A species of gram-negative, aerobic bacteria primarily found in purulent venereal discharges. It is the causative agent of GONORRHEA.
Acute infectious disease characterized by primary invasion of the urogenital tract. The etiologic agent, NEISSERIA GONORRHOEAE, was isolated by Neisser in 1879.
A genus of gram-negative, aerobic, coccoid bacteria whose organisms are part of the normal flora of the oropharynx, nasopharynx, and genitourinary tract. Some species are primary pathogens for humans.
A species of gram-negative, aerobic BACTERIA. It is a commensal and pathogen only of humans, and can be carried asymptomatically in the NASOPHARYNX. When found in cerebrospinal fluid it is the causative agent of cerebrospinal meningitis (MENINGITIS, MENINGOCOCCAL). It is also found in venereal discharges and blood. There are at least 13 serogroups based on antigenic differences in the capsular polysaccharides; the ones causing most meningitis infections being A, B, C, Y, and W-135. Each serogroup can be further classified by serotype, serosubtype, and immunotype.
A beta-lactamase preferentially cleaving penicillins. (Dorland, 28th ed) EC 3.5.2.-.
An antibiotic produced by Streptomyces spectabilis. It is active against gram-negative bacteria and used for the treatment of gonorrhea.
A third-generation cephalosporin antibiotic that is stable to hydrolysis by beta-lactamases.
A species of gram-negative, aerobic BACTERIA commonly found in the NASOPHARYNX of infants and children, but rarely pathogenic. It is the only species to produce acid from LACTOSE.
Type species of CHLAMYDIA causing a variety of ocular and urogenital diseases.
A tube that transports URINE from the URINARY BLADDER to the outside of the body in both the sexes. It also has a reproductive function in the male by providing a passage for SPERM.
Inflammation involving the URETHRA. Similar to CYSTITIS, clinical symptoms range from vague discomfort to painful urination (DYSURIA), urethral discharge, or both.
Proteins isolated from the outer membrane of Gram-negative bacteria.
Infections with bacteria of the genus CHLAMYDIA.
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Nonsusceptibility of an organism to the action of penicillins.
Proteins found in any species of bacterium.
A broad-spectrum cephalosporin antibiotic with a very long half-life and high penetrability to meninges, eyes and inner ears.
Proteins that are structural components of bacterial fimbriae (FIMBRIAE, BACTERIAL) or sex pili (PILI, SEX).
Substances that reduce the growth or reproduction of BACTERIA.
Techniques used in studying bacteria.
Porins are protein molecules that were originally found in the outer membrane of GRAM-NEGATIVE BACTERIA and that form multi-meric channels for the passive DIFFUSION of WATER; IONS; or other small molecules. Porins are present in bacterial CELL WALLS, as well as in plant, fungal, mammalian and other vertebrate CELL MEMBRANES and MITOCHONDRIAL MEMBRANES.
The neck portion of the UTERUS between the lower isthmus and the VAGINA forming the cervical canal.
A group of antibiotics that contain 6-aminopenicillanic acid with a side chain attached to the 6-amino group. The penicillin nucleus is the chief structural requirement for biological activity. The side-chain structure determines many of the antibacterial and pharmacological characteristics. (Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1065)
The natural bactericidal property of BLOOD due to normally occurring antibacterial substances such as beta lysin, leukin, etc. This activity needs to be distinguished from the bactericidal activity contained in a patient's serum as a result of antimicrobial therapy, which is measured by a SERUM BACTERICIDAL TEST.
Bacteriocins elaborated by mutant strains of Pseudomonas aeruginosa. They are protein or protein-lipopolysaccharide complexes lethal to other strains of the same or related species.
The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
Thin, hairlike appendages, 1 to 20 microns in length and often occurring in large numbers, present on the cells of gram-negative bacteria, particularly Enterobacteriaceae and Neisseria. Unlike flagella, they do not possess motility, but being protein (pilin) in nature, they possess antigenic and hemagglutinating properties. They are of medical importance because some fimbriae mediate the attachment of bacteria to cells via adhesins (ADHESINS, BACTERIAL). Bacterial fimbriae refer to common pili, to be distinguished from the preferred use of "pili", which is confined to sex pili (PILI, SEX).
Filamentous or elongated proteinaceous structures which extend from the cell surface in gram-negative bacteria that contain certain types of conjugative plasmid. These pili are the organs associated with genetic transfer and have essential roles in conjugation. Normally, only one or a few pili occur on a given donor cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed, p675) This preferred use of "pili" refers to the sexual appendage, to be distinguished from bacterial fimbriae (FIMBRIAE, BACTERIAL), also known as common pili, which are usually concerned with adhesion.
The heritable modification of the properties of a competent bacterium by naked DNA from another source. The uptake of naked DNA is a naturally occuring phenomenon in some bacteria. It is often used as a GENE TRANSFER TECHNIQUE.
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
Substances elaborated by bacteria that have antigenic activity.
A family of gram-negative, parasitic bacteria including several important pathogens of man.
Infections with bacteria of the species NEISSERIA MENINGITIDIS.
A penicillin derivative commonly used in the form of its sodium or potassium salts in the treatment of a variety of infections. It is effective against most gram-positive bacteria and against gram-negative cocci. It has also been used as an experimental convulsant because of its actions on GAMMA-AMINOBUTYRIC ACID mediated synaptic transmission.
A broad-spectrum antimicrobial carboxyfluoroquinoline.
The functional hereditary units of BACTERIA.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Bacterial diseases transmitted or propagated by sexual conduct.
Strains of Neisseria meningitidis which are the most common ones causing infections or disease in infants. Serogroup B strains are isolated most frequently in sporadic cases, and are less common in outbreaks and epidemics.
Laboratory techniques that involve the in-vitro synthesis of many copies of DNA or RNA from one original template.
Pathological processes involving the PHARYNX.
A species of TRICHOMONAS that produces a refractory vaginal discharge in females, as well as bladder and urethral infections in males.
A spectrum of inflammation involving the female upper genital tract and the supporting tissues. It is usually caused by an ascending infection of organisms from the endocervix. Infection may be confined to the uterus (ENDOMETRITIS), the FALLOPIAN TUBES; (SALPINGITIS); the ovaries (OOPHORITIS), the supporting ligaments (PARAMETRITIS), or may involve several of the above uterine appendages. Such inflammation can lead to functional impairment and infertility.
Process of determining and distinguishing species of bacteria or viruses based on antigens they share.
The genital canal in the female, extending from the UTERUS to the VULVA. (Stedman, 25th ed)
A fulminant infection of the meninges and subarachnoid fluid by the bacterium NEISSERIA MENINGITIDIS, producing diffuse inflammation and peri-meningeal venous thromboses. Clinical manifestations include FEVER, nuchal rigidity, SEIZURES, severe HEADACHE, petechial rash, stupor, focal neurologic deficits, HYDROCEPHALUS, and COMA. The organism is usually transmitted via nasopharyngeal secretions and is a leading cause of meningitis in children and young adults. Organisms from Neisseria meningitidis serogroups A, B, C, Y, and W-135 have been reported to cause meningitis. (From Adams et al., Principles of Neurology, 6th ed, pp689-701; Curr Opin Pediatr 1998 Feb;10(1):13-8)
Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection.
Commercially prepared reagent sets, with accessory devices, containing all of the major components and literature necessary to perform one or more designated diagnostic tests or procedures. They may be for laboratory or personal use.
The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
Inflammation of the UTERINE CERVIX.
Tests that are dependent on the clumping of cells, microorganisms, or particles when mixed with specific antiserum. (From Stedman, 26th ed)
A naphthacene antibiotic that inhibits AMINO ACYL TRNA binding during protein synthesis.
Procedures for collecting, preserving, and transporting of specimens sufficiently stable to provide accurate and precise results suitable for clinical interpretation.
Immunoglobulins produced in a response to BACTERIAL ANTIGENS.
Physicochemical property of fimbriated (FIMBRIAE, BACTERIAL) and non-fimbriated bacteria of attaching to cells, tissue, and nonbiological surfaces. It is a factor in bacterial colonization and pathogenicity.
Pathological processes of the male URINARY TRACT and the reproductive system (GENITALIA, MALE).
Infections with bacteria of the family NEISSERIACEAE.
A group of derivatives of naphthyridine carboxylic acid, quinoline carboxylic acid, or NALIDIXIC ACID.
Strains of Neisseria meningitidis found mostly in Africa.
Liquid by-product of excretion produced in the kidneys, temporarily stored in the bladder until discharge through the URETHRA.
A group of broad-spectrum antibiotics first isolated from the Mediterranean fungus ACREMONIUM. They contain the beta-lactam moiety thia-azabicyclo-octenecarboxylic acid also called 7-aminocephalosporanic acid.
A subtype of bacterial transferrin-binding protein found in bacteria. It forms a cell surface receptor complex with TRANSFERRIN-BINDING PROTEIN A.
Infections in birds and mammals produced by various species of Trichomonas.
A nucleoside monophosphate sugar which donates N-acetylneuraminic acid to the terminal sugar of a ganglioside or glycoprotein.
Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed)
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Strains of Neisseria meningitidis responsible for most sporadic cases in teenagers and almost all outbreaks of disease in this age group. These strains are less common in infants.
Nonsusceptibility of bacteria to the action of TETRACYCLINE which inhibits aminoacyl-tRNA binding to the 30S ribosomal subunit during protein synthesis.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Pathological processes involving the URETHRA.
A subtype of bacterial transferrin-binding protein found in bacteria. It forms a cell surface receptor complex with TRANSFERRIN-BINDING PROTEIN B.
Peptidoglycan is a complex, cross-linked polymer of carbohydrates and peptides that forms the rigid layer of the bacterial cell wall, providing structural support and protection while contributing to the bacterium's susceptibility or resistance to certain antibiotics.
Diseases due to or propagated by sexual contact.
Strains of Neisseria meningitidis responsible for most outbreaks of meningococcal disease in Western Europe and the United States in the first half of the 20th century. They continue to be a major cause of disease in Asia and Africa, and especially localized epidemics in Sub-Sahara Africa.
Inflammation of the uterine salpinx, the trumpet-shaped FALLOPIAN TUBES, usually caused by ascending infections of organisms from the lower reproductive tract. Salpingitis can lead to tubal scarring, hydrosalpinx, tubal occlusion, INFERTILITY, and ectopic pregnancy (PREGNANCY, ECTOPIC)
Inflammation of the vagina, marked by a purulent discharge. This disease is caused by the protozoan TRICHOMONAS VAGINALIS.
Studies determining the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. For drugs and devices, CLINICAL TRIALS AS TOPIC; DRUG EVALUATION; and DRUG EVALUATION, PRECLINICAL are available.
Strains of Neisseria meningitidis which, in the United States, causes disease in mostly adults and the elderly. Serogroup Y strains are associated with PNEUMONIA.
A genus of gram-negative, aerobic bacteria occurring as rods (subgenus Moraxella) or cocci (subgenus Branhamella). Its organisms are parasitic on the mucous membranes of humans and other warm-blooded animals.
A species of gram-negative bacteria originally isolated from urethral specimens of patients with non-gonoccocal URETHRITIS. In primates it exists in parasitic association with ciliated EPITHELIAL CELLS in the genital and respiratory tracts.
A synthetic fluoroquinolone (FLUOROQUINOLONES) with broad-spectrum antibacterial activity against most gram-negative and gram-positive bacteria. Norfloxacin inhibits bacterial DNA GYRASE.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
A group of QUINOLONES with at least one fluorine atom and a piperazinyl group.
Pathological processes of the female URINARY TRACT and the reproductive system (GENITALIA, FEMALE).
Semisynthetic broad-spectrum cephalosporin.
Change in the surface ANTIGEN of a microorganism. There are two different types. One is a phenomenon, especially associated with INFLUENZA VIRUSES, where they undergo spontaneous variation both as slow antigenic drift and sudden emergence of new strains (antigenic shift). The second type is when certain PARASITES, especially trypanosomes, PLASMODIUM, and BORRELIA, survive the immune response of the host by changing the surface coat (antigen switching). (From Herbert et al., The Dictionary of Immunology, 4th ed)
Broad-spectrum cephalosporin antibiotic resistant to beta-lactamase. It has been proposed for infections with gram-negative and gram-positive organisms, GONORRHEA, and HAEMOPHILUS.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
Semisynthetic antibiotic prepared by combining penicillin G with PROCAINE.
Acute conjunctival inflammation in the newborn, usually caused by maternal gonococcal infection. The causative agent is NEISSERIA GONORRHOEAE. The baby's eyes are contaminated during passage through the birth canal.
A methylsulfonyl analog of CHLORAMPHENICOL. It is an antibiotic and immunosuppressive agent.
A semisynthetic cephalosporin antibiotic which can be administered intravenously or by suppository. The drug is highly resistant to a broad spectrum of beta-lactamases and is active against a wide range of both aerobic and anaerobic gram-positive and gram-negative organisms. It has few side effects and is reported to be safe and effective in aged patients and in patients with hematologic disorders.
A clear or white discharge from the VAGINA, consisting mainly of MUCUS.
Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome.
Bacterial proteins that share the property of binding irreversibly to PENICILLINS and other ANTIBACTERIAL AGENTS derived from LACTAMS. The penicillin-binding proteins are primarily enzymes involved in CELL WALL biosynthesis including MURAMOYLPENTAPEPTIDE CARBOXYPEPTIDASE; PEPTIDE SYNTHASES; TRANSPEPTIDASES; and HEXOSYLTRANSFERASES.
Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping.
A bacterial DNA topoisomerase II that catalyzes ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. Gyrase binds to DNA as a heterotetramer consisting of two A and two B subunits. In the presence of ATP, gyrase is able to convert the relaxed circular DNA duplex into a superhelix. In the absence of ATP, supercoiled DNA is relaxed by DNA gyrase.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A funnel-shaped fibromuscular tube that conducts food to the ESOPHAGUS, and air to the LARYNX and LUNGS. It is located posterior to the NASAL CAVITY; ORAL CAVITY; and LARYNX, and extends from the SKULL BASE to the inferior border of the CRICOID CARTILAGE anteriorly and to the inferior border of the C6 vertebra posteriorly. It is divided into the NASOPHARYNX; OROPHARYNX; and HYPOPHARYNX (laryngopharynx).
Semi-synthetic derivative of penicillin that functions as an orally active broad-spectrum antibiotic.
A bacterial DNA topoisomerase II that catalyzes ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. Topoisomerase IV binds to DNA as a heterotetramer consisting 2 parC and 2 parE subunits. Topoisomerase IV is a decatenating enzyme that resolves interlinked daughter chromosomes following DNA replication.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
A species of HAEMOPHILUS that appears to be the pathogen or causative agent of the sexually transmitted disease, CHANCROID.

Effect of a staphylococcin on Neisseria gonorrhoeae. (1/2711)

Phage group 2 staphylococcal strain UT0002 contains a large 56S virulence plasmid with genes that code for both exfoliative toxin and a specific staphylococcin termed Bac R(1). Four penicillinase-producing strains and three penicillin-susceptible strains of Neisseria gonorrhoeae were killed by Bac R(1). After 30 min of growth of the penicillin-resistant TR1 strain in 62.5 arbitrary units of Bac R(1) per ml, loss of viability was approximately 90%, and, after 5 h, an approximately 99.99% loss of viability was observed. Lysis did not accompany cell death, and 84% of the Bac R(1) added to the growth medium was adsorbed to the gonococcal cells. The extracellular supernatant fluid from a substrain of staphylococcal strain UT0002 cured of the plasmid for Bac R(1) production had no lethal effect on the gonococcal strains. Bac R(1) was also shown to have bactericidal activity against an L-form of N. meningitidis, indicating that the outer envelope of a neisserial cell is not needed for bacteriocin activity. Ten different normal human sera were unable to neutralize Bac R(1) activity. The bacteriocin lacks adsorption specificity. It binds to but does not kill Escherichia coli cells, indicating that the cell envelope of gram-negative organisms can provide protection against the staphylococcin.  (+info)

Invasion of human mucosal epithelial cells by Neisseria gonorrhoeae upregulates expression of intercellular adhesion molecule 1 (ICAM-1). (2/2711)

Infection of the mucosa by Neisseria gonorrhoeae involves adherence to and invasion of epithelial cells. Little is known, however, about the expression by mucosal epithelial cells of molecules that mediate cellular interactions between epithelial cells and neutrophils at the site of gonococcal infection. The aim of this study was to determine the expression of intercellular adhesion molecule 1 (ICAM-1) by epithelial cells during the process of gonococcal invasion. The highly invasive strain FA1090 and the poorly invasive strain MS11 were incubated with human endometrial adenocarcinoma (HEC-1-B) or human cervical carcinoma (ME-180) epithelial cells, after which ICAM-1 expression was measured by flow cytometry. After 15 h of infection with FA1090, expression of ICAM-1 increased 4.7- and 2.1-fold for HEC-1-B and ME-180 cells, respectively, whereas 15 h of infection of HEC-1-B cells with MS11 increased ICAM-1 expression only 1.6-fold. ICAM-1 expression was restricted to the cell surface, since no soluble ICAM-1 was detected. The distribution of staining was heterogeneous and mimicked that seen after treatment of HEC-1-B cells with the ICAM-1 agonist tumor necrosis factor alpha (TNF-alpha) in the absence of bacteria. PCR and dot blot analyses of ICAM-1 mRNA showed no change in levels over time in response to infection. Although TNF-alpha was produced by HEC-1-B cells after infection, the extent of ICAM-1 upregulation was not affected by neutralizing anti-TNF-alpha antiserum. Dual-fluorescence flow cytometry showed that the cells with the highest levels of ICAM-1 expression were cells with associated gonococci. We conclude that epithelial cells upregulate the expression of ICAM-1 in response to infection with invasive gonococci. On the mucosa, upregulation of ICAM-1 by infected epithelial cells may function to maintain neutrophils at the site of infection, thereby reducing further invasion of the mucosa by gonococci.  (+info)

Longitudinal evaluation of serovar-specific immunity to Neisseria gonorrhoeae. (3/2711)

The serovars of Neisseria gonorrhoeae that are predominant in a community change over time, a phenomenon that may be due to the development of immunity to repeat infection with the same serovar. This study evaluated the epidemiologic evidence for serovar-specific immunity to N. gonorrhoeae. During a 17-month period in 1992-1994, all clients of a sexually transmitted disease clinic in rural North Carolina underwent genital culture for N. gonorrhoeae. Gonococcal isolates were serotyped according to standard methods. Odds ratios for repeat infection with the same serovar versus any different serovar were calculated on the basis of the distribution of serovars in the community at the time of reinfection. Of 2,838 patients, 608 (21.4%; 427 males and 181 females) were found to be infected with N. gonorrhoeae at the initial visit. Ninety patients (14.8% of the 608) had a total of 112 repeat gonococcal infections. Repeat infection with the same serovar occurred slightly more often than would be expected based on the serovars prevalent in the community at the time of reinfection, though the result was marginally nonsignificant (odds ratio = 1.5, 95% confidence interval 1.0-2.4; p = 0.05). Choosing partners within a sexual network may increase the likelihood of repeat exposure to the same serovar of N. gonorrhoeae. Gonococcal infection did not induce evident immunity to reinfection with the same serovar.  (+info)

Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. (4/2711)

We have recently described the expression of two pili of different lengths on the surface of Legionella pneumophila (B. J. Stone and Y. Abu Kwaik, Infect. Immun. 66:1768-1775, 1998). Production of long pili requires a functional pilEL locus, encoding a type IV pilin protein. Since type IV pili in Neisseria gonorrhoeae are associated with competence for DNA transformation, we examined the competence of L. pneumophila for DNA transformation under conditions that allowed the expression of type IV pili. We show that L. pneumophila is naturally competent for DNA transformation by isogenic chromosomal DNA and by plasmid DNA containing L. pneumophila DNA. Many different L. pneumophila loci are able to transform L. pneumophila after addition of plasmid DNA, including gspA, ppa, asd, and pilEL. The transformation frequency is reduced when competing DNA containing either L. pneumophila DNA or vector sequences is added to the bacteria, suggesting that uptake-specific sequences may not be involved in DNA uptake. Competence for DNA transformation correlates with expression of the type IV pili, and a pilEL mutant defective in expression of type IV pili is not competent for DNA transformation. Complementation of the mutant for competence is restored by the reintroduction of a cosmid that restores production of type IV pili. Minimal competence is restored to the mutant by introduction of pilEL alone. We conclude that competence for DNA transformation in L. pneumophila is associated with expression of the type IV pilus and results in recombination of L. pneumophila DNA into the chromosome. Since expression of type IV pili also facilitates attachment of L. pneumophila to mammalian cells and protozoa, we designated the type IV pili CAP (for competence- and adherence-associated pili).  (+info)

Identification of Neisseria gonorrhoeae from primary cultures by a slide agglutination test. (5/2711)

Hen antigonococcal lipopolysaccharide hen serum was used in a simple slide agglutination test for the identification of Neisseria gonorrhoeae from primary isolates.  (+info)

Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. (6/2711)

We reported recently that the human opportunistic pathogen Pseudomonas aeruginosa strain PA14 kills Caenorhabditis elegans and that many P. aeruginosa virulence factors (genes) required for maximum virulence in mouse pathogenicity are also required for maximum killing of C. elegans. Here we report that among eight P. aeruginosa PA14 TnphoA mutants isolated that exhibited reduced killing of C. elegans, at least five also exhibited reduced virulence in mice. Three of the TnphoA mutants corresponded to the known virulence-related genes lasR, gacA, and lemA. Three of the mutants corresponded to known genes (aefA from Escherichia coli, pstP from Azotobacter vinelandii, and mtrR from Neisseria gonorrhoeae) that had not been shown previously to play a role in pathogenesis, and two of the mutants contained TnphoA inserted into novel sequences. These data indicate that the killing of C. elegans by P. aeruginosa can be exploited to identify novel P. aeruginosa virulence factors important for mammalian pathogenesis.  (+info)

Antimicrobial susceptibilities and plasmid contents of Neisseria gonorrhoeae isolates from commercial sex workers in Dhaka, Bangladesh: emergence of high-level resistance to ciprofloxacin. (7/2711)

Commercial sex workers (CSWs) serve as the most important reservoir of sexually transmitted diseases (STD), including gonorrhea. Periodic monitoring of the antimicrobial susceptibility profile of Neisseria gonorrhoeae in a high-risk population provides essential clues regarding the rapidly changing pattern of antimicrobial susceptibilities. A study concerning the prevalence of gonococcal infection among CSWs was conducted in Bangladesh. The isolates were examined with regards to their antimicrobial susceptibility to, and the MICs of, penicillin, tetracycline, ciprofloxacin, cefuroxime, ceftriaxone, and spectinomycin by disk diffusion and agar dilution methods. The total plasmid profile of the isolates was also analyzed. Of the 224 CSWs, 94 (42%) were culture positive for N. gonorrhoeae. There was a good correlation between the results of the disk diffusion and agar dilution methods. Some 66% of the isolates were resistant to penicillin, and 34% were moderately susceptible to penicillin. Among the resistant isolates, 23.4% were penicillinase-producing N. gonorrhoeae (PPNG). 60.6% of the isolates were resistant and 38.3% were moderately susceptible to tetracycline, 17.5% were tetracycline-resistant N. gonorrhoeae, 11.7% were resistant and 26.6% had reduced susceptibility to ciprofloxacin, 2.1% were resistant and 11.7% had reduced susceptibility to cefuroxime, and 1% were resistant to ceftriaxone. All PPNG isolates contained a 3.2-MDa African type of plasmid, and a 24.2-MDa conjugative plasmid was present in 34.1% of the isolates. Since quinolones such as ciprofloxacin are recommended as the first line of therapy for gonorrhea, the emergence of significant resistance to ciprofloxacin will limit the usefulness of this drug for treatment of gonorrhea in Bangladesh.  (+info)

Characterization of the recD gene of Neisseria gonorrhoeae MS11 and the effect of recD inactivation on pilin variation and DNA transformation. (8/2711)

Pilin antigenic variation in Neisseria gonorrhoeae may result following intrachromosomal recombination between homologous pil genes. Despite extensive study, recA is the only previously characterized gene known to be involved in this process. In this study, the gonococcal recD gene, encoding one subunit of the putative RecBCD holoenzyme, was characterized and its role in pilin variation assessed. The complete recD gene of N. gonorrhoeae MS11 was cloned and its nucleotide sequence determined. The gonococcal recD gene complemented a defined Escherichia coli recD mutant, based on plaque formation of bacteriophage lambda and the restoration of ATP-dependent nuclease activity. Inactivation of the gonococcal recD gene had no measurable effect on cell viability or survival following UV exposure, but did decrease the frequency of DNA transformation approximately threefold. The frequency at which non-parental pilin phenotypes were spawned was 12-fold greater in MS11 recD mutants compared with the parental MS11 rec+ strain. Similar results were obtained using recD mutants that were not competent for DNA transformation. Complementation of the MS11 recD mutant with a wild-type recD gene copy restored the frequency of pilin phenotypic variation to approximately wild-type levels. The nucleotide changes at pilE in the recD mutants were confined to the variable regions of the gene and were similar to changes previously attributed to gene conversion.  (+info)

Neisseria gonorrhoeae is a species of gram-negative, aerobic diplococcus that is the etiologic agent of gonorrhea, a sexually transmitted infection. It is commonly found in the mucous membranes of the reproductive tract, including the cervix, urethra, and rectum, as well as the throat and eyes. The bacterium can cause a range of symptoms, including discharge, burning during urination, and, in women, abnormal menstrual bleeding. If left untreated, it can lead to more serious complications, such as pelvic inflammatory disease and infertility. It is important to note that N. gonorrhoeae has developed resistance to many antibiotics over time, making treatment more challenging. A culture or nucleic acid amplification test (NAAT) is used for the diagnosis of this infection.

Gonorrhea is a sexually transmitted infection (STI) caused by the bacterium Neisseria gonorrhoeae, also known as "gono" bacteria. It can infect various parts of the body including the genitals, rectum, and throat. The bacteria are typically transmitted through sexual contact with an infected person.

Symptoms may vary but often include abnormal discharge from the genitals or rectum, painful or burning sensations during urination, and in women, vaginal bleeding between periods. However, many people with gonorrhea do not develop symptoms, making it essential to get tested regularly if you are sexually active with multiple partners or have unprotected sex.

If left untreated, gonorrhea can lead to severe complications such as pelvic inflammatory disease (PID) in women and epididymitis in men, which may result in infertility. In rare cases, it can spread to the bloodstream and cause life-threatening conditions like sepsis.

Gonorrhea is curable with appropriate antibiotic treatment; however, drug-resistant strains of the bacteria have emerged, making accurate diagnosis and effective treatment increasingly challenging. Prevention methods include using condoms during sexual activity and practicing safe sex habits.

"Neisseria" is a genus of gram-negative, aerobic bacteria that are commonly found as part of the normal flora in the human body, particularly in the mouth, nose, and genital tract. Some species of Neisseria can cause diseases in humans, the most well-known being Neisseria meningitidis (meningococcus), which can cause meningitis and sepsis, and Neisseria gonorrhoeae (gonococcus), which causes the sexually transmitted infection gonorrhea. These bacteria are named after German physician and bacteriologist Albert Neisser, who first described them in the late 19th century.

Neisseria meningitidis is a Gram-negative, aerobic, bean-shaped diplococcus bacterium. It is one of the leading causes of bacterial meningitis and sepsis (known as meningococcal disease) worldwide. The bacteria can be found in the back of the nose and throat of approximately 10-25% of the general population, particularly in children, teenagers, and young adults, without causing any symptoms or illness. However, when the bacterium invades the bloodstream and spreads to the brain or spinal cord, it can lead to life-threatening infections such as meningitis (inflammation of the membranes surrounding the brain and spinal cord) and septicemia (blood poisoning).

Neisseria meningitidis is classified into 12 serogroups based on the chemical structure of their capsular polysaccharides. The six major serogroups that cause most meningococcal disease worldwide are A, B, C, W, X, and Y. Vaccines are available to protect against some or all of these serogroups.

Meningococcal disease can progress rapidly, leading to severe symptoms such as high fever, headache, stiff neck, confusion, nausea, vomiting, and a rash consisting of purple or red spots. Immediate medical attention is required if someone experiences these symptoms, as meningococcal disease can cause permanent disabilities or death within hours if left untreated.

Penicillinase is an enzyme produced by some bacteria that can inactivate penicillin and other beta-lactam antibiotics by breaking down the beta-lactam ring, which is essential for their antimicrobial activity. Bacteria that produce penicillinase are resistant to penicillin and related antibiotics. Penicillinase-resistant penicillins, such as methicillin and oxacillin, have been developed to overcome this form of bacterial resistance.

Spectinomycin is an antibiotic that belongs to the aminoglycoside family. It works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial cell death. Spectinomycin is primarily used to treat infections caused by susceptible strains of Gram-negative and Gram-positive bacteria, including gonorrhea, penicillin-resistant streptococci, and some anaerobes. It is administered parenterally (usually intramuscularly) and has a relatively narrow spectrum of activity compared to other aminoglycosides. Spectinomycin is not commonly used in many countries due to the availability of alternative antibiotics with broader spectra and fewer side effects.

Cefixime is a third-generation cephalosporin antibiotic, which is used to treat various bacterial infections. It works by inhibiting the synthesis of the bacterial cell wall. Cefixime is available as an oral suspension or tablet and is commonly prescribed for respiratory tract infections, urinary tract infections, ear infections, and skin infections.

The medical definition of Cefixime can be stated as follows:

Cefixime: A semisynthetic antibiotic derived from cephalosporin, which is used to treat a variety of bacterial infections. It has a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, including beta-lactamase producing strains. Cefixime is administered orally and is often prescribed for respiratory tract infections, urinary tract infections, ear infections, and skin infections. It has a long half-life and high oral bioavailability, making it a convenient option for outpatient treatment.

Common side effects of Cefixime include diarrhea, nausea, vomiting, abdominal pain, and headache. Serious side effects are rare but may include anaphylaxis, Stevens-Johnson syndrome, and toxic epidermal necrolysis. Caution should be exercised when prescribing Cefixime to patients with a history of allergic reactions to cephalosporins or penicillins.

"Neisseria lactamica" is a gram-negative, beta-hemolytic, coccoid bacterium that belongs to the family Neisseriaceae. It commonly colonizes the upper respiratory tract of young children and is considered part of the normal flora of the human nasopharynx. "Neisseria lactamica" shares many biochemical and genetic similarities with its close relative, "Neisseria meningitidis," which can cause serious invasive diseases such as meningitis and sepsis. However, "Neisseria lactamica" is generally considered to be non-pathogenic and does not typically cause illness in healthy individuals.

'Chlamydia trachomatis' is a species of bacterium that is the causative agent of several infectious diseases in humans. It is an obligate intracellular pathogen, meaning it can only survive and reproduce inside host cells. The bacteria are transmitted through sexual contact, and can cause a range of genital tract infections, including urethritis, cervicitis, pelvic inflammatory disease, and epididymitis. In women, chlamydial infection can also lead to serious complications such as ectopic pregnancy and infertility.

In addition to genital infections, 'Chlamydia trachomatis' is also responsible for two other diseases: trachoma and lymphogranuloma venereum (LGV). Trachoma is a leading cause of preventable blindness worldwide, affecting mostly children in developing countries. It is spread through contact with contaminated hands, clothing, or eye secretions. LGV is a sexually transmitted infection that can cause inflammation of the lymph nodes, rectum, and genitals.

'Chlamydia trachomatis' infections are often asymptomatic, making them difficult to diagnose and treat. However, they can be detected through laboratory tests such as nucleic acid amplification tests (NAATs) or culture. Treatment typically involves antibiotics such as azithromycin or doxycycline. Prevention measures include safe sex practices, regular screening for STIs, and good hygiene.

The urethra is the tube that carries urine from the bladder out of the body. In males, it also serves as the conduit for semen during ejaculation. The male urethra is longer than the female urethra and is divided into sections: the prostatic, membranous, and spongy (or penile) urethra. The female urethra extends from the bladder to the external urethral orifice, which is located just above the vaginal opening.

Urethritis is a medical condition that refers to the inflammation of the urethra, which is the tube that carries urine from the bladder out of the body. Urethritis can be caused by various factors, including bacterial or viral infections, chemical irritants, or trauma to the urethra.

The most common cause of urethritis is a bacterial infection, such as chlamydia or gonorrhea, which can be transmitted through sexual contact. Other symptoms of urethritis may include pain or burning during urination, discharge from the urethra, and frequent urination.

Urethritis is typically diagnosed through a physical examination and laboratory tests to identify the underlying cause of the inflammation. Treatment for urethritis depends on the cause but may include antibiotics or other medications to treat infections, as well as measures to relieve symptoms such as pain and discomfort.

Bacterial outer membrane proteins (OMPs) are a type of protein found in the outer membrane of gram-negative bacteria. The outer membrane is a unique characteristic of gram-negative bacteria, and it serves as a barrier that helps protect the bacterium from hostile environments. OMPs play a crucial role in maintaining the structural integrity and selective permeability of the outer membrane. They are involved in various functions such as nutrient uptake, transport, adhesion, and virulence factor secretion.

OMPs are typically composed of beta-barrel structures that span the bacterial outer membrane. These proteins can be classified into several groups based on their size, function, and structure. Some of the well-known OMP families include porins, autotransporters, and two-partner secretion systems.

Porins are the most abundant type of OMPs and form water-filled channels that allow the passive diffusion of small molecules, ions, and nutrients across the outer membrane. Autotransporters are a diverse group of OMPs that play a role in bacterial pathogenesis by secreting virulence factors or acting as adhesins. Two-partner secretion systems involve the cooperation between two proteins to transport effector molecules across the outer membrane.

Understanding the structure and function of bacterial OMPs is essential for developing new antibiotics and therapies that target gram-negative bacteria, which are often resistant to conventional treatments.

Chlamydia infections are caused by the bacterium Chlamydia trachomatis and can affect multiple body sites, including the genitals, eyes, and respiratory system. The most common type of chlamydia infection is a sexually transmitted infection (STI) that affects the genitals.

In women, chlamydia infections can cause symptoms such as abnormal vaginal discharge, burning during urination, and pain in the lower abdomen. In men, symptoms may include discharge from the penis, painful urination, and testicular pain or swelling. However, many people with chlamydia infections do not experience any symptoms at all.

If left untreated, chlamydia infections can lead to serious complications, such as pelvic inflammatory disease (PID) in women, which can cause infertility and ectopic pregnancy. In men, chlamydia infections can cause epididymitis, an inflammation of the tube that carries sperm from the testicles, which can also lead to infertility.

Chlamydia infections are diagnosed through a variety of tests, including urine tests and swabs taken from the affected area. Once diagnosed, chlamydia infections can be treated with antibiotics such as azithromycin or doxycycline. It is important to note that treatment only clears the infection and does not repair any damage caused by the infection.

Prevention measures include practicing safe sex, getting regular STI screenings, and avoiding sharing towels or other personal items that may come into contact with infected bodily fluids.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Penicillin resistance is the ability of certain bacteria to withstand the antibacterial effects of penicillin, a type of antibiotic. This occurs when these bacteria have developed mechanisms that prevent penicillin from binding to and inhibiting the function of their cell wall biosynthesis proteins, particularly the enzyme transpeptidase.

One common mechanism of penicillin resistance is the production of beta-lactamases, enzymes that can hydrolyze and inactivate the beta-lactam ring structure present in penicillin and other related antibiotics. Another mechanism involves alterations in the bacterial cell wall that prevent penicillin from binding to its target proteins.

Penicillin resistance is a significant concern in clinical settings, as it can limit treatment options for bacterial infections and may necessitate the use of more potent or toxic antibiotics. It is important to note that misuse or overuse of antibiotics can contribute to the development and spread of antibiotic-resistant bacteria, including those resistant to penicillin.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Ceftriaxone is a third-generation cephalosporin antibiotic, which is used to treat a wide range of bacterial infections. It works by inhibiting the synthesis of the bacterial cell wall. Ceftriaxone has a broad spectrum of activity and is effective against many gram-positive and gram-negative bacteria, including some that are resistant to other antibiotics.

Ceftriaxone is available in injectable form and is commonly used to treat serious infections such as meningitis, pneumonia, and sepsis. It is also used to prevent infections after surgery or trauma. The drug is generally well-tolerated, but it can cause side effects such as diarrhea, nausea, vomiting, and rash. In rare cases, it may cause serious side effects such as anaphylaxis, kidney damage, and seizures.

It's important to note that Ceftriaxone should be used only under the supervision of a healthcare professional, and that it is not recommended for use in individuals with a history of allergic reactions to cephalosporins or penicillins. Additionally, as with all antibiotics, it should be taken as directed and for the full duration of the prescribed course of treatment, even if symptoms improve before the treatment is finished.

Fimbriae proteins are specialized protein structures found on the surface of certain bacteria, including some pathogenic species. Fimbriae, also known as pili, are thin, hair-like appendages that extend from the bacterial cell wall and play a role in the attachment of the bacterium to host cells or surfaces.

Fimbrial proteins are responsible for the assembly and structure of these fimbriae. They are produced by the bacterial cell and then self-assemble into long, thin fibers that extend from the surface of the bacterium. The proteins have a highly conserved sequence at their carboxy-terminal end, which is important for their polymerization and assembly into fimbriae.

Fimbrial proteins can vary widely between different species of bacteria, and even between strains of the same species. Some fimbrial proteins are adhesins, meaning they bind to specific receptors on host cells, allowing the bacterium to attach to and colonize tissues. Other fimbrial proteins may play a role in biofilm formation or other aspects of bacterial pathogenesis.

Understanding the structure and function of fimbrial proteins is important for developing new strategies to prevent or treat bacterial infections, as these proteins can be potential targets for vaccines or therapeutic agents.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

Bacteriological techniques refer to the various methods and procedures used in the laboratory for the cultivation, identification, and study of bacteria. These techniques are essential in fields such as medicine, biotechnology, and research. Here are some common bacteriological techniques:

1. **Sterilization**: This is a process that eliminates or kills all forms of life, including bacteria, viruses, fungi, and spores. Common sterilization methods include autoclaving (using steam under pressure), dry heat (in an oven), chemical sterilants, and radiation.

2. **Aseptic Technique**: This refers to practices used to prevent contamination of sterile materials or environments with microorganisms. It includes the use of sterile equipment, gloves, and lab coats, as well as techniques such as flaming, alcohol swabbing, and using aseptic transfer devices.

3. **Media Preparation**: This involves the preparation of nutrient-rich substances that support bacterial growth. There are various types of media, including solid (agar), liquid (broth), and semi-solid (e.g., stab agar). The choice of medium depends on the type of bacteria being cultured and the purpose of the investigation.

4. **Inoculation**: This is the process of introducing a bacterial culture into a medium. It can be done using a loop, swab, or needle. The inoculum should be taken from a pure culture to avoid contamination.

5. **Incubation**: After inoculation, the bacteria are allowed to grow under controlled conditions of temperature, humidity, and atmospheric composition. This process is called incubation.

6. **Staining and Microscopy**: Bacteria are too small to be seen with the naked eye. Therefore, they need to be stained and observed under a microscope. Gram staining is a common method used to differentiate between two major groups of bacteria based on their cell wall composition.

7. **Biochemical Tests**: These are tests used to identify specific bacterial species based on their biochemical characteristics, such as their ability to ferment certain sugars, produce particular enzymes, or resist certain antibiotics.

8. **Molecular Techniques**: Advanced techniques like PCR and DNA sequencing can provide more precise identification of bacteria. They can also be used for genetic analysis and epidemiological studies.

Remember, handling microorganisms requires careful attention to biosafety procedures to prevent accidental infection or environmental contamination.

Porins are a type of protein found in the outer membrane of gram-negative bacteria. They form water-filled channels, or pores, that allow small molecules such as ions, nutrients, and waste products to pass through the otherwise impermeable outer membrane. Porins are important for the survival of gram-negative bacteria, as they enable the selective transport of essential molecules while providing a barrier against harmful substances.

There are different types of porins, classified based on their structure and function. Some examples include:

1. General porins (also known as nonspecific porins): These are the most common type of porins and form large, water-filled channels that allow passive diffusion of small molecules up to 600-700 Da in size. They typically have a trimeric structure, with three identical or similar subunits forming a pore in the membrane.
2. Specific porins: These porins are more selective in the molecules they allow to pass through and often have smaller pores than general porins. They can be involved in the active transport of specific molecules or ions, requiring energy from the cell.
3. Autotransporters: While not strictly considered porins, autotransporter proteins share some structural similarities with porins and are involved in the transport of protein domains across the outer membrane. They consist of an N-terminal passenger domain and a C-terminal translocator domain, which forms a β-barrel pore in the outer membrane through which the passenger domain is transported.

Porins have attracted interest as potential targets for antibiotic development, as they play crucial roles in bacterial survival and virulence. Inhibiting porin function or blocking the pores could disrupt essential processes in gram-negative bacteria, providing a new approach to treating infections caused by these organisms.

The cervix uteri, often simply referred to as the cervix, is the lower part of the uterus (womb) that connects to the vagina. It has an opening called the external os through which menstrual blood exits the uterus and sperm enters during sexual intercourse. During childbirth, the cervix dilates or opens to allow for the passage of the baby through the birth canal.

Penicillins are a group of antibiotics derived from the Penicillium fungus. They are widely used to treat various bacterial infections due to their bactericidal activity, which means they kill bacteria by interfering with the synthesis of their cell walls. The first penicillin, benzylpenicillin (also known as penicillin G), was discovered in 1928 by Sir Alexander Fleming. Since then, numerous semi-synthetic penicillins have been developed to expand the spectrum of activity and stability against bacterial enzymes that can inactivate these drugs.

Penicillins are classified into several groups based on their chemical structure and spectrum of activity:

1. Natural Penicillins (e.g., benzylpenicillin, phenoxymethylpenicillin): These have a narrow spectrum of activity, mainly targeting Gram-positive bacteria such as streptococci and staphylococci. However, they are susceptible to degradation by beta-lactamase enzymes produced by some bacteria.
2. Penicillinase-resistant Penicillins (e.g., methicillin, oxacillin, nafcillin): These penicillins resist degradation by certain bacterial beta-lactamases and are primarily used to treat infections caused by staphylococci, including methicillin-susceptible Staphylococcus aureus (MSSA).
3. Aminopenicillins (e.g., ampicillin, amoxicillin): These penicillins have an extended spectrum of activity compared to natural penicillins, including some Gram-negative bacteria such as Escherichia coli and Haemophilus influenzae. However, they are still susceptible to degradation by many beta-lactamases.
4. Antipseudomonal Penicillins (e.g., carbenicillin, ticarcillin): These penicillins have activity against Pseudomonas aeruginosa and other Gram-negative bacteria with increased resistance to other antibiotics. They are often combined with beta-lactamase inhibitors such as clavulanate or tazobactam to protect them from degradation.
5. Extended-spectrum Penicillins (e.g., piperacillin): These penicillins have a broad spectrum of activity, including many Gram-positive and Gram-negative bacteria. They are often combined with beta-lactamase inhibitors to protect them from degradation.

Penicillins are generally well-tolerated antibiotics; however, they can cause allergic reactions in some individuals, ranging from mild skin rashes to life-threatening anaphylaxis. Cross-reactivity between different penicillin classes and other beta-lactam antibiotics (e.g., cephalosporins) is possible but varies depending on the specific drugs involved.

Blood bactericidal activity refers to the ability of an individual's blood to kill or inhibit the growth of bacteria. This is an important aspect of the body's immune system, as it helps to prevent infection and maintain overall health. The bactericidal activity of blood can be influenced by various factors, including the presence of antibodies, white blood cells (such as neutrophils), and complement proteins.

In medical terms, the term "bactericidal" specifically refers to an agent or substance that is capable of killing bacteria. Therefore, when we talk about blood bactericidal activity, we are referring to the collective ability of various components in the blood to kill or inhibit the growth of bacteria. This is often measured in laboratory tests as a way to assess a person's immune function and their susceptibility to infection.

It's worth noting that not all substances in the blood are bactericidal; some may simply inhibit the growth of bacteria without killing them. These substances are referred to as bacteriostatic. Both bactericidal and bacteriostatic agents play important roles in maintaining the body's defense against infection.

Pyocins are protein-based bacteriocins produced by certain strains of the bacterium Pseudomonas aeruginosa. They are plasmid-encoded bacterial toxins that are released by the producing cell and can kill other susceptible bacteria, providing a competitive advantage in their environment. Pyocins are similar to bacteriophage tails and they bind to specific receptors on the target cell surface, forming pores in the membrane and causing cell death. There are three main types of pyocins: narrow-spectrum pyocins (PyoA, PyoD), middle-spectrum pyocins (PyoS), and wide-spectrum pyocins (PyoM).

Microbial drug resistance is a significant medical issue that refers to the ability of microorganisms (such as bacteria, viruses, fungi, or parasites) to withstand or survive exposure to drugs or medications designed to kill them or limit their growth. This phenomenon has become a major global health concern, particularly in the context of bacterial infections, where it is also known as antibiotic resistance.

Drug resistance arises due to genetic changes in microorganisms that enable them to modify or bypass the effects of antimicrobial agents. These genetic alterations can be caused by mutations or the acquisition of resistance genes through horizontal gene transfer. The resistant microbes then replicate and multiply, forming populations that are increasingly difficult to eradicate with conventional treatments.

The consequences of drug-resistant infections include increased morbidity, mortality, healthcare costs, and the potential for widespread outbreaks. Factors contributing to the emergence and spread of microbial drug resistance include the overuse or misuse of antimicrobials, poor infection control practices, and inadequate surveillance systems.

To address this challenge, it is crucial to promote prudent antibiotic use, strengthen infection prevention and control measures, develop new antimicrobial agents, and invest in research to better understand the mechanisms underlying drug resistance.

Bacterial fimbriae are thin, hair-like protein appendages that extend from the surface of many types of bacteria. They are involved in the attachment of bacteria to surfaces, other cells, or extracellular structures. Fimbriae enable bacteria to adhere to host tissues and form biofilms, which contribute to bacterial pathogenicity and survival in various environments. These protein structures are composed of several thousand subunits of a specific protein called pilin. Some fimbriae can recognize and bind to specific receptors on host cells, initiating the process of infection and colonization.

I'm happy to help! However, I believe there may be a slight misunderstanding in your question. "Pili" is a Filipino word that means "hair," and it is not a medical term. On the other hand, "sex" is a broad term that refers to various biological and social characteristics related to males and females.

If you are asking for a medical definition related to hair and sex, there are several possible options depending on the context. For example, hirsutism is a medical condition where women have excessive hair growth in a male-like pattern, such as on the face, chest, or back. This condition can be caused by hormonal imbalances or genetic factors.

If you could provide more context or clarify your question, I would be happy to try and give you a more specific answer!

Bacterial transformation is a natural process by which exogenous DNA is taken up and incorporated into the genome of a bacterial cell. This process was first discovered in 1928 by Frederick Griffith, who observed that dead virulent bacteria could transfer genetic material to live avirulent bacteria, thereby conferring new properties such as virulence to the recipient cells.

The uptake of DNA by bacterial cells typically occurs through a process called "competence," which can be either naturally induced under certain environmental conditions or artificially induced in the laboratory using various methods. Once inside the cell, the exogenous DNA may undergo recombination with the host genome, resulting in the acquisition of new genes or the alteration of existing ones.

Bacterial transformation has important implications for both basic research and biotechnology. It is a powerful tool for studying gene function and for engineering bacteria with novel properties, such as the ability to produce valuable proteins or degrade environmental pollutants. However, it also poses potential risks in the context of genetic engineering and biocontainment, as transformed bacteria may be able to transfer their newly acquired genes to other organisms in the environment.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

Bacterial antigens are substances found on the surface or produced by bacteria that can stimulate an immune response in a host organism. These antigens can be proteins, polysaccharides, teichoic acids, lipopolysaccharides, or other molecules that are recognized as foreign by the host's immune system.

When a bacterial antigen is encountered by the host's immune system, it triggers a series of responses aimed at eliminating the bacteria and preventing infection. The host's immune system recognizes the antigen as foreign through the use of specialized receptors called pattern recognition receptors (PRRs), which are found on various immune cells such as macrophages, dendritic cells, and neutrophils.

Once a bacterial antigen is recognized by the host's immune system, it can stimulate both the innate and adaptive immune responses. The innate immune response involves the activation of inflammatory pathways, the recruitment of immune cells to the site of infection, and the production of antimicrobial peptides.

The adaptive immune response, on the other hand, involves the activation of T cells and B cells, which are specific to the bacterial antigen. These cells can recognize and remember the antigen, allowing for a more rapid and effective response upon subsequent exposures.

Bacterial antigens are important in the development of vaccines, as they can be used to stimulate an immune response without causing disease. By identifying specific bacterial antigens that are associated with virulence or pathogenicity, researchers can develop vaccines that target these antigens and provide protection against infection.

Neisseriaceae is a family of gram-negative, aerobic bacteria that includes several genera of medically significant organisms. The most well-known members of this family are Neisseria and Kingella, which include species that can cause various infections in humans.

The Neisseria genus includes several important human pathogens, such as N. gonorrhoeae (the causative agent of gonorrhea) and N. meningitidis (a leading cause of bacterial meningitis and sepsis). These organisms are typically found in the mucosal membranes of the respiratory and urogenital tracts.

The Kingella genus includes several species that can cause invasive infections, such as K. kingae (a common cause of bone and joint infections in young children) and K. denitrificans (which has been associated with endocarditis and bacteremia).

Overall, Neisseriaceae is an important family of bacteria that includes several significant human pathogens, many of which can cause serious and potentially life-threatening infections if left untreated.

Meningococcal infections are caused by the bacterium Neisseria meningitidis, also known as meningococcus. These infections can take several forms, but the most common are meningitis (inflammation of the membranes surrounding the brain and spinal cord) and septicemia (bloodstream infection). Meningococcal infections are contagious and can spread through respiratory droplets or close contact with an infected person. They can be serious and potentially life-threatening, requiring prompt medical attention and treatment with antibiotics. Symptoms of meningococcal meningitis may include fever, headache, stiff neck, and sensitivity to light, while symptoms of septicemia may include fever, chills, rash, and severe muscle pain. Vaccination is available to prevent certain strains of meningococcal disease.

Penicillin G is a type of antibiotic that belongs to the class of medications called penicillins. It is a natural antibiotic derived from the Penicillium fungus and is commonly used to treat a variety of bacterial infections. Penicillin G is active against many gram-positive bacteria, as well as some gram-negative bacteria.

Penicillin G is available in various forms, including an injectable solution and a powder for reconstitution into a solution. It works by interfering with the ability of bacteria to form a cell wall, which ultimately leads to bacterial death. Penicillin G is often used to treat serious infections that cannot be treated with other antibiotics, such as endocarditis (inflammation of the inner lining of the heart), pneumonia, and meningitis (inflammation of the membranes surrounding the brain and spinal cord).

It's important to note that Penicillin G is not commonly used for topical or oral treatment due to its poor absorption in the gastrointestinal tract and instability in acidic environments. Additionally, as with all antibiotics, Penicillin G should be used under the guidance of a healthcare professional to ensure appropriate use and to reduce the risk of antibiotic resistance.

Ciprofloxacin is a fluoroquinolone antibiotic that is used to treat various types of bacterial infections, including respiratory, urinary, and skin infections. It works by inhibiting the bacterial DNA gyrase, which is an enzyme necessary for bacterial replication and transcription. This leads to bacterial cell death. Ciprofloxacin is available in oral and injectable forms and is usually prescribed to be taken twice a day. Common side effects include nausea, diarrhea, and headache. It may also cause serious adverse reactions such as tendinitis, tendon rupture, peripheral neuropathy, and central nervous system effects. It is important to note that ciprofloxacin should not be used in patients with a history of hypersensitivity to fluoroquinolones and should be used with caution in patients with a history of seizures, brain injury, or other neurological conditions.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Sexually Transmitted Diseases (STDs) are infections that can be passed from one person to another through sexual contact. When referring to bacterial STDs, these are infections caused by bacteria. Examples of bacterial STDs include chlamydia, gonorrhea, syphilis, and pelvic inflammatory disease (PID). These infections can be treated with antibiotics, but if left untreated, they can cause serious health problems, such as infertility, organ damage, and even death. It is important to practice safe sex and get regular STD screenings to prevent and promptly treat bacterial STDs.

Neisseria meningitidis, Serogroup B is a subtype of the bacterium Neisseria meningitidis, also known as meningococcus. This bacterium can cause serious infections such as meningitis (inflammation of the lining of the brain and spinal cord) and septicemia (blood poisoning).

Serogroup B is one of the five main serogroups of Neisseria meningitidis, which are classified based on the chemical structure of their capsular polysaccharides. Serogroup B strains are responsible for a significant proportion of invasive meningococcal disease cases in many parts of the world.

The availability of vaccines that protect against some but not all serogroups of Neisseria meningitidis has led to efforts to develop effective vaccines against Serogroup B strains, which have been challenging due to their chemical structure and variability. In recent years, several vaccines targeting Serogroup B have been developed and licensed for use in various countries.

Nucleic acid amplification techniques (NAATs) are medical laboratory methods used to increase the number of copies of a specific DNA or RNA sequence. These techniques are widely used in molecular biology and diagnostics, including the detection and diagnosis of infectious diseases, genetic disorders, and cancer.

The most commonly used NAAT is the polymerase chain reaction (PCR), which involves repeated cycles of heating and cooling to separate and replicate DNA strands. Other NAATs include loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), and transcription-mediated amplification (TMA).

NAATs offer several advantages over traditional culture methods for detecting pathogens, including faster turnaround times, increased sensitivity and specificity, and the ability to detect viable but non-culturable organisms. However, they also require specialized equipment and trained personnel, and there is a risk of contamination and false positive results if proper precautions are not taken.

Pharyngeal diseases refer to conditions that affect the pharynx, which is the part of the throat that lies behind the nasal cavity and mouth, and above the esophagus and larynx. The pharynx plays a crucial role in swallowing, speaking, and breathing. Pharyngeal diseases can cause symptoms such as sore throat, difficulty swallowing, pain during swallowing, swollen lymph nodes, and earaches.

Some common pharyngeal diseases include:

1. Pharyngitis: Inflammation of the pharynx, often caused by a viral or bacterial infection.
2. Tonsillitis: Inflammation of the tonsils, which are two masses of lymphoid tissue located on either side of the back of the throat.
3. Epiglottitis: Inflammation of the epiglottis, a flap of cartilage that covers the windpipe during swallowing to prevent food and liquids from entering the lungs.
4. Abscesses: A collection of pus in the pharynx caused by a bacterial infection.
5. Cancer: Malignant tumors that can develop in the pharynx, often caused by smoking or heavy alcohol use.
6. Dysphagia: Difficulty swallowing due to nerve damage, muscle weakness, or structural abnormalities in the pharynx.
7. Stridor: Noisy breathing caused by a narrowed or obstructed airway in the pharynx.

Treatment for pharyngeal diseases depends on the underlying cause and may include antibiotics, pain relievers, surgery, or radiation therapy.

Trichomonas vaginalis is a species of protozoan parasite that causes the sexually transmitted infection known as trichomoniasis. It primarily infects the urogenital tract, with women being more frequently affected than men. The parasite exists as a motile, pear-shaped trophozoite, measuring about 10-20 micrometers in size.

T. vaginalis infection can lead to various symptoms, including vaginal discharge with an unpleasant odor, itching, and irritation in women, while men may experience urethral discharge or discomfort during urination. However, up to 50% of infected individuals might not develop any noticeable symptoms, making the infection challenging to recognize and treat without medical testing.

Diagnosis typically involves microscopic examination of vaginal secretions or urine samples, although nucleic acid amplification tests (NAATs) are becoming more common due to their higher sensitivity and specificity. Treatment usually consists of oral metronidazole or tinidazole, which are antibiotics that target the parasite's ability to reproduce. It is essential to treat both partners simultaneously to prevent reinfection and ensure successful eradication of the parasite.

Pelvic Inflammatory Disease (PID) is a medical condition characterized by inflammation of the reproductive organs in women, specifically the uterus, fallopian tubes, and/or ovaries. It is often caused by an infection that ascends from the cervix or vagina into the upper genital tract. The infectious agents are usually sexually transmitted bacteria such as Neisseria gonorrhoeae and Chlamydia trachomatis, but other organisms can also be responsible.

Symptoms of PID may include lower abdominal pain, irregular menstrual bleeding, vaginal discharge with an unpleasant odor, fever, painful sexual intercourse, or pain in the lower back. However, some women with PID may not experience any symptoms at all. If left untreated, PID can lead to serious complications such as infertility, ectopic pregnancy, and chronic pelvic pain.

Diagnosis of PID is typically based on a combination of clinical findings, physical examination, and laboratory tests. Treatment usually involves antibiotics to eradicate the infection and may also include pain management and other supportive measures. In some cases, hospitalization may be necessary for more intensive treatment or if complications arise.

Serotyping is a laboratory technique used to classify microorganisms, such as bacteria and viruses, based on the specific antigens or proteins present on their surface. It involves treating the microorganism with different types of antibodies and observing which ones bind to its surface. Each distinct set of antigens corresponds to a specific serotype, allowing for precise identification and characterization of the microorganism. This technique is particularly useful in epidemiology, vaccine development, and infection control.

The vagina is the canal that joins the cervix (the lower part of the uterus) to the outside of the body. It also is known as the birth canal because babies pass through it during childbirth. The vagina is where sexual intercourse occurs and where menstrual blood exits the body. It has a flexible wall that can expand and retract. During sexual arousal, the vaginal walls swell with blood to become more elastic in order to accommodate penetration.

It's important to note that sometimes people use the term "vagina" to refer to the entire female genital area, including the external structures like the labia and clitoris. But technically, these are considered part of the vulva, not the vagina.

Meningococcal meningitis is a specific type of bacterial meningitis caused by the bacterium Neisseria meningitidis, also known as meningococcus. Meningitis refers to the inflammation of the meninges, which are the protective membranes covering the brain and spinal cord. When this inflammation is caused by the meningococcal bacteria, it is called meningococcal meningitis.

There are several serogroups of Neisseria meningitidis that can cause invasive disease, with the most common ones being A, B, C, W, and Y. The infection can spread through respiratory droplets or direct contact with an infected person's saliva or secretions, especially when they cough or sneeze.

Meningococcal meningitis is a serious and potentially life-threatening condition that requires immediate medical attention. Symptoms may include sudden onset of fever, severe headache, stiff neck, nausea, vomiting, confusion, and sensitivity to light. In some cases, a rash may also develop, characterized by small purple or red spots that do not blanch when pressed with a glass.

Prevention measures include vaccination against the different serogroups of Neisseria meningitidis, maintaining good personal hygiene, avoiding sharing utensils, cigarettes, or other items that may come into contact with an infected person's saliva, and promptly seeking medical care if symptoms develop.

Anti-infective agents are a class of medications that are used to treat infections caused by various microorganisms such as bacteria, viruses, fungi, and parasites. These agents work by either killing the microorganism or inhibiting its growth, thereby helping to control the infection and alleviate symptoms.

There are several types of anti-infective agents, including:

1. Antibiotics: These are medications that are used to treat bacterial infections. They work by either killing bacteria (bactericidal) or inhibiting their growth (bacteriostatic).
2. Antivirals: These are medications that are used to treat viral infections. They work by interfering with the replication of the virus, preventing it from spreading and causing further damage.
3. Antifungals: These are medications that are used to treat fungal infections. They work by disrupting the cell membrane of the fungus, killing it or inhibiting its growth.
4. Antiparasitics: These are medications that are used to treat parasitic infections. They work by either killing the parasite or inhibiting its growth and reproduction.

It is important to note that anti-infective agents are not effective against all types of infections, and it is essential to use them appropriately to avoid the development of drug-resistant strains of microorganisms.

Reagent kits, diagnostic are prepackaged sets of chemical reagents and other components designed for performing specific diagnostic tests or assays. These kits are often used in clinical laboratories to detect and measure the presence or absence of various biomarkers, such as proteins, antibodies, antigens, nucleic acids, or small molecules, in biological samples like blood, urine, or tissues.

Diagnostic reagent kits typically contain detailed instructions for their use, along with the necessary reagents, controls, and sometimes specialized equipment or supplies. They are designed to simplify the testing process, reduce human error, and increase standardization, ensuring accurate and reliable results. Examples of diagnostic reagent kits include those used for pregnancy tests, infectious disease screening, drug testing, genetic testing, and cancer biomarker detection.

Bacterial drug resistance is a type of antimicrobial resistance that occurs when bacteria evolve the ability to survive and reproduce in the presence of drugs (such as antibiotics) that would normally kill them or inhibit their growth. This can happen due to various mechanisms, including genetic mutations or the acquisition of resistance genes from other bacteria.

As a result, bacterial infections may become more difficult to treat, requiring higher doses of medication, alternative drugs, or longer treatment courses. In some cases, drug-resistant infections can lead to serious health complications, increased healthcare costs, and higher mortality rates.

Examples of bacterial drug resistance include methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and multidrug-resistant tuberculosis (MDR-TB). Preventing the spread of bacterial drug resistance is crucial for maintaining effective treatments for infectious diseases.

Uterine cervicitis is a medical condition that refers to the inflammation of the uterine cervix, which is the lower part of the uterus that opens into the vagina. It can be caused by various factors, including bacterial or viral infections, allergies, or irritants. The symptoms of cervicitis may include abnormal vaginal discharge, pain during sexual intercourse, bleeding after sex, and irregular menstrual bleeding. In some cases, cervicitis may not cause any noticeable symptoms. If left untreated, cervicitis can increase the risk of developing more severe complications, such as pelvic inflammatory disease or infertility. Treatment for cervicitis typically involves antibiotics to eliminate any underlying infections and management of symptoms. Regular gynecological exams and Pap tests are essential for early detection and prevention of cervical diseases.

Agglutination tests are laboratory diagnostic procedures used to detect the presence of antibodies or antigens in a sample, such as blood or serum. These tests work by observing the clumping (agglutination) of particles, like red blood cells or bacteriophages, coated with specific antigens or antibodies when mixed with a patient's sample.

In an agglutination test, the sample is typically combined with a reagent containing known antigens or antibodies on the surface of particles, such as latex beads, red blood cells, or bacteriophages. If the sample contains the corresponding antibodies or antigens, they will bind to the particles, forming visible clumps or agglutinates. The presence and strength of agglutination are then assessed visually or with automated equipment to determine the presence and quantity of the target antigen or antibody in the sample.

Agglutination tests are widely used in medical diagnostics for various applications, including:

1. Bacterial and viral infections: To identify specific bacterial or viral antigens in a patient's sample, such as group A Streptococcus, Legionella pneumophila, or HIV.
2. Blood typing: To determine the ABO blood group and Rh type of a donor or recipient before a blood transfusion or organ transplantation.
3. Autoimmune diseases: To detect autoantibodies in patients with suspected autoimmune disorders, such as rheumatoid arthritis, systemic lupus erythematosus, or Hashimoto's thyroiditis.
4. Allergies: To identify specific IgE antibodies in a patient's sample to determine allergic reactions to various substances, such as pollen, food, or venom.
5. Drug monitoring: To detect and quantify the presence of drug-induced antibodies, such as those developed in response to penicillin or hydralazine therapy.

Agglutination tests are simple, rapid, and cost-effective diagnostic tools that provide valuable information for clinical decision-making and patient management. However, they may have limitations, including potential cross-reactivity with other antigens, false-positive results due to rheumatoid factors or heterophile antibodies, and false-negative results due to the prozone effect or insufficient sensitivity. Therefore, it is essential to interpret agglutination test results in conjunction with clinical findings and other laboratory data.

Tetracycline is a broad-spectrum antibiotic, which is used to treat various bacterial infections. It works by preventing the growth and multiplication of bacteria. It is a part of the tetracycline class of antibiotics, which also includes doxycycline, minocycline, and others.

Tetracycline is effective against a wide range of gram-positive and gram-negative bacteria, as well as some atypical organisms such as rickettsia, chlamydia, mycoplasma, and spirochetes. It is commonly used to treat respiratory infections, skin infections, urinary tract infections, sexually transmitted diseases, and other bacterial infections.

Tetracycline is available in various forms, including tablets, capsules, and liquid solutions. It should be taken orally with a full glass of water, and it is recommended to take it on an empty stomach, at least one hour before or two hours after meals. The drug can cause tooth discoloration in children under the age of 8, so it is generally not recommended for use in this population.

Like all antibiotics, tetracycline should be used only to treat bacterial infections and not viral infections, such as the common cold or flu. Overuse or misuse of antibiotics can lead to antibiotic resistance, which makes it harder to treat infections in the future.

Specimen handling is a set of procedures and practices followed in the collection, storage, transportation, and processing of medical samples or specimens (e.g., blood, tissue, urine, etc.) for laboratory analysis. Proper specimen handling ensures accurate test results, patient safety, and data integrity. It includes:

1. Correct labeling of the specimen container with required patient information.
2. Using appropriate containers and materials to collect, store, and transport the specimen.
3. Following proper collection techniques to avoid contamination or damage to the specimen.
4. Adhering to specific storage conditions (temperature, time, etc.) before testing.
5. Ensuring secure and timely transportation of the specimen to the laboratory.
6. Properly documenting all steps in the handling process for traceability and quality assurance.

Bacterial antibodies are a type of antibodies produced by the immune system in response to an infection caused by bacteria. These antibodies are proteins that recognize and bind to specific antigens on the surface of the bacterial cells, marking them for destruction by other immune cells. Bacterial antibodies can be classified into several types based on their structure and function, including IgG, IgM, IgA, and IgE. They play a crucial role in the body's defense against bacterial infections and provide immunity to future infections with the same bacteria.

Bacterial adhesion is the initial and crucial step in the process of bacterial colonization, where bacteria attach themselves to a surface or tissue. This process involves specific interactions between bacterial adhesins (proteins, fimbriae, or pili) and host receptors (glycoproteins, glycolipids, or extracellular matrix components). The attachment can be either reversible or irreversible, depending on the strength of interaction. Bacterial adhesion is a significant factor in initiating biofilm formation, which can lead to various infectious diseases and medical device-associated infections.

"Male urogenital diseases" refer to a range of medical conditions that affect the urinary and reproductive systems in males. This can include:

1. Benign Prostatic Hyperplasia (BPH): An enlarged prostate gland that can cause difficulties with urination.

2. Prostatitis: Inflammation of the prostate gland, which can cause pain, urinary frequency and difficulty, and sexual dysfunction.

3. Erectile Dysfunction (ED): The inability to achieve or maintain an erection sufficient for sexual activity.

4. Peyronie's Disease: A condition where scar tissue causes the penis to bend or curve during an erection.

5. Testicular Cancer: A malignant tumor that develops in the testicle.

6. Epididymitis: Inflammation of the epididymis, a coiled tube at the back of the testicle where sperm matures.

7. Orchitis: Inflammation of the testicle, often caused by an infection.

8. Urinary Tract Infections (UTIs): Bacterial infections that can occur anywhere along the urinary tract.

9. Kidney Stones: Small, hard mineral deposits that form in the kidneys and can cause severe pain when passed.

10. Bladder Cancer: A malignant tumor that develops in the bladder.

These conditions can vary greatly in severity and treatment, so it's important for individuals to seek medical advice if they suspect they may have a urogenital disease.

Neisseriaceae infections refer to illnesses caused by bacteria belonging to the family Neisseriaceae, which includes several genera of gram-negative diplococci. The most common pathogens in this family are Neisseria gonorrhoeae and Neisseria meningitidis.

* N. gonorrhoeae is the causative agent of gonorrhea, a sexually transmitted infection that can affect the genital tract, rectum, and throat. It can also cause conjunctivitis in newborns who contract the bacteria during childbirth.
* N. meningitidis is responsible for meningococcal disease, which can present as meningitis (inflammation of the membranes surrounding the brain and spinal cord) or septicemia (bloodstream infection). Meningococcal disease can be severe and potentially life-threatening, with symptoms including high fever, headache, stiff neck, and a rash.

Other Neisseriaceae species that can cause human infections, though less commonly, include Moraxella catarrhalis (a cause of respiratory tract infections, particularly in children), Kingella kingae (associated with bone and joint infections in young children), and various other Neisseria species (which can cause skin and soft tissue infections, endocarditis, and other invasive diseases).

Quinolones are a class of antibacterial agents that are widely used in medicine to treat various types of infections caused by susceptible bacteria. These synthetic drugs contain a chemical structure related to quinoline and have broad-spectrum activity against both Gram-positive and Gram-negative bacteria. Quinolones work by inhibiting the bacterial DNA gyrase or topoisomerase IV enzymes, which are essential for bacterial DNA replication, transcription, and repair.

The first quinolone antibiotic was nalidixic acid, discovered in 1962. Since then, several generations of quinolones have been developed, with each generation having improved antibacterial activity and a broader spectrum of action compared to the previous one. The various generations of quinolones include:

1. First-generation quinolones (e.g., nalidixic acid): Primarily used for treating urinary tract infections caused by Gram-negative bacteria.
2. Second-generation quinolones (e.g., ciprofloxacin, ofloxacin, norfloxacin): These drugs have improved activity against both Gram-positive and Gram-negative bacteria and are used to treat a wider range of infections, including respiratory, gastrointestinal, and skin infections.
3. Third-generation quinolones (e.g., levofloxacin, sparfloxacin, grepafloxacin): These drugs have enhanced activity against Gram-positive bacteria, including some anaerobes and atypical organisms like Legionella and Mycoplasma species.
4. Fourth-generation quinolones (e.g., moxifloxacin, gatifloxacin): These drugs have the broadest spectrum of activity, including enhanced activity against Gram-positive bacteria, anaerobes, and some methicillin-resistant Staphylococcus aureus (MRSA) strains.

Quinolones are generally well-tolerated, but like all medications, they can have side effects. Common adverse reactions include gastrointestinal symptoms (nausea, vomiting, diarrhea), headache, and dizziness. Serious side effects, such as tendinitis, tendon rupture, peripheral neuropathy, and QT interval prolongation, are less common but can occur, particularly in older patients or those with underlying medical conditions. The use of quinolones should be avoided or used cautiously in these populations.

Quinolone resistance has become an increasing concern due to the widespread use of these antibiotics. Bacteria can develop resistance through various mechanisms, including chromosomal mutations and the acquisition of plasmid-mediated quinolone resistance genes. The overuse and misuse of quinolones contribute to the emergence and spread of resistant strains, which can limit treatment options for severe infections caused by these bacteria. Therefore, it is essential to use quinolones judiciously and only when clinically indicated, to help preserve their effectiveness and prevent further resistance development.

Neisseria meningitidis, Serogroup W-135 is a subtype of the bacterium Neisseria meningitidis, also known as meningococcus. This gram-negative diplococcus is a leading cause of bacterial meningitis and sepsis worldwide. The serogroups of N. meningitidis are defined based on the chemical structure of their capsular polysaccharides, which are essential virulence factors.

Serogroup W-135 is one of the six primary serogroups (A, B, C, W, X, and Y) that account for nearly all meningococcal disease cases globally. The W-135 serogroup has been associated with several outbreaks and sporadic cases of meningitis and sepsis, particularly in the African "meningitis belt," which stretches across the continent from Senegal to Ethiopia. However, it can also cause disease in other parts of the world, including Europe, America, and Asia.

The W-135 serogroup has been a concern due to its association with travel and pilgrimages, such as the Hajj in Saudi Arabia. The Hajj-associated meningococcal disease outbreaks led to the introduction of vaccination requirements for international travelers attending the pilgrimage.

Vaccines are available to protect against N. meningitidis Serogroup W-135, and they are often combined with other serogroups (e.g., MenACWY or MenQuad) to provide broader protection against multiple serogroups. These vaccines have been instrumental in controlling outbreaks and reducing the overall burden of meningococcal disease worldwide.

Urine is a physiological excretory product that is primarily composed of water, urea, and various ions (such as sodium, potassium, chloride, and others) that are the byproducts of protein metabolism. It also contains small amounts of other substances like uric acid, creatinine, ammonia, and various organic compounds. Urine is produced by the kidneys through a process called urination or micturition, where it is filtered from the blood and then stored in the bladder until it is excreted from the body through the urethra. The color, volume, and composition of urine can provide important diagnostic information about various medical conditions.

Cephalosporins are a class of antibiotics that are derived from the fungus Acremonium, originally isolated from seawater and cow dung. They have a similar chemical structure to penicillin and share a common four-membered beta-lactam ring in their molecular structure.

Cephalosporins work by inhibiting the synthesis of bacterial cell walls, which ultimately leads to bacterial death. They are broad-spectrum antibiotics, meaning they are effective against a wide range of bacteria, including both Gram-positive and Gram-negative organisms.

There are several generations of cephalosporins, each with different spectra of activity and pharmacokinetic properties. The first generation cephalosporins have a narrow spectrum of activity and are primarily used to treat infections caused by susceptible Gram-positive bacteria, such as Staphylococcus aureus and Streptococcus pneumoniae.

Second-generation cephalosporins have an expanded spectrum of activity that includes some Gram-negative organisms, such as Escherichia coli and Haemophilus influenzae. Third-generation cephalosporins have even broader spectra of activity and are effective against many resistant Gram-negative bacteria, such as Pseudomonas aeruginosa and Klebsiella pneumoniae.

Fourth-generation cephalosporins have activity against both Gram-positive and Gram-negative organisms, including some that are resistant to other antibiotics. They are often reserved for the treatment of serious infections caused by multidrug-resistant bacteria.

Cephalosporins are generally well tolerated, but like penicillin, they can cause allergic reactions in some individuals. Cross-reactivity between cephalosporins and penicillin is estimated to occur in 5-10% of patients with a history of penicillin allergy. Other potential adverse effects include gastrointestinal symptoms (such as nausea, vomiting, and diarrhea), neurotoxicity, and nephrotoxicity.

Transferrin-binding protein B (TbpB) is not a medical term itself, but it is a bacterial protein involved in the process of iron acquisition by certain bacteria. Therefore, I will provide you with a biological definition:

Transferrin-binding Protein B (TbpB) is a bacterial surface protein primarily found in pathogenic Neisseria species, such as Neisseria gonorrhoeae and Neisseria meningitidis. TbpB plays a crucial role in the iron acquisition process by binding to human transferrin, a glycoprotein that transports iron in the bloodstream.

TbpB, along with Transferrin-binding Protein A (TbpA), facilitates the uptake of iron from transferrin, which is essential for bacterial growth and survival within the host. The interaction between TbpB and transferrin allows the bacteria to evade the host's immune system and establish an infection. Understanding the function of TbpB has implications in developing novel therapeutic strategies against Neisseria infections.

Trichomonas infection, also known as trichomoniasis, is a sexually transmitted infection caused by the protozoan parasite Trichomonas vaginalis. It primarily affects the urogenital tract and is more common in women than men. The symptoms in women can include vaginal discharge with an unpleasant smell, itching, redness, and pain during sexual intercourse or urination. Many men with trichomoniasis do not develop any symptoms, although some may experience discomfort, burning after urination, or a slight discharge from the penis. If left untreated, trichomoniasis can increase the risk of acquiring or transmitting other sexually transmitted infections, such as HIV. Diagnosis is usually made through microscopic examination of a sample of vaginal or urethral discharge, and treatment typically involves prescription antibiotics like metronidazole or tinidazole.

Cytidine monophosphate N-acetylneuraminic acid, often abbreviated as CMP-Neu5Ac or CMP-NANA, is a nucleotide sugar that plays a crucial role in the biosynthesis of complex carbohydrates known as glycoconjugates. These molecules are important components of cell membranes and have various functions, including cell recognition and communication.

CMP-Neu5Ac is formed from N-acetylneuraminic acid (Neu5Ac) and cytidine triphosphate (CTP) in a reaction catalyzed by the enzyme CMP-sialic acid synthetase. Once synthesized, CMP-Neu5Ac serves as the activated donor of Neu5Ac residues in the process of glycosylation, where Neu5Ac is added to the non-reducing end of oligosaccharide chains on glycoproteins and gangliosides. This reaction is catalyzed by sialyltransferases, a family of enzymes that use CMP-Neu5Ac as their substrate.

Abnormal levels or functions of CMP-Neu5Ac and its associated enzymes have been implicated in various diseases, including cancer, neurodevelopmental disorders, and microbial infections. Therefore, understanding the biology of CMP-Neu5Ac and its role in glycosylation is essential for developing new therapeutic strategies to target these conditions.

Lipopolysaccharides (LPS) are large molecules found in the outer membrane of Gram-negative bacteria. They consist of a hydrophilic polysaccharide called the O-antigen, a core oligosaccharide, and a lipid portion known as Lipid A. The Lipid A component is responsible for the endotoxic activity of LPS, which can trigger a powerful immune response in animals, including humans. This response can lead to symptoms such as fever, inflammation, and septic shock, especially when large amounts of LPS are introduced into the bloodstream.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Neisseria meningitidis, Serogroup C is a type of bacteria that can cause serious infections in humans. It is also known as meningococcus and is part of a group of bacteria called meningococci. These bacteria can be divided into several serogroups based on the chemical structure of their outer coat. Serogroup C is one of these groups and is responsible for causing a significant number of invasive meningococcal diseases worldwide.

The bacterium Neisseria meningitidis, Serogroup C can cause serious infections such as meningitis (inflammation of the membranes surrounding the brain and spinal cord) and septicemia (blood poisoning). These infections can be life-threatening and require prompt medical attention.

The bacteria are spread through close contact with an infected person, such as coughing or kissing. It can also be transmitted through respiratory droplets or saliva. The bacteria can colonize the nasopharynx (the upper part of the throat behind the nose) without causing any symptoms, but in some cases, they can invade the bloodstream and cause serious infections.

Vaccination is available to protect against Neisseria meningitidis, Serogroup C infection. The vaccine is recommended for people at increased risk of infection, such as those traveling to areas where the disease is common or those with certain medical conditions that weaken the immune system.

Tetracycline resistance is a type of antibiotic resistance where bacteria have developed the ability to survive and grow in the presence of tetracyclines, a class of antibiotics used to treat a wide range of bacterial infections. This resistance can be mediated through various mechanisms such as:

1. Efflux pumps: These are proteins that actively pump tetracyclines out of the bacterial cell, reducing the intracellular concentration of the antibiotic and preventing it from reaching its target site.
2. Ribosomal protection proteins (RPPs): These proteins bind to the ribosomes (the sites of protein synthesis) and prevent tetracyclines from binding, thus allowing protein synthesis to continue in the presence of the antibiotic.
3. Enzymatic modification: Some bacteria produce enzymes that modify tetracyclines, rendering them ineffective or less effective against bacterial growth.
4. Mutations in target sites: Bacteria can also acquire mutations in their genome that alter the structure of the target site (ribosomes), preventing tetracyclines from binding and inhibiting protein synthesis.

Tetracycline resistance has become a significant public health concern, as it limits the therapeutic options for treating bacterial infections and contributes to the emergence and spread of multidrug-resistant bacteria. The primary causes of tetracycline resistance include the misuse and overuse of antibiotics in both human medicine and agriculture.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Urethral diseases refer to a range of conditions that affect the urethra, which is the tube that carries urine from the bladder out of the body. These diseases can cause various symptoms such as pain or discomfort during urination, difficulty in urinating, blood in urine, and abnormal discharge. Some common urethral diseases include urethritis (inflammation of the urethra), urethral stricture (narrowing of the urethra due to scar tissue or inflammation), and urethral cancer. The causes of urethral diseases can vary, including infections, injuries, congenital abnormalities, and certain medical conditions. Proper diagnosis and treatment are essential for managing urethral diseases and preventing complications.

Transferrin-binding protein A (TbpA) is not a medical term itself, but it is a bacterial protein involved in the process of iron acquisition by certain bacteria. Therefore, I will provide a biological definition:

Transferrin-binding Protein A (TbpA) is a bacterial outer membrane protein primarily found in Neisseria species (e.g., Neisseria gonorrhoeae and Neisseria meningitidis). TbpA, along with Transferrin-binding Protein B (TbpB), plays a crucial role in the pathogenesis of these bacteria by facilitating the acquisition of iron from human transferrin, an essential host protein that stores and transports iron. By binding to human transferrin, TbpA and TbpB assist in the transport of iron across the bacterial outer membrane, promoting bacterial growth and survival within the human host.

Peptidoglycan is a complex biological polymer made up of sugars and amino acids that forms a crucial component of the cell walls of bacteria. It provides structural support and protection to bacterial cells, contributing to their shape and rigidity. Peptidoglycan is unique to bacterial cell walls and is not found in the cells of other organisms, such as plants, animals, or fungi.

The polymer is composed of linear chains of alternating units of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM), which are linked together by glycosidic bonds. The NAM residues contain short peptide side chains, typically consisting of four amino acids, that cross-link adjacent polysaccharide chains, forming a rigid layer around the bacterial cell.

The composition and structure of peptidoglycan can vary between different species of bacteria, which is one factor contributing to their diversity. The enzymes responsible for synthesizing and degrading peptidoglycan are important targets for antibiotics, as inhibiting these processes can weaken or kill the bacterial cells without affecting host organisms.

Sexually Transmitted Diseases (STDs), also known as Sexually Transmitted Infections (STIs), are a group of diseases or infections that spread primarily through sexual contact, including vaginal, oral, and anal sex. They can also be transmitted through non-sexual means such as mother-to-child transmission during childbirth or breastfeeding, or via shared needles.

STDs can cause a range of symptoms, from mild to severe, and some may not show any symptoms at all. Common STDs include chlamydia, gonorrhea, syphilis, HIV/AIDS, human papillomavirus (HPV), herpes simplex virus (HSV), hepatitis B, and pubic lice.

If left untreated, some STDs can lead to serious health complications, such as infertility, organ damage, blindness, or even death. It is important to practice safe sex and get regular screenings for STDs if you are sexually active, especially if you have multiple partners or engage in high-risk behaviors.

Preventive measures include using barrier methods of protection, such as condoms, dental dams, and female condoms, getting vaccinated against HPV and hepatitis B, and limiting the number of sexual partners. If you suspect that you may have an STD, it is important to seek medical attention promptly for diagnosis and treatment.

Neisseria meningitidis, Serogroup A is a subtype of the bacterium Neisseria meningitidis, also known as meningococcus. This bacterium can cause serious infections such as meningitis (inflammation of the lining surrounding the brain and spinal cord) and septicemia (bloodstream infection).

The serogroup A designation refers to the antigenic structure of the polysaccharide capsule that surrounds the bacterium. There are several serogroups of Neisseria meningitidis, including A, B, C, Y, and W. Each serogroup has a distinct polysaccharide capsule, which can be identified using specific antibodies.

Serogroup A Neisseria meningitidis is a significant cause of epidemic meningitis, particularly in the "meningitis belt" of sub-Saharan Africa. Vaccines are available to protect against serogroup A meningococcal disease, and mass vaccination campaigns have been successful in reducing the incidence of epidemics in this region.

Salpingitis is a medical term that refers to the inflammation of the fallopian tubes, which are the pair of narrow tubes that transport the egg from the ovaries to the uterus during ovulation. This condition can occur due to various reasons, including bacterial infections (such as chlamydia or gonorrhea), pelvic inflammatory disease, or complications following surgical procedures.

Acute salpingitis is characterized by symptoms like lower abdominal pain, fever, vaginal discharge, and irregular menstrual bleeding. Chronic salpingitis may not present any noticeable symptoms, but it can lead to complications such as infertility, ectopic pregnancy, or fallopian tube damage if left untreated. Treatment typically involves antibiotics to eliminate the infection and, in severe cases, surgery to remove or repair damaged tissues.

Trichomonas vaginitis is a type of vaginal infection caused by the protozoan parasite Trichomonas vaginalis. It is transmitted through sexual contact and primarily affects the urogenital tract. The infection can cause various symptoms in women, such as vaginal discharge with an unpleasant smell, itching, redness, and pain during urination or sex. However, up to 50% of infected individuals may be asymptomatic. In men, it often does not cause any symptoms but can lead to urethritis (inflammation of the urethra). Diagnosis is usually made through microscopic examination of vaginal secretions or a nucleic acid amplification test (NAAT). Treatment typically involves prescription antibiotics like metronidazole or tinidazole, targeting both sexual partners to prevent reinfection.

"Evaluation studies" is a broad term that refers to the systematic assessment or examination of a program, project, policy, intervention, or product. The goal of an evaluation study is to determine its merits, worth, and value by measuring its effects, efficiency, and impact. There are different types of evaluation studies, including formative evaluations (conducted during the development or implementation of a program to provide feedback for improvement), summative evaluations (conducted at the end of a program to determine its overall effectiveness), process evaluations (focusing on how a program is implemented and delivered), outcome evaluations (assessing the short-term and intermediate effects of a program), and impact evaluations (measuring the long-term and broad consequences of a program).

In medical contexts, evaluation studies are often used to assess the safety, efficacy, and cost-effectiveness of new treatments, interventions, or technologies. These studies can help healthcare providers make informed decisions about patient care, guide policymakers in developing evidence-based policies, and promote accountability and transparency in healthcare systems. Examples of evaluation studies in medicine include randomized controlled trials (RCTs) that compare the outcomes of a new treatment to those of a standard or placebo treatment, observational studies that examine the real-world effectiveness and safety of interventions, and economic evaluations that assess the costs and benefits of different healthcare options.

Neisseria meningitidis, Serogroup Y refers to a specific subtype of the bacterium Neisseria meningitidis, also known as meningococcus. This gram-negative diplococcus is a leading cause of bacterial meningitis and sepsis worldwide. The serogroup classification is based on the chemical structure of the polysaccharide capsule surrounding the bacterium. Serogroup Y organisms have a polyssacharide capsule containing N-acetylmannosamine and N-acetyglucosamine.

Infections caused by Neisseria meningitidis, Serogroup Y can result in severe illnesses such as meningitis (inflammation of the membranes covering the brain and spinal cord) and septicemia (bloodstream infection). Symptoms may include sudden onset of fever, headache, stiff neck, nausea, vomiting, altered mental status, or a rash.

Vaccines are available to protect against Neisseria meningitidis infections, including those caused by Serogroup Y. Vaccination is particularly recommended for individuals at increased risk of infection, such as college students living in dormitories, military recruits, microbiologists handling the bacteria, and people with certain medical conditions or traveling to areas with high rates of meningococcal disease.

"Moraxella" is a genus of gram-negative, aerobic bacteria that are commonly found on the mucous membranes of humans and animals. They are non-motile and catalase-positive. Some species of Moraxella can cause infections in humans, such as M. catarrhalis, which is a common cause of respiratory tract infections like bronchitis and otitis media (middle ear infection) in children. Another species, M. nonliquefaciens, can be found on the skin and mucous membranes of humans and animals, but it's not considered to be pathogenic.

It is worth noting that Moraxella genus was previously classified under the name Neisseria, but based on genetic and biochemical evidence, they are now considered separate genera.

Mycoplasma genitalium is a small, bacteria that lack a cell wall and can be found in the urinary and genital tracts of humans. It's known to cause several urogenital infections, such as urethritis in men and cervicitis in women. In some cases, it may also lead to pelvic inflammatory disease (PID) and complications like infertility or ectopic pregnancy in women. Mycoplasma genitalium can be sexually transmitted and is often associated with HIV transmission. Due to its small size and atypical growth requirements, it can be challenging to culture and diagnose using standard microbiological methods. Molecular tests, such as nucleic acid amplification tests (NAATs), are commonly used for detection in clinical settings.

Norfloxacin is a fluoroquinolone antibiotic that is primarily used to treat bacterial infections of the urinary tract, prostate, and skin. It works by inhibiting the bacterial DNA gyrase, which is an essential enzyme involved in DNA replication. This leads to bacterial cell death. Norfloxacin is available as a generic medication and is usually prescribed in oral form, such as tablets or suspension.

Here's the medical definition of Norfloxacin:

Norfloxacin (norfloxacinum) - A synthetic fluoroquinolone antibiotic with a broad spectrum of activity against gram-positive and gram-negative bacteria, including Pseudomonas aeruginosa. It is used to treat urinary tract infections, prostatitis, and skin infections. Norfloxacin inhibits bacterial DNA gyrase, which results in bacterial cell death. The drug is available as a generic medication and is usually prescribed in oral form, such as tablets or suspension. Common side effects include nausea, diarrhea, headache, and dizziness. Norfloxacin may also cause serious adverse reactions, including tendinitis, tendon rupture, peripheral neuropathy, and central nervous system effects. It is contraindicated in patients with a history of hypersensitivity to quinolones or fluoroquinolones.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Fluoroquinolones are a class of antibiotics that are widely used to treat various types of bacterial infections. They work by interfering with the bacteria's ability to replicate its DNA, which ultimately leads to the death of the bacterial cells. Fluoroquinolones are known for their broad-spectrum activity against both gram-positive and gram-negative bacteria.

Some common fluoroquinolones include ciprofloxacin, levofloxacin, moxifloxacin, and ofloxacin. These antibiotics are often used to treat respiratory infections, urinary tract infections, skin infections, and gastrointestinal infections, among others.

While fluoroquinolones are generally well-tolerated, they can cause serious side effects in some people, including tendonitis, nerve damage, and changes in mood or behavior. As with all antibiotics, it's important to use fluoroquinolones only when necessary and under the guidance of a healthcare provider.

Female urogenital diseases refer to a range of medical conditions that affect the female urinary and genital systems. These systems include the kidneys, ureters, bladder, urethra, vulva, vagina, and reproductive organs such as the ovaries and uterus.

Some common female urogenital diseases include:

1. Urinary tract infections (UTIs): These are infections that occur in any part of the urinary system, including the kidneys, ureters, bladder, or urethra.
2. Pelvic inflammatory disease (PID): This is an infection of the reproductive organs, including the uterus, fallopian tubes, and ovaries.
3. Endometriosis: This is a condition in which tissue similar to the lining of the uterus grows outside of the uterus, often on the ovaries, fallopian tubes, or other pelvic structures.
4. Ovarian cysts: These are fluid-filled sacs that form on the ovaries.
5. Uterine fibroids: These are noncancerous growths that develop in the muscular wall of the uterus.
6. Interstitial cystitis/bladder pain syndrome (IC/BPS): This is a chronic bladder condition characterized by pain, pressure, and discomfort in the bladder and pelvic area.
7. Sexually transmitted infections (STIs): These are infections that are passed from person to person during sexual contact. Common STIs include chlamydia, gonorrhea, syphilis, and HIV.
8. Vulvodynia: This is chronic pain or discomfort of the vulva, the external female genital area.
9. Cancers of the reproductive system, such as ovarian cancer, cervical cancer, and uterine cancer.

These are just a few examples of female urogenital diseases. It's important for women to receive regular medical care and screenings to detect and treat these conditions early, when they are often easier to manage and have better outcomes.

Cefotaxime is a third-generation cephalosporin antibiotic, which is used to treat a variety of bacterial infections. It works by inhibiting the synthesis of the bacterial cell wall. Cefotaxime has a broad spectrum of activity and is effective against many Gram-positive and Gram-negative bacteria, including some that are resistant to other antibiotics.

Cefotaxime is often used to treat serious infections such as pneumonia, meningitis, and sepsis. It may also be used to prevent infections during surgery or in people with weakened immune systems. The drug is administered intravenously or intramuscularly, and its dosage depends on the type and severity of the infection being treated.

Like all antibiotics, cefotaxime can cause side effects, including diarrhea, nausea, vomiting, and rash. In rare cases, it may cause serious allergic reactions or damage to the kidneys or liver. It is important to follow the prescribing physician's instructions carefully when taking this medication.

Antigenic variation is a mechanism used by some microorganisms, such as bacteria and viruses, to evade the immune system and establish persistent infections. This occurs when these pathogens change or modify their surface antigens, which are molecules that can be recognized by the host's immune system and trigger an immune response.

The changes in the surface antigens can occur due to various mechanisms, such as gene mutation, gene rearrangement, or gene transfer. These changes can result in the production of new variants of the microorganism that are different enough from the original strain to avoid recognition by the host's immune system.

Antigenic variation is a significant challenge in developing effective vaccines against certain infectious diseases, such as malaria and influenza, because the constantly changing surface antigens make it difficult for the immune system to mount an effective response. Therefore, researchers are working on developing vaccines that target conserved regions of the microorganism that do not undergo antigenic variation or using a combination of antigens to increase the likelihood of recognition by the immune system.

Cefuroxime is a type of antibiotic known as a cephalosporin, which is used to treat a variety of bacterial infections. It works by interfering with the bacteria's ability to form a cell wall, which is necessary for its survival. Without a functional cell wall, the bacteria are unable to grow and multiply, and are eventually destroyed by the body's immune system.

Cefuroxime is effective against many different types of bacteria, including both Gram-positive and Gram-negative organisms. It is often used to treat respiratory tract infections, urinary tract infections, skin and soft tissue infections, and bone and joint infections.

Like all antibiotics, cefuroxime should be used only under the direction of a healthcare provider, and it is important to take the full course of treatment as prescribed, even if symptoms improve before the medication is finished. Misuse of antibiotics can lead to the development of drug-resistant bacteria, which are more difficult to treat and can pose a serious threat to public health.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Penicillin G Procaine is a formulation of penicillin G, an antibiotic derived from the Penicillium fungus, combined with procaine, a local anesthetic. This combination is often used for its extended-release properties and is administered intramuscularly. It is primarily used to treat moderate infections caused by susceptible strains of streptococci and staphylococci.

The procaine component helps to reduce the pain at the injection site, while penicillin G provides the antibacterial action. The extended-release formulation allows for less frequent dosing compared to immediate-release penicillin G. However, its use has become less common due to the development of other antibiotics and routes of administration.

Ophthalmia Neonatorum is a medical term that refers to a conjunctivitis (inflammation of the conjunctiva) occurring in the first 28 days of life, often presenting with purulent discharge and redness of the eye. It can be caused by various microorganisms, including bacteria such as Neisseria gonorrhoeae, Chlamydia trachomatis, or bacterial flora from the mother's birth canal or hospital environment. Immediate treatment is necessary to prevent potential blindness and other complications. Prophylaxis with erythromycin ointment is often recommended for all newborns.

Thiamphenicol is an antibiotic that belongs to the class of medications called amphenicols. It works by preventing the growth of bacteria. Thiamphenicol is used to treat various infections caused by bacteria. This medication may also be used to prevent bacterial endocarditis (inflammation of the lining of the heart and valves) in people having certain dental or surgical procedures.

Please note that this definition is for informational purposes only and should not be used as a substitute for professional medical advice, diagnosis, or treatment. If you have any questions about your medication, always consult with your healthcare provider.

Ceftizoxime is a type of antibiotic known as a third-generation cephalosporin. It works by interfering with the bacteria's ability to form a cell wall, which is necessary for its survival. Ceftizoxime is effective against a wide range of gram-positive and gram-negative bacteria, including many that are resistant to other antibiotics.

It is commonly used to treat various types of infections, such as pneumonia, urinary tract infections, skin infections, and intra-abdominal infections. Ceftizoxime is available in both intravenous (IV) and oral forms, although the IV form is more commonly used in clinical practice.

Like all antibiotics, ceftizoxime should be used only to treat bacterial infections, as it has no effect on viral infections. Overuse or misuse of antibiotics can lead to the development of antibiotic resistance, which makes it more difficult to treat infections in the future.

It is important to note that ceftizoxime should only be used under the supervision of a healthcare provider, who will determine the appropriate dosage and duration of treatment based on the patient's individual needs and medical history.

Leukorrhea is a medical term that refers to a white or yellowish-white discharge from the vagina. It's composed of cells shed from the lining of the vagina, fluid, and bacteria. While it can be normal and occur throughout a woman's reproductive years due to hormonal changes, it can also indicate an infection or inflammation, particularly when it's accompanied by symptoms like itching, burning, foul odor, or pain. Common causes of abnormal leukorrhea include bacterial vaginosis, yeast infections, and sexually transmitted infections.

Genetic transformation is the process by which an organism's genetic material is altered or modified, typically through the introduction of foreign DNA. This can be achieved through various techniques such as:

* Gene transfer using vectors like plasmids, phages, or artificial chromosomes
* Direct uptake of naked DNA using methods like electroporation or chemically-mediated transfection
* Use of genome editing tools like CRISPR-Cas9 to introduce precise changes into the organism's genome.

The introduced DNA may come from another individual of the same species (cisgenic), from a different species (transgenic), or even be synthetically designed. The goal of genetic transformation is often to introduce new traits, functions, or characteristics that do not exist naturally in the organism, or to correct genetic defects.

This technique has broad applications in various fields, including molecular biology, biotechnology, and medical research, where it can be used to study gene function, develop genetically modified organisms (GMOs), create cell lines for drug screening, and even potentially treat genetic diseases through gene therapy.

Penicillin-Binding Proteins (PBPs) are essential bacterial enzymes that play a crucial role in the synthesis and maintenance of the bacterial cell wall. They are called "penicillin-binding" because they possess the ability to bind to penicillin and other beta-lactam antibiotics, which subsequently inhibits their function and leads to the death of the bacteria. PBPs are primary targets for many clinically important antibiotics, including penicillins, cephalosporins, and carbapenems. Inhibition of these proteins interferes with the cross-linking of peptidoglycan in the bacterial cell wall, causing structural weakness and osmotic lysis of the bacteria.

Bacterial typing techniques are methods used to identify and differentiate bacterial strains or isolates based on their unique characteristics. These techniques are essential in epidemiological studies, infection control, and research to understand the transmission dynamics, virulence, and antibiotic resistance patterns of bacterial pathogens.

There are various bacterial typing techniques available, including:

1. **Bacteriophage Typing:** This method involves using bacteriophages (viruses that infect bacteria) to identify specific bacterial strains based on their susceptibility or resistance to particular phages.
2. **Serotyping:** It is a technique that differentiates bacterial strains based on the antigenic properties of their cell surface components, such as capsules, flagella, and somatic (O) and flagellar (H) antigens.
3. **Biochemical Testing:** This method uses biochemical reactions to identify specific metabolic pathways or enzymes present in bacterial strains, which can be used for differentiation. Commonly used tests include the catalase test, oxidase test, and various sugar fermentation tests.
4. **Molecular Typing Techniques:** These methods use genetic markers to identify and differentiate bacterial strains at the DNA level. Examples of molecular typing techniques include:
* **Pulsed-Field Gel Electrophoresis (PFGE):** This method uses restriction enzymes to digest bacterial DNA, followed by electrophoresis in an agarose gel under pulsed electrical fields. The resulting banding patterns are analyzed and compared to identify related strains.
* **Multilocus Sequence Typing (MLST):** It involves sequencing specific housekeeping genes to generate unique sequence types that can be used for strain identification and phylogenetic analysis.
* **Whole Genome Sequencing (WGS):** This method sequences the entire genome of a bacterial strain, providing the most detailed information on genetic variation and relatedness between strains. WGS data can be analyzed using various bioinformatics tools to identify single nucleotide polymorphisms (SNPs), gene deletions or insertions, and other genetic changes that can be used for strain differentiation.

These molecular typing techniques provide higher resolution than traditional methods, allowing for more accurate identification and comparison of bacterial strains. They are particularly useful in epidemiological investigations to track the spread of pathogens and identify outbreaks.

DNA gyrase is a type II topoisomerase enzyme that plays a crucial role in the negative supercoiling and relaxation of DNA in bacteria. It functions by introducing transient double-stranded breaks into the DNA helix, allowing the strands to pass through one another and thereby reducing positive supercoils or introducing negative supercoils as required for proper DNA function, replication, and transcription.

DNA gyrase is composed of two subunits, GyrA and GyrB, which form a heterotetrameric structure (AB-BA) in the functional enzyme. The enzyme's activity is targeted by several antibiotics, such as fluoroquinolones and novobiocin, making it an essential target for antibacterial drug development.

In summary, DNA gyrase is a bacterial topoisomerase responsible for maintaining the correct supercoiling of DNA during replication and transcription, which can be inhibited by specific antibiotics to combat bacterial infections.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

The pharynx is a part of the digestive and respiratory systems that serves as a conduit for food and air. It is a musculo-membranous tube extending from the base of the skull to the level of the sixth cervical vertebra where it becomes continuous with the esophagus.

The pharynx has three regions: the nasopharynx, oropharynx, and laryngopharynx. The nasopharynx is the uppermost region, which lies above the soft palate and is connected to the nasal cavity. The oropharynx is the middle region, which includes the area between the soft palate and the hyoid bone, including the tonsils and base of the tongue. The laryngopharynx is the lowest region, which lies below the hyoid bone and connects to the larynx.

The primary function of the pharynx is to convey food from the oral cavity to the esophagus during swallowing and to allow air to pass from the nasal cavity to the larynx during breathing. It also plays a role in speech, taste, and immune defense.

Ampicillin is a penicillin-type antibiotic used to treat a wide range of bacterial infections. It works by interfering with the ability of bacteria to form cell walls, which are essential for their survival. This causes the bacterial cells to become unstable and eventually die.

The medical definition of Ampicillin is:

"A semi-synthetic penicillin antibiotic, derived from the Penicillium mold. It is used to treat a variety of infections caused by susceptible gram-positive and gram-negative bacteria. Ampicillin is effective against both aerobic and anaerobic organisms. It is commonly used to treat respiratory tract infections, urinary tract infections, meningitis, and endocarditis."

It's important to note that Ampicillin is not effective against infections caused by methicillin-resistant Staphylococcus aureus (MRSA) or other bacteria that have developed resistance to penicillins. Additionally, overuse of antibiotics like Ampicillin can lead to the development of antibiotic resistance, which is a significant public health concern.

DNA Topoisomerase IV is a type of enzyme that plays a crucial role in the relaxation and manipulation of supercoiled DNA during processes such as replication, transcription, and chromosome segregation. It functions by temporarily cleaving and rejoining the DNA strands to allow for the unlinking and separation of DNA molecules. This enzyme primarily targets double-stranded DNA and is especially important in bacteria, where it helps to resolve the topological challenges that arise during DNA replication and segregation of daughter chromosomes during cell division. Inhibition of DNA Topoisomerase IV has been explored as a strategy for developing antibacterial drugs, as this enzyme is essential for bacterial survival and is not found in humans.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Haemophilus ducreyi is a gram-negative, oxidase-negative, facultatively anaerobic coccobacillus that is the causative agent of chancroid, a sexually transmitted genital ulcer disease. It requires factors X and V for growth, which makes it fastidious and difficult to culture. The organism primarily infects the epithelial cells of the skin and mucous membranes, causing painful, necrotic ulcers with ragged borders and suppurative inguinal lymphadenopathy. Chancroid is a significant co-factor in the transmission of HIV. Infections caused by H. ducreyi are more common in tropical and developing regions, where it remains an important public health concern.

Gonorrhea at eMedicine "Neisseria gonorrhoeae". NCBI Taxonomy Browser. 485. Type strain of Neisseria gonorrhoeae at BacDive - ... Neisseria gonorrhoeae is named for Albert Neisser, who isolated it as the causative agent of the disease gonorrhea in 1878. ... "Neisseria gonorrhoeae genome statistics". Broad Institute. Retrieved 8 April 2017. Chung GT, Yoo JS, Oh HB, Lee YS, Cha SH, Kim ... Neisseria gonorrhoeae, also known as gonococcus (singular), or gonococci (plural), is a species of Gram-negative diplococci ...
Neisseria gonorrhoeae Antibiotic resistance Ligon BL (2005). "Albert Ludwig Sigesmund Neisser: discoverer of the cause of ... Neisseria gonorrhoeae, the bacterium that causes the sexually transmitted infection gonorrhea, has developed antibiotic ... Deguchi T, Nakane K, Yasuda M, Maeda S (September 2010). "Emergence and spread of drug resistant Neisseria gonorrhoeae". J. ... Print Rouquette-Loughlin, Dunham, Kuhn, Balthazar, Shafer (2003) The NorM Efflux Pump of Neisseria gonorrhoeae and Neissera ...
... characterizes Neisseria gonorrhoeae infections. Additionally, recent studies out of Stockholm have shown that Neisseria can ... Davies, J. K.; Koomey, J. M.; Seifert, H. S. (1994). "Pili (fimbriae) of Neisseria gonorrhoeae". In Klemm, Per (ed.). Fimbriae ... as is the case in Neisseria gonorrhoeae). Despite these challenges, progress is being made in the creation of anti-adhesion ... N. gonorrhoeae is host restricted almost entirely to humans. "Extensive studies have established type 4 fimbrial adhesins of N ...
Neisseria gonorrhoeae, the Gonococcus, and Gonorrhea. Archived 2013-01-19 at the Wayback Machine Lectures in Microbiology. 2009 ... An example of a fastidious bacterium is Neisseria gonorrhoeae, which requires blood or hemoglobin and several amino acids and ...
In the UK it is reported by the NHS that infections by Neisseria gonorrhoeae and Chlamydia trachomatis are responsible for only ... While it has been reported that infections by Neisseria gonorrhoeae or Chlamydia trachomatis are present in 75 to 90 percent of ... Chlamydia trachomatis Neisseria gonorrhoeae Prevotella spp. Streptococcus pyogenes Prevotella bivia Prevotella disiens ... Chlamydia trachomatis and Neisseria gonorrhoeae are common causes of PID. However, PID can also be caused by other untreated ...
Qu XD, Harwig SS, Oren AM, Shafer WM, Lehrer RI (April 1996). "Susceptibility of Neisseria gonorrhoeae to protegrins". ... Neisseria gonorrhoeae, and the virions of the human immunodeficiency virus in vitro under conditions which mimic the tonicity ...
Martin I, Sawatzky P, Liu G, Mulvey MR (February 2015). "Neisseria gonorrhoeae in Canada: 2009-2013". Canada Communicable ... especially if it is caused by Neisseria gonorrhoeae, or Chlamydia trachomatis. It is currently unclear whether PVP-I is more ...
Rectal gonorrhea is caused by Neisseria gonorrhoeae. The condition is usually asymptomatic, but symptoms can include rectal ...
Rarely bacteria such as Neisseria gonorrhoeae, Corynebacterium diphtheriae, or Haemophilus influenzae may be the cause. ... and Neisseria gonorrhoeae. Anaerobic bacteria have been implicated in tonsillitis, and a possible role in the acute ...
Koch, Marie L. (1949). "A Transparent Agar Medium for Growing Neisseria Gonorrhoeae". Journal of Bacteriology. 57 (5): 574. doi ...
... is caused by the bacterium Neisseria gonorrhoeae. Previous infection does not confer immunity - a person who has been ... Deguchi T, Nakane K, Yasuda M, Maeda S (September 2010). "Emergence and spread of drug resistant Neisseria gonorrhoeae". The ... Trebach JD, Chaulk CP, Page KR, Tuddenham S, Ghanem KG (May 2015). "Neisseria gonorrhoeae and Chlamydia trachomatis among women ... Baarda BI, Sikora AE (2015). "Proteomics of Neisseria gonorrhoeae: the treasure hunt for countermeasures against an old disease ...
Tobiason DM, Seifert HS (June 2006). "The obligate human pathogen, Neisseria gonorrhoeae, is polyploid". PLOS Biology. 4 (6): ...
Graver MA, Wade JJ (February 2011). "The role of acidification in the inhibition of Neisseria gonorrhoeae by vaginal ... Neisseria gonorrhoeae, Peptostreptococcus anaerobius, Prevotella bivia and Staphylococcus aureus. It is generally accepted that ...
Sandlin RC, Stein DC (May 1994). "Role of phosphoglucomutase in lipooligosaccharide biosynthesis in Neisseria gonorrhoeae". ... "Phase-variation of the truncated lipo-oligosaccharide of Neisseria meningitidis NMB phosphoglucomutase isogenic mutant NMB-R6 ... "Lipooligosaccharide biosynthesis in pathogenic Neisseria. Cloning, identification, and characterization of the ...
Barten R, Meyer TF (April 1998). "Cloning and characterisation of the Neisseria gonorrhoeae aroB gene". Molecular & General ...
including groups A and B), Neisseria gonorrhoeae, Chlamydia spp. and Mycoplasma hominis. Free gas in the tissues, abscess ...
... a function that generates a series of numbers that fill some range in an even pattern Quinolone-resistant neisseria gonorrhoeae ... "Increasing rates of quinolone-resistant Neisseria gonorrhoeae in Paris, France". Journal of the European Academy of Dermatology ...
Chlamydia pneumoniae and Neisseria gonorrhoeae have been reported to delay neutrophil apoptosis. Thus, some bacteria - and ... Simons MP, Nauseef WM, Griffith TS, Apicella MA (November 2006). "Neisseria gonorrhoeae delays the onset of apoptosis in ... Chen A, Seifert HS (November 2011). "Neisseria gonorrhoeae-mediated inhibition of apoptotic signalling in polymorphonuclear ...
Jensen M (2021). "Neisseria gonorrhoeae pyomyositis complicated by compartment syndrome: A rare manifestation of disseminated ... Gonococcal pyomyositis is a rare infection caused by Neisseria gonorrhoeae. CT with IV contrast showing enlargement and ...
May 2009). "Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC ... Neisseria gonorrhoeae, and bacterial toxins e.g. nigericin and maitotoxin. All NLRP3 activators induce cytosolic potassium ...
This secretion pathway is exemplified by the prototypical IgA1 Protease of Neisseria gonorrhoeae. The protein is directed to ... Pohlner J, Halter R, Beyreuther K, Meyer TF (1987). "Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA ...
Silva O, Ferreira E, Pato M, Caniça M, Gomes ET (2002). "In vitro anti-Neisseria gonorrhoeae activity of Terminalia macroptera ... Extracts of the plant have shown in vitro activity against Helicobacter pylori and Neisseria gonorrhoeae. Parts of the plant ...
Neisseria gonorrhoeae,Pseudomonas aeruginosa, Schizosaccharomyces pombe, Staphylococcus aureus and human herpesviruses A ... "Expression capable library for studies of Neisseria gonorrhoeae, version 1.0". BMC Microbiology. 5: 50. doi:10.1186/1471-2180-5 ...
Using DNA hybridization, N. cinerea exhibits 50% similarity to Neisseria gonorrhoeae. Neisseria cinerea has been formerly ... Neisseria cinerea can produce acid from glucose like N. gonorrhoeae, but it will then oxidize the acid to carbon dioxide. ... "Neisseria cinerea" at the Encyclopedia of Life Type strain of Neisseria cinerea at BacDive - the Bacterial Diversity ... Knapp, J.S.; E.W. Hook (1988). "Prevalence and persistence of Neisseria cinerea and other Neisseria spp. in adults". Journal of ...
It also has activity against Neisseria gonorrhoeae including strains that are resistant to other quinolone antibiotics. ... Jones RN, Biedenbach DJ, Ambrose PG, Wikler MA (2008). "Zabofloxacin (DW-224a) activity against Neisseria gonorrhoeae including ...
Penicillinase-producing Neisseria gonorrhoeae developed a resistance to penicillin in 1976. Another example is Azithromycin- ... resistant Neisseria gonorrhoeae, which developed a resistance to azithromycin in 2011. In gram-negative bacteria, plasmid- ...
For example, the binding site of PBP2 in Neisseria gonorrhoeae has been structurally determined and has three sequence motifs ... Spratt, Brian G. (10 March 1988). "Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae ... resistant Strains of Neisseria gonorrhoeae Reveal an Unexpectedly Subtle Mechanism for Antibiotic Resistance". Journal of ...
Neisseria gonorrhoeae, Hemophilus influenzae, Streptococcus pneumoniae, Streptococcus mutans and Helicobacter pylori). In the ...
Neisseria gonorrhoeae is a gram negative diplococcus (also referred to as "Gonococcus") and a pathogenic bacteria. In 2019, ... Neisseria gonorrhoeae is transmitted during sexual contact with an infected individual. The bacteria invade the non-ciliated ... Bacterial resistance to antibiotics is increasingly common in Neisseria gonorrhoeae, so it is often advised to check ... Risk factors include female sex, sexual promiscuity, and infection with resistant strains of Neisseria gonorrhoeae. This ...
"Antiseptic mouthwash against pharyngeal Neisseria gonorrhoeae: a randomised controlled trial and an in vitro study". Sexually ... "Inhibitory Activity of Antibacterial Mouthwashes and Antiseptic Substances against Neisseria gonorrhoeae". Antimicrobial Agents ... trial and laboratory studies have shown that alcohol-containing mouthwash could reduce the growth of Neisseria gonorrhoeae in ...
Gonorrhea at eMedicine "Neisseria gonorrhoeae". NCBI Taxonomy Browser. 485. Type strain of Neisseria gonorrhoeae at BacDive - ... Neisseria gonorrhoeae is named for Albert Neisser, who isolated it as the causative agent of the disease gonorrhea in 1878. ... "Neisseria gonorrhoeae genome statistics". Broad Institute. Retrieved 8 April 2017. Chung GT, Yoo JS, Oh HB, Lee YS, Cha SH, Kim ... Neisseria gonorrhoeae, also known as gonococcus (singular), or gonococci (plural), is a species of Gram-negative diplococci ...
... Neisseria gonorrhoeae is a ... Tapsall J. Neisseria gonorrhoeae and emerging resistance to extended spectrum cephalosporins. Curr Opin Infect Dis 2009;22:87-- ... Fluoroquinolone-resistance in Neisseria gonorrhoeae, Hawaii, 1999, and decreased susceptibility to azithromycin in N. ... Antimicrobial resistance for Neisseria gonorrhoeae in the United States, 1988 to 2003: the spread of fluoroquinolone resistance ...
Minimum inhibitory concentrations (MICs) to azithromycin, results of Neisseria gonorrhoeae multi-antigen sequence typing (NG- ... Neisseria gonorrhoeae with Reduced Susceptibility to Azithromycin --- San Diego County, California, 2009. A single 2 g dose of ... Neisseria gonorrhoeae isolates with high minimal inhibitory concentrations (MICs) to azithromycin, defined as MIC ≥8 µg/mL, ... High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes ...
N gonorrhoeae causes the sexually transmitted disease gonorrhea, among other diseases. ... N gonorrhoeae culture is indicated in the diagnosis of N gonorrhoeae infection. ... Neisseria gonorrhoeae culture is indicated in the diagnosis of N gonorrhoeae infection. N gonorrhoeae causes the sexually ... encoded search term (Neisseria Gonorrhoeae Culture) and Neisseria Gonorrhoeae Culture What to Read Next on Medscape ...
Citation Information: J Clin Invest. 1992;89(6):1699-1705. https://doi.org/10.1172/JCI115770 ...
Citation Information: J Clin Invest. 1992;89(6):1699-1705. https://doi.org/10.1172/JCI115770 ...
... MMWR 47(20);405-8 Publication date: 05/29/1998. ... Decreased susceptibility of Neisseria gonorrhoeae to fluoroquinolones -- Ohio and Hawaii, 1992-1993. MMWR 1994;43:325-7. * Fox ... Antimicrobial resistance in Neisseria gonorrhoeae in the United States, 1988-1994: the emergence of decreased susceptibility to ... Fluoroquinolone resistance in Neisseria gonorrhoeae -- Colorado and Washington, 1995. MMWR 1995;44:761-4. * CDC. ...
Ceftriaxone-resistant Neisseria gonorrhoeae, Japan. Emerg Infect Dis 2011;17:148-9. CrossRefexternal icon PubMedexternal icon ... Neisseria gonorrhoeae antimicrobial resistance among men who have sex with men and men who have sex exclusively with women: the ... Neisseria gonorrhoeae is a sexually transmitted pathogen that causes infections at the anatomic site of exposure (e.g., urethra ... Ni C, Xue J, Zhang C, Zhou H, van der Veen S. High prevalence of Neisseria gonorrhoeae with high-level resistance to ...
Fact Sheet: Gonorrhea - Neisseria Gonorrhoeae (Gonococcus). by APFLI , Nov 1, 2015 , STDs - Definitions / History / Statistics ...
CRYSTAL STRUCTURE OF THE SOLUBLE DOMAIN OF ANIA FROM NEISSERIA GONORRHOEAE ... The major anaerobically induced outer membrane protein (AniA) from pathogenic Neisseria gonorrhoeae is essential for cell ... CRYSTAL STRUCTURE OF THE SOLUBLE DOMAIN OF ANIA FROM NEISSERIA GONORRHOEAE. *PDB DOI: https://doi.org/10.2210/pdb1KBW/pdb ... from pathogenic Neisseria: a new class of copper-containing nitrite reductases.. Boulanger, M.J., Murphy, M.E.. (2002) J Mol ...
... and the risk groups of Neisseria gonorrhoeae in Europe over the past decade. A decline has been observed in most of Europe ... The epidemiology of Neisseria gonorrhoeae in Europe Microbes Infect. 1999 May;1(6):455-64. doi: 10.1016/s1286-4579(99)80049-5. ... This review addresses the occurrence, the trends, and the risk groups of Neisseria gonorrhoeae in Europe over the past decade. ...
Timeline for Species Neisseria gonorrhoeae [TaxId:485] from c.68.1.13 4-diphosphocytidyl-2C-methyl-D-erythritol (CDP-me) ... PDB entries in Species: Neisseria gonorrhoeae [TaxId: 485]:. *Domain(s) for 1vgw: *. Domain d1vgwa_: 1vgw A: [100612]. ... Lineage for Species: Neisseria gonorrhoeae [TaxId: 485]. *Root: SCOPe 2.08 *. Class c: Alpha and beta proteins (a/b) [51349] ( ... Species Neisseria gonorrhoeae [TaxId:485] from c.68.1.13 4-diphosphocytidyl-2C-methyl-D-erythritol (CDP-me) synthase (IspD, ...
Farhi D. The rise of fluoroquinolone resistant Neisseria gonorrhoeae. Swiss Med Wkly [Internet]. 2008 Apr. 19 [cited 2023 Sep. ...
You need to be signed in to access email alerts. If you have an account log in with your user name and password. If you dont have an account you can just enter your email address in the email box below ...
Neisseria gonorrhoeae,/i, 2.1%, and ,i,Mycoplasma genitalium,/i, (0). Multiple pathogens were observed in 12.8% ... Neisseria gonorrhoeae,/i,, ,i,Mycoplasma genitalium,/i,, ,i,Trichomonas vaginalis,/i,, ,i,Mycoplasma hominis,/i,, ,i,Ureaplasma ... Neisseria gonorrhoeae was isolated in only one sample (sample 16) and with Chlamydia trachomatis (Table 1). The cytological ... In the present study, Mycoplasma hominis and Neisseria gonorrhoeae were not found as the sole infecting pathogens, so it was ...
Comprehensive supplier list for Necktraction Fixer,Neisseria Gonorrhoeae Real Time PCR Kit
Cephalosporin-Resistant Neisseria gonorrhoeae Clone, China Cite CITE. Title : Cephalosporin-Resistant Neisseria gonorrhoeae ... Cephalosporin-resistant Neisseria gonorrhoeae is a major public health concern. N. gonorrhoeae of multiantigen sequence type ... 2018). Cephalosporin-Resistant Neisseria gonorrhoeae Clone, China. 24(4). Chen, Shao-Chun and Yin, Yue-Ping and Chen, Xiang- ... "Cephalosporin-Resistant Neisseria gonorrhoeae Clone, China" vol. 24, no. 4, 2018. Export RIS Citation Information.. ...
Moodley P, Pillay C, Goga R, et al. Evolution in the trends of antimicrobial resistance in Neisseria gonorrhoeae isolated in ... Tanaka M, Nakayama H, Tunoe H, et al. A remarkable reduction in the susceptibility of Neisseria gonorrhoeae isolates to cephems ... Susceptibilities of Neisseria gonorrhoeae to fluoroquinolones and other antimicrobial agents in Hyogo and Osaka, Japan ... Susceptibilities of Neisseria gonorrhoeae to fluoroquinolones and other antimicrobial agents in Hyogo and Osaka, Japan ...
Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhea exclusively in humans and uses multiple strategies to ... Raw data and statistical analysis of Flow cytometry data with Siglec-Fcs and different LOS mutants of Neisseria gonorrhoeae. ... Raw data and statistical analysis of IL-6 secretion ELISA assay of Neisseria gonorrhoeae challenged THP-1 cells expressing ... Data from: Evolution of the exclusively human-pathogen Neisseria gonorrhoeae: human-specific engagement of immunoregulatory ...
Neisseria gonorrhoeae" assay kit is intended for the detection of Chlamydia trachomatis and Neisseria gonorrhoeae DNA in human ... Neisseria gonorrhoeae is a species of Gram-negative diplococci non-motile bacteria from the genus Neisseria. It causes a ... Sensitivity of Neisseria gonorrhoeae DNA detection was evaluated on a collection of 228 clinical samples: 78 urine samples (55 ... The analytical sensitivity of Chlamydia trachomatis and Neisseria gonorrhoeae DNA detection is determined on five samples ...
... , also known as gonococcus or GC, is among the most common sexually transmitted infections (STIs), ... Neisseria gonorrhoeae (NG), also known as gonococcus or GC, is among the most common sexually transmitted infections (STIs), ...
Innate recognition by neutrophil granulocytes differs between neisseria gonorrhoeae strains causing local or disseminating ...
The Frequency of Discordant Gyrase A Genotypes Among Cases of Multiple Neisseria gonorrhoeae Infections at Different Anatomic ...
... gonorrhoeae multi-antigen sequence typing (NG-MAST). During 2010-2013, the proportions of resistant N. gonorrhoeae isolates ... N. gonorrhoeae isolates (n=193) obtained in the Mogilev (n=142), Minsk (n=36) and Vitebsk (n=15) regions of Belarus in 2010 (n= ... Herein, the prevalence and trends of gonococcal AMR and molecular epidemiological characteristics of N. gonorrhoeae strains ... During 2010-2013, the N. gonorrhoeae population in Belarus displayed high and relatively stable resistance levels to ...
Quinolone-resistant Neisseria gonorrhoeae rates have increased worldwide since 1994. The objective o... ... Quinolone-resistant Neisseria gonorrhoeae rates have increased worldwide since 1994. The objective of this study was to ... Neisseria gonorrhoeae Antibiotic Resistance in Paris, 2005 to 2007: Implications for Treatment Guidelines. ... All N. gonorrhoeae were susceptible to ceftriaxone and spectinomycin. The rate of quinolone-resistant N. gonorrhoeae in Paris ...
... 24(2). Lefebvre, Brigitte et al. "Ceftriaxone-Resistant Neisseria ... Antimicrobial-resistant Neisseria gonorrhoeae (NG) infection is a global public health threat, and there is a critical need to ... "Ceftriaxone-Resistant Neisseria gonorrhoeae, Canada, 2017" vol. 24, no. 2, 2018. Export RIS Citation Information.. ... Title : Ceftriaxone-Resistant Neisseria gonorrhoeae, Canada, 2017 Personal Author(s) : Lefebvre, Brigitte;Martin, Irene;Demczuk ...
Neisseria Gonorrhoeae (NG) Qualitative by Aptima COMBO® 2 TMA ... MPLNET.com » Test Menu » Neisseria Gonorrhoeae (NG) Qualitative ... Intended for use as a screening test for evidence of Neisseria gonorrhoeae infection. ...
We use cookies to ensure that we give you the best experience on our website. If you click Accept all cookies well assume that you are happy to receive all cookies and you wont see this message again. If you click Reject all non-essential cookies only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click Find out more for information on how to change your cookie settings. ...
We collected draft genome sequence data and associated metadata data on 76 N. gonorrhoeae strains from around the globe and ... Neisseria gonorrhoeae is the causative agent of gonorrhea, a sexually transmitted infection (STI) of major importance. As a ... Starnino S, Stefanelli P, Neisseria gonorrhoeae Italian Study Group. 2009. Azithromycin-resistant Neisseria gonorrhoeae strains ... Neisseria gonorrhoeae isolates. Sixty-one N. gonorrhoeae isolates of diverse origin were obtained. These included isolates from ...
  • This report summarizes trends in cephalosporin susceptibility among N. gonorrhoeae isolates in the United States during 2000--2010 using data from the Gonococcal Isolate Surveillance Project (GISP). (cdc.gov)
  • State and local public health departments should promote maintenance of laboratory capability to culture N. gonorrhoeae to allow testing of isolates for cephalosporin resistance. (cdc.gov)
  • During August--October 2009, five of 55 (9.1%) N. gonorrhoeae isolates obtained from men with symptomatic urethritis tested at San Diego County's main municipal sexually transmitted disease (STD) clinic had high azithromycin MICs: three with 8 µ g/mL and two with 16 µ g/mL. (cdc.gov)
  • GISP conducts susceptibility testing of urethral N. gonorrhoeae isolates obtained from men with symptomatic urethritis seeking care at 29 U.S. STD clinics, including San Diego County's main municipal STD clinic. (cdc.gov)
  • The five N. gonorrhoeae isolates with high MICs (9.1%) obtained from the five patients were among 55 N. gonorrhoeae isolates obtained from men with symptomatic urethritis tested during the 3-month period. (cdc.gov)
  • On October 17, 1997, the STD Program of the San Diego Department of Health was notified by the GISP laboratory that the N. gonorrhoeae isolates from patients 1 and 2 were resistant to ciprofloxacin and ofloxacin (minimum inhibitory concentration {MIC} 16 ug/mL for both antibiotics). (cdc.gov)
  • Each month, N. gonorrhoeae isolates are collected from up to the first 25 men with gonococcal urethritis attending each of the participating sexually transmitted disease (STD) clinics at 27 sites. (cdc.gov)
  • Isolates of N gonorrhoeae from male urethritis patients attending four urological clinics in Hyogo and Osaka prefectures in Japan were collected during 2002. (bmj.com)
  • As some C. trachomatis isolates are reported not to carry cryptic plasmid or have deletion(s) in it [7], "RealLine Chlamydia trachomatis/ Neisseria gonorrhoeae" assay kit detects two DNA fragments from gyrA gene and cryptic plasmid, specific to C. trachomatis species. (roboscreen.com)
  • N. gonorrhoeae isolates (n=193) obtained in the Mogilev (n=142), Minsk (n=36) and Vitebsk (n=15) regions of Belarus in 2010 (n=72), 2011 (n=6), 2012 (n=75) and 2013 (n=40) were analyzed in regards to AMR using the Etest method and for molecular epidemiology with N. gonorrhoeae multi-antigen sequence typing (NG-MAST). (biomedcentral.com)
  • isolated on selective media for N. gonorrhoeae, isolates of other Neisseria spp. (firebaseapp.com)
  • Methods: WGS was used to identify previously reported potential resistance determinants in 681 N. gonorrhoeae isolates, from England, the USA and Canada, with phenotypes for cefixime, penicillin, azithromycin, ciprofloxacin and tetracycline determined as part of national surveillance programmes. (ox.ac.uk)
  • Activity of faropenem tested against Neisseria gonorrhoeae isolates including fluoroquinolone-resistant strains. (jmilabs.com)
  • We sequenced the whole genomes of 21 N. gonorrhoeae isolates collected in 2013-2014 by ARSP. (who.int)
  • Despite the small number of isolates studied, they were genetically diverse, as shown by the sequence types, the N. gonorrhoeae multiantigen sequence typing types and the tree. (who.int)
  • This first genomic survey of N. gonorrhoeae isolates collected by ARSP will be used to contextualize prospective surveillance. (who.int)
  • N. gonorrhoeae is the causative agent of gonorrhea and N. meningitidis is one cause of bacterial meningitis. (wikipedia.org)
  • A single 2 g dose of azithromycin effectively treats genitourinary infections caused by susceptible Neisseria gonorrhoeae and has been used to treat uncomplicated gonorrhea in persons with cephalosporin allergy. (cdc.gov)
  • N gonorrhoeae causes the sexually transmitted disease gonorrhea, among other diseases. (medscape.com)
  • Gonorrhea is a common N gonorrhoeae infection that is transmitted almost exclusively by sexual contact or perinatally and primarily affects the mucous membranes of the urethra and cervix and, less frequently, those of the rectum, oropharynx, and conjunctivae. (medscape.com)
  • Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhea exclusively in humans and uses multiple strategies to infect, including acquisition of host sialic acids that cap and mask lipooligosaccharide termini, while restricting complement activation. (datadryad.org)
  • It causes a sexually transmitted disease, gonorrhea, which remains a major global public health concern since many identified strains of N. gonorrhoeae are resistant to most available antibiotics [8]. (roboscreen.com)
  • Neisseria gonorrhoeae is the causative agent of gonorrhea, a sexually transmitted infection (STI) of major importance. (peerj.com)
  • Neisseria gonorrhoeae , a Gram-negative bacterium, causes gonorrhea, the most common bacterial sexually transmitted infection (STIs), causing more than 106 million cases per year globally ( World Health Organization (WHO), 2012 ). (peerj.com)
  • Mar 6, 2020 Gonorrhea is a common sexually transmitted infection caused by the gram- negative intracellular diplococcus Neisseria gonorrhoeae. (firebaseapp.com)
  • Neisseria gonorrhoeae , also known as N. gonorrhoeae to its friends, is a gram-negative oval bacterium that infects humans, causing a number of infections including gonorrhea . (osmosis.org)
  • The word Neisseria came from Neisser Albert, a German physician who discovered it, while gonorrhea is from the Greek words "gonos" which means 'seed', and "rhoe" which means 'flow', meaning 'flow of seed', an illustration referring to the penile purulent discharge, which was mistakenly thought to be semen in infected males. (osmosis.org)
  • Neisseria gonorrhoeae is a gram-negative diplococcus, non-spore-forming, both oxidase and catalase-positive bacteria, which is known to cause a sexually transmitted infection (STI) called gonorrhea . (osmosis.org)
  • Neisseria gonorrhoeae (Gc) is the causative agent of the sexually transmitted infection gonorrhea. (emerging-researchers.org)
  • Robert Kirkcaldy] Neisseria gonorrhoeae is a bacterium that causes gonorrhea and it can infect the cervix, urethra, throat, and rectum during sex. (cdc.gov)
  • Since the introduction of antibiotics in the first half of the 20th century, Neisseria gonorrhoeae has successively developed resistance to each antibiotic recommended for gonorrhea treatment. (cdc.gov)
  • Neisseria gonorrhoeae, also known as gonococcus (singular), or gonococci (plural), is a species of Gram-negative diplococci bacteria isolated by Albert Neisser in 1879. (wikipedia.org)
  • The bacterium Neisseria gonorrhoeae (gonococcus), was discovered in 1879 by the German physician Albert Neisser, after whom it is also named. (wikilectures.eu)
  • Sexually transmitted infections caused by Neisseria gonorrhoeae are a cause of pelvic inflammatory disease in women, which can lead to serious reproductive complications including tubal infertility, ectopic pregnancy, and chronic pelvic pain. (cdc.gov)
  • The Frequency of Discordant Gyrase A Genotypes Among Cases of Multiple Neisseria gonorrhoeae Infections at Different Anatomic Sites. (aidshealth.org)
  • Chlamydia trachomatis and Neisseria gonorrhoeae infections in the rectum and pharynx are important extragenital reservoirs of infection. (escholarship.org)
  • These analytical performance data demonstrate that the Abbott CT/NG RealTime assay is an accurate, sensitive, and specific assay in rectal and pharyngeal specimens, supporting the potential of the assay for detection of rectal and pharyngeal C. trachomatis and N. gonorrhoeae infections. (escholarship.org)
  • D. Culture The current preferred laboratory method for the diagnosis of N. gonorrhoeae infections is the isolation and identification of the agent. (firebaseapp.com)
  • Nucleic acid amplification testing (NAAT) is the recommended method for initial screening or testing for Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) infections. (publichealthontario.ca)
  • We used N. gonorrhoeae spiked urine samples and samples from gonorrhoea infections to determine optimal DNA extraction methods that maximize the amount of N. gonorrhoeae DNA sequenced whilst minimizing contaminating host DNA. (ox.ac.uk)
  • In simulated infections the Qiagen UCP Pathogen Mini kit provided the highest ratio N. gonorrhoeae to human DNA and the most consistent results. (ox.ac.uk)
  • Depletion of human DNA with saponin increased N. gonorrhoeae yields in simulated infections, but decreased yields in clinical samples. (ox.ac.uk)
  • In simulated infections if ≥10 4 CFU/ml of N. gonorrhoeae was present, sequencing of the large majority of the genome was frequently achieved. (ox.ac.uk)
  • We used N. gonorrhoeae spiked urine samples and samples from gonorrhoea infections to determine optimal DNA extraction methods that maximize the amount of N. gonorrhoeae DNA sequenced whilst minimizing contaminating host DNA.ResultsIn simulated infections the Qiagen UCP Pathogen Mini kit provided the highest ratio N. gonorrhoeae to human DNA and the most consistent results. (ox.ac.uk)
  • Fluoroquinolone-resistant strains of Neisseria gonorrhoeae have been identified frequently during the 1990s in the Far East (2). (cdc.gov)
  • My role in this research project consisted of attempting to create three strains of Neisseria gonorrhoeae (Gc) that constitutively express a single opa protein. (emerging-researchers.org)
  • RealLine Chlamydia trachomatis / Neisseria gonorrhoeae" assay kit is intended for the detection of Chlamydia trachomatis and Neisseria gonorrhoeae DNA in human specimens: urine, semen, prostate fluid, swabs of the epithelial cells (urethral, cervical, vaginal), using the method of real-time polymerase chain reaction (PCR) with fluorescence detection of amplified product. (roboscreen.com)
  • Analytical Evaluation of the Abbott RealTime CT/NG Assay for Detection of Chlamydia trachomatis and Neisseria gonorrhoeae in Rectal and Pharyngeal Swabs. (escholarship.org)
  • Susceptibility of Neisseria gonorrhoeae to cefotaxime and ceftizoxime. (bmj.com)
  • Decreasing susceptibility of Neisseria gonorrhoeae to fluoroquinolones has been reported in several countries. (bmj.com)
  • We investigated whether there was an association between annual antibiotic prescribing rates in each county and the antibiotic susceptibility of Neisseria gonorrhoeae . (cdc.gov)
  • The culture grew N. gonorrhoeae and was sent for antimicrobial susceptibility testing as part of the national Gonococcal Isolate Surveillance Project (GISP). (cdc.gov)
  • The Gonococcal Isolate Surveillance Project (GISP) was established in 1986 as a sentinel surveillance system to monitor trends in antimicrobial susceptibilities of N. gonorrhoeae strains in the United States. (cdc.gov)
  • Herein, the prevalence and trends of gonococcal AMR and molecular epidemiological characteristics of N. gonorrhoeae strains from 2010 to 2013 in Belarus, are described. (biomedcentral.com)
  • Neisseria gonorrhoeae is a species of Gram-negative diplococci non-motile bacteria from the genus Neisseria . (roboscreen.com)
  • Neisseria gonorrhoeae is a species of gram negative diplococci, which are non encapsulated, non motile and kidney shaped bacteria. (howmed.net)
  • Se hela listan på catalog.hardydiagnostics.com Gram stain for Neisseria gonorrhoeae is a quick and inexpensive test that works by detecting Gram-negative diplococci (the gonorrhoea bacteria) under a microscope. (firebaseapp.com)
  • All of the gram-negative diplococci were confirmed to be N gonorrhoeae by sugar fermentation studies. (firebaseapp.com)
  • The N gonorrhoeae are the intracellular gram-negative diplococci within the cytoplasm of the polymorphonuclear (PMN) cell marked with the small arrow. (firebaseapp.com)
  • N. gonorrhoeae typically live in pairs called diplococci, stacked side to side, so the pair looks like a coffee bean. (osmosis.org)
  • Pili are attractive targets for vaccines and therapeutics because of the key role they play in bacterial virulence as well as their prominent cell surface exposure, as shown in this scanning electron micrograph of Neisseria gonorrhoeae diplococci. (medscape.com)
  • Neisseria gonorrhoeae is a major cause of pelvic inflammatory disease, ectopic pregnancy, and infertility, and it can facilitate human immunodeficiency virus (HIV) transmission ( 1 ). (cdc.gov)
  • This agar preparation facilitates the growth of Neisseria species while inhibiting the growth of contaminating bacteria and fungi. (wikipedia.org)
  • Some antimicrobials, like vancomycin and nystatin are usually added to the Thayer-Martin agar, to inhibit the possible growth of undesired bacteria or fungi, and maximize the growth of Neisseria species. (osmosis.org)
  • Antibiotic resistance in N. gonorrhoeae is a growing public health concern, especially given its propensity to develop resistance easily. (wikipedia.org)
  • criteria for cefixime and ceftriaxone resistance in N. gonorrhoeae have not been defined ( 6 ). (cdc.gov)
  • Over the past decade, strains of N gonorrhoeae have been reported to develop high levels of resistance against several antimicrobial agents previously used for treatment of gonorrhoea. (bmj.com)
  • Gonorrhoea and widely spread antimicrobial resistance (AMR) in its etiological agent Neisseria gonorrhoeae are major public health concerns worldwide. (biomedcentral.com)
  • During 2010-2013, the N. gonorrhoeae population in Belarus displayed high and relatively stable resistance levels to tetracycline, ciprofloxacin, and penicillin G, while the resistance to azithromycin declined. (biomedcentral.com)
  • N. gonorrhoeae has developed antimicrobial resistance (AMR) to all drugs previously recommended for treatment of gonorrhoea. (biomedcentral.com)
  • We collected draft genome sequence data and associated metadata data on 76 N. gonorrhoeae strains from around the globe and searched for known determinants of antibiotics resistance within the strains. (peerj.com)
  • Neisseria gonorrhoeae (NG) culture is recommended plus NAAT when suspecting antimicrobial resistance, test of cure, symptomatic patients, pelvic inflammatory disease (PID), pregnancy, and sexual abuse/sexual assault. (publichealthontario.ca)
  • Global action plan to control the spread and impact of antimicrobial resistance in Neisseria gonorrhoeae. (who.int)
  • We report a duplex real-time PCR assay for the simultaneous screening of mutations involved in fluoroquinolone resistance within gyrA and parC quninolone resistance-determining regions (QRDRs) in Neisseria gonorrhoeae. (pasteur.fr)
  • Objectives: We investigate whether WGS and simultaneous analysis of multiple resistance determinants can be used to predict antimicrobial susceptibilities to the level of MICs in N. gonorrhoeae. (ox.ac.uk)
  • There is a need for same-day culture-free diagnostics that identify infection and detect antimicrobial resistance.MethodsWe investigated if Nanopore sequencing can detect sufficient N. gonorrhoeae DNA to reconstruct whole genomes directly from urine samples. (ox.ac.uk)
  • Rapid antibiotic susceptibility testing (AST) for Neisseria gonorrhoeae (Ng) is critically needed to counter widespread antibiotic resistance . (bvsalud.org)
  • Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. (who.int)
  • We hear a lot about how use of antibiotics in the United States can cause resistance in other bacteria, but we don't know whether this is the case with Neisseria gonorrhoeae . (cdc.gov)
  • On its surface, N. gonorrhoeae bears hair-like pili, surface proteins with various functions, and sugars called lipooligosaccharides. (wikipedia.org)
  • Dynamic polymeric protein filaments called type IV pili allow N. gonorrhoeae to adhere to and move along surfaces. (wikipedia.org)
  • N. gonorrhoeae is able to pull 100,000 times its own weight, and the pili used to do so are amongst the strongest biological motors known to date, exerting one nanonewton. (wikipedia.org)
  • Neisseria gonorrhoeae with numerous pili extending from the cell surface. (medscape.com)
  • Pili - type Fig 4: Gram Stain of N gonorrhoeae. (firebaseapp.com)
  • Knowledge of local N gonorrhoeae susceptibilities to various antimicrobials is important for establishing a rational treatment strategy in each region. (bmj.com)
  • Susceptibilities of N gonorrhoeae should be monitored periodically by region. (bmj.com)
  • Ceftriaxone and spectinomycin demonstrated lower MICs and so are recommended for N gonorrhoeae . (bmj.com)
  • We investigated MICs of N gonorrhoeae isolated from men with urethritis in an urban area of Japan to establish a rational treatment strategy appropriate to the area. (bmj.com)
  • The presence of bacteria resembling Neisseria gonnorhoeae in a man is diagnostic of gonnorhoea, however in women it is more difficult to diagnose, having a mixture of bacterial organisms present. (firebaseapp.com)
  • abstract = "Neisseria gonorrhoeae lipooligosaccharide (LOS) undergoes antigenic variation at a high rate, and this variation can be monitored by changes in a strain's ability to bind LOS-specific monoclonal antibodies. (uky.edu)
  • abstract = "Current data suggest that Neisseria gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and antigen-presenting cells. (unab.cl)
  • N. gonorrhoeae can cause infection of the genitals, throat, and eyes. (wikipedia.org)
  • Neisseria gonorrhoeae culture is indicated in the diagnosis of N gonorrhoeae infection. (medscape.com)
  • Positive culture indicates active infection with N gonorrhoeae . (medscape.com)
  • Mucosal infection with Neisseria gonorrhoeae. (jci.org)
  • Intended for use as a screening test for evidence of Neisseria gonorrhoeae infection. (mplnet.com)
  • No evidence of N gonorrhoeae infection by culture, gram stain of a smear of the discharge, or antigen or nucleic acid detection. (firebaseapp.com)
  • N. gonorrhoeae infection occurs following mucosal inoculation during vaginal, anal, or oral sexual contact. (brainkart.com)
  • N. gonorrhoeae could also be detected from urine in cobas PCR Media tubes and from urethral swabs, and in the presence of simulated Chlamydia co-infection. (ox.ac.uk)
  • N. gonorrhoeae could also be detected from urine in cobas PCR Media tubes and from urethral swabs, and in the presence of simulated Chlamydia co-infection.ConclusionUsing Nanopore sequencing of urine samples from men with urethral gonorrhoea sufficient data can be obtained to reconstruct whole genomes in the majority of samples without the need for culture. (ox.ac.uk)
  • genus Neisseria (together, for example, with Neisseria meningitidis ). (wikilectures.eu)
  • Moraxella catarrhalis and Neisseria meningitidis can be confused with N. gonorrhoeae on Gram stain. (firebaseapp.com)
  • Identification of Neisseria meningitidis. (firebaseapp.com)
  • CONTAINS TWO IMPORTANT PATHOGENS Nesseria meningitidis Nesseria gonorrhoeae 5. (firebaseapp.com)
  • The gist of it is that N. gonorrhoeae can't ferment maltose, whereas N. meningitidis can. (osmosis.org)
  • Neisseria species are fastidious, Gram-negative cocci that require nutrient supplementation to grow in laboratory cultures. (wikipedia.org)
  • Of the 11 species of Neisseria that colonize humans, only two are pathogens. (wikipedia.org)
  • The exact formulation has changed over the years but includes agents active against gram-positive bacteria (vancomycin), gram-negative bacteria (colistin, trimethoprim), and fungi (nystatin, anisomycin) at concentrations that do not inhibit N gonorrhoeae . (medscape.com)
  • Instead, like any other Gram-negative bacteria, N. gonorrhoeae stains pink with safranin dye. (osmosis.org)
  • Neisseria gonorrhoeae infects primarily the mucosal membranes. (howmed.net)
  • Background: Tracking the spread of antimicrobial-resistant Neisseria gonorrhoeae is a major priority for national surveillance programmes. (ox.ac.uk)
  • N. gonorrhoeae is a gram-negative bacterium, because its cell wall has a thin peptidoglycan layer and so it doesn't retain purple dye used during Gram staining. (osmosis.org)
  • It causes the sexually transmitted disease gonorrhoeae , known as gonorrhoea in Czech. (wikilectures.eu)
  • Gonorrhoea, etiological agent Neisseria gonorrhoeae , is a public health concern globally. (biomedcentral.com)
  • Neisseria gonorrhoeae causes an acute, inflammatory disease of the urogenital tract called gonorrhoea . (wikilectures.eu)
  • In ten urine samples from men with symptomatic urethral gonorrhoea, ≥87% coverage of an N. gonorrhoeae reference genome was achieved in all samples, with ≥92% coverage breath at ≥10-fold depth in 7 (70%) samples. (ox.ac.uk)
  • Antimicrobial-resistant Neisseria gonorrhoeae is a major threat to public health and is of particular concern in the Western Pacific Region, where the incidence of gonorrhoea is high. (who.int)
  • The limit of detection for N. gonorrhoeae was 0.0256 CFU/mL for both pharyngeal and rectal specimens. (escholarship.org)
  • N. gonorrhoeae is oxidase positive (possessing cytochrome c oxidase) and catalase positive (able to convert hydrogen peroxide to oxygen). (wikipedia.org)
  • Colonies appear after 1-2 days of incubation in carbon dioxide at 35°C. They may be identified as Neisseria by demonstration of typical Gram stain morphology and a positive oxidase test result. (medscape.com)
  • The nuclei Learn neisseria with free interactive flashcards. (firebaseapp.com)
  • Choose from 500 different sets of neisseria flashcards on Quizlet. (firebaseapp.com)
  • INTRODUCTION & HISTORY: Discovered Neisseria gonorrhoeae (1879) Albert stain Mycobacterium lepraeAlbert Ludwig Sigesmund Neisser 3. (firebaseapp.com)
  • The major anaerobically induced outer membrane protein (AniA) from pathogenic Neisseria gonorrhoeae is essential for cell growth under oxygen limiting conditions in the presence of nitrite and is protective against killing by human sera. (rcsb.org)
  • N eisseria gonorrhoeae remains one of the most common sexually transmitted pathogens in developing and developed countries. (bmj.com)
  • More recent studies have also suggested high rates of recombination within the Neisseria genus ( Didelot & Maiden, 2010 ). (peerj.com)
  • Comparison of Gram stain with DNA probe for detection of Neisseria gonorrhoeae in urethras of symptomatic males. (firebaseapp.com)
  • RealLine Chlamydia trachomatis / Neisseria gonorrhoeae" assay kit detects a part of PivNG (pilin gene inverting protein homolog) gene sequence, specific to N. gonorrhoeae . (roboscreen.com)
  • We investigated if Nanopore sequencing can detect sufficient N. gonorrhoeae DNA to reconstruct whole genomes directly from urine samples. (ox.ac.uk)
  • Despite the MIC decrease (i.e., trend of improved cefixime susceptibility) during 2012-2013, the increase in the number of strains with Cfx-RS in 2014 underscores the potential threat of cephalosporin-resistant N. gonorrhoeae . (cdc.gov)
  • Title : Technological Solutions to Address Drug-Resistant Neisseria gonorrhoeae Personal Author(s) : Bristow, Claire C.;Dong, Huan;Klausner, Jeffrey D. (cdc.gov)
  • Quinolone-resistant Neisseria gonorrhoeae rates have increased worldwide since 1994. (medicaljournals.se)
  • and (ii) the factors associated with quinolone-resistant N. gonorrhoeae. (medicaljournals.se)
  • The rate of quinolone-resistant N. gonorrhoeae was 37.4% (43/115), without significant association with gender, age, sexual behaviour, past history of sexually transmitted diseases and susceptibility to other antibiotics. (medicaljournals.se)
  • The rate of quinolone-resistant N. gonorrhoeae in Paris has been increasing since 2004. (medicaljournals.se)
  • Susceptibility of N. gonorrhoeae to five antibiotics (ciprofloxacin, ceftriaxone, spectinomycin, penicillin G and tetracycline) was tested systematically. (medicaljournals.se)
  • Jan 14, 2021 Fig 2: N gonorrhoeae virulence factors. (firebaseapp.com)
  • 2021. https://www.hopkinsguides.com/hopkins/view/Johns_Hopkins_ABX_Guide/540249/all/Neisseria_gonorrhoeae. (hopkinsguides.com)
  • 2021). Neisseria gonorrhoeae. (hopkinsguides.com)
  • Raw data and statistical analysis of IL-6 secretion ELISA assay of Neisseria gonorrhoeae challenged THP-1 cells expressing Siglec-5 or Siglec-14. (datadryad.org)
  • The current study reports on the analytical performance of the Abbott RealTime CT/NG assay, including the limit of detection, inclusivity, and analytical specificity for C. trachomatis and N. gonorrhoeae in rectal and pharyngeal specimens. (escholarship.org)
  • These results contribute to the understanding of the human specificity of N. gonorrhoeae and how it evolved to evade the human immune defense. (datadryad.org)
  • AMR evolution should be considered in the context of the genetic structure of the N. gonorrhoeae population. (peerj.com)
  • All N. gonorrhoeae were susceptible to ceftriaxone and spectinomycin. (medicaljournals.se)
  • The DNA sequence of lsi-2 has been determined for N. gonorrhoeae 1291, a strain that expresses a high-molecular-mass LOS, and a derivative of this strain, RS132L, that produces a truncated LOS. (uky.edu)
  • The culture grew N. gonorrhoeae and was sent to the GISP laboratory for susceptibility testing. (cdc.gov)
  • In men, the best specimen for N gonorrhoeae culture is urethral exudate or urethral scrapings (obtained with a loop or special swab). (medscape.com)
  • Impact of Anatomic Site, Specimen Collection Timing, and Patient Symptom Status on Neisseria gonorrhoeae Culture Recovery. (medscape.com)
  • Surfactant-enhanced DNA accessibility to nuclease accelerates phenotypic ß-lactam antibiotic susceptibility testing of Neisseria gonorrhoeae. (bvsalud.org)