Hemorrhage following any surgical procedure. It may be immediate or delayed and is not restricted to the surgical wound.
Techniques for controlling bleeding.
Pathologic processes that affect patients after a surgical procedure. They may or may not be related to the disease for which the surgery was done, and they may or may not be direct results of the surgery.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Bleeding or escape of blood from a vessel.
Bleeding into one or both CEREBRAL HEMISPHERES including the BASAL GANGLIA and the CEREBRAL CORTEX. It is often associated with HYPERTENSION and CRANIOCEREBRAL TRAUMA.
Bleeding into the intracranial or spinal SUBARACHNOID SPACE, most resulting from INTRACRANIAL ANEURYSM rupture. It can occur after traumatic injuries (SUBARACHNOID HEMORRHAGE, TRAUMATIC). Clinical features include HEADACHE; NAUSEA; VOMITING, nuchal rigidity, variable neurological deficits and reduced mental status.
Bleeding within the SKULL, including hemorrhages in the brain and the three membranes of MENINGES. The escape of blood often leads to the formation of HEMATOMA in the cranial epidural, subdural, and subarachnoid spaces.
Bleeding from the vessels of the retina.
Excess blood loss from uterine bleeding associated with OBSTETRIC LABOR or CHILDBIRTH. It is defined as blood loss greater than 500 ml or of the amount that adversely affects the maternal physiology, such as BLOOD PRESSURE and HEMATOCRIT. Postpartum hemorrhage is divided into two categories, immediate (within first 24 hours after birth) or delayed (after 24 hours postpartum).
Bleeding in any segment of the GASTROINTESTINAL TRACT from ESOPHAGUS to RECTUM.

Renal failure predisposes patients to adverse outcome after coronary artery bypass surgery. VA Cooperative Study #5. (1/626)

BACKGROUND: More than 600,000 coronary artery bypass graft (CABG) procedures are done annually in the United States. Some data indicate that 10 to 20% of patients who are undergoing a CABG procedure have a serum creatinine of more than 1.5 mg/dl. There are few data on the impact of a mild increase in serum creatinine concentration on CABG outcome. METHODS: We analyzed a Veterans Affairs database obtained prospectively from 1992 through 1996 at 14 of 43 centers performing heart surgery. We compared the outcome after CABG in patients with a baseline serum creatinine of less than 1.5 mg/dl (median 1.1 mg/dl, N = 3271) to patients with a baseline serum creatinine of 1.5 to 3.0 mg/dl (median 1.7, N = 631). RESULTS: Univariate analysis revealed that patients with a serum creatinine of 1.5 to 3.0 mg/dl had a higher 30-day mortality (7% vs. 3%, P < 0.001) requirement for prolonged mechanical ventilation (15% vs. 8%, P = 0.001), stroke (7% vs. 2%, P < 0.001), renal failure requiring dialysis at discharge (3% vs. 1%, P < 0.001), and bleeding complications (8% vs. 3%, P < 0.001) than patients with a baseline serum creatinine of less than 1.5 mg/dl. Multiple logistic regression analyses found that patients with a baseline serum creatinine of less than 1.5 mg/dl had significantly lower (P < 0.02) 30-day mortality and postoperative bleeding and ventilatory complications than patients with a serum creatinine of 1.5 to 3.0 mg/dl when controlling for all other variables. CONCLUSION: These results demonstrate that mild renal failure is an independent risk factor for adverse outcome after CABG.  (+info)

Strategy for balancing anticoagulation and hemostasis in aortocoronary bypass surgery: blood conservation and graft patency. (2/626)

The minimal effective dose of aprotinin on hemostasis under normothermic perfusion, the influence of anticoagulant therapy on graft patency, and the thromboembolic and hemorrhagic events were investigated after aortocoronary bypass graft operation (CABG). One hundred CABG patients under normothermic perfusion were randomly divided into the following groups: (1) coumadin plus acetylsalicylic acid (ASA) (n=32); no aprotinin used during cardiopulmonary bypass (CPB); (2) minimal-dose, 10(6) KIU during CPB, aprotinin used, followed by ASA and coumadin (n=36); and (3) very low-dose, total of 2x10(6) KIU before CPB and during CPB; aprotinin used; anticoagulation therapy with heparin early after surgery and followed by replacement with ASA and coumadin (n=32). The patency of arterial grafts was 100% in all groups. The patency of vein grafts was 95-98% and there was no difference among the groups. The blood loss was significantly reduced in both aprotinin groups (groups 2 and 3) compared to the coumadin plus ASA group, although no difference existed between the 2 aprotinin groups. Postoperative thrombotic and hemorrhagic events were not observed in any group. From this study, it was concluded that 10(6) KIU aprotinin in pump-prime-only followed by oral ASA and coumadin was the recommendation from the benefit/cost consideration.  (+info)

Two hour ambulation after coronary angioplasty and stenting with 6 F guiding catheters and low dose heparin. (3/626)

OBJECTIVE: To evaluate the feasibility and safety of ambulation of patients two hours after elective coronary angioplasty or stenting, or both. METHODS: Coronary angioplasty and stenting were performed using 6 F guiding catheters by the femoral approach and a standard dose of heparin 5000 IU. There were no angiographic exclusion criteria except for planned atherectomy. Patients given oral anticoagulants or heparin were not eligible. All patients were given aspirin. Patients who underwent stent implantation also received ticlopidine 250 mg daily. The arterial sheath was removed immediately after the procedure. Haemostasis was achieved by manual compression and maintained with an inguinal compression bandage. Early ambulation was attempted after two hours of supine bed rest following removal of the bandage. MAIN OUTCOME MEASURES: The incidence of bleeding at or during ambulation requiring compression and additional bed rest, and puncture site complications documented 48 hours after the procedure. RESULTS: 300 of 359 consecutive eligible patients were included for two hour ambulation. Stent implantation was performed in 32% of the procedures. The mean (SD) time to haemostasis was 9.6 (3.2) minutes. Bleeding at ambulation occurred in five patients (1.7%), and nine patients (3.0%) reached the secondary end point of haematoma > 5 x 5 cm at 48 hour follow up. All were treated conservatively without further sequelae. There was no late bleeding or vascular complications. CONCLUSION: Ambulation two hours after elective balloon angioplasty or stent implantation with 6 F guiding catheters by the femoral route and low dose heparin is feasible and safe, with a low incidence of puncture site complications. This early ambulation protocol facilitates a short hospital stay.  (+info)

Laparoscopic-assisted colectomy: a comparison of dissection techniques. (4/626)

BACKGROUND AND OBJECTIVES: Mobilization of the colon and dissection of the mesentery are difficult laparoscopic techniques. Traditional methods have been used for this dissection, but often with great difficulty. The ultrasonically activated shears, when introduced in 1993, had the possibility to make this dissection less technically difficult. This is a retrospective review of the use of these shears for these techniques during laparoscopic-assisted colectomy. MATERIALS AND METHODS: Eighty-five patients underwent a laparoscopic-assisted right hemicolectomy or sigmoid resection. Colon mobilization and mesenteric dissection were completed intracorporeally. Complications, operative time, estimated blood loss, and length of stay were compared for resections completed with and without the ultrasonically activated shears. RESULTS: Thirty-six patients had laparoscopic-assisted colectomy without the shears, and 49 patients had the procedure with the shears. There were no complications due to the ultrasonic energy. Use of the shears resulted in shorter operative times (170 min. vs. 187 min., p=0.1989), similar median blood loss (98 mL vs. 95 mL, p=0.7620), and shorter lengths of stay (4.3 days vs. 6.9 days, p=0.0018). CONCLUSIONS: The ultrasonically activated shears are safe and effective for colon mobilization and mesenteric division. The use of the shears may result in shorter operative times and shorter lengths of stay.  (+info)

Complement activation and increased systemic and pulmonary vascular resistance indices during infusion of postoperatively drained untreated blood. (5/626)

In nine healthy young patients, operated on for thoracic scoliosis, a pulmonary artery catheter was inserted for the study of haemodynamic variables and blood sampling during autologous transfusion of postoperatively drained blood. At 1-3 h after wound closure, 10 ml kg/body weight of drained untreated blood from the wound was collected and recirculated over a l-h period. The concentration of the complement activation product, C3bc, increased from a mean of 5.4 (SD 1.5) AU ml-1 before infusion to 11.1 (3.9) AU ml-1 during infusion and then returned to 7.8 (2.8) AU ml-1 after infusion. The concentration of the terminal complement complex (TCC) increased from 0.5 (0.2) to 1.3 (0.5) AU ml-1 and was reduced to 0.7 (0.3) AU ml-1 after infusion. Only TCC exceeded the reference values which are 14 AU ml-1 for C3bc and 1.0 AU ml-1 for TCC. Pulmonary vascular resistance index concomitantly increased from a mean of 130 (SD 52) to 195 (88) dyn s cm-5 m-2 and was reduced to 170 (86) dyn s cm-5 m-2 after infusion. Systemic vascular resistance index increased from a mean of 1238 (SD 403) to 1349 (473) dyn s cm-5 m-2 and returned to 1196 (401) dyn s cm-5 m-2 after infusion. White blood cell count (WCC) increased from 14.4 (4.3) x 10(9) litre-1 before infusion to 17.8 (7.2) x 10(9) litre-1 during and after infusion. No change in platelet count during infusion was observed. There were no differences in WCC or platelet count between mixed venous or peripheral arterial blood. Pulmonary and systemic vascular resistance indices may be influenced by activated complement in drained untreated blood when it is recirculated.  (+info)

Do obese patients bleed more? A prospective study of blood loss at total hip replacement. (6/626)

This study compares blood loss at total hip replacement in obese and non-obese patients. We made a prospective study of intra-operative and postoperative blood loss in 80 consecutive primary cemented hip replacements. Patients' obesity was classified according to body mass index (BMI). Overall mean total blood loss was 1050 ml. Obese patients (BMI > 30) bled significantly more (P < 0.0001) than those of optimal weight (BMI < 26), whereas those overweight (BMI 26-30) did not. The mean excess blood loss in obese patients was 380 ml (95% confidence interval, 200-560 ml). At a time when the prevalence of obesity is increasing, this study quantifies the risks of greater blood loss with respect to obesity and aids informed consent.  (+info)

The effect of prophylactic epsilon-aminocaproic acid on bleeding, transfusions, platelet function, and fibrinolysis during coronary artery bypass grafting. (7/626)

BACKGROUND: Antifibrinolytic medications administered before skin incision decrease bleeding after cardiac surgery. Numerous case reports indicate thrombus formation with administration of epsilon-aminocaproic acid (epsilon-ACA). The purpose of this study was to examine the efficacy of epsilon-ACA administered after heparinization but before cardiopulmonary bypass in reducing bleeding and transfusion requirements after primary coronary artery bypass surgery. METHODS: Seventy-four adult patients undergoing primary coronary artery bypass surgery were randomized to receive 125 mg/kg epsilon-ACA followed by an infusion of 12.5 mg x kg(-1) x h(-1) or an equivalent volume of saline. Coagulation studies, thromboelastography, and platelet aggregation tests were performed preoperatively, after bypass, and on the first postoperative day. Mediastinal drainage was recorded during the 24 h after surgery. Homologous blood transfusion triggers were predefined and transfusion amounts were recorded. RESULTS: One patient was excluded for surgical bleeding and five patients were excluded for transfusion against predefined criteria One patient died from a dysrhythmia 2 h postoperatively. Among the remaining 67, the epsilon-ACA group had less mediastinal blood loss during the 24 h after surgery, 529+/-241 ml versus 691+/-286 ml (mean +/- SD), P < 0.05, despite longer cardiopulmonary bypass times and lower platelet counts, P < 0.05. Platelet aggregation was reduced in both groups following cardiopulmonary bypass but did not differ between groups. Homologous blood transfusion was similar between both groups. CONCLUSIONS: Prophylactic administration of epsilon-ACA after heparinization but before cardiopulmonary bypass is of minimal benefit for reducing blood loss postoperatively in patients undergoing primary coronary artery bypass grafting.  (+info)

Drains for thyroidectomy/parathyroidectomy: fact or fiction? (8/626)

BACKGROUND: Many authorities advocate draining the neck routinely after thyroid and parathyroid surgery with no scientific evidence to support this practice. We aimed to establish if the routine use of drains following thyroid/parathyroid surgery is of any value. METHOD: Medical records of patients who underwent thyroidectomy or parathyroidectomy under the care of a single endocrine surgeon (GP) over a 14-year period were reviewed. For the first 6 years, the neck was routinely drained (drain group) and for the subsequent 8 years the neck was only drained if the surgeon felt it necessary according to the operative situation (selective group). RESULTS: A total of 606 procedures (425 thyroidectomy and 181 parathyroidectomy) were performed on 582 patients. Drains were routinely used in 134 (22%) procedures (drain group) and were selectively used in 472 (78%) (selective group) of which 191 (40%) were drained. In all patients, there was a significant increase in the rate of postoperative bleeding/haematoma in patients with a drain (8/314 versus 1/282, Fisher's exact, P < 0.05). Wound infection occurred only in the patients with a drain. There was no difference in the incidence of postoperative bleeding and airways obstruction between the drain and selective groups. CONCLUSION: We conclude that the routine use of neck drains is unnecessary and may indeed be harmful, drain insertion being associated with an increased incidence of wound infection. Drains should, therefore, be used selectively after thyroidectomy and parathyroidectomy.  (+info)

Postoperative hemorrhage is a medical term that refers to bleeding that occurs after a surgical procedure. This condition can range from minor oozing to severe, life-threatening bleeding. Postoperative hemorrhage can occur soon after surgery or even several days later, as the surgical site begins to heal.

The causes of postoperative hemorrhage can vary, but some common factors include:

1. Inadequate hemostasis during surgery: This means that all bleeding was not properly controlled during the procedure, leading to bleeding after surgery.
2. Blood vessel injury: During surgery, blood vessels may be accidentally cut or damaged, causing bleeding after the procedure.
3. Coagulopathy: This is a condition in which the body has difficulty forming blood clots, increasing the risk of postoperative hemorrhage.
4. Use of anticoagulant medications: Medications that prevent blood clots can increase the risk of bleeding after surgery.
5. Infection: An infection at the surgical site can cause inflammation and bleeding.

Symptoms of postoperative hemorrhage may include swelling, pain, warmth, or discoloration around the surgical site, as well as signs of shock such as rapid heartbeat, low blood pressure, and confusion. Treatment for postoperative hemorrhage depends on the severity of the bleeding and may include medications to control bleeding, transfusions of blood products, or additional surgery to stop the bleeding.

Hemostatic techniques refer to various methods used in medicine to stop bleeding or hemorrhage. The goal of these techniques is to promote the body's natural clotting process and prevent excessive blood loss. Some common hemostatic techniques include:

1. Mechanical compression: Applying pressure directly to the wound to physically compress blood vessels and stop the flow of blood. This can be done manually or with the use of medical devices such as clamps, tourniquets, or compression bandages.
2. Suturing or stapling: Closing a wound with stitches or staples to bring the edges of the wound together and allow the body's natural clotting process to occur.
3. Electrocautery: Using heat generated by an electrical current to seal off blood vessels and stop bleeding.
4. Hemostatic agents: Applying topical substances that promote clotting, such as fibrin glue, collagen, or gelatin sponges, to the wound site.
5. Vascular embolization: Inserting a catheter into a blood vessel and injecting a substance that blocks the flow of blood to a specific area, such as a bleeding tumor or aneurysm.
6. Surgical ligation: Tying off a bleeding blood vessel with suture material during surgery.
7. Arterial or venous repair: Repairing damaged blood vessels through surgical intervention to restore normal blood flow and prevent further bleeding.

Postoperative complications refer to any unfavorable condition or event that occurs during the recovery period after a surgical procedure. These complications can vary in severity and may include, but are not limited to:

1. Infection: This can occur at the site of the incision or inside the body, such as pneumonia or urinary tract infection.
2. Bleeding: Excessive bleeding (hemorrhage) can lead to a drop in blood pressure and may require further surgical intervention.
3. Blood clots: These can form in the deep veins of the legs (deep vein thrombosis) and can potentially travel to the lungs (pulmonary embolism).
4. Wound dehiscence: This is when the surgical wound opens up, which can lead to infection and further complications.
5. Pulmonary issues: These include atelectasis (collapsed lung), pneumonia, or respiratory failure.
6. Cardiovascular problems: These include abnormal heart rhythms (arrhythmias), heart attack, or stroke.
7. Renal failure: This can occur due to various reasons such as dehydration, blood loss, or the use of certain medications.
8. Pain management issues: Inadequate pain control can lead to increased stress, anxiety, and decreased mobility.
9. Nausea and vomiting: These can be caused by anesthesia, opioid pain medication, or other factors.
10. Delirium: This is a state of confusion and disorientation that can occur in the elderly or those with certain medical conditions.

Prompt identification and management of these complications are crucial to ensure the best possible outcome for the patient.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Hemorrhage is defined in the medical context as an excessive loss of blood from the circulatory system, which can occur due to various reasons such as injury, surgery, or underlying health conditions that affect blood clotting or the integrity of blood vessels. The bleeding may be internal, external, visible, or concealed, and it can vary in severity from minor to life-threatening, depending on the location and extent of the bleeding. Hemorrhage is a serious medical emergency that requires immediate attention and treatment to prevent further blood loss, organ damage, and potential death.

A cerebral hemorrhage, also known as an intracranial hemorrhage or intracerebral hemorrhage, is a type of stroke that results from bleeding within the brain tissue. It occurs when a weakened blood vessel bursts and causes localized bleeding in the brain. This bleeding can increase pressure in the skull, damage nearby brain cells, and release toxic substances that further harm brain tissues.

Cerebral hemorrhages are often caused by chronic conditions like hypertension (high blood pressure) or cerebral amyloid angiopathy, which weakens the walls of blood vessels over time. Other potential causes include trauma, aneurysms, arteriovenous malformations, illicit drug use, and brain tumors. Symptoms may include sudden headache, weakness, numbness, difficulty speaking or understanding speech, vision problems, loss of balance, and altered level of consciousness. Immediate medical attention is required to diagnose and manage cerebral hemorrhage through imaging techniques, supportive care, and possible surgical interventions.

A subarachnoid hemorrhage is a type of stroke that results from bleeding into the space surrounding the brain, specifically within the subarachnoid space which contains cerebrospinal fluid (CSF). This space is located between the arachnoid membrane and the pia mater, two of the three layers that make up the meninges, the protective covering of the brain and spinal cord.

The bleeding typically originates from a ruptured aneurysm, a weakened area in the wall of a cerebral artery, or less commonly from arteriovenous malformations (AVMs) or head trauma. The sudden influx of blood into the CSF-filled space can cause increased intracranial pressure, irritation to the brain, and vasospasms, leading to further ischemia and potential additional neurological damage.

Symptoms of a subarachnoid hemorrhage may include sudden onset of severe headache (often described as "the worst headache of my life"), neck stiffness, altered mental status, nausea, vomiting, photophobia, and focal neurological deficits. Rapid diagnosis and treatment are crucial to prevent further complications and improve the chances of recovery.

Intracranial hemorrhage (ICH) is a type of stroke caused by bleeding within the brain or its surrounding tissues. It's a serious medical emergency that requires immediate attention and treatment. The bleeding can occur in various locations:

1. Epidural hematoma: Bleeding between the dura mater (the outermost protective covering of the brain) and the skull. This is often caused by trauma, such as a head injury.
2. Subdural hematoma: Bleeding between the dura mater and the brain's surface, which can also be caused by trauma.
3. Subarachnoid hemorrhage: Bleeding in the subarachnoid space, which is filled with cerebrospinal fluid (CSF) and surrounds the brain. This type of ICH is commonly caused by the rupture of an intracranial aneurysm or arteriovenous malformation.
4. Intraparenchymal hemorrhage: Bleeding within the brain tissue itself, which can be caused by hypertension (high blood pressure), amyloid angiopathy, or trauma.
5. Intraventricular hemorrhage: Bleeding into the brain's ventricular system, which contains CSF and communicates with the subarachnoid space. This type of ICH is often seen in premature infants but can also be caused by head trauma or aneurysm rupture in adults.

Symptoms of intracranial hemorrhage may include sudden severe headache, vomiting, altered consciousness, confusion, seizures, weakness, numbness, or paralysis on one side of the body, vision changes, or difficulty speaking or understanding speech. Rapid diagnosis and treatment are crucial to prevent further brain damage and potential long-term disabilities or death.

A retinal hemorrhage is a type of bleeding that occurs in the blood vessels of the retina, which is the light-sensitive tissue located at the back of the eye. This condition can result from various underlying causes, including diabetes, high blood pressure, age-related macular degeneration, or trauma to the eye. Retinal hemorrhages can be categorized into different types based on their location and appearance, such as dot and blot hemorrhages, flame-shaped hemorrhages, or subhyaloid hemorrhages. Depending on the severity and cause of the hemorrhage, treatment options may vary from monitoring to laser therapy, medication, or even surgery. It is essential to consult an ophthalmologist for a proper evaluation and management plan if you suspect a retinal hemorrhage.

Postpartum hemorrhage (PPH) is a significant obstetrical complication defined as the loss of more than 500 milliliters of blood within the first 24 hours after childbirth, whether it occurs vaginally or through cesarean section. It can also be defined as a blood loss of more than 1000 mL in relation to the amount of blood lost during the procedure and the patient's baseline hematocrit level.

Postpartum hemorrhage is classified into two types: primary (early) PPH, which occurs within the first 24 hours after delivery, and secondary (late) PPH, which happens between 24 hours and 12 weeks postpartum. The most common causes of PPH are uterine atony, trauma to the genital tract, retained placental tissue, and coagulopathy.

Uterine atony is the inability of the uterus to contract effectively after delivery, leading to excessive bleeding. Trauma to the genital tract can occur during childbirth, causing lacerations or tears that may result in bleeding. Retained placental tissue refers to the remnants of the placenta left inside the uterus, which can cause infection and heavy bleeding. Coagulopathy is a condition where the blood has difficulty clotting, leading to uncontrolled bleeding.

Symptoms of PPH include excessive vaginal bleeding, low blood pressure, increased heart rate, decreased urine output, and signs of shock such as confusion, rapid breathing, and pale skin. Treatment for PPH includes uterotonics, manual removal of retained placental tissue, repair of genital tract lacerations, blood transfusions, and surgery if necessary.

Preventing PPH involves proper antenatal care, monitoring high-risk pregnancies, active management of the third stage of labor, and prompt recognition and treatment of any bleeding complications during or after delivery.

Gastrointestinal (GI) hemorrhage is a term used to describe any bleeding that occurs in the gastrointestinal tract, which includes the esophagus, stomach, small intestine, large intestine, and rectum. The bleeding can range from mild to severe and can produce symptoms such as vomiting blood, passing black or tarry stools, or having low blood pressure.

GI hemorrhage can be classified as either upper or lower, depending on the location of the bleed. Upper GI hemorrhage refers to bleeding that occurs above the ligament of Treitz, which is a point in the small intestine where it becomes narrower and turns a corner. Common causes of upper GI hemorrhage include gastritis, ulcers, esophageal varices, and Mallory-Weiss tears.

Lower GI hemorrhage refers to bleeding that occurs below the ligament of Treitz. Common causes of lower GI hemorrhage include diverticulosis, colitis, inflammatory bowel disease, and vascular abnormalities such as angiodysplasia.

The diagnosis of GI hemorrhage is often made based on the patient's symptoms, medical history, physical examination, and diagnostic tests such as endoscopy, CT scan, or radionuclide scanning. Treatment depends on the severity and cause of the bleeding and may include medications, endoscopic procedures, surgery, or a combination of these approaches.

No FAQ available that match "postoperative hemorrhage"