Myelodysplastic syndromes are also rare, especially in people younger than age 60. The risk of developing MDS increases as ... Definition & Facts for Aplastic Anemia & Myelodysplastic Syndromes. In this section:. *What are aplastic anemia and ... 4] Zeidan AM, Shallis RM, Wang R, Davidoff A, Ma X. Epidemiology of myelodysplastic syndromes: why characterizing the beast is ...
Reviews and ratings for Azacitidine when used in the treatment of myelodysplastic syndrome. 19 reviews submitted with a 5.7 ... Azacitidine for Myelodysplastic Syndrome User Reviews. Brand names: Vidaza, Onureg Azacitidine has an average rating of 5.7 out ... I have myelodysplastic syndrome (MDS) Refractory Anaemia with Excess Blasts type 2 (RAEB2). I was diagnosed in November 2014 ... Vidaza (azacitidine) I was diagnosed with myelodysplastic syndrome soon after having gone through a bout of Covid in 2022. I ...
MDS2 myelodysplastic syndrome 2 translocation associated [Homo sapiens] MDS2 myelodysplastic syndrome 2 translocation ... myelodysplastic syndrome 2 translocation associatedprovided by HGNC. Primary source. HGNC:HGNC:29633 See related. Ensembl: ... A novel gene, MDS2, is fused to ETV6/TEL in a t(1;12)(p36.1;p13) in a patient with myelodysplastic syndrome. Odero MD, et al. ... MDS2 myelodysplastic syndrome 2 translocation associated [ Homo sapiens (human) ] Gene ID: 259283, updated on 10-Oct-2023 ...
Learn how doctors at Memorial Sloan Kettering perform comprehensive tests to diagnose myelodysplastic syndrome (MDS). ... Myelodysplastic syndrome (MDS) can be difficult to diagnose. Many people who are diagnosed with MDS go to their doctor with ... Myelodysplastic Syndrome (MDS) Doctors & Other Experts. Select from the list below to learn more about MSK MDS experts, their ... Myelodysplastic Syndrome (MDS) More About Myelodysplastic Syndrome (MDS) Myelodysplastic Syndrome (MDS) Risk Factors ...
Holly Easley began her cancer journey five years ago when she was diagnosed with myelodysplastic syndrome (MDS). After two ...
Abnormal autophagy is related to the pathogenesis and clinical symptoms of myelodysplastic syndrome (MDS). However, the effect ... Abnormal autophagy is related to the pathogenesis and clinical symptoms of myelodysplastic syndrome (MDS). However, the effect ... Keywords: myelodysplastic syndrome, autophagy, prognostic model, myelodysplastic syndrome, autophagy-related genes. Citation: ... patients with myelodysplastic syndromes indicates an underestimation of poor-risk cytogenetics of myelodysplastic syndromes in ...
The myelodysplastic syndromes (MDS) share an origin in the hematopoietic stem cell but have otherwise very heterogeneous ... Myelodysplastic Syndromes: Moving Towards Personalized Management. Myelodysplastic Syndromes: Moving Towards Personalized ... The myelodysplastic syndromes (MDS) share an origin in the hematopoietic stem cell but have otherwise very heterogeneous ...
... ... for the treatment of myelodysplastic syndrome (MDS).. MDS is a form of cancer that occurs when the blood-forming cells in the ... www.cancer.org/cancer/myelodysplasticsyndrome/detailedguide/myelodysplastic-syndromes-what-is-m-d-s. ... "What is myelodysplastic syndrome?" Last accessed October 1, 2013. Available at:. http:// ...
... polycythemia vera and myelodysplastic syndromes D37-D48 is medical classification list by t ... Neoplasms of uncertain behavior, polycythemia vera and myelodysplastic syndromes ICD-10-CM Code range D37-D48. The ICD-10 code ... ICD-10 Code range (D37-D48), Neoplasms of uncertain behavior, polycythemia vera and myelodysplastic syndromes contains ICD-10 ... Myelodysplastic syndromes, Other neoplasms of uncertain behavior of lymphoid, hematopoietic and related tissue, Neoplasm of ...
... (MDS) is a form of cancer. In about a third of people, MDS may develop into acute myeloid leukemia. . ... Myelodysplastic syndrome is a group of disorders when the blood cells produced in the bone marrow do not mature into healthy ... Myelodysplastic syndromes. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine. 26th ed. Philadelphia, PA: Elsevier; 2020: ... Myelodysplastic syndromes. In: Hsi ED, ed. Hematopathology. 3rd ed. Philadelphia PA: Elsevier; 2018:chap 18. ...
Phase II Clinical Evaluation of Bryostatin 1 in Patients With Myelodysplastic Syndrome. Trial Phase:. Phase 2. Minimum Age:. 18 ... OBJECTIVES: I. Determine the response rate of bryostatin 1 in patients with myelodysplastic. syndrome. II. Determine the ... Phase II Clinical Evaluation of Bryostatin 1 in Patients With Myelodysplastic Syndrome ...
Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, et al: The t(3;5)(q25.1;q34) of myelodysplastic syndrome and ... Myelodysplastic syndrome (MDS) is a clonal disorder characterized by dyshematopoiesis and high susceptibility to acute myeloid ... K. Mihara, Y. Takihara, A. Kimura; Genetic and epigenetic alterations in myelodysplastic syndrome. Cytogenet Genome Res 1 ... Sanz GF, Sanz MA, Greenberg PL: Prognostic factors and scoring systems in myelodysplastic syndromes. Haematologica 83:358-368 ( ...
Treatment recommendations for myelodysplastic syndromes (MDS) are based on a patients International Prognostic Scoring System ... Pathology of Myelodysplastic Syndrome with Multilineage Dysplasia * Pathology of Myelodysplastic Syndrome With Single Lineage ... encoded search term (Myelodysplastic Syndromes Treatment Protocols) and Myelodysplastic Syndromes Treatment Protocols What to ... and the Myelodysplastic Syndrome-003 Study Investigators. Lenalidomide in the myelodysplastic syndrome with chromosome 5q ...
... ranging from myelodysplastic syndrome (MDS) to acute myelocytic leukemia (AML) to blastic transformation of chronic myelocytic ... Pentasomy 8q in therapy-related myelodysplastic syndrome due to cyclophosphamide therapy for fibrosing alveolitis Cancer Genet ... Trisomy 8/8q is a common cytogenetic event in myelocytic malignancies, ranging from myelodysplastic syndrome (MDS) to acute ... Myelodysplastic Syndromes / chemically induced* * Myelodysplastic Syndromes / complications * Myelodysplastic Syndromes / ...
Outpatient Transfusions for Myelodysplastic Syndrome Program: Education Program. Session: Chronic Transfusion Support: ...
... -Clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis and ... Myelodysplastic syndrome (MDS). Clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis and ... Patients with myelodysplastic syndromes (MDS) collectively have a high symptom burden and are also at risk of death from ... Patients with myelodysplastic syndrome and transfusion dependence have more than a twofold higher risk of death and 6 old ...
About 10% of patients with myeloid neoplasms are thought to have a genetic predisposition to myelodysplastic syndrome (MDS) or ... myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) - associated with the duplication of chromosome 14q32. ... Familial myeloid malignancy syndrome associated with the duplication of chromosome 14q32. Myeloid neoplasms refer to conditions ... About 10% of patients with myeloid neoplasms are thought to have a genetic predisposition to myelodysplastic syndrome (MDS) or ...
... *Authors: *Adel Badran ... We present the first report of survivin expression profile in myelodysplastic syndrome (MDS). Expression of survivin messenger ... Expression of the anti-apoptotic gene survivin in myelodysplastic syndrome. International Journal of Oncology, 22, 59-64. https ... Expression of the anti-apoptotic gene survivin in myelodysplastic syndrome. International Journal of Oncology 22.1 (2003): 59- ...
Apoptosis, bcl -2 Expression and p53 Accumulation in Myelodysplastic Syndrome, Myelodysplastic-Syndrome-Derived Acute ... Myelodysplastic syndromes (MDSs) represent a heterogeneous group of clonal myeloid disorders charac-terized by dysplasia in at ... Treatment of myelodysplastic syndrome patients with erythropoietin with or without granulocyte colony-stimulating factor: ... CD34-Positive Blast Count and p53 Expression in Bone Marrow Biopsies of Patients with Low-Risk Myelodysplastic Syndromes: ...
... of patients with myelodysplastic syndrome (MDS) in clinical trials. We studied the association of timing of ESA initiation, ... Variations in erythropoiesis-stimulating agent administration in transfusion-dependent myelodysplastic syndromes impact ... Variations in erythropoiesis-stimulating agent administration in transfusion-dependent myelodysplastic syndromes impact ... of patients with myelodysplastic syndrome (MDS) in clinical trials. We studied the association of timing of ESA initiation, ...
Bexmarilimabis under clinical development by Faron Pharmaceuticals and currently in Phase II for Myelodysplastic Syndrome. ... Premium Insights Likelihood of Approval and Phase Transition Success Rate Model - Bexmarilimab in Myelodysplastic Syndrome Buy ... Premium Insights Likelihood of Approval and Phase Transition Success Rate Model - Bexmarilimab in Myelodysplastic Syndrome. Buy ... Bexmarilimab is under clinical development by Faron Pharmaceuticals and currently in Phase II for Myelodysplastic Syndrome. ...
Premium Insights Likelihood of Approval and Phase Transition Success Rate Model - SMART-101 in Myelodysplastic Syndrome Buy the ... Premium Insights Likelihood of Approval and Phase Transition Success Rate Model - SMART-101 in Myelodysplastic Syndrome. Buy ... SMART-101 is under clinical development by Smart Immune and currently in Phase II for Myelodysplastic Syndrome. According to ... SMART-101 by Smart Immune for Myelodysplastic Syndrome: Likelihood of Approval. Brought to you by ...
  • de Souza Fernandez T, Menezes de Souza J, Macedo Silva ML, Tabak D, Abdelhay E: Correlation of N-ras point mutations with specific chromosomal abnormalities in primary myelodysplastic syndrome. (karger.com)
  • The underlying primary myelodysplastic syndrome was unmasked when his cytogenetics showed trisomy 8. (jidc.org)
  • Shaharir SS, Tumian NR, Yu Lin AB, Abdul Wahid SF (2013) Disseminated tuberculosis masquerading primary myelodysplastic syndrome. (jidc.org)
  • Survey of exposure to genotoxic agents in primary myelodysplastic syndrome: correlation with chromosome patterns and data on patients without hematological disease. (medscape.com)
  • The ICD-10 code range for Neoplasms of uncertain behavior, polycythemia vera and myelodysplastic syndromes D37-D48 is medical classification list by the World Health Organization (WHO). (aapc.com)
  • About 10% of patients with myeloid neoplasms are thought to have a genetic predisposition to myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). (chromodisorder.org)
  • Myelodysplastic syndromes (MDS) are highly heterogeneous myeloid neoplasms, and a large number of patients are difficult to diagnose and classify by blood and bone marrow examination. (techscience.com)
  • Aplastic anemia and myelodysplastic syndromes (MDS) are rare but serious disorders that affect bone marrow and blood. (nih.gov)
  • Structure of the granulocyte macrophage colony-stimulating factor gene in patients with the myelodysplastic syndromes. (ox.ac.uk)
  • DNA samples from 76 patients with the myelodysplastic syndromes, including 10 cases with a partial deletion of the long arm of chromosome 5 (5q-), were examined for structural rearrangements of the granulocyte/macrophage colony-stimulating factor (GM-CSF) gene. (ox.ac.uk)
  • Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol . (medscape.com)
  • A novel gene, MDS2, is fused to ETV6/TEL in a t(1;12)(p36.1;p13) in a patient with myelodysplastic syndrome. (nih.gov)
  • from Astex Pharmaceuticals and Taiho Oncology) tablets for the treatment of adults with intermediate- or high-risk myelodysplastic syndromes, or MDS, including patients with chronic myelomonocytic leukemia. (conquer-magazine.com)
  • For example, no article on paraneoplastic rheumatic syndromes would be complete without a discussion of hypertrophic osteoarthropathy, although it has been about a decade since I last made a diagnosis of a malignancy based on that presentation, perhaps because of the advent of low-dose CT screening of patients with a significant smoking history. (medscape.com)
  • RS3PE (remitting seronegative, symmetric synovitis with pitting edema) is another example of a well-established paraneoplastic syndrome, although the majority of patients with this diagnosis do not actually have an associated malignancy . (medscape.com)
  • To determine the maximum-tolerated or recommended phase II dose, dose-limiting toxicities (DLTs), pharmacokinetics (PK), and immunomodulatory effects of lenalidomide in children with recurrent or refractory solid tumors or myelodysplastic syndrome (MDS). (nih.gov)
  • Efficacy of lenalidomide in myelodysplastic syndromes. (medscape.com)
  • This case report has demonstrated the various haematological manifestations of tuberculosis and highlighted the importance of cytogenetic study in differentiating between primary and secondary myelodysplastic marrow changes. (jidc.org)
  • First report of national estimates of the incidence of myelodysplastic syndromes and chronic myeloproliferative disorders from the U.S. SEER program [abstract 247]. (medscape.com)
  • Myelodysplastic syndrome and acute myeloid leukaemia" is the property of its rightful owner. (powershow.com)
  • Fever, weight loss and splenomegaly should point to a myelodysplastic/myeloproliferative neoplasm (MDS/MPN) rather than pure myelodysplastic process. (wikipedia.org)
  • Myelodysplastic syndrome (MDS) is a malignant clonal hematopoietic stem cell disorder characterized by the proliferation of bone marrow primordial cells and a decrease in peripheral blood cells ( 1 ). (frontiersin.org)
  • SMART-101 is under development for the treatment of acute lymphocytic leukemia, acute myeloid leukemia, relapsed/refractory acute myeloid leukemia, myelodysplastic syndrome and for use in hematopoietic stem cell transplantation. (pharmaceutical-technology.com)
  • Myelodysplastic syndrome (MDS) refers to a heterogeneous group of closely related clonal hematopoietic disorders. (medscape.com)
  • Myelodysplastic syndromes (MDS) are rare bone marrow disorders that impair how well your body creates new blood cells. (healthline.com)
  • Myelodysplastic syndrome (MDS) refers to a group of bone marrow disorders that interfere with the healthy production of blood cells. (healthline.com)
  • Myelodysplastic syndrome is a group of disorders when the blood cells produced in the bone marrow do not mature into healthy cells. (ucsfbenioffchildrens.org)
  • Asimakopoulos FA, White NJ, Nacheva E, Green AR: Molecular analysis of chromosome 20q deletions associated with myeloproliferative disorders and myelodysplastic syndromes. (karger.com)
  • Myelodysplastic syndrome, a potentially fatal group of disorders that occurs from poorly formed blood cells, has been linked to long-term exposure to benzene. (schmidtandclark.com)
  • Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001-2004, using data from the NAACCR and SEER programs. (medscape.com)
  • Dr. Garcia-Manero, an expert on myelodysplastic syndromes, discusses this group of disorders representing a misunderstood and often ignored type of blood cancer. (conquer-magazine.com)
  • Myelodysplastic syndrome refers to a group of related disorders in which abnormal blood-forming cells develop in the bone marrow. (msdmanuals.com)
  • Cyclophosphamide increases the risk for bladder cancer, myelodysplastic syndrome, and myeloproliferative disorders. (medscape.com)
  • Bone marrow loss and a high proclivity to leukemic progression are the characteristics of myelodysplastic syndrome (MDS). (techscience.com)
  • Myelodysplastic syndrome (MDS) is a clonal disorder characterized by dyshematopoiesis and high susceptibility to acute myeloid leukemia (AML). (karger.com)
  • Au WY, Fung AT, Ma ES, Liang RH, Kwong YL: Low frequency of FLT3 gene internal tandem duplication and activating loop mutation in therapy-related acute myelocytic leukemia and myelodysplastic syndrome. (karger.com)
  • Patients with myelodysplastic syndromes (MDS) collectively have a high symptom burden and are also at risk of death from complications of cytopenias and acute myeloid leukemia. (standardofcare.com)
  • Trisomy 8/8q is a common cytogenetic event in myelocytic malignancies, ranging from myelodysplastic syndrome (MDS) to acute myelocytic leukemia (AML) to blastic transformation of chronic myelocytic leukemia. (nih.gov)
  • Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. (medscape.com)
  • The myelodysplastic syndromes (MDS) include a heterogeneous group of clonal bone marrow failure syndromes characterized by cytopenias, clonally restricted hematopoiesis (associated with an abnormal G-banded metaphase karyotype in about 50% of cases), genomic instability, and a risk of progression to acute myeloid leukemia (AML). (dermatologyadvisor.com)
  • NEW YORK (Reuters Health) - Contrary to initial reports, romiplostim treatment of thrombocytopenia does not appear to increase the risk of progression from myelodysplastic syndrome (MDS) to acute myeloid leukemia (AML). (medscape.com)
  • Specifically, we will use proteomic analysis, flow cytometry and genomic sequencing to detect early signs of myeloma, chronic lymphocytic leukemia and myelodysplastic syndromes in these cases, to enable potentially disease altering therapeutic interventions for these cancers. (cdc.gov)
  • We identify a mutation (D262N) in the erythroid-affliated transcriptional repressor GFI1B, in an acute myeloid leukemia (AML) patient with antecedent myelodysplastic syndrome (MDS). (lu.se)
  • Azacitidine has an average rating of 5.7 out of 10 from a total of 17 reviews for the treatment of Myelodysplastic Syndrome. (drugs.com)
  • Vidaza (azacitidine) 'I was diagnosed with myelodysplastic syndrome soon after having gone through a bout of Covid in 2022. (drugs.com)
  • Children with Down syndrome are susceptible to MDS, and a family history may indicate a hereditary form of sideroblastic anemia or Fanconi anemia. (wikipedia.org)
  • In many cases, the development of anemia requiring blood transfusions may result from the development of myelodysplastic syndrome. (schmidtandclark.com)
  • Mutation-driver genes cause clonal outgrowth and propagation of myelodysplastic hematopoiesis. (standardofcare.com)
  • Myelodysplastic syndrome (MDS) is a group of heterogeneous diseases characterized by cytologic dysplasia and refractory cytopenias as a result of ineffective hematopoiesis. (confex.com)
  • Familial myeloid malignancy syndrome associated with the duplication of chromosome 14q32. (chromodisorder.org)
  • At some centers, tests are done to look for gene or chromosome abnormalities usually present in myelodysplastic syndrome (sometimes called molecular testing). (msdmanuals.com)
  • Myelodysplastic syndromes often do not cause early symptoms and are sometimes found during a routine blood test. (medlineplus.gov)
  • As a result, it's especially important for a patient to discuss these symptoms with a physician who is familiar with myelodysplastic syndromes - especially if the patient has an elevated risk for developing MDS. (moffitt.org)
  • Abnormal autophagy is related to the pathogenesis and clinical symptoms of myelodysplastic syndrome (MDS). (frontiersin.org)
  • Treatment is used to manage the symptoms of myelodysplastic syndrome, as well as improve the quality of life of the individual affected by the condition. (schmidtandclark.com)
  • Sjögren syndrome predisposes to malignancy. (medscape.com)
  • Transfusion Support of Patients with Myelodysplastic Syndromes. (bvsalud.org)
  • Results of studies in patients with low- and intermediate-risk myelodysplastic syndrome (MDS) treated with hypomethylating agents (low dose azacytidine or decitabine) followed for a median of 18 months were presented at the Society of Hematologic Oncology meeting in Houston on September 9, 2016. (shu.edu)
  • Saunthararajah Y. Key clinical observations after 5-azacytidine and decitabine treatment of myelodysplastic syndromes suggest practical solutions for better outcomes. (medscape.com)
  • Treatment recommendations for myelodysplastic syndromes (MDS) are based on a patient's prognostic grouping. (medscape.com)
  • What Are the Current Treatment Options for Myelodysplastic Syndrome? (healthline.com)
  • Compare all 11 medications used in the treatment of Myelodysplastic Syndrome . (drugs.com)
  • Cornerstone Pharmaceuticals, Inc., a leader in the growing field of cancer metabolism-based therapeutics, has announced that the U.S. Food and Drug Administration (FDA) has granted orphan drug designation to CPI-613, the Company's lead Altered Energy Metabolism Directed (AEMD) drug candidate, for the treatment of myelodysplastic syndrome (MDS). (medicalnewstoday.com)
  • Its Traumakine is an investigational intravenous (IV) interferon beta-1a therapy for the treatment of acute respiratory distress syndrome (ARDS) and other ischemic or hyperinflammatory conditions. (pharmaceutical-technology.com)
  • Telik, Inc, announced that its product candidate, ezatiostat hydrochloride (Telintra), has been granted orphan drug designation by the FDA for the treatment of myelodysplastic syndromes (MDS). (ascopost.com)
  • Which proper myelodysplastic syndrome treatment , many individuals can manage their syndrome for many years without major complications. (schmidtandclark.com)
  • Available at http://www.cancer.gov/cancertopics/pdq/treatment/myelodysplastic/HealthProfessional/page1#Reference1.9. (medscape.com)
  • Antithymocyte globulin for treatment of the bone marrow failure associated with myelodysplastic syndromes. (medscape.com)
  • Darbepoetin alpha for the treatment of anaemia in low-intermediate risk myelodysplastic syndromes. (medscape.com)
  • 5-azacytidine (AZA) has become standard treatment for patients with higher-risk myelodysplastic syndrome (MDS). (biomedcentral.com)
  • In recent years, epigenetic therapy has become a treatment option for patients with higher-risk myelodysplastic syndrome (MDS) who are not considered candidates for intensive induction chemotherapy or allogeneic stem cell transplantation (SCT). (biomedcentral.com)
  • Erythropoiesis-stimulating agents (ESAs) reduce red blood cell (RBC) transfusions in approximately 40% of patients with myelodysplastic syndrome (MDS) in clinical trials. (aamds.org)
  • Experts estimate that between 10,000 and 20,000 new cases of myelodysplastic syndrome occur each year. (schmidtandclark.com)
  • Myelodysplastic syndromes occur most often in people older than 50 years, particularly those older than 65 years. (msdmanuals.com)
  • The pathogenesis of myelodysplastic syndrome (MDS) may be related to the abnormal expression of microRNAs (miRNAs), which could influence the differentiation capacity of mesenchymal stem cells (MSCs) towards adipogenic and osteogenic lineages. (techscience.com)
  • Ezatiostat has been shown to cause clinically significant and sustained reduction in red blood cell transfusions, transfusion independence, and multilineage responses in patients with multidysplastic syndromes. (ascopost.com)
  • The incidence rate of the myelodysplastic syndromes (MDS) in the United States is approximately 3.4 per 100,000 people, accounting for more than 10,000 new diagnoses annually and an estimated 60,000 people living with the disease. (jnccn.org)
  • Ma X, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. (medscape.com)
  • Myelodysplastic syndromes (MDS) are classified using the World Health Organization (WHO) classification system, which was most recently updated in 2016. (cancer.org)
  • Objective: A subset analysis of the randomised, phase 3, MDS-004 study to evaluate outcomes in patients with International Prognostic Scoring System (IPSS)-defined Low-/Intermediate (Int)-1-risk myelodysplastic syndromes (MDS) with isolated del(5q). (eur.nl)
  • Somatic mutation is not a static process in myelodysplastic syndrome and additional mutations will accumulate leading to more profound phenotypic worsening cytopenias, and approximately 30% of patients will eventually experience progression to secondary AML. (standardofcare.com)
  • Title : The impact of chelation therapy on survival in transfusional iron overload: a meta-analysis of myelodysplastic syndrome Personal Author(s) : Mainous, Arch G.;Tanner, Rebecca J.;Hulihan, Mary M.;Amaya, Mirna;Coates, Thomas D. (cdc.gov)
  • A myelodysplastic syndrome (MDS) is one of a group of cancers in which immature blood cells in the bone marrow do not mature, and as a result, do not develop into healthy blood cells. (wikipedia.org)
  • If you have a myelodysplastic syndrome, the stem cells do not mature into healthy blood cells. (medlineplus.gov)
  • The common signs of myelodysplastic syndrome depend on the type of blood cells affected by the condition. (schmidtandclark.com)
  • Two experimental drugs, luspatercept and sotatercept, have shown to be active in myelodysplastic syndrome (MDS), a type of cancer in which the bone marrow does not make enough healthy blood cells and there are abnormal (blast) cells in the blood and/or bone marrow. (shu.edu)
  • T he first description of patients with a blood picture compatible with the myelodysplastic syndromes (MDS) was published at the beginning of the 20th century, 1 and the first MDS case series was published in the early 1970s. (jnccn.org)
  • Hypomethylating agents (HMA) are considered the first-line therapy for high-risk myelodysplastic syndromes (MDS). (medscimonit.com)