The largest and most lateral of the BASAL GANGLIA lying between the lateral medullary lamina of the GLOBUS PALLIDUS and the EXTERNAL CAPSULE. It is part of the neostriatum and forms part of the LENTIFORM NUCLEUS along with the GLOBUS PALLIDUS.
Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain.
Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE.
Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
A substituted benzamide that has antipsychotic properties. It is a dopamine D2 receptor (see RECEPTORS, DOPAMINE D2) antagonist.
A beta-hydroxylated derivative of phenylalanine. The D-form of dihydroxyphenylalanine has less physiologic activity than the L-form and is commonly used experimentally to determine whether the pharmacological effects of LEVODOPA are stereospecific.
A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75)
The phylogenetically newer part of the CORPUS STRIATUM consisting of the CAUDATE NUCLEUS and PUTAMEN. It is often called simply the striatum.
N-methyl-8-azabicyclo[3.2.1]octanes best known for the ones found in PLANTS.
A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES.
The representation of the phylogenetically oldest part of the corpus striatum called the paleostriatum. It forms the smaller, more medial part of the lentiform nucleus.
Sodium chloride-dependent neurotransmitter symporters located primarily on the PLASMA MEMBRANE of dopaminergic neurons. They remove DOPAMINE from the EXTRACELLULAR SPACE by high affinity reuptake into PRESYNAPTIC TERMINALS and are the target of DOPAMINE UPTAKE INHIBITORS.
Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures.
Noradrenergic and specific serotonergic antidepressants (NaSSAs), often referred to as "nortropanes," are a class of drugs that function by selectively binding to and partially blocking the α2-adrenergic receptors and 5-HT2 receptors, thereby increasing the concentration of norepinephrine and serotonin in the synaptic cleft, which helps alleviate symptoms of depression.
One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action.
A technique of inputting two-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer.
Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image.
The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis.
An imaging technique using compounds labelled with short-lived positron-emitting radionuclides (such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18) to measure cell metabolism. It has been useful in study of soft tissues such as CANCER; CARDIOVASCULAR SYSTEM; and brain. SINGLE-PHOTON EMISSION-COMPUTED TOMOGRAPHY is closely related to positron emission tomography, but uses isotopes with longer half-lives and resolution is lower.
Unstable isotopes of fluorine that decay or disintegrate emitting radiation. F atoms with atomic weights 17, 18, and 20-22 are radioactive fluorine isotopes.
The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system.
A dye that has been used as an industrial dye, a laboratory indicator, and a biological stain.
Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain.
Transmission of energy or mass by a medium involving movement of the medium itself. The circulatory movement that occurs in a fluid at a nonuniform temperature owing to the variation of its density and the action of gravity. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed; Webster, 10th ed)
Diseases of the BASAL GANGLIA including the PUTAMEN; GLOBUS PALLIDUS; claustrum; AMYGDALA; and CAUDATE NUCLEUS. DYSKINESIAS (most notably involuntary movements and alterations of the rate of movement) represent the primary clinical manifestations of these disorders. Common etiologies include CEREBROVASCULAR DISORDERS; NEURODEGENERATIVE DISEASES; and CRANIOCEREBRAL TRAUMA.
Involuntary, forcible, rapid, jerky movements that may be subtle or become confluent, markedly altering normal patterns of movement. Hypotonia and pendular reflexes are often associated. Conditions which feature recurrent or persistent episodes of chorea as a primary manifestation of disease are referred to as CHOREATIC DISORDERS. Chorea is also a frequent manifestation of BASAL GANGLIA DISEASES.
Agents used in the treatment of Parkinson's disease. The most commonly used drugs act on the dopaminergic system in the striatum and basal ganglia or are centrally acting muscarinic antagonists.
A syndrome complex composed of three conditions which represent clinical variants of the same disease process: STRIATONIGRAL DEGENERATION; SHY-DRAGER SYNDROME; and the sporadic form of OLIVOPONTOCEREBELLAR ATROPHIES. Clinical features include autonomic, cerebellar, and basal ganglia dysfunction. Pathologic examination reveals atrophy of the basal ganglia, cerebellum, pons, and medulla, with prominent loss of autonomic neurons in the brain stem and spinal cord. (From Adams et al., Principles of Neurology, 6th ed, p1076; Baillieres Clin Neurol 1997 Apr;6(1):187-204; Med Clin North Am 1999 Mar;83(2):381-92)
A subtype of dopamine D2 receptors that are highly expressed in the LIMBIC SYSTEM of the brain.
Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot.
Neural tracts connecting one part of the nervous system with another.
Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA.
Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells.
Drugs that bind to but do not activate DOPAMINE RECEPTORS, thereby blocking the actions of dopamine or exogenous agonists. Many drugs used in the treatment of psychotic disorders (ANTIPSYCHOTIC AGENTS) are dopamine antagonists, although their therapeutic effects may be due to long-term adjustments of the brain rather than to the acute effects of blocking dopamine receptors. Dopamine antagonists have been used for several other clinical purposes including as ANTIEMETICS, in the treatment of Tourette syndrome, and for hiccup. Dopamine receptor blockade is associated with NEUROLEPTIC MALIGNANT SYNDROME.
An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake.
A dopaminergic neurotoxic compound which produces irreversible clinical, chemical, and pathological alterations that mimic those found in Parkinson disease.
The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulchi. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions.
Dominance of one cerebral hemisphere over the other in cerebral functions.
Decrease in the size of a cell, tissue, organ, or multiple organs, associated with a variety of pathological conditions such as abnormal cellular changes, ischemia, malnutrition, or hormonal changes.
Transference of fetal tissue between individuals of the same species or between individuals of different species.
A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans.
A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula.
Compounds that are used in medicine as sources of radiation for radiotherapy and for diagnostic purposes. They have numerous uses in research and industry. (Martindale, The Extra Pharmacopoeia, 30th ed, p1161)
An object or a situation that can serve to reinforce a response, to satisfy a motive, or to afford pleasure.
The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed)
Slow or diminished movement of body musculature. It may be associated with BASAL GANGLIA DISEASES; MENTAL DISORDERS; prolonged inactivity due to illness; and other conditions.
The coordination of a sensory or ideational (cognitive) process and a motor activity.
A familial disorder inherited as an autosomal dominant trait and characterized by the onset of progressive CHOREA and DEMENTIA in the fourth or fifth decade of life. Common initial manifestations include paranoia; poor impulse control; DEPRESSION; HALLUCINATIONS; and DELUSIONS. Eventually intellectual impairment; loss of fine motor control; ATHETOSIS; and diffuse chorea involving axial and limb musculature develops, leading to a vegetative state within 10-15 years of disease onset. The juvenile variant has a more fulminant course including SEIZURES; ATAXIA; dementia; and chorea. (From Adams et al., Principles of Neurology, 6th ed, pp1060-4)

Loss of D2 receptor binding with age in rhesus monkeys: importance of correction for differences in striatal size. (1/608)

The relation between striatal dopamine D2 receptor binding and aging was investigated in rhesus monkeys with PET. Monkeys (n = 18, 39 to 360 months of age) were scanned with 11C-raclopride; binding potential in the striatum was estimated graphically. Because our magnetic resonance imaging analysis revealed a concomitant relation between size of striatum and age, the dynamic positron emission tomography (PET) data were corrected for possible partial volume (PV) artifacts before parameter estimation. The age-related decline in binding potential was 1% per year and was smaller than the apparent effect if the age-related change in size was ignored. This is the first in vivo demonstration of a decline in dopamine receptor binding in nonhuman primates. The rate of decline in binding potential is consistent with in vitro findings in monkeys but smaller than what has been measured previously in humans using PET. Previous PET studies in humans, however, have not corrected for PV error, although a decline in striatal size with age has been demonstrated. The results of this study suggest that PV correction must be applied to PET data to accurately detect small changes in receptor binding that may occur in parallel with structural changes in the brain.  (+info)

Memory guided saccade deficit after caudate nucleus lesion. (2/608)

The role of the caudate nucleus in ocular motor control is not well determined in humans. Eye movements were recorded from a 45 year old man with infarctions involving bilaterally the body of the caudate nucleus, with a greater extent on the left side. The patient exhibited a pattern of eye movement abnormalities in which a delay dependent decrease of accuracy of memory guided saccades predominated. By contrast, memory guided pointing was normal. It is concluded that the body of the caudate nucleus participates in a spatial short term memory network devoted to eye movements.  (+info)

Recovery of chronic parkinsonian monkeys by autotransplants of carotid body cell aggregates into putamen. (3/608)

We have studied the effect of unilateral autografts of carotid body cell aggregates into the putamen of MPTP-treated monkeys with chronic parkinsonism. Two to four weeks after transplantation, the monkeys initiated a progressive recovery of mobility with reduction of tremor and bradykinesia and restoration of fine motor abilities on the contralateral side. Apomorphine injections induced rotations toward the side of the transplant. Functional recovery was accompanied by the survival of tyrosine hydroxylase-positive (TH-positive) grafted glomus cells. A high density of TH-immunoreactive fibers was seen reinnervating broad regions of the ipsilateral putamen and caudate nucleus. The nongrafted, contralateral striatum remained deafferented. Intrastriatal autografting of carotid body tissue is a feasible technique with beneficial effects on parkinsonian monkeys; thus, this therapeutic approach could also be applied to treat patients with Parkinson's disease.  (+info)

Magnetization transfer contrast of various regions of the brain in liver cirrhosis. (4/608)

BACKGROUND AND PURPOSE: T1-weighted MR images show high signal intensity in the pallidum of many patients with liver cirrhosis. The purpose of this study was to evaluate quantitative changes in MR signals in patients with liver cirrhosis by using the magnetization transfer technique. METHODS: Magnetization transfer ratios were measured in seven different regions of the brain in 37 patients with liver cirrhosis and in 37 healthy volunteers. RESULTS: The magnetization transfer ratios in patients with liver cirrhosis were significantly lower than those in control subjects in the globus pallidus, putamen, thalamus, corona radiata, and subcortical white matter. CONCLUSION: Abnormal magnetization transfer ratios may be found in otherwise normal-appearing cerebral regions.  (+info)

Sequential bilateral transplantation in Parkinson's disease: effects of the second graft. (5/608)

Five parkinsonian patients who had received implants of human embryonic mesencephalic tissue unilaterally in the striatum 10-56 months earlier were grafted with tissue from four to eight donors into the putamen (four patients) or the putamen plus the caudate nucleus (one patient) on the other side, and were followed for 18-24 months. After 12-18 months, PET showed a mean 85% increase in 6-L-[18F]fluorodopa uptake in the putamen with the second graft, whereas there was no significant further change in the previously transplanted putamen. Two patients exhibited marked additional improvements after their second graft: 'on-off' fluctuations virtually disappeared, movement speed increased, and L-dopa could be withdrawn in one patient and reduced by 70% in the other. The improvement in one patient was moderate. Two patients with atypical features, who responded poorly to the first graft, worsened following the second transplantation. These findings indicate that sequential transplantation in patients does not compromise the survival and function of either the first or the second graft. Moreover, putamen grafts that restore fluorodopa uptake to normal levels can give improvements of major therapeutic value.  (+info)

Role of the medial prefrontal cortex in 5-HT1A receptor-induced inhibition of 5-HT neuronal activity in the rat. (6/608)

1. We examined the involvement of the frontal cortex in the 5-HT2A receptor-induced inhibition of 5-HT neurones in the dorsal raphe nucleus (DRN) of the anaesthetized rat using single-unit recordings complemented by Fos-immunocytochemistry. 2. Both transection of the frontal cortex as well as ablation of the medial region of the prefrontal cortex (mPFC) significantly attenuated the inhibition of 5-HT neurones induced by systemic administration of the 5-HT1A receptor agonist, 8-OH-DPAT (0.5-16 microg kg(-1), i.v.). In comparison, the response to 8-OH-DPAT was not altered by ablation of the parietal cortex. The inhibitory effect of 8-OH-DPAT was reversed by the 5-HT1A receptor antagonist, WAY 100635 (0.1 mg kg(-1), i.v.) in all neurones tested. 3. In contrast, cortical transection did not alter the sensitivity of 5-HT neurones to iontophoretic application of 8-OH-DPAT into the DRN. Similarly, cortical transection did not alter the sensitivity of 5-HT neurones to systemic administration of the selective 5-HT reuptake inhibitor, paroxetine (0.1-0.8 mg kg(-1) , i.v.). 4. 8-OH-DPAT evoked excitation of mPFC neurones at doses (0.5-32 microg kg(-1), i.v.) in the range of those which inhibited 5-HT cell firing. At higher doses (32-512 microg kg(-1), i.v.) 8-OH-DPAT inhibited mPFC neurones. 8-OH-DPAT (0.1 mg kg(-1), s.c.) also induced Fos expression in the mPFC. The neuronal excitation and inhibition, as well as the Fos expression, were antagonized by WAY 100635. 5. These data add further support to the view that the inhibitory effect of 5-HT1A receptor agonists on the firing activity of DRN 5-HT neurones involves, in part, activation of a 5-HT1A receptor-mediated postsynaptic feedback loop centred on the mPFC.  (+info)

Mitochondrial function is differentially altered in the basal ganglia of chronic schizophrenics. (7/608)

In the present study, we have applied a novel strategy involving the postmortem measurement of the mitochondrial respiratory chain enzyme cytochrome-c oxidase (COX; complex IV) to identify regional changes in energy metabolism in the basal ganglia of chronic, medicated schizophrenics. COX activity was decreased in the caudate nucleus but increased in the putamen and nucleus accumbens. An increase in succinate dehydrogenase (complex II) was evident in the putamen and nucleus accumbens, but changes were not seen with NADH dehydrogenase (complex I). An analysis of interregional correlations in energy metabolism revealed several anomalies in the connections between the caudate and putamen and the globus pallidus in schizophrenics. Results provide strong evidence that changes in baseline energy metabolism in specific regions of the basal ganglia may exist in the disease. Based upon the high degree of input it receives from associative cortical areas, results suggest that a defect in the caudate may underlie certain aspects of cognitive decline in schizophrenics. In contrast, an increase in COX in the putamen, which receives extensive projections from the sensorimotor cortex, may reflect an effect of chronic neuroleptic treatment on motor function.  (+info)

The effects of acute nicotine on the metabolism of dopamine and the expression of Fos protein in striatal and limbic brain areas of rats during chronic nicotine infusion and its withdrawal. (8/608)

The effects of acute nicotine (0.5 mg/kg, s.c.) on dopamine (DA) metabolism and Fos protein expression in striatal and limbic areas of rats on the seventh day of chronic nicotine infusion (4 mg. kg(-1). d(-1)) and after 24 or 72 hr withdrawal were investigated. In saline-infused rats, acute nicotine elevated striatal and limbic 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) concentrations significantly. During the nicotine infusion, no such increases were seen in the striatum, but limbic HVA was somewhat elevated. After 24 hr withdrawal when no nicotine was found in the plasma, acute nicotine elevated striatal DOPAC and HVA and limbic HVA. However, the limbic DOPAC was unaffected. Acute nicotine increased Fos immunostaining (IS) in the caudate-putamen (CPU), the core of nucleus accumbens (NAcc), the cingulate cortex (Cg), and the central nucleus of amygdala (ACe) significantly. During nicotine infusion the nicotine-induced responses were attenuated in CPU and NAcc, whereas in ACe and Cg Fos immunostaining was increased as in saline-infused rats. After 24 hr withdrawal, acute nicotine did not increase Fos immunostaining in CPU, NAcc, and Cg, but increased it clearly in ACe. After 72 hr withdrawal, nicotine's effects were restored. Our findings suggest that the nicotinic receptors in the striatal areas are desensitized more easily than those in the limbic areas. Furthermore, the effects of nicotine on various DA metabolites differ. We also found evidence for long-lasting inactivation of nicotinic receptors in vivo regulating limbic dopamine metabolism and Fos expression in striatal and limbic areas. These findings might be important for the protective effects of nicotine in Parkinson's disease and in its dependence-producing properties.  (+info)

The putamen is a round, egg-shaped structure that is a part of the basal ganglia, located in the forebrain. It is situated laterally to the globus pallidus and medially to the internal capsule. The putamen plays a crucial role in regulating movement and is involved in various functions such as learning, motivation, and habit formation.

It receives input from the cerebral cortex via the corticostriatal pathway and sends output to the globus pallidus and substantia nigra pars reticulata, which are also part of the basal ganglia circuitry. The putamen is heavily innervated by dopaminergic neurons from the substantia nigra pars compacta, and degeneration of these neurons in Parkinson's disease leads to a significant reduction in dopamine levels in the putamen, resulting in motor dysfunction.

The caudate nucleus is a part of the brain located within the basal ganglia, a group of structures that are important for movement control and cognition. It has a distinctive C-shaped appearance and plays a role in various functions such as learning, memory, emotion, and motivation. The caudate nucleus receives inputs from several areas of the cerebral cortex and sends outputs to other basal ganglia structures, contributing to the regulation of motor behavior and higher cognitive processes.

The corpus striatum is a part of the brain that plays a crucial role in movement, learning, and cognition. It consists of two structures called the caudate nucleus and the putamen, which are surrounded by the external and internal segments of the globus pallidus. Together, these structures form the basal ganglia, a group of interconnected neurons that help regulate voluntary movement.

The corpus striatum receives input from various parts of the brain, including the cerebral cortex, thalamus, and other brainstem nuclei. It processes this information and sends output to the globus pallidus and substantia nigra, which then project to the thalamus and back to the cerebral cortex. This feedback loop helps coordinate and fine-tune movements, allowing for smooth and coordinated actions.

Damage to the corpus striatum can result in movement disorders such as Parkinson's disease, Huntington's disease, and dystonia. These conditions are characterized by abnormal involuntary movements, muscle stiffness, and difficulty initiating or controlling voluntary movements.

The basal ganglia are a group of interconnected nuclei, or clusters of neurons, located in the base of the brain. They play a crucial role in regulating motor function, cognition, and emotion. The main components of the basal ganglia include the striatum (made up of the caudate nucleus, putamen, and ventral striatum), globus pallidus (divided into external and internal segments), subthalamic nucleus, and substantia nigra (with its pars compacta and pars reticulata).

The basal ganglia receive input from various regions of the cerebral cortex and other brain areas. They process this information and send output back to the thalamus and cortex, helping to modulate and coordinate movement. The basal ganglia also contribute to higher cognitive functions such as learning, decision-making, and habit formation. Dysfunction in the basal ganglia can lead to neurological disorders like Parkinson's disease, Huntington's disease, and dystonia.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Raclopride is not a medical condition but a drug that belongs to the class of dopamine receptor antagonists. It's primarily used in research and diagnostic settings as a radioligand in positron emission tomography (PET) scans to visualize and measure the distribution and availability of dopamine D2 and D3 receptors in the brain.

In simpler terms, Raclopride is a compound that can be labeled with a radioactive isotope and then introduced into the body to track the interaction between the radioligand and specific receptors (in this case, dopamine D2 and D3 receptors) in the brain. This information can help researchers and clinicians better understand neurochemical processes and disorders related to dopamine dysfunction, such as Parkinson's disease, schizophrenia, and drug addiction.

It is important to note that Raclopride is not used as a therapeutic agent in clinical practice due to its short half-life and the potential for side effects associated with dopamine receptor blockade.

Dihydroxyphenylalanine is not a medical term per se, but it is a chemical compound that is often referred to in the context of biochemistry and neuroscience. It is also known as levodopa or L-DOPA for short.

L-DOPA is a precursor to dopamine, a neurotransmitter that plays a critical role in regulating movement, emotion, and cognition. In the brain, L-DOPA is converted into dopamine through the action of an enzyme called tyrosine hydroxylase.

L-DOPA is used medically to treat Parkinson's disease, a neurological disorder characterized by motor symptoms such as tremors, rigidity, and bradykinesia (slowness of movement). In Parkinson's disease, the dopamine-producing neurons in the brain gradually degenerate, leading to a deficiency of dopamine. By providing L-DOPA as a replacement therapy, doctors can help alleviate some of the symptoms of the disease.

It is important to note that L-DOPA has potential side effects and risks, including nausea, dizziness, and behavioral changes. Long-term use of L-DOPA can also lead to motor complications such as dyskinesias (involuntary movements) and fluctuations in response to the medication. Therefore, it is typically used in combination with other medications and under the close supervision of a healthcare provider.

Parkinson's disease is a progressive neurodegenerative disorder that affects movement. It is characterized by the death of dopamine-producing cells in the brain, specifically in an area called the substantia nigra. The loss of these cells leads to a decrease in dopamine levels, which results in the motor symptoms associated with Parkinson's disease. These symptoms can include tremors at rest, stiffness or rigidity of the limbs and trunk, bradykinesia (slowness of movement), and postural instability (impaired balance and coordination). In addition to these motor symptoms, non-motor symptoms such as cognitive impairment, depression, anxiety, and sleep disturbances are also common in people with Parkinson's disease. The exact cause of Parkinson's disease is unknown, but it is thought to be a combination of genetic and environmental factors. There is currently no cure for Parkinson's disease, but medications and therapies can help manage the symptoms and improve quality of life.

The neostriatum is a component of the basal ganglia, a group of subcortical nuclei in the brain that are involved in motor control, procedural learning, and other cognitive functions. It is composed primarily of two types of neurons: medium spiny neurons and aspiny interneurons. The neostriatum receives input from various regions of the cerebral cortex and projects to other parts of the basal ganglia, forming an important part of the cortico-basal ganglia-thalamo-cortical loop.

In medical terminology, the neostriatum is often used interchangeably with the term "striatum," although some sources reserve the term "neostriatum" for the caudate nucleus and putamen specifically, while using "striatum" to refer to the entire structure including the ventral striatum (also known as the nucleus accumbens).

Damage to the neostriatum has been implicated in various neurological conditions, such as Huntington's disease and Parkinson's disease.

Tropane alkaloids are a class of naturally occurring compounds that contain a tropane ring in their chemical structure. This ring is composed of a seven-membered ring with two nitrogen atoms, one of which is part of a piperidine ring. Tropane alkaloids are found in various plants, particularly those in the Solanaceae family, which includes nightshade, belladonna, and datura. Some well-known tropane alkaloids include atropine, scopolamine, and cocaine. These compounds have diverse pharmacological activities, such as anticholinergic, local anesthetic, and central nervous system stimulant effects.

Dopamine D2 receptor is a type of metabotropic G protein-coupled receptor that binds to the neurotransmitter dopamine. It is one of five subtypes of dopamine receptors (D1-D5) and is encoded by the gene DRD2. The activation of D2 receptors leads to a decrease in the activity of adenylyl cyclase, which results in reduced levels of cAMP and modulation of ion channels.

D2 receptors are widely distributed throughout the central nervous system (CNS) and play important roles in various physiological functions, including motor control, reward processing, emotion regulation, and cognition. They are also involved in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, drug addiction, and Tourette syndrome.

D2 receptors have two main subtypes: D2 short (D2S) and D2 long (D2L). The D2S subtype is primarily located in the presynaptic terminals and functions as an autoreceptor that regulates dopamine release, while the D2L subtype is mainly found in the postsynaptic neurons and modulates intracellular signaling pathways.

Antipsychotic drugs, which are used to treat schizophrenia and other psychiatric disorders, work by blocking D2 receptors. However, excessive blockade of these receptors can lead to side effects such as extrapyramidal symptoms (EPS), tardive dyskinesia, and hyperprolactinemia. Therefore, the development of drugs that selectively target specific subtypes of dopamine receptors is an active area of research in the field of neuropsychopharmacology.

The Globus Pallidus is a structure in the brain that is part of the basal ganglia, a group of nuclei associated with movement control and other functions. It has two main subdivisions: the external (GPe) and internal (GPi) segments. The GPe receives input from the striatum and sends inhibitory projections to the subthalamic nucleus, while the GPi sends inhibitory projections to the thalamus, which in turn projects to the cerebral cortex. These connections allow for the regulation of motor activity, with abnormal functioning of the Globus Pallidus being implicated in various movement disorders such as Parkinson's disease and Huntington's disease.

Dopamine plasma membrane transport proteins, also known as dopamine transporters (DAT), are a type of protein found in the cell membrane that play a crucial role in the regulation of dopamine neurotransmission. They are responsible for the reuptake of dopamine from the synaptic cleft back into the presynaptic neuron, thereby terminating the signal transduction of dopamine and regulating the amount of dopamine available for further release.

Dopamine transporters belong to the family of sodium-dependent neurotransmitter transporters and are encoded by the SLC6A3 gene in humans. Abnormalities in dopamine transporter function have been implicated in several neurological and psychiatric disorders, including Parkinson's disease, attention deficit hyperactivity disorder (ADHD), and substance use disorders.

In summary, dopamine plasma membrane transport proteins are essential for the regulation of dopamine neurotransmission by mediating the reuptake of dopamine from the synaptic cleft back into the presynaptic neuron.

Brain mapping is a broad term that refers to the techniques used to understand the structure and function of the brain. It involves creating maps of the various cognitive, emotional, and behavioral processes in the brain by correlating these processes with physical locations or activities within the nervous system. Brain mapping can be accomplished through a variety of methods, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET) scans, electroencephalography (EEG), and others. These techniques allow researchers to observe which areas of the brain are active during different tasks or thoughts, helping to shed light on how the brain processes information and contributes to our experiences and behaviors. Brain mapping is an important area of research in neuroscience, with potential applications in the diagnosis and treatment of neurological and psychiatric disorders.

Noradrenergic agents, often referred to as "noradrenalines" or "nortropanes," are a class of medications that work by modulating the noradrenergic system in the body. Noradrenaline, also known as norepinephrine, is a neurotransmitter and hormone that plays a crucial role in regulating various physiological functions such as heart rate, blood pressure, attention, and arousal.

Noradrenergic agents exert their effects by either increasing the release of noradrenaline from nerve terminals, blocking its reuptake into the presynaptic neuron, or antagonizing its interaction with specific receptors. These medications are used in various clinical settings, including the treatment of depression, attention deficit hyperactivity disorder (ADHD), and certain neurological disorders.

Examples of noradrenergic agents include:

* Atomoxetine: a selective norepinephrine reuptake inhibitor used to treat ADHD
* Desipramine: a tricyclic antidepressant that increases the availability of noradrenaline in the synaptic cleft by blocking its reuptake
* Methylphenidate: a stimulant medication used to treat ADHD, which increases the release of both dopamine and noradrenaline in the brain
* Reboxetine: another selective norepinephrine reuptake inhibitor used to treat depression.

It is important to note that while these medications are often referred to as "nortropanes," this term is not a formally recognized medical or pharmacological classification. Instead, it is a colloquial term used to describe drugs that primarily affect the noradrenergic system.

Dopamine is a type of neurotransmitter, which is a chemical messenger that transmits signals in the brain and nervous system. It plays several important roles in the body, including:

* Regulation of movement and coordination
* Modulation of mood and motivation
* Control of the reward and pleasure centers of the brain
* Regulation of muscle tone
* Involvement in memory and attention

Dopamine is produced in several areas of the brain, including the substantia nigra and the ventral tegmental area. It is released by neurons (nerve cells) and binds to specific receptors on other neurons, where it can either excite or inhibit their activity.

Abnormalities in dopamine signaling have been implicated in several neurological and psychiatric conditions, including Parkinson's disease, schizophrenia, and addiction.

Computer-assisted image processing is a medical term that refers to the use of computer systems and specialized software to improve, analyze, and interpret medical images obtained through various imaging techniques such as X-ray, CT (computed tomography), MRI (magnetic resonance imaging), ultrasound, and others.

The process typically involves several steps, including image acquisition, enhancement, segmentation, restoration, and analysis. Image processing algorithms can be used to enhance the quality of medical images by adjusting contrast, brightness, and sharpness, as well as removing noise and artifacts that may interfere with accurate diagnosis. Segmentation techniques can be used to isolate specific regions or structures of interest within an image, allowing for more detailed analysis.

Computer-assisted image processing has numerous applications in medical imaging, including detection and characterization of lesions, tumors, and other abnormalities; assessment of organ function and morphology; and guidance of interventional procedures such as biopsies and surgeries. By automating and standardizing image analysis tasks, computer-assisted image processing can help to improve diagnostic accuracy, efficiency, and consistency, while reducing the potential for human error.

Emission computed tomography (ECT) is a type of tomographic imaging technique in which an emission signal from within the body is detected to create cross-sectional images of that signal's distribution. In Emission-Computed Tomography (ECT), a radionuclide is introduced into the body, usually through injection, inhalation or ingestion. The radionuclide emits gamma rays that are then detected by external gamma cameras.

The data collected from these cameras is then used to create cross-sectional images of the distribution of the radiopharmaceutical within the body. This allows for the identification and quantification of functional information about specific organs or systems within the body, such as blood flow, metabolic activity, or receptor density.

One common type of Emission-Computed Tomography is Single Photon Emission Computed Tomography (SPECT), which uses a single gamma camera that rotates around the patient to collect data from multiple angles. Another type is Positron Emission Tomography (PET), which uses positron-emitting radionuclides and detects the coincident gamma rays emitted by the annihilation of positrons and electrons.

Overall, ECT is a valuable tool in medical imaging for diagnosing and monitoring various diseases, including cancer, heart disease, and neurological disorders.

The Substantia Nigra is a region in the midbrain that plays a crucial role in movement control and reward processing. It is composed of two parts: the pars compacta and the pars reticulata. The pars compacta contains dopamine-producing neurons, whose loss or degeneration is associated with Parkinson's disease, leading to motor symptoms such as tremors, rigidity, and bradykinesia.

In summary, Substantia Nigra is a brain structure that contains dopamine-producing cells and is involved in movement control and reward processing. Its dysfunction or degeneration can lead to neurological disorders like Parkinson's disease.

Positron-Emission Tomography (PET) is a type of nuclear medicine imaging that uses small amounts of radioactive material, called a radiotracer, to produce detailed, three-dimensional images. This technique measures metabolic activity within the body, such as sugar metabolism, to help distinguish between healthy and diseased tissue, identify cancerous cells, or examine the function of organs.

During a PET scan, the patient is injected with a radiotracer, typically a sugar-based compound labeled with a positron-emitting radioisotope, such as fluorine-18 (^18^F). The radiotracer accumulates in cells that are metabolically active, like cancer cells. As the radiotracer decays, it emits positrons, which then collide with electrons in nearby tissue, producing gamma rays. A special camera, called a PET scanner, detects these gamma rays and uses this information to create detailed images of the body's internal structures and processes.

PET is often used in conjunction with computed tomography (CT) or magnetic resonance imaging (MRI) to provide both functional and anatomical information, allowing for more accurate diagnosis and treatment planning. Common applications include detecting cancer recurrence, staging and monitoring cancer, evaluating heart function, and assessing brain function in conditions like dementia and epilepsy.

Fluorine radioisotopes are radioactive isotopes or variants of the chemical element Fluorine (F, atomic number 9). These radioisotopes have an unstable nucleus that emits radiation in the form of alpha particles, beta particles, or gamma rays. Examples of Fluorine radioisotopes include Fluorine-18 and Fluorine-19.

Fluorine-18 is a positron-emitting radionuclide with a half-life of approximately 110 minutes, making it useful for medical imaging techniques such as Positron Emission Tomography (PET) scans. It is commonly used in the production of fluorodeoxyglucose (FDG), a radiopharmaceutical that can be used to detect cancer and other metabolic disorders.

Fluorine-19, on the other hand, is a stable isotope of Fluorine and does not emit radiation. However, it can be enriched and used as a non-radioactive tracer in medical research and diagnostic applications.

Levodopa, also known as L-dopa, is a medication used primarily in the treatment of Parkinson's disease. It is a direct precursor to the neurotransmitter dopamine and works by being converted into dopamine in the brain, helping to restore the balance between dopamine and other neurotransmitters. This helps alleviate symptoms such as stiffness, tremors, spasms, and poor muscle control. Levodopa is often combined with carbidopa (a peripheral decarboxylase inhibitor) to prevent the conversion of levodopa to dopamine outside of the brain, reducing side effects like nausea and vomiting.

Bromophenol Blue is a chemical compound that is commonly used as an indicator in acid-base titrations in chemistry and biology. Its chemical formula is C19H10Br4O5S. It is a dark green crystalline powder that is soluble in water and alcohol, and it has a molecular weight of 669.93 g/mol.

In solution, Bromophenol Blue exhibits different colors depending on the pH level. At pH levels below 3.0, it appears yellow; between 3.0 and 4.6, it is green; between 4.6 and 6.8, it is blue; and above 6.8, it turns purple. This color change makes it a useful tool for indicating the endpoint in acid-base titrations.

In addition to its use as an indicator, Bromophenol Blue has also been used in research and medical applications, such as staining proteins in gels and as a marker for protein denaturation. However, it should be handled with care, as it can cause irritation to the skin, eyes, and respiratory system, and is considered a hazardous substance.

The thalamus is a large, paired structure in the brain that serves as a relay station for sensory and motor signals to the cerebral cortex. It is located in the dorsal part of the diencephalon and is made up of two symmetrical halves, each connected to the corresponding cerebral hemisphere.

The thalamus receives inputs from almost all senses, except for the olfactory system, and processes them before sending them to specific areas in the cortex. It also plays a role in regulating consciousness, sleep, and alertness. Additionally, the thalamus is involved in motor control by relaying information between the cerebellum and the motor cortex.

The thalamus is divided into several nuclei, each with distinct connections and functions. Some of these nuclei are involved in sensory processing, while others are involved in motor function or regulation of emotions and cognition. Overall, the thalamus plays a critical role in integrating information from various brain regions and modulating cognitive and emotional processes.

Convection, in the context of medicine and physiology, refers to the movement of fluids or gases in a system due to differences in temperature or density. This process plays a crucial role in various biological systems, including blood circulation, heat regulation, and respiration.

For instance, in the human body, convection helps regulate body temperature through the movement of warm and cool blood between the core and peripheral tissues. In the lungs, air moves in and out of the alveoli through convective forces generated by the contraction and relaxation of the diaphragm and intercostal muscles during breathing.

In a broader medical context, convection may also refer to the movement of fluids or gases in medical devices such as intravenous (IV) lines, catheters, or respiratory equipment, where it can impact the distribution and delivery of medications, nutrients, or oxygen.

Basal ganglia diseases are a group of neurological disorders that affect the function of the basal ganglia, which are clusters of nerve cells located deep within the brain. The basal ganglia play a crucial role in controlling movement and coordination. When they are damaged or degenerate, it can result in various motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and difficulty with balance and walking.

Some examples of basal ganglia diseases include:

1. Parkinson's disease - a progressive disorder that affects movement due to the death of dopamine-producing cells in the basal ganglia.
2. Huntington's disease - an inherited neurodegenerative disorder that causes uncontrolled movements, emotional problems, and cognitive decline.
3. Dystonia - a movement disorder characterized by sustained or intermittent muscle contractions that cause twisting and repetitive movements or abnormal postures.
4. Wilson's disease - a rare genetic disorder that causes excessive copper accumulation in the liver and brain, leading to neurological and psychiatric symptoms.
5. Progressive supranuclear palsy (PSP) - a rare brain disorder that affects movement, gait, and balance, as well as speech and swallowing.
6. Corticobasal degeneration (CBD) - a rare neurological disorder characterized by progressive loss of nerve cells in the cerebral cortex and basal ganglia, leading to stiffness, rigidity, and difficulty with movement and coordination.

Treatment for basal ganglia diseases varies depending on the specific diagnosis and symptoms but may include medication, surgery, physical therapy, or a combination of these approaches.

Chorea is a medical term that describes an involuntary movement disorder characterized by brief, irregular, and abrupt jerky movements. These movements often occur randomly and can affect any part of the body. Chorea can also cause difficulty with coordination and balance, and can sometimes be accompanied by muscle weakness or rigidity.

The term "chorea" comes from the Greek word "χορεία" (khoréia), which means "dance," reflecting the graceful, dance-like movements that are characteristic of this condition. Chorea can occur as a symptom of various underlying medical conditions, including neurological disorders such as Huntington's disease, Sydenham's chorea, and cerebral palsy, as well as metabolic disorders, infections, and certain medications.

Treatment for chorea depends on the underlying cause of the condition and may include medications to help control the involuntary movements, physical therapy to improve coordination and balance, and lifestyle modifications to reduce the risk of injury from falls or other accidents. In some cases, surgery may be recommended as a last resort for severe or refractory chorea.

Antiparkinson agents are a class of medications used to treat the symptoms of Parkinson's disease and related disorders. These agents work by increasing the levels or activity of dopamine, a neurotransmitter in the brain that is responsible for regulating movement and coordination.

There are several types of antiparkinson agents, including:

1. Levodopa: This is the most effective treatment for Parkinson's disease. It is converted to dopamine in the brain and helps to replace the missing dopamine in people with Parkinson's.
2. Dopamine agonists: These medications mimic the effects of dopamine in the brain and can be used alone or in combination with levodopa. Examples include pramipexole, ropinirole, and rotigotine.
3. Monoamine oxidase B (MAO-B) inhibitors: These medications block the breakdown of dopamine in the brain and can help to increase its levels. Examples include selegiline and rasagiline.
4. Catechol-O-methyltransferase (COMT) inhibitors: These medications block the breakdown of levodopa in the body, allowing it to reach the brain in higher concentrations. Examples include entacapone and tolcapone.
5. Anticholinergic agents: These medications block the action of acetylcholine, another neurotransmitter that can contribute to tremors and muscle stiffness in Parkinson's disease. Examples include trihexyphenidyl and benztropine.

It is important to note that antiparkinson agents can have side effects, and their use should be carefully monitored by a healthcare professional. The choice of medication will depend on the individual patient's symptoms, age, overall health, and other factors.

Multiple System Atrophy (MSA) is a rare, progressive neurodegenerative disorder that affects multiple systems in the body. It is characterized by a combination of symptoms including Parkinsonism (such as stiffness, slowness of movement, and tremors), cerebellar ataxia (lack of muscle coordination), autonomic dysfunction (problems with the autonomic nervous system which controls involuntary actions like heart rate, blood pressure, sweating, and digestion), and pyramidal signs (abnormalities in the corticospinal tracts that control voluntary movements).

The disorder is caused by the degeneration of nerve cells in various parts of the brain and spinal cord, leading to a loss of function in these areas. The exact cause of MSA is unknown, but it is thought to involve a combination of genetic and environmental factors. There is currently no cure for MSA, and treatment is focused on managing symptoms and improving quality of life.

Dopamine D3 receptors are a type of G protein-coupled receptor that bind to the neurotransmitter dopamine. They are classified as part of the D2-like family of dopamine receptors, which also includes the D2 and D4 receptors. The D3 receptor is primarily expressed in the limbic areas of the brain, including the hippocampus and the nucleus accumbens, where it plays a role in regulating motivation, reward, and cognition.

D3 receptors have been found to be involved in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, and drug addiction. In Parkinson's disease, the loss of dopamine-producing neurons in the substantia nigra results in a decrease in dopamine levels and an increase in D3 receptor expression. This increase in D3 receptor expression has been linked to the development of motor symptoms such as bradykinesia and rigidity.

In schizophrenia, antipsychotic medications that block D2-like receptors, including D3 receptors, are used to treat positive symptoms such as hallucinations and delusions. However, selective D3 receptor antagonists have also been shown to have potential therapeutic effects in treating negative symptoms of schizophrenia, such as apathy and anhedonia.

In drug addiction, D3 receptors have been found to play a role in the rewarding effects of drugs of abuse, such as cocaine and amphetamines. Selective D3 receptor antagonists have shown promise in reducing drug-seeking behavior and preventing relapse in animal models of addiction.

Overall, dopamine D3 receptors play an important role in several neurological and psychiatric disorders, and further research is needed to fully understand their functions and potential therapeutic uses.

Functional laterality, in a medical context, refers to the preferential use or performance of one side of the body over the other for specific functions. This is often demonstrated in hand dominance, where an individual may be right-handed or left-handed, meaning they primarily use their right or left hand for tasks such as writing, eating, or throwing.

However, functional laterality can also apply to other bodily functions and structures, including the eyes (ocular dominance), ears (auditory dominance), or legs. It's important to note that functional laterality is not a strict binary concept; some individuals may exhibit mixed dominance or no strong preference for one side over the other.

In clinical settings, assessing functional laterality can be useful in diagnosing and treating various neurological conditions, such as stroke or traumatic brain injury, where understanding any resulting lateralized impairments can inform rehabilitation strategies.

Neural pathways, also known as nerve tracts or fasciculi, refer to the highly organized and specialized routes through which nerve impulses travel within the nervous system. These pathways are formed by groups of neurons (nerve cells) that are connected in a series, creating a continuous communication network for electrical signals to transmit information between different regions of the brain, spinal cord, and peripheral nerves.

Neural pathways can be classified into two main types: sensory (afferent) and motor (efferent). Sensory neural pathways carry sensory information from various receptors in the body (such as those for touch, temperature, pain, and vision) to the brain for processing. Motor neural pathways, on the other hand, transmit signals from the brain to the muscles and glands, controlling movements and other effector functions.

The formation of these neural pathways is crucial for normal nervous system function, as it enables efficient communication between different parts of the body and allows for complex behaviors, cognitive processes, and adaptive responses to internal and external stimuli.

The nucleus accumbens is a part of the brain that is located in the ventral striatum, which is a key region of the reward circuitry. It is made up of two subregions: the shell and the core. The nucleus accumbens receives inputs from various sources, including the prefrontal cortex, amygdala, and hippocampus, and sends outputs to the ventral pallidum and other areas.

The nucleus accumbens is involved in reward processing, motivation, reinforcement learning, and addiction. It plays a crucial role in the release of the neurotransmitter dopamine, which is associated with pleasure and reinforcement. Dysfunction in the nucleus accumbens has been implicated in various neurological and psychiatric conditions, including substance use disorders, depression, and obsessive-compulsive disorder.

Dopamine receptors are a type of G protein-coupled receptor that bind to and respond to the neurotransmitter dopamine. There are five subtypes of dopamine receptors (D1-D5), which are classified into two families based on their structure and function: D1-like (D1 and D5) and D2-like (D2, D3, and D4).

Dopamine receptors play a crucial role in various physiological processes, including movement, motivation, reward, cognition, emotion, and neuroendocrine regulation. They are widely distributed throughout the central nervous system, with high concentrations found in the basal ganglia, limbic system, and cortex.

Dysfunction of dopamine receptors has been implicated in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder (ADHD), drug addiction, and depression. Therefore, drugs targeting dopamine receptors have been developed for the treatment of these conditions.

Dopamine antagonists are a class of drugs that block the action of dopamine, a neurotransmitter in the brain associated with various functions including movement, motivation, and emotion. These drugs work by binding to dopamine receptors and preventing dopamine from attaching to them, which can help to reduce the symptoms of certain medical conditions such as schizophrenia, bipolar disorder, and gastroesophageal reflux disease (GERD).

There are several types of dopamine antagonists, including:

1. Typical antipsychotics: These drugs are primarily used to treat psychosis, including schizophrenia and delusional disorders. Examples include haloperidol, chlorpromazine, and fluphenazine.
2. Atypical antipsychotics: These drugs are also used to treat psychosis but have fewer side effects than typical antipsychotics. They may also be used to treat bipolar disorder and depression. Examples include risperidone, olanzapine, and quetiapine.
3. Antiemetics: These drugs are used to treat nausea and vomiting. Examples include metoclopramide and prochlorperazine.
4. Dopamine agonists: While not technically dopamine antagonists, these drugs work by stimulating dopamine receptors and can be used to treat conditions such as Parkinson's disease. However, they can also have the opposite effect and block dopamine receptors in high doses, making them functionally similar to dopamine antagonists.

Common side effects of dopamine antagonists include sedation, weight gain, and movement disorders such as tardive dyskinesia. It's important to use these drugs under the close supervision of a healthcare provider to monitor for side effects and adjust the dosage as needed.

Cocaine is a highly addictive stimulant drug derived from the leaves of the coca plant (Erythroxylon coca). It is a powerful central nervous system stimulant that affects the brain and body in many ways. When used recreationally, cocaine can produce feelings of euphoria, increased energy, and mental alertness; however, it can also cause serious negative consequences, including addiction, cardiovascular problems, seizures, and death.

Cocaine works by increasing the levels of dopamine in the brain, a neurotransmitter associated with pleasure and reward. This leads to the pleasurable effects that users seek when they take the drug. However, cocaine also interferes with the normal functioning of the brain's reward system, making it difficult for users to experience pleasure from natural rewards like food or social interactions.

Cocaine can be taken in several forms, including powdered form (which is usually snorted), freebase (a purer form that is often smoked), and crack cocaine (a solid form that is typically heated and smoked). Each form of cocaine has different risks and potential harms associated with its use.

Long-term use of cocaine can lead to a number of negative health consequences, including addiction, heart problems, malnutrition, respiratory issues, and mental health disorders like depression or anxiety. It is important to seek help if you or someone you know is struggling with cocaine use or addiction.

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a chemical compound that can cause permanent parkinsonian symptoms. It is not a medication or a treatment, but rather a toxin that can damage the dopamine-producing neurons in the brain, leading to symptoms similar to those seen in Parkinson's disease.

MPTP itself is not harmful, but it is metabolized in the body into a toxic compound called MPP+, which accumulates in and damages dopaminergic neurons. MPTP was discovered in the 1980s when a group of drug users in California developed parkinsonian symptoms after injecting a heroin-like substance contaminated with MPTP.

Since then, MPTP has been used as a research tool to study Parkinson's disease and develop new treatments. However, it is not used clinically and should be handled with caution due to its toxicity.

The cerebral cortex is the outermost layer of the brain, characterized by its intricate folded structure and wrinkled appearance. It is a region of great importance as it plays a key role in higher cognitive functions such as perception, consciousness, thought, memory, language, and attention. The cerebral cortex is divided into two hemispheres, each containing four lobes: the frontal, parietal, temporal, and occipital lobes. These areas are responsible for different functions, with some regions specializing in sensory processing while others are involved in motor control or associative functions. The cerebral cortex is composed of gray matter, which contains neuronal cell bodies, and is covered by a layer of white matter that consists mainly of myelinated nerve fibers.

Cerebral dominance is a concept in neuropsychology that refers to the specialization of one hemisphere of the brain over the other for certain cognitive functions. In most people, the left hemisphere is dominant for language functions such as speaking and understanding spoken or written language, while the right hemisphere is dominant for non-verbal functions such as spatial ability, face recognition, and artistic ability.

Cerebral dominance does not mean that the non-dominant hemisphere is incapable of performing the functions of the dominant hemisphere, but rather that it is less efficient or specialized in those areas. The concept of cerebral dominance has been used to explain individual differences in cognitive abilities and learning styles, as well as the laterality of brain damage and its effects on cognition and behavior.

It's important to note that cerebral dominance is a complex phenomenon that can vary between individuals and can be influenced by various factors such as genetics, environment, and experience. Additionally, recent research has challenged the strict lateralization of functions and suggested that there is more functional overlap and interaction between the two hemispheres than previously thought.

Atrophy is a medical term that refers to the decrease in size and wasting of an organ or tissue due to the disappearance of cells, shrinkage of cells, or decreased number of cells. This process can be caused by various factors such as disuse, aging, degeneration, injury, or disease.

For example, if a muscle is immobilized for an extended period, it may undergo atrophy due to lack of use. Similarly, certain medical conditions like diabetes, cancer, and heart failure can lead to the wasting away of various tissues and organs in the body.

Atrophy can also occur as a result of natural aging processes, leading to decreased muscle mass and strength in older adults. In general, atrophy is characterized by a decrease in the volume or weight of an organ or tissue, which can have significant impacts on its function and overall health.

Fetal tissue transplantation is a medical procedure that involves the surgical implantation of tissue from developing fetuses into patients for therapeutic purposes. The tissue used in these procedures typically comes from elective abortions, and can include tissues such as neural cells, liver cells, pancreatic islets, and heart valves.

The rationale behind fetal tissue transplantation is that the developing fetus has a high capacity for cell growth and regeneration, making its tissues an attractive source of cells for transplantation. Additionally, because fetal tissue is often less mature than adult tissue, it may be less likely to trigger an immune response in the recipient, reducing the risk of rejection.

Fetal tissue transplantation has been explored as a potential treatment for a variety of conditions, including Parkinson's disease, diabetes, and heart disease. However, the use of fetal tissue in medical research and therapy remains controversial due to ethical concerns surrounding the sourcing of the tissue.

"Macaca mulatta" is the scientific name for the Rhesus macaque, a species of monkey that is native to South, Central, and Southeast Asia. They are often used in biomedical research due to their genetic similarity to humans.

"Macaca fascicularis" is the scientific name for the crab-eating macaque, also known as the long-tailed macaque. It's a species of monkey that is native to Southeast Asia. They are called "crab-eating" macaques because they are known to eat crabs and other crustaceans. These monkeys are omnivorous and their diet also includes fruits, seeds, insects, and occasionally smaller vertebrates.

Crab-eating macaques are highly adaptable and can be found in a wide range of habitats, including forests, grasslands, and wetlands. They are also known to live in close proximity to human settlements and are often considered pests due to their tendency to raid crops and steal food from humans.

These monkeys are social animals and live in large groups called troops. They have a complex social structure with a clear hierarchy and dominant males. Crab-eating macaques are also known for their intelligence and problem-solving abilities.

In medical research, crab-eating macaques are often used as animal models due to their close genetic relationship to humans. They are used in studies related to infectious diseases, neuroscience, and reproductive biology, among others.

Radiopharmaceuticals are defined as pharmaceutical preparations that contain radioactive isotopes and are used for diagnosis or therapy in nuclear medicine. These compounds are designed to interact specifically with certain biological targets, such as cells, tissues, or organs, and emit radiation that can be detected and measured to provide diagnostic information or used to destroy abnormal cells or tissue in therapeutic applications.

The radioactive isotopes used in radiopharmaceuticals have carefully controlled half-lives, which determine how long they remain radioactive and how long the pharmaceutical preparation remains effective. The choice of radioisotope depends on the intended use of the radiopharmaceutical, as well as factors such as its energy, range of emission, and chemical properties.

Radiopharmaceuticals are used in a wide range of medical applications, including imaging, cancer therapy, and treatment of other diseases and conditions. Examples of radiopharmaceuticals include technetium-99m for imaging the heart, lungs, and bones; iodine-131 for treating thyroid cancer; and samarium-153 for palliative treatment of bone metastases.

The use of radiopharmaceuticals requires specialized training and expertise in nuclear medicine, as well as strict adherence to safety protocols to minimize radiation exposure to patients and healthcare workers.

In the context of medicine, particularly in behavioral neuroscience and psychology, "reward" is not typically used as a definitive medical term. However, it generally refers to a positive outcome or incentive that reinforces certain behaviors, making them more likely to be repeated in the future. This can involve various stimuli such as food, water, sexual activity, social interaction, or drug use, among others.

In the brain, rewards are associated with the activation of the reward system, primarily the mesolimbic dopamine pathway, which includes the ventral tegmental area (VTA) and the nucleus accumbens (NAcc). The release of dopamine in these areas is thought to reinforce and motivate behavior linked to rewards.

It's important to note that while "reward" has a specific meaning in this context, it is not a formal medical diagnosis or condition. Instead, it is a concept used to understand the neural and psychological mechanisms underlying motivation, learning, and addiction.

Autoradiography is a medical imaging technique used to visualize and localize the distribution of radioactively labeled compounds within tissues or organisms. In this process, the subject is first exposed to a radioactive tracer that binds to specific molecules or structures of interest. The tissue is then placed in close contact with a radiation-sensitive film or detector, such as X-ray film or an imaging plate.

As the radioactive atoms decay, they emit particles (such as beta particles) that interact with the film or detector, causing chemical changes and leaving behind a visible image of the distribution of the labeled compound. The resulting autoradiogram provides information about the location, quantity, and sometimes even the identity of the molecules or structures that have taken up the radioactive tracer.

Autoradiography has been widely used in various fields of biology and medical research, including pharmacology, neuroscience, genetics, and cell biology, to study processes such as protein-DNA interactions, gene expression, drug metabolism, and neuronal connectivity. However, due to the use of radioactive materials and potential hazards associated with them, this technique has been gradually replaced by non-radioactive alternatives like fluorescence in situ hybridization (FISH) or immunofluorescence techniques.

Hypokinesia is a term used in medicine to describe decreased or reduced mobility and amplitude of movements. It can be seen in various medical conditions, most notably in Parkinson's disease. In this condition, hypokinesia manifests as bradykinesia (slowness of movement), akinesia (absence of movement), or both. Hypokinesia can also affect facial expressions, leading to a mask-like appearance. Other causes of hypokinesia include certain medications, stroke, and other neurological disorders.

Psychomotor performance refers to the integration and coordination of mental processes (cognitive functions) with physical movements. It involves the ability to perform complex tasks that require both cognitive skills, such as thinking, remembering, and perceiving, and motor skills, such as gross and fine motor movements. Examples of psychomotor performances include driving a car, playing a musical instrument, or performing surgical procedures.

In a medical context, psychomotor performance is often used to assess an individual's ability to perform activities of daily living (ADLs) and instrumental activities of daily living (IADLs), such as bathing, dressing, cooking, cleaning, and managing medications. Deficits in psychomotor performance can be a sign of neurological or psychiatric disorders, such as dementia, Parkinson's disease, or depression.

Assessment of psychomotor performance may involve tests that measure reaction time, coordination, speed, precision, and accuracy of movements, as well as cognitive functions such as attention, memory, and problem-solving skills. These assessments can help healthcare professionals develop appropriate treatment plans and monitor the progression of diseases or the effectiveness of interventions.

Huntington Disease (HD) is a genetic neurodegenerative disorder that affects both cognitive and motor functions. It is characterized by the progressive loss of neurons in various areas of the brain, particularly in the striatum and cortex. The disease is caused by an autosomal dominant mutation in the HTT gene, which codes for the huntingtin protein. The most common mutation is a CAG repeat expansion in this gene, leading to the production of an abnormal form of the huntingtin protein that is toxic to nerve cells.

The symptoms of HD typically appear between the ages of 30 and 50, but they can start earlier or later in life. The early signs of HD may include subtle changes in mood, cognition, and coordination. As the disease progresses, individuals with HD experience uncontrolled movements (chorea), emotional disturbances, cognitive decline, and difficulties with communication and swallowing. Eventually, they become dependent on others for their daily needs and lose their ability to walk, talk, and care for themselves.

There is currently no cure for HD, but medications and therapies can help manage the symptoms of the disease and improve quality of life. Genetic testing is available to confirm the diagnosis and provide information about the risk of passing the disease on to future generations.

Putamen Putamen Putamen along with other subcortical structures Putamen highlighted in green on coronal T1 MRI images Putamen ... The putamen, together with the globus pallidus, makes up the lentiform nucleus. The putamen is the outermost portion of the ... The putamen of transgender women was found to have significantly larger amounts of grey matter compared to the putamen of ... The putamen also plays a role in degenerative neurological disorders, such as Parkinsons disease. The word "putamen" is from ...
nowiki,putamen; putamen; putamen; 核壳; putamen; putamen; putamen; скорлупа; aivokuorukka; Putamen; putâmen; skalkärnan; پوسته ( ... Putamen; 被殻; Лушпина; putamen; Putamen; putamen; פוטמן; putamen; 殼核; 壳核; Skorupa; 조가비핵; putamen; بطامة; κέλυφος; Putamen; ... Putamen; Putamen; 核殼; 核壳; Ncl. lentiformis; Nucleus lentiformis; putamen; TKO (搞笑組合); TKO (搞笑藝人); 殼核; 壳核; 核壳; 壳核; скорлупа ( ... Globus pallidus and putamen - very low mag.jpg 4.272 × 2.848; 5,93 MB. ...
The putamen is a large structure located within the brain. It is involved in a very complex feedback loop that prepares and ... The putamen is a large structure located within the brain. It is involved in a very complex feedback loop that prepares and ... Disruption in the function of the putamen may also cause restless legs syndrome. This condition causes jerking of the legs as ... Lesions on the brain due to Parkinsons disease can affect the putamen and cause involuntary muscle movements or tremors. ...
Selection of movement in normal subjects has been shown to involve the premotor, supplementary motor, anterior cingulate, posterior parietal, and dorsolateral prefrontal areas. In Parkinsons disease (PD), the primary pathological change is degeneration of the nigrostriatal dopaminergic projections, and this is associated with difficulty in initiating actions. We wished to investigate the effect of the nigral abnormality in PD on cortical activation during movement. Using C15O2 and positron emission tomography (PET), we studied regional cerebral blood flow in 6 patients with PD and 6 control subjects while they performed motor tasks. Subjects were scanned while at rest, while repeatedly moving a joystick forward, and while freely choosing which of four possible directions to move the joystick. Significant increases in regional cerebral blood flow were determined with covariance analysis. In normal subjects, compared to the rest condition, the free-choice task activated the left primary
PUTAMEN Club Poker tournaments results. PUTAMEN has performed 3 ITM in Club Poker tournaments, and won a total of 12,62 €. ... PUTAMEN monthly rankings. PUTAMEN has been ranked in 2 Club Poker monthly rankings. Year. Rank. Earnings. ... PUTAMENs holothurianism represents the ratio between the sum of its +1 and -1 (0), and its 0 messages. ...
This site uses cookies to offer you the best possible experience when accessing and navigating through our website and using its features. ...
title = "Putamen volume in idiopathic focal dystonia",. abstract = "Objective: To determine whether the volume of the putamen ... Putamen volume was measured using a stereologic method (Study 1). In a replication study, another rater measured putamen volume ... Putamen volume was measured using a stereologic method (Study 1). In a replication study, another rater measured putamen volume ... Putamen volume was measured using a stereologic method (Study 1). In a replication study, another rater measured putamen volume ...
Post mortem tissue was dissected from two groups of age and gender matched groups of Parkinson and Control subjects
3.3.3 Putamen. No main effects or interactions were observed in the putamen during reward or punishment anticipation. ... Figure 1 Residualized volumetric (corrected for age and ICV) differences in the caudate, putamen, and nucleus accumbens (NAc) ... To test striatal volumes, a Group (oligo-amenorrheic/eumenorrheic) x ROI (Caudate, Putamen, NAc) x Hemisphere (Left, Right) ... Striatal ROI: Group (oligo-amenorrhea, eumenorrhea) x ROI (Caudate, Putamen, NAc) x Hemisphere (Left, Right) repeated measures ...
Notably, the striatum (putamen) and cortex (BA39) from the same individuals were analyzed in parallel. We show that Ago2, ... Notably, the striatum (putamen) and cortex (BA39) from the same individuals were analyzed in parallel. We show that Ago2, ... Notably, the striatum (putamen) and cortex (BA39) from the same individuals were analyzed in parallel. We show that Ago2, ... Notably, the striatum (putamen) and cortex (BA39) from the same individuals were analyzed in parallel. We show that Ago2, ...
Age‐related telomere attrition in the human putamen Schreglmann SR., Goncalves T., Grant‐Peters M., Kia DA., Soreq L., Ryten M ...
LV, lateral ventricle; ac, anterior commissure; ic, internal capsule; CPu, caudate putamen; LGP, lateral globus pallidus; ec, ...
... indicative of higher iron content in individuals who stutter in the left putamen and in left hemisphere cortical regions ... accounts of developmental stuttering implicate dysfunctional cortico-striatal-thalamo-cortical motor loops through the putamen ... Elevated iron concentration in putamen and cortical speech motor network in developmental stuttering. ... Elevated iron concentration in putamen and cortical speech motor network in developmental stuttering. ...
Tourette syndrome (TS) is a childhood neuropsychiatric disorder characterized by motor and phonic (vocal) tics. It is often associated with behavior disorders, particularly obsessive-compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD).
80 Lu Y, Liang H, Han D, et al.: The volumetric and shape changes of the putamen and thalamus in first episode, untreated major ... We also identified regions of the right amygdala and right putamen in this study. In recent investigations utilizing emotional ... The secondary analyses identified portions of the subgenual cingulate cortex, hippocampus, amygdala, and putamen as ... the right amygdala/putamen, the left retrosplenial cortex, and the right middle occipital/inferior temporal gyri. The brain ...
... and left putamen volume as final features. Ridge regression restricted to these features yielded a test-set area under the ...
CD, Caudate nucleus; P, putamen; VP, ventral putamen;GP, globus pallidum; AC, anterior commissure; IC, internal capsule. ... 13A-D). At central levels, a patch of terminals is seen at the ventral junction of the putamen with the tail of the caudate ... 12F,G), the dense patches of labeling occupy the ventral portion of the putamen and the ventral portion of the caudate nucleus ... Silver grain patches are also scattered throughout the rostral-caudal extent of the putamen (Fig.14F-K). Unlike that in cases ...
... posterior putamen; cerebellum; and brainstem. To date, no study has systematically examined the long-term cogni... ...
... putamen; 8, thalamus; 9, hypothalamus; 10, midbrain (superior colliculus); 11, obex; 12, cervical enlargement (C7) of spinal ...
... tracers as indicators of different specific properties of the presynaptic dopaminergic system in caudate nucleus and putamen. ... Both 6-L(18F)-fluorodopa and (11C)-nomifensine tracer uptake in putamen was decreased on average to 40% of normal values, ... This is in contrast to the generally extreme depletion of endogenous dopamine in the putamen of patients found at postmortem. ... Side-to-side differences of uptake in putamen, but not caudate, correlated with corresponding left-right differences of scored ...
7B), and ventral putamen (Fig. 7C). In the forebrain, at the level of the hipppocampus (Fig. 6B), pronounced subcortical injury ... A, Density of HAM 56-labeled cells in the caudate putamen. Data are shown as a box and whisker plot. Black circles, Mean; white ... We next asked whether the increase in the number of HAM 56-labeled cells in the caudate putamen and ventral thalamus of the ... B, The association between the number of activated microglia and hypertonia is shown for the caudate putamen. Abscissa is tone ...
High sensation seeking men have increased dopamine binding in the right putamen determined from raclopride binding potentials. ...
We found that in the putamen there was a nearly complete depletion of dopamine in all subdivisions, with the greatest reduction ... We conclude that the putamen--particularly its caudal portions--may be the most appropriate site for intrastriatal application ... characteristic feature of idiopathic Parkinsons disease are for the most part a consequence of dopamine loss in the putamen, ...
keywords = "caudate-putamen, d-amphetamine, neuroactive amino acid, neurotoxicity, sydnocarb, caudate-putamen, d-amphetamine, ... 2001). Effects of sydnocarb and D-amphetamine on the extracellular levels of amino acids in the rat caudate-putamen. Eur J ... Effects of sydnocarb and D-amphetamine on the extracellular levels of amino acids in the rat caudate-putamen. Eur J Pharmacol. ... Effects of sydnocarb and D-amphetamine on the extracellular levels of amino acids in the rat caudate-putamen. In: Eur J ...
... and putamen (ICC=0.97), while corpus callosum reliability was lower (ICC=0.83). Comparable measures of reliability were found ...
... caudate putamen; STRv, striatum, ventral region; ACB, nucleus accumbens; FS, fundus of the striatum; PAL, pallidum; CTXsp, ...
... was associated with putamen volume; SNP rs10784502 (candidate gene HMGA2) was associated with intracranial volume40,41. It is ...
Dotted lines outline the putamen.CENTER FOR IPS CELL RESEARCH AND APPLICATION, KYOTO UNIVERSITYCell therapy for Parkinsons ... Tyrosine hydroxylase+ dopaminergic neurons survived and extended fibers to cover almost the whole putamen and some parts of the ...
putamen. Py. pyramid. PyX. pyramidal decussation. R. reticular nucleus of thalamus. RA. retroambiguus nucleus. ...

No FAQ available that match "putamen"

No images available that match "putamen"