A plant species of the genus SOLANUM, family SOLANACEAE. The starchy roots are used as food. SOLANINE is found in green parts.
A plant genus of the family SOLANACEAE. Members contain SOLANACEOUS ALKALOIDS. Some species in this genus are called deadly nightshade which is also a common name for ATROPA BELLADONNA.
An enlarged underground root or stem of some plants. It is usually rich in carbohydrates. Some, such as POTATOES, are important human FOOD. They may reproduce vegetatively from buds.
A plant species of the genus SOLANUM, family SOLANACEAE that contains steroidal glycosides.
Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.
PLANTS, or their progeny, whose GENOME has been altered by GENETIC ENGINEERING.
A plant species of the genus SOLANUM, family SOLANACEAE. The fruit is a large, egg-shaped berry, varying in color from dark purple to red, yellowish, or white. The leaves are large and ovate. The flowers are pendant, violet, and two inches across.
A plant species of the family SOLANACEAE, native of South America, widely cultivated for their edible, fleshy, usually red fruit.
Parts of plants that usually grow vertically upwards towards the light and support the leaves, buds, and reproductive structures. (From Concise Dictionary of Biology, 1990)
A species of parasitic OOMYCETES in the family Peronosporaceae that is the causative agent of late blight of potato.
A plant family of the order Solanales, subclass Asteridae. Among the most important are POTATOES; TOMATOES; CAPSICUM (green and red peppers); TOBACCO; and BELLADONNA.
Expanded structures, usually green, of vascular plants, characteristically consisting of a bladelike expansion attached to a stem, and functioning as the principal organ of photosynthesis and transpiration. (American Heritage Dictionary, 2d ed)
An ATP-dependent enzyme that catalyzes the addition of ADP to alpha-D-glucose 1-phosphate to form ADP-glucose and diphosphate. The reaction is the rate-limiting reaction in prokaryotic GLYCOGEN and plant STARCH biosynthesis.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants.
A genus of destructive parasitic OOMYCETES in the family Peronosporaceae, order Peronosporales, affecting numerous fruit, vegetable, and other crops. Differentiation of zoospores usually takes place in the sporangium and no vesicle is formed. It was previously considered a fungus.
Diseases of plants.
Any of a group of polysaccharides of the general formula (C6-H10-O5)n, composed of a long-chain polymer of glucose in the form of amylose and amylopectin. It is the chief storage form of energy reserve (carbohydrates) in plants.
An enzyme of the PHOSPHORYLASES family that catalyzes the degradation of starch, a mixture of unbranched AMYLOSE and branched AMYLOPECTIN compounds. This phosphorylase from plants is the counterpart of GLYCOGEN PHOSPHORYLASE in animals that catalyzes the reaction of inorganic phosphate on the terminal alpha-1,4-glycosidic bond at the non-reducing end of glucans resulting in the release of glucose-1-phosphate.
A plant species of the genus DATURA, family SOLANACEAE, that contains TROPANES and other SOLANACEOUS ALKALOIDS.
The parts of plants, including SEEDS.
The usually underground portions of a plant that serve as support, store food, and through which water and mineral nutrients enter the plant. (From American Heritage Dictionary, 1982; Concise Dictionary of Biology, 1990)
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.
The functional hereditary units of PLANTS.
Protein or glycoprotein substances of plant origin that bind to sugar moieties in cell walls or membranes. Some carbohydrate-metabolizing proteins (ENZYMES) from PLANTS also bind to carbohydrates, however they are not considered lectins. Many plant lectins change the physiology of the membrane of BLOOD CELLS to cause agglutination, mitosis, or other biochemical changes. They may play a role in plant defense mechanisms.
Ribonucleic acid in plants having regulatory and catalytic roles as well as involvement in protein synthesis.
Complex nucleoprotein structures which contain the genomic DNA and are part of the CELL NUCLEUS of PLANTS.
A glycoside hydrolase found primarily in PLANTS and YEASTS. It has specificity for beta-D-fructofuranosides such as SUCROSE.
Serves as the glycosyl donor for formation of bacterial glycogen, amylose in green algae, and amylopectin in higher plants.
A disaccharide consisting of two glucose units in an alpha (1-6) glycosidic linkage.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Deoxyribonucleic acid that makes up the genetic material of plants.
Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition.
A genus of PLANT VIRUSES, in the family CAULIMOVIRIDAE, that are transmitted by APHIDS in a semipersistent manner. Aphid-borne transmission of some caulimoviruses requires certain virus-coded proteins termed transmission factors.
A genus of plant viruses in the family FLEXIVIRIDAE, that cause mosaic and ringspot symptoms. Transmission occurs mechanically. Potato virus X is the type species.
A plant genus of the family SOLANACEAE. Members contain NICOTINE and other biologically active chemicals; its dried leaves are used for SMOKING.
The immediate physical zone surrounding plant roots that include the plant roots. It is an area of intense and complex biological activity involving plants, microorganisms, other soil organisms, and the soil.
The genetic complement of a plant (PLANTS) as represented in its DNA.
Glyceric acids are compounds that contain a glycerol moiety with one or more carboxylic acid groups, which can exist in various forms such as glycerate, glycerophosphate, and glyceronitrate, playing crucial roles in metabolism and energy production.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Eighteen-carbon cyclopentyl polyunsaturated fatty acids derived from ALPHA-LINOLENIC ACID via an oxidative pathway analogous to the EICOSANOIDS in animals. Biosynthesis is inhibited by SALICYLATES. A key member, jasmonic acid of PLANTS, plays a similar role to ARACHIDONIC ACID in animals.
An enzyme of the oxidoreductase class primarily found in PLANTS. It catalyzes reactions between linoleate and other fatty acids and oxygen to form hydroperoxy-fatty acid derivatives.
Self-replicating cytoplasmic organelles of plant and algal cells that contain pigments and may synthesize and accumulate various substances. PLASTID GENOMES are used in phylogenetic studies.
A group of alicyclic hydrocarbons with the general formula R-C5H9.
The relationships of groups of organisms as reflected by their genetic makeup.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
A calcium-activated enzyme that catalyzes the hydrolysis of ATP to yield AMP and orthophosphate. It can also act on ADP and other nucleoside triphosphates and diphosphates. EC 3.6.1.5.
A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A class of enzymes that transfers nucleotidyl residues. EC 2.7.7.
Cellular processes in biosynthesis (anabolism) and degradation (catabolism) of CARBOHYDRATES.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrates are composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n.
The time period of daily exposure that an organism receives from daylight or artificial light. It is believed that photoperiodic responses may affect the control of energy balance and thermoregulation.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
The capacity of an organism to defend itself against pathological processes or the agents of those processes. This most often involves innate immunity whereby the organism responds to pathogens in a generic way. The term disease resistance is used most frequently when referring to plants.
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)
A genus of the plant family Liliaceae (sometimes classified as Alliaceae) in the order Liliales. Many produce pungent, often bacteriostatic and physiologically active compounds and are used as VEGETABLES; CONDIMENTS; and medicament, the latter in traditional medicine.

Synthesis and kinetic evaluation of 4-deoxymaltopentaose and 4-deoxymaltohexaose as inhibitors of muscle and potato alpha-glucan phosphorylases. (1/1525)

alpha-Glucan phosphorylases degrade linear or branched oligosaccharides via a glycosyl transfer reaction, occurring with retention of configuration, to generate alpha-glucose-1-phosphate (G1P). We report here the chemoenzymic synthesis of two incompetent oligosaccharide substrate analogues, 4-deoxymaltohexaose (4DG6) and 4-deoxymaltopentaose (4DG5), for use in probing this mechanism. A kinetic analysis of the interactions of 4DG5 and 4DG6 with both muscle and potato phosphorylases was completed to provide insight into the nature of the binding mode of oligosaccharide to phosphorylase. The 4-deoxy-oligosaccharides bind competitively with maltopentaose and non-competitively with respect to orthophosphate or G1P in each case, indicating binding in the oligosaccharide binding site. Further, 4DG5 and 4DG6 were found to bind to potato and muscle phosphorylases some 10-40-fold tighter than does maltopentaose. Similar increases in affinity as a consequence of 4-deoxygenation were observed previously for the binding of polymeric glycogen analogues to rabbit muscle phosphorylase [Withers (1990) Carbohydr. Res. 196, 61-73].  (+info)

Simultaneous antisense inhibition of two starch-synthase isoforms in potato tubers leads to accumulation of grossly modified amylopectin. (2/1525)

A chimaeric antisense construct was used to reduce the activities of the two major starch-synthase isoforms in potato tubers simultaneously. A range of reductions in total starch-synthase activities were found in the resulting transgenic plants, up to a maximum of 90% inhibition. The reduction in starch-synthase activity had a profound effect on the starch granules, which became extremely distorted in appearance compared with the control lines. Analysis of the starch indicated that the amounts produced in the tubers, and the amylose content of the starch, were not affected by the reduction in activity. In order to understand why the starch granules were distorted, amylopectin was isolated and the constituent chain lengths analysed. This indicated that the amylopectin was very different to that of the control. It contained more chains of fewer than 15 glucose units in length, and fewer of between 15 and 80 glucose units. In addition, the amylopectin contained more very long chains. Amylopectin from plants repressed in just one of the activities of the two starch-synthase isoforms, which we have reported upon previously, were also analysed. Using a technique different to that used previously we show that both isoforms also affect the amylopectin, but in a way that is different to when both isoforms are repressed together.  (+info)

Polynucleotide probes that target a hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to bands of community fingerprints. (3/1525)

Temperature gradient gel electrophoresis (TGGE) is well suited for fingerprinting bacterial communities by separating PCR-amplified fragments of 16S rRNA genes (16S ribosomal DNA [rDNA]). A strategy was developed and was generally applicable for linking 16S rDNA from community fingerprints to pure culture isolates from the same habitat. For this, digoxigenin-labeled polynucleotide probes were generated by PCR, using bands excised from TGGE community fingerprints as a template, and applied in hybridizations with dot blotted 16S rDNA amplified from bacterial isolates. Within 16S rDNA, the hypervariable V6 region, corresponding to positions 984 to 1047 (Escherichia coli 16S rDNA sequence), which is a subset of the region used for TGGE (positions 968 to 1401), best met the criteria of high phylogenetic variability, required for sufficient probe specificity, and closely flanking conserved priming sites for amplification. Removal of flanking conserved bases was necessary to enable the differentiation of closely related species. This was achieved by 5' exonuclease digestion, terminated by phosphorothioate bonds which were synthesized into the primers. The remaining complementary strand was removed by single-strand-specific digestion. Standard hybridization with truncated probes allowed differentiation of bacteria which differed by only two bases within the probe target site and 1.2% within the complete 16S rDNA. However, a truncated probe, derived from an excised TGGE band of a rhizosphere community, hybridized with three phylogenetically related isolates with identical V6 sequences. Only one of the isolates comigrated with the excised band in TGGE, which was shown to be due to identical sequences, demonstrating the utility of a combined TGGE and V6 probe approach.  (+info)

Divinyl ether fatty acid synthesis in late blight-diseased potato leaves. (4/1525)

We conducted a study of the patterns and dynamics of oxidized fatty acid derivatives (oxylipins) in potato leaves infected with the late-blight pathogen Phytophthora infestans. Two 18-carbon divinyl ether fatty acids, colneleic acid and colnelenic acid, accumulated during disease development. To date, there are no reports that such compounds have been detected in higher plants. The divinyl ether fatty acids accumulate more rapidly in potato cultivar Matilda (a cultivar with increased resistance to late blight) than in cultivar Bintje, a susceptible cultivar. Colnelenic acid reached levels of up to approximately 24 nmol (7 microgram) per g fresh weight of tissue in infected leaves. By contrast, levels of members of the jasmonic acid family did not change significantly during pathogenesis. The divinyl ethers also accumulated during the incompatible interaction of tobacco with tobacco mosaic virus. Colneleic and colnelenic acids were found to be inhibitory to P. infestans, suggesting a function in plant defense for divinyl ethers, which are unstable compounds rarely encountered in biological systems.  (+info)

The covalent attachment of polyamines to proteins in plant mitochondria. (5/1525)

Plant mitochondria from both potato and mung bean incorporated radioactivity into acid insoluble material when incubated with labelled polyamines (spermine, spermidine and putrescine). Extensive washing of mitochondrial precipitates with trichloroacetic acid and the excess of cold polyamine failed to remove bound radioactivity. Addition of nonradioactive polyamine stopped further incorporation of radioactivity but did not release radioactivity already bound. The radioactivity is incorporated into the membrane fraction. The labelling process has all the features of an enzymatic reaction: it is long lasting with distinctive kinetics peculiar to each polyamine, it is temperature dependent and is affected by N-ethylmaleimide. The latter inhibits the incorporation of putrescine but stimulates the incorporation of spermine and spermidine. Treatment of prelabelled mitochondria with pepsin releases bound radioactivity thus indicating protein to be the ligand for the attachment of polyamines. HPLC of mitochondrial hydrolysates revealed that the radioactivity bound to mitochondria is polyamines; traces of acetyl polyamines were also found in some samples. On autoradiograms of SDS/PAGE gels several radioactive bands of proteins were detected. Protein sequencing of labelled spots from a 2D gel gave a sequence which was 60% identical to catalase. We suggest that the attachment of polyamines to mitochondrial proteins occurs cotranslationally possibly via transglutaminases.  (+info)

Conversion of cucumber linoleate 13-lipoxygenase to a 9-lipoxygenating species by site-directed mutagenesis. (6/1525)

Multiple lipoxygenase sequence alignments and structural modeling of the enzyme/substrate interaction of the cucumber lipid body lipoxygenase suggested histidine 608 as the primary determinant of positional specificity. Replacement of this amino acid by a less-space-filling valine altered the positional specificity of this linoleate 13-lipoxygenase in favor of 9-lipoxygenation. These alterations may be explained by the fact that H608V mutation may demask the positively charged guanidino group of R758, which, in turn, may force an inverse head-to-tail orientation of the fatty acid substrate. The R758L+H608V double mutant exhibited a strongly reduced reaction rate and a random positional specificity. Trilinolein, which lacks free carboxylic groups, was oxygenated to the corresponding (13S)-hydro(pero)xy derivatives by both the wild-type enzyme and the linoleate 9-lipoxygenating H608V mutant. These data indicate the complete conversion of a linoleate 13-lipoxygenase to a 9-lipoxygenating species by a single point mutation. It is hypothesized that H608V exchange may alter the orientation of the substrate at the active site and/or its steric configuration in such a way that a stereospecific dioxygen insertion at C-9 may exclusively take place.  (+info)

Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virus. (7/1525)

The major structural protein VP60 of rabbit hemorrhagic disease virus (RHDV) has been produced in transgenic potato plants under the control of a cauliflower mosaic virus 35S promoter or a modified 35S promoter that included two copies of a strong transcriptional enhancer. Both types of promoters allowed the production of specific mRNAs and detectable levels of recombinant VP60, which were higher for the constructs carrying the modified 35S promoter. Rabbits immunized with leaf extracts from plants carrying this modified 35S promoter showed high anti-VP60 antibody titers and were fully protected against the hemorrhagic disease.  (+info)

Differential import of nuclear-encoded tRNAGly isoacceptors into solanum Tuberosum mitochondria. (8/1525)

In potato ( Solanum tuberosum ) mitochondria, about two-thirds of the tRNAs are encoded by the mitochondrial genome and one-third is imported from the cytosol. In the case of tRNAGly isoacceptors, a mitochondrial-encoded tRNAGly(GCC) was found in potato mitochondria, but this is likely to be insufficient to decode the four GGN glycine codons. In this work, we identified a cytosolic tRNAGly(UCC), which was found to be present in S.tuberosum mitochondria. The cytosolic tRNAGly(CCC) was also present in mitochondria, but to a lesser extent. By contrast, the cytosolic tRNAGly(GCC) could not be detected in mitochondria. This selective import of tRNAGly isoacceptors into S. tuberosum mitochondria raises further questions about the mechanism under-lying the specificity of the import process.  (+info)

"Solanum tuberosum" is the scientific name for a plant species that is commonly known as the potato. According to medical and botanical definitions, Solanum tuberosum refers to the starchy, edible tubers that grow underground from this plant. Potatoes are native to the Andes region of South America and are now grown worldwide. They are an important food source for many people and are used in a variety of culinary applications.

Potatoes contain several essential nutrients, including carbohydrates, fiber, protein, vitamin C, and some B vitamins. However, they can also be high in calories, especially when prepared with added fats like butter or oil. Additionally, potatoes are often consumed in forms that are less healthy, such as French fries and potato chips, which can contribute to weight gain and other health problems if consumed excessively.

In a medical context, potatoes may also be discussed in relation to food allergies or intolerances. While uncommon, some people may have adverse reactions to potatoes, including skin rashes, digestive symptoms, or difficulty breathing. These reactions are typically caused by an immune response to proteins found in the potato plant, rather than the tubers themselves.

"Solanum" is a genus of flowering plants that includes many species, some of which are economically important as food crops and others which are toxic. The term "Solanum" itself does not have a specific medical definition, but several species within this genus are relevant to medicine and human health. Here are some examples:

1. Solanum lycopersicum (tomato): While tomatoes are primarily known as a food crop, they also contain various compounds with potential medicinal properties. For instance, they are rich in antioxidants like lycopene, which has been studied for its potential benefits in preventing cancer and cardiovascular diseases.
2. Solanum tuberosum (potato): Potatoes are a staple food crop, but their leaves and green parts contain solanine, a toxic alkaloid that can cause gastrointestinal disturbances, neurological symptoms, and even death in severe cases.
3. Solanum melongena (eggplant): Eggplants have been studied for their potential health benefits due to their high antioxidant content, including nasunin, which has been shown to protect against lipid peroxidation and DNA damage.
4. Solanum nigrum (black nightshade): This species contains solanine and other toxic alkaloids, but some parts of the plant have been used in traditional medicine for their anti-inflammatory, analgesic, and antipyretic properties. However, its use as a medicinal herb is not well-established, and it can be toxic if improperly prepared or consumed in large quantities.
5. Solanum dulcamara (bittersweet nightshade): This species has been used in traditional medicine for various purposes, including treating skin conditions, respiratory ailments, and gastrointestinal complaints. However, its use as a medicinal herb is not well-supported by scientific evidence, and it can be toxic if ingested in large quantities.

In summary, "Solanum" refers to a genus of flowering plants that includes several species with relevance to medicine and human health. While some species are important food crops, others contain toxic compounds that can cause harm if improperly consumed or prepared. Additionally, the medicinal use of some Solanum species is not well-established and may carry risks.

A plant tuber is not a medical term per se, but rather a term from botany. However, I can certainly provide a definition for you.

Tubers are specialized underground stems or roots that serve as storage organs for many types of plants. They consist of enlarged structures filled with nutrients, such as carbohydrates, proteins, and other organic compounds. Tubers can be classified into two main categories: true tubers and false tubers.

True tubers are swollen underground stems, such as those found in potatoes (Solanum tuberosum). They have nodes and internodes like aboveground stems, but they lack leaves or buds. Instead, they have small bumps called "eyes" that contain dormant buds, which can sprout to produce new plants when conditions are favorable.

False tubers, on the other hand, are enlarged roots, such as those found in cassava (Manihot esculenta). They do not have nodes and internodes like true tubers but instead store nutrients in their fleshy tissues.

While plant tubers may not have a direct medical definition, they are essential to human health and nutrition. Many tuber crops provide important sources of carbohydrates, vitamins, minerals, and other nutrients in diets around the world.

"Solanum nigrum" is the scientific name for a plant species that is commonly known as black nightshade. It belongs to the family Solanaceae, which also includes other well-known plants such as tomatoes, potatoes, and eggplants.

Black nightshade is an annual or short-lived perennial herb that can grow up to 1 meter tall. The plant has simple, alternate leaves that are usually dark green in color and have a slightly hairy texture. The flowers of the black nightshade are small and white with yellow centers, and they produce round, shiny black berries that contain numerous seeds.

While some parts of the black nightshade plant, including the berries, are edible and can be used in cooking, it is important to note that all parts of the plant contain solanine, a toxic alkaloid that can cause symptoms such as nausea, vomiting, diarrhea, and dizziness if ingested in large quantities. Therefore, it is generally recommended to avoid consuming any part of the black nightshade plant unless it has been properly prepared by a knowledgeable source.

In medical contexts, "Solanum nigrum" may be mentioned in relation to its potential medicinal properties or as a cause of toxicity if ingested in large quantities. However, it is not typically used as a medical treatment or therapy.

"Plant proteins" refer to the proteins that are derived from plant sources. These can include proteins from legumes such as beans, lentils, and peas, as well as proteins from grains like wheat, rice, and corn. Other sources of plant proteins include nuts, seeds, and vegetables.

Plant proteins are made up of individual amino acids, which are the building blocks of protein. While animal-based proteins typically contain all of the essential amino acids that the body needs to function properly, many plant-based proteins may be lacking in one or more of these essential amino acids. However, by consuming a variety of plant-based foods throughout the day, it is possible to get all of the essential amino acids that the body needs from plant sources alone.

Plant proteins are often lower in calories and saturated fat than animal proteins, making them a popular choice for those following a vegetarian or vegan diet, as well as those looking to maintain a healthy weight or reduce their risk of chronic diseases such as heart disease and cancer. Additionally, plant proteins have been shown to have a number of health benefits, including improving gut health, reducing inflammation, and supporting muscle growth and repair.

Genetically modified plants (GMPs) are plants that have had their DNA altered through genetic engineering techniques to exhibit desired traits. These modifications can be made to enhance certain characteristics such as increased resistance to pests, improved tolerance to environmental stresses like drought or salinity, or enhanced nutritional content. The process often involves introducing genes from other organisms, such as bacteria or viruses, into the plant's genome. Examples of GMPs include Bt cotton, which has a gene from the bacterium Bacillus thuringiensis that makes it resistant to certain pests, and golden rice, which is engineered to contain higher levels of beta-carotene, a precursor to vitamin A. It's important to note that genetically modified plants are subject to rigorous testing and regulation to ensure their safety for human consumption and environmental impact before they are approved for commercial use.

'Solanum melongena' is the scientific name for a plant species more commonly known as eggplant or aubergine. It belongs to the Solanaceae family, which also includes tomatoes, bell peppers, and potatoes. The eggplant fruit is widely consumed and used in various cuisines around the world.

While 'Solanum melongena' is a horticultural term related to the plant species, it does not have a direct medical definition. However, eggplants do have some nutritional and potential medicinal properties. They are low in calories and contain vitamins, minerals, and dietary fiber. Some studies suggest that eggplants may have antioxidant and anti-inflammatory properties due to their phenolic compounds. Nonetheless, it is essential to consult medical professionals or healthcare providers for advice on medicinal applications rather than relying on information about the plant's scientific name alone.

"Lycopersicon esculentum" is the scientific name for the common red tomato. It is a species of fruit from the nightshade family (Solanaceae) that is native to western South America and Central America. Tomatoes are widely grown and consumed in many parts of the world as a vegetable, although they are technically a fruit. They are rich in nutrients such as vitamin C, potassium, and lycopene, which has been studied for its potential health benefits.

A plant stem is not typically defined in a medical context, but rather in the field of botany. However, I can certainly provide a general biological definition for you.

In plants, stems are organs that serve primarily as support structures, holding leaves, flowers, and fruits aloft where they can receive sunlight and exchange gases. They also act as conduits, transporting water, nutrients, and sugars made during photosynthesis between the roots and shoots of a plant.

The stem is usually composed of three main tissue systems: dermal, vascular, and ground. The dermal tissue system forms the outermost layer(s) of the stem, providing protection and sometimes participating in gas exchange. The vascular tissue system contains the xylem (which transports water and nutrients upward) and phloem (which transports sugars and other organic compounds downward). The ground tissue system, located between the dermal and vascular tissues, is responsible for food storage and support.

While not a direct medical definition, understanding the structure and function of plant stems can be relevant in fields such as nutrition, agriculture, and environmental science, which have implications for human health.

"Phytophthora infestans" is a specific species of oomycete, which is a type of microorganism that resembles fungi but is actually more closely related to algae. It is a plant pathogen, meaning it causes disease in plants. This particular species is notorious for causing the potato late blight, which was responsible for the Great Famine in Ireland during the mid-19th century.

The term "Phytophthora infestans" can be broken down into its components: "Phytophthora" comes from the Greek words "phyton" (plant) and "phtheros" (destroyer), indicating its destructive nature towards plants. "Infestans" is a Latin word meaning 'inhabiting' or 'infesting'.

This pathogen thrives in cool, moist conditions and spreads rapidly through the air in the form of spores. It infects leaves, stems, and tubers of potato plants, leading to extensive damage and yield loss. The disease manifests as large, dark lesions on foliage that can quickly cover the entire plant, and a rotting, slimy decay in tubers.

Effective management strategies include use of resistant potato varieties, crop rotation, fungicide applications, and proper irrigation management to avoid prolonged leaf wetness.

"Solanaceae" is not a medical term but a taxonomic category in biology, referring to the Nightshade family of plants. This family includes several plants that have economic and medicinal importance, as well as some that are toxic or poisonous. Some common examples of plants in this family include:

- Solanum lycopersicum (tomato)
- Solanum tuberosum (potato)
- Capsicum annuum (bell pepper and chili pepper)
- Nicotiana tabacum (tobacco)
- Atropa belladonna (deadly nightshade)
- Hyoscyamus niger (henbane)

While Solanaceae isn't a medical term itself, certain plants within this family have medical significance. For instance, some alkaloids found in these plants can be used as medications or pharmaceutical precursors, such as atropine and scopolamine from Atropa belladonna, hyoscine from Hyoscyamus niger, and capsaicin from Capsicum species. However, it's important to note that many of these plants also contain toxic compounds, so they must be handled with care and used only under professional supervision.

I believe there may be a slight misunderstanding in your question. "Plant leaves" are not a medical term, but rather a general biological term referring to a specific organ found in plants.

Leaves are organs that are typically flat and broad, and they are the primary site of photosynthesis in most plants. They are usually green due to the presence of chlorophyll, which is essential for capturing sunlight and converting it into chemical energy through photosynthesis.

While leaves do not have a direct medical definition, understanding their structure and function can be important in various medical fields, such as pharmacognosy (the study of medicinal plants) or environmental health. For example, certain plant leaves may contain bioactive compounds that have therapeutic potential, while others may produce allergens or toxins that can impact human health.

Glucose-1-phosphate adenylyltransferase, also known as ADP-glucose pyrophosphorylase or AGPase, is an enzyme that plays a crucial role in carbohydrate metabolism, specifically in the synthesis of starch. It catalyzes the reaction between ATP and glucose-1-phosphate to produce ADP-glucose and pyrophosphate. This reaction is the first committed step in the biosynthetic pathway of starch in plants, algae, and some bacteria. In humans, defects in this enzyme can lead to a rare genetic disorder called glycogen storage disease type Ib.

Gene expression regulation in plants refers to the processes that control the production of proteins and RNA from the genes present in the plant's DNA. This regulation is crucial for normal growth, development, and response to environmental stimuli in plants. It can occur at various levels, including transcription (the first step in gene expression, where the DNA sequence is copied into RNA), RNA processing (such as alternative splicing, which generates different mRNA molecules from a single gene), translation (where the information in the mRNA is used to produce a protein), and post-translational modification (where proteins are chemically modified after they have been synthesized).

In plants, gene expression regulation can be influenced by various factors such as hormones, light, temperature, and stress. Plants use complex networks of transcription factors, chromatin remodeling complexes, and small RNAs to regulate gene expression in response to these signals. Understanding the mechanisms of gene expression regulation in plants is important for basic research, as well as for developing crops with improved traits such as increased yield, stress tolerance, and disease resistance.

"Phytophthora" is not a medical term, but rather a genus of microorganisms known as oomycetes, which are commonly referred to as water molds. These organisms are not true fungi, but they have a similar lifestyle and can cause diseases in plants. Some species of Phytophthora are responsible for significant crop losses and are considered important plant pathogens.

In a medical context, the term "phytophthora" is not used, and it would be more appropriate to refer to specific diseases caused by these organisms using their common or scientific names. For example, Phytophthora infestans is the causative agent of late blight, a serious disease of potatoes and tomatoes.

A plant disease is a disorder that affects the normal growth and development of plants, caused by pathogenic organisms such as bacteria, viruses, fungi, parasites, or nematodes, as well as environmental factors like nutrient deficiencies, extreme temperatures, or physical damage. These diseases can cause various symptoms, including discoloration, wilting, stunted growth, necrosis, and reduced yield or productivity, which can have significant economic and ecological impacts.

I'm happy to help! However, it seems there might be a bit of confusion here. Starch is not typically considered a medical term, but rather a nutritional and biochemical concept. Here's a brief explanation:

Starch is a complex carbohydrate that serves as the primary form of energy storage in plants. It is made up of long chains of glucose molecules and can be found in various foods such as grains, legumes, fruits, and vegetables. Amylase, an enzyme present in our saliva and digestive system, helps break down starch into simpler sugars during the digestion process so that our bodies can absorb them for energy.

I hope this clarifies any confusion! If you have any other questions or need further information on a medical topic, please don't hesitate to ask.

Starch phosphorylase is an enzyme that catalyzes the phosphorolytic cleavage of alpha-1,4 glycosidic bonds in starch and related polysaccharides, releasing alpha-D-glucose 1-phosphate molecules. It is found in various tissues, including muscle and liver, and plays a role in carbohydrate metabolism by helping to regulate the breakdown and synthesis of glycogen, which is a storage form of glucose.

The enzyme works by transferring a phosphate group from inorganic phosphate to the terminal alpha-1,4 linked glucosyl residue of the substrate, resulting in the formation of glucose 1-phosphate and a shortened polysaccharide chain. This reaction is reversible, allowing the enzyme to also participate in glycogen synthesis by adding glucose units to the non-reducing end of the glycogen molecule.

Starch phosphorylase is important for maintaining normal blood glucose levels and providing energy to cells during periods of fasting or exercise. Deficiencies in this enzyme can lead to metabolic disorders, such as glycogen storage disease type VI (Hers disease), which is characterized by the accumulation of abnormal glycogen molecules in the liver and muscle tissue.

'Datura stramonium' is a plant species also known as Jimson weed or thorn apple. It belongs to the Solanaceae family, which includes other plants like nightshade and belladonna. All parts of this plant contain dangerous levels of toxic tropane alkaloids, such as scopolamine and atropine.

Here's a brief medical definition of 'Datura stramonium':

A plant species (Solanaceae family) containing toxic tropane alkaloids, including scopolamine and atropine, in all its parts. Common names include Jimson weed or thorn apple. Ingestion can lead to severe anticholinergic symptoms like delirium, tachycardia, dry mouth, blurred vision, and potentially life-threatening complications.

I'm sorry for any confusion, but "Plant Structures" is not a medical term. It is a term used in the field of botany to refer to the different parts of a plant, such as roots, stems, leaves, flowers, and fruits. Each of these structures has specific functions that contribute to the overall growth, reproduction, and survival of the plant. If you have any questions related to biology or botany, I'd be happy to try and help answer them!

A plant root is not a medical term per se, but it is a term from botany, which is the study of plants. However, I can certainly provide a definition for you.

Plant roots are the underground organs of a plant that typically grow downward into the soil. They serve several important functions, including:

1. Anchorage: Roots help to stabilize the plant and keep it upright in the ground.
2. Absorption: Roots absorb water and nutrients from the soil, which are essential for the plant's growth and development.
3. Conduction: Roots conduct water and nutrients up to the above-ground parts of the plant, such as the stem and leaves.
4. Vegetative reproduction: Some plants can reproduce vegetatively through their roots, producing new plants from root fragments or specialized structures called rhizomes or tubers.

Roots are composed of several different tissues, including the epidermis, cortex, endodermis, and vascular tissue. The epidermis is the outermost layer of the root, which secretes a waxy substance called suberin that helps to prevent water loss. The cortex is the middle layer of the root, which contains cells that store carbohydrates and other nutrients. The endodermis is a thin layer of cells that surrounds the vascular tissue and regulates the movement of water and solutes into and out of the root. The vascular tissue consists of xylem and phloem, which transport water and nutrients throughout the plant.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

I apologize for any confusion, but "plants" is not a term that has a medical definition. The term "plants" refers to a large and diverse group of organisms that obtain their energy through photosynthesis, which is the process of converting sunlight into chemical energy. Plants are typically characterized by having cells with cell walls containing cellulose, chloroplasts containing the pigment chlorophyll, and the ability to synthesize their own food through photosynthesis.

In a medical or biological context, you might be thinking of "plant-based" or "phytomedicine," which refer to the use of plants or plant extracts as a form of medicine or treatment. Phytomedicines have been used for thousands of years in many traditional systems of medicine, and some plant-derived compounds have been found to have therapeutic benefits in modern medicine as well. However, "plants" itself does not have a medical definition.

A gene in plants, like in other organisms, is a hereditary unit that carries genetic information from one generation to the next. It is a segment of DNA (deoxyribonucleic acid) that contains the instructions for the development and function of an organism. Genes in plants determine various traits such as flower color, plant height, resistance to diseases, and many others. They are responsible for encoding proteins and RNA molecules that play crucial roles in the growth, development, and reproduction of plants. Plant genes can be manipulated through traditional breeding methods or genetic engineering techniques to improve crop yield, enhance disease resistance, and increase nutritional value.

Plant lectins are proteins or glycoproteins that are abundantly found in various plant parts such as seeds, leaves, stems, and roots. They have the ability to bind specifically to carbohydrate structures present on cell membranes, known as glycoconjugates. This binding property of lectins is reversible and non-catalytic, meaning it does not involve any enzymatic activity.

Lectins play several roles in plants, including defense against predators, pathogens, and herbivores. They can agglutinate red blood cells, stimulate the immune system, and have been implicated in various biological processes such as cell growth, differentiation, and apoptosis (programmed cell death). Some lectins also exhibit mitogenic activity, which means they can stimulate the proliferation of certain types of cells.

In the medical field, plant lectins have gained attention due to their potential therapeutic applications. For instance, some lectins have been shown to possess anti-cancer properties and are being investigated as potential cancer treatments. However, it is important to note that some lectins can be toxic or allergenic to humans and animals, so they must be used with caution.

Ribonucleic acid (RNA) in plants refers to the long, single-stranded molecules that are essential for the translation of genetic information from deoxyribonucleic acid (DNA) into proteins. RNA is a nucleic acid, like DNA, and it is composed of a ribose sugar backbone with attached nitrogenous bases (adenine, uracil, guanine, and cytosine).

In plants, there are several types of RNA that play specific roles in the gene expression process:

1. Messenger RNA (mRNA): This type of RNA carries genetic information copied from DNA in the form of a sequence of three-base code units called codons. These codons specify the order of amino acids in a protein.
2. Transfer RNA (tRNA): tRNAs are small RNA molecules that serve as adaptors between the mRNA and the amino acids during protein synthesis. Each tRNA has a specific anticodon sequence that base-pairs with a complementary codon on the mRNA, and it carries a specific amino acid that corresponds to that codon.
3. Ribosomal RNA (rRNA): rRNAs are structural components of ribosomes, which are large macromolecular complexes where protein synthesis occurs. In plants, there are several types of rRNAs, including the 18S, 5.8S, and 25S/28S rRNAs, that form the core of the ribosome and help catalyze peptide bond formation during protein synthesis.
4. Small nuclear RNA (snRNA): These are small RNA molecules that play a role in RNA processing, such as splicing, where introns (non-coding sequences) are removed from pre-mRNA and exons (coding sequences) are joined together to form mature mRNAs.
5. MicroRNA (miRNA): These are small non-coding RNAs that regulate gene expression by binding to complementary sequences in target mRNAs, leading to their degradation or translation inhibition.

Overall, these different types of RNAs play crucial roles in various aspects of RNA metabolism, gene regulation, and protein synthesis in plants.

Chromosomes in plants are thread-like structures that contain genetic material, DNA, and proteins. They are present in the nucleus of every cell and are inherited from the parent plants during sexual reproduction. Chromosomes come in pairs, with each pair consisting of one chromosome from each parent.

In plants, like in other organisms, chromosomes play a crucial role in inheritance, development, and reproduction. They carry genetic information that determines various traits and characteristics of the plant, such as its physical appearance, growth patterns, and resistance to diseases.

Plant chromosomes are typically much larger than those found in animals, making them easier to study under a microscope. The number of chromosomes varies among different plant species, ranging from as few as 2 in some ferns to over 1000 in certain varieties of wheat.

During cell division, the chromosomes replicate and then separate into two identical sets, ensuring that each new cell receives a complete set of genetic information. This process is critical for the growth and development of the plant, as well as for the production of viable seeds and offspring.

Beta-fructofuranosidase is an enzyme that catalyzes the hydrolysis of certain sugars, specifically those that have a fructose molecule bound to another sugar at its beta-furanose form. This enzyme is also known as invertase or sucrase, and it plays a crucial role in breaking down sucrose (table sugar) into its component parts, glucose and fructose.

Beta-fructofuranosidase can be found in various organisms, including yeast, fungi, and plants. In yeast, for example, this enzyme is involved in the fermentation of sugars during the production of beer, wine, and bread. In humans, beta-fructofuranosidase is present in the small intestine, where it helps to digest sucrose in the diet.

The medical relevance of beta-fructofuranosidase lies mainly in its role in sugar metabolism and digestion. Deficiencies or mutations in this enzyme can lead to various genetic disorders, such as congenital sucrase-isomaltase deficiency (CSID), which is characterized by the inability to digest certain sugars properly. This condition can cause symptoms such as bloating, diarrhea, and abdominal pain after consuming foods containing sucrose or other affected sugars.

Adenosine diphosphate glucose (ADP-glucose) is a key intermediate in the biosynthesis of glycogen, which is a complex carbohydrate that serves as a primary form of energy storage in animals, fungi, and bacteria. In this process, ADP-glucose is formed from glucose-1-phosphate and adenosine triphosphate (ATP) through the action of the enzyme ADP-glucose pyrophosphorylase. Once synthesized, ADP-glucose is then used as a substrate for the enzyme glycogen synthase, which catalyzes the addition of glucose units to an existing glycogen molecule, leading to its growth and expansion. This pathway plays a crucial role in regulating cellular energy metabolism and maintaining glucose homeostasis within the body.

Isomaltose is a type of disaccharide, which is a complex sugar consisting of two monosaccharides. It is specifically composed of two glucose molecules linked together in a way that forms a straight chain. Isomaltose can be found naturally in some foods such as honey and fermented products, and it can also be produced industrially as a sweetener.

In the medical field, isomaltose may be relevant in the context of carbohydrate metabolism disorders or in relation to certain types of diagnostic tests that measure the ability to digest and absorb specific sugars. However, it is not a commonly used term in most areas of medical practice.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

DNA, or deoxyribonucleic acid, is the genetic material present in the cells of all living organisms, including plants. In plants, DNA is located in the nucleus of a cell, as well as in chloroplasts and mitochondria. Plant DNA contains the instructions for the development, growth, and function of the plant, and is passed down from one generation to the next through the process of reproduction.

The structure of DNA is a double helix, formed by two strands of nucleotides that are linked together by hydrogen bonds. Each nucleotide contains a sugar molecule (deoxyribose), a phosphate group, and a nitrogenous base. There are four types of nitrogenous bases in DNA: adenine (A), guanine (G), cytosine (C), and thymine (T). Adenine pairs with thymine, and guanine pairs with cytosine, forming the rungs of the ladder that make up the double helix.

The genetic information in DNA is encoded in the sequence of these nitrogenous bases. Large sequences of bases form genes, which provide the instructions for the production of proteins. The process of gene expression involves transcribing the DNA sequence into a complementary RNA molecule, which is then translated into a protein.

Plant DNA is similar to animal DNA in many ways, but there are also some differences. For example, plant DNA contains a higher proportion of repetitive sequences and transposable elements, which are mobile genetic elements that can move around the genome and cause mutations. Additionally, plant cells have cell walls and chloroplasts, which are not present in animal cells, and these structures contain their own DNA.

Lectins are a type of proteins that bind specifically to carbohydrates and have been found in various plant and animal sources. They play important roles in biological recognition events, such as cell-cell adhesion, and can also be involved in the immune response. Some lectins can agglutinate certain types of cells or precipitate glycoproteins, while others may have a more direct effect on cellular processes. In some cases, lectins from plants can cause adverse effects in humans if ingested, such as digestive discomfort or allergic reactions.

A caulimovirus is a type of virus that primarily infects plants. It is a double-stranded DNA (dsDNA) virus, which means that its genetic material is composed of a pair of DNA strands. Caulimoviruses are named after the type species of the group, Cauliflower mosaic virus (CaMV).

Caulimoviruses are unique among dsDNA viruses because they replicate through an RNA intermediate, using a reverse transcriptase enzyme to produce DNA copies of their genome. This is similar to the way that retroviruses, which infect animals, replicate.

Caulimoviruses are relatively large viruses, with genomes ranging in size from about 7 to 8 kilobases (kb). They have a complex structure, with several proteins encoded by their genome that are involved in various aspects of the virus's replication and assembly.

Caulimoviruses infect a wide range of plant hosts, including many important crops such as cauliflower, cabbage, tomato, and pepper. They can cause serious diseases in these plants, leading to significant economic losses. There are no known caulimovirus infections of humans or other animals.

Potexvirus is a genus of viruses in the family Alphaflexiviridae. These are positive-sense single-stranded RNA viruses that infect a wide range of plants, causing various diseases such as mosaic, necrosis, and stunting. The name "Potexvirus" is derived from the type species potato virus X (PVX). The virions are flexuous rods, non-enveloped, and about 12-13 nm in diameter and 470-580 nm in length. The genome is approximately 6.4 kb in size and encodes five open reading frames (ORFs). The first ORF encodes the replicase protein, while the other four ORFs encode the triple gene block proteins involved in viral movement, a coat protein, and a small cysteine-rich protein of unknown function. Potexviruses are transmitted by mechanical contact or contaminated tools and seeds.

Tobacco is not a medical term, but it refers to the leaves of the plant Nicotiana tabacum that are dried and fermented before being used in a variety of ways. Medically speaking, tobacco is often referred to in the context of its health effects. According to the World Health Organization (WHO), "tobacco" can also refer to any product prepared from the leaf of the tobacco plant for smoking, sucking, chewing or snuffing.

Tobacco use is a major risk factor for a number of diseases, including cancer, heart disease, stroke, lung disease, and various other medical conditions. The smoke produced by burning tobacco contains thousands of chemicals, many of which are toxic and can cause serious health problems. Nicotine, one of the primary active constituents in tobacco, is highly addictive and can lead to dependence.

The rhizosphere is not a medical term per se, but it is a term used in the field of biology and agriculture. It refers to the narrow region of soil that is directly influenced by root secretions and associated microorganisms, typically including a zone of about 1-2 mm around the root surface. The rhizosphere is characterized by increased microbial activity due to the release of organic compounds from the roots, which can affect nutrient availability, plant growth, and disease suppression.

A plant genome refers to the complete set of genetic material or DNA present in the cells of a plant. It contains all the hereditary information necessary for the development and functioning of the plant, including its structural and functional characteristics. The plant genome includes both coding regions that contain instructions for producing proteins and non-coding regions that have various regulatory functions.

The plant genome is composed of several types of DNA molecules, including chromosomes, which are located in the nucleus of the cell. Each chromosome contains one or more genes, which are segments of DNA that code for specific proteins or RNA molecules. Plants typically have multiple sets of chromosomes, with each set containing a complete copy of the genome.

The study of plant genomes is an active area of research in modern biology, with important applications in areas such as crop improvement, evolutionary biology, and medical research. Advances in DNA sequencing technologies have made it possible to determine the complete sequences of many plant genomes, providing valuable insights into their structure, function, and evolution.

I believe there might be a slight misunderstanding in your question. "Glyceric acid" is not a widely recognized or established term in medicine or biochemistry. However, glyceric acid can refer to a specific compound with the chemical formula C3H8O4, also known as 2,3-dihydroxypropanoid acid or glycerol-3-phosphate when phosphorylated.

Glyceric acid is an organic compound that plays a crucial role in cellular metabolism, particularly in energy production pathways such as glycolysis and gluconeogenesis. It can be formed from the reduction of dihydroxyacetone phosphate (a glycolytic intermediate) or through the oxidation of glycerol.

If you were referring to a different term or concept, please provide more context so I can give a more accurate answer.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Oxylipins are a class of bioactive lipid molecules derived from the oxygenation of polyunsaturated fatty acids (PUFAs). They play crucial roles in various physiological and pathophysiological processes, including inflammation, immunity, and cellular signaling. Oxylipins can be further categorized based on their precursor PUFAs, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and linoleic acid (LA). These oxylipins are involved in the regulation of vascular tone, platelet aggregation, neurotransmission, and pain perception. They exert their effects through various receptors and downstream signaling pathways, making them important targets for therapeutic interventions in several diseases, such as cardiovascular disorders, cancer, and neurological conditions.

Lipoxygenase is an enzyme that catalyzes the dioxygenation of polyunsaturated fatty acids containing a cis,cis-1,4-pentadiene structure, forming hydroperoxides. This reaction is important in the biosynthesis of leukotrienes and lipoxins, which are involved in various inflammatory responses and immune functions. There are several isoforms of lipoxygenase found in different tissues and organisms, including arachidonate 5-lipoxygenase, arachidonate 12-lipoxygenase, and arachidonate 15-lipoxygenase.

Plastids are membrane-bound organelles found in the cells of plants and algae. They are responsible for various cellular functions, including photosynthesis, storage of starch, lipids, and proteins, and the production of pigments that give plants their color. The most common types of plastids are chloroplasts (which contain chlorophyll and are involved in photosynthesis), chromoplasts (which contain pigments such as carotenoids and are responsible for the yellow, orange, and red colors of fruits and flowers), and leucoplasts (which do not contain pigments and serve mainly as storage organelles). Plastids have their own DNA and can replicate themselves within the cell.

Cyclopentanes are a class of hydrocarbons that contain a cycloalkane ring of five carbon atoms. The chemical formula for cyclopentane is C5H10. It is a volatile, flammable liquid that is used as a solvent and in the production of polymers. Cyclopentanes are also found naturally in petroleum and coal tar.

Cyclopentanes have a unique structure in which the carbon atoms are arranged in a pentagonal shape, with each carbon atom bonded to two other carbon atoms and one or two hydrogen atoms. This structure gives cyclopentane its characteristic "bowl-shaped" geometry, which allows it to undergo various chemical reactions, such as ring-opening reactions, that can lead to the formation of other chemicals.

Cyclopentanes have a variety of industrial and commercial applications. For example, they are used in the production of plastics, resins, and synthetic rubbers. They also have potential uses in the development of new drugs and medical technologies, as their unique structure and reactivity make them useful building blocks for the synthesis of complex molecules.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Apyrase is an enzyme that catalyzes the hydrolysis of nucleoside triphosphates (like ATP or GTP) to nucleoside diphosphates (like ADP or GDP), releasing inorganic phosphate in the process. It can also hydrolyze nucleoside diphosphates to nucleoside monophosphates, releasing inorganic pyrophosphate.

This enzyme is widely distributed in nature and has been found in various organisms, including bacteria, plants, and animals. In humans, apyrases are present in different tissues, such as the brain, platelets, and red blood cells. They play essential roles in several biological processes, including signal transduction, metabolism regulation, and inflammatory response modulation.

There are two major classes of apyrases: type I (also known as nucleoside diphosphate kinase) and type II (also known as NTPDase). Type II apyrases have higher substrate specificity for nucleoside triphosphates, while type I apyrases can hydrolyze both nucleoside tri- and diphosphates.

In the medical field, apyrases are sometimes used in research to study platelet function or neurotransmission, as they can help regulate purinergic signaling by controlling extracellular levels of ATP and ADP. Additionally, some studies suggest that apyrase activity might be involved in certain pathological conditions, such as atherosclerosis, thrombosis, and neurological disorders.

Sucrose is a type of simple sugar, also known as a carbohydrate. It is a disaccharide, which means that it is made up of two monosaccharides: glucose and fructose. Sucrose occurs naturally in many fruits and vegetables and is often extracted and refined for use as a sweetener in food and beverages.

The chemical formula for sucrose is C12H22O11, and it has a molecular weight of 342.3 g/mol. In its pure form, sucrose is a white, odorless, crystalline solid that is highly soluble in water. It is commonly used as a reference compound for determining the sweetness of other substances, with a standard sucrose solution having a sweetness value of 1.0.

Sucrose is absorbed by the body through the small intestine and metabolized into glucose and fructose, which are then used for energy or stored as glycogen in the liver and muscles. While moderate consumption of sucrose is generally considered safe, excessive intake can contribute to weight gain, tooth decay, and other health problems.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Nucleotidyltransferases are a class of enzymes that catalyze the transfer of nucleotides to an acceptor molecule, such as RNA or DNA. These enzymes play crucial roles in various biological processes, including DNA replication, repair, and recombination, as well as RNA synthesis and modification.

The reaction catalyzed by nucleotidyltransferases typically involves the donation of a nucleoside triphosphate (NTP) to an acceptor molecule, resulting in the formation of a phosphodiester bond between the nucleotides. The reaction can be represented as follows:

NTP + acceptor → NMP + pyrophosphate

where NTP is the nucleoside triphosphate donor and NMP is the nucleoside monophosphate product.

There are several subclasses of nucleotidyltransferases, including polymerases, ligases, and terminases. These enzymes have distinct functions and substrate specificities, but all share the ability to transfer nucleotides to an acceptor molecule.

Examples of nucleotidyltransferases include DNA polymerase, RNA polymerase, reverse transcriptase, telomerase, and ligase. These enzymes are essential for maintaining genome stability and function, and their dysregulation has been implicated in various diseases, including cancer and neurodegenerative disorders.

Carbohydrate metabolism is the process by which the body breaks down carbohydrates into glucose, which is then used for energy or stored in the liver and muscles as glycogen. This process involves several enzymes and chemical reactions that convert carbohydrates from food into glucose, fructose, or galactose, which are then absorbed into the bloodstream and transported to cells throughout the body.

The hormones insulin and glucagon regulate carbohydrate metabolism by controlling the uptake and storage of glucose in cells. Insulin is released from the pancreas when blood sugar levels are high, such as after a meal, and promotes the uptake and storage of glucose in cells. Glucagon, on the other hand, is released when blood sugar levels are low and signals the liver to convert stored glycogen back into glucose and release it into the bloodstream.

Disorders of carbohydrate metabolism can result from genetic defects or acquired conditions that affect the enzymes or hormones involved in this process. Examples include diabetes, hypoglycemia, and galactosemia. Proper management of these disorders typically involves dietary modifications, medication, and regular monitoring of blood sugar levels.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Carbohydrates are a major nutrient class consisting of organic compounds that primarily contain carbon, hydrogen, and oxygen atoms. They are classified as saccharides, which include monosaccharides (simple sugars), disaccharides (double sugars), oligosaccharides (short-chain sugars), and polysaccharides (complex carbohydrates).

Monosaccharides, such as glucose, fructose, and galactose, are the simplest form of carbohydrates. They consist of a single sugar molecule that cannot be broken down further by hydrolysis. Disaccharides, like sucrose (table sugar), lactose (milk sugar), and maltose (malt sugar), are formed from two monosaccharide units joined together.

Oligosaccharides contain a small number of monosaccharide units, typically less than 20, while polysaccharides consist of long chains of hundreds to thousands of monosaccharide units. Polysaccharides can be further classified into starch (found in plants), glycogen (found in animals), and non-starchy polysaccharides like cellulose, chitin, and pectin.

Carbohydrates play a crucial role in providing energy to the body, with glucose being the primary source of energy for most cells. They also serve as structural components in plants (cellulose) and animals (chitin), participate in various metabolic processes, and contribute to the taste, texture, and preservation of foods.

Photoperiod is a term used in chronobiology, which is the study of biological rhythms and their synchronization with environmental cycles. In medicine, photoperiod specifically refers to the duration of light and darkness in a 24-hour period, which can significantly impact various physiological processes in living organisms, including humans.

In human medicine, photoperiod is often considered in relation to circadian rhythms, which are internal biological clocks that regulate several functions such as sleep-wake cycles, hormone secretion, and metabolism. The length of the photoperiod can influence these rhythms and contribute to the development or management of certain medical conditions, like mood disorders, sleep disturbances, and metabolic disorders.

For instance, exposure to natural daylight or artificial light sources with specific intensities and wavelengths during particular times of the day can help regulate circadian rhythms and improve overall health. Conversely, disruptions in the photoperiod due to factors like shift work, jet lag, or artificial lighting can lead to desynchronization of circadian rhythms and related health issues.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Disease resistance, in a medical context, refers to the inherent or acquired ability of an organism to withstand or limit infection by a pathogen, such as bacteria, viruses, fungi, or parasites. This resistance can be due to various factors including the presence of physical barriers (e.g., intact skin), chemical barriers (e.g., stomach acid), and immune responses that recognize and eliminate the pathogen.

Inherited disease resistance is often determined by genetics, where certain genetic variations can make an individual more or less susceptible to a particular infection. For example, some people are naturally resistant to certain diseases due to genetic factors that prevent the pathogen from infecting their cells or replicating within them.

Acquired disease resistance can occur through exposure to a pathogen, which triggers an immune response that confers immunity or resistance to future infections by the same pathogen. This is the basis of vaccination, where a weakened or dead form of a pathogen is introduced into the body to stimulate an immune response without causing disease.

Overall, disease resistance is an important factor in maintaining health and preventing the spread of infectious diseases.

Mitochondria are specialized structures located inside cells that convert the energy from food into ATP (adenosine triphosphate), which is the primary form of energy used by cells. They are often referred to as the "powerhouses" of the cell because they generate most of the cell's supply of chemical energy. Mitochondria are also involved in various other cellular processes, such as signaling, differentiation, and apoptosis (programmed cell death).

Mitochondria have their own DNA, known as mitochondrial DNA (mtDNA), which is inherited maternally. This means that mtDNA is passed down from the mother to her offspring through the egg cells. Mitochondrial dysfunction has been linked to a variety of diseases and conditions, including neurodegenerative disorders, diabetes, and aging.

'Allium' is a genus of plants that includes several species which are commonly used as vegetables or spices, such as onions, garlic, leeks, shallots, and chives. These plants are characterized by their distinctive strong smell and taste, which are caused by sulfur-containing compounds. They have been widely used in traditional medicine for their potential health benefits, including antibacterial, antiviral, and anti-inflammatory properties.

... is a cultivar-group of diploid potato plants originating from the Andes valley in South America ... By hybridization with Solanum tuberosum by the Scottish Crop Research Institute, varieties were obtained who are adapted to the ... Solanum phureja was originally described as a species in 1929 by Russian botanists Sergei Vasilievic Juzepczuk and Sergej ( ... "Name - Solanum phureja Juz. & Bukasov: Subordinate taxa". Tropicos.org. Missouri Botanical Garden. 14 April 2014. Ramsay, Gavin ...
Solanum Tuberosum. Tauben sprechen kein Deutsch, Atelierschiff der Stadt Frankfurt, DE 2009: The Nono und die Fratzenpleite, ...
Solanum tuberosum). The word written as hayo probably refers to the Ika word hayu. Colombian-Jewish-Ukrainian scholar Juan ...
"Atlantic (Solanum tuberosum)". www.potatoassociation.org. Potato Association of America. Retrieved 18 March 2019. Webb, R.E.; ...
"Superior (Solanum tuberosum)". potatoassociation.org. Retrieved 4 January 2016. Rieman, G. H. (1962) "Superior: a new white ...
It is a day flying moth (hence the common name). Caterpillars feed on Solanum tuberosum. Upperside Museum specimen Wikimedia ...
"Solanum tuberosum 'Belle de Fontenay'". Gardener's World. Archived from the original on 21 March 2012. Retrieved 26 February ...
melanospermum, Amaranthus sp.; Pozancón 1: Solanum cf. tuberosum, cf. Ipomea/Manihot.; Casa del Sol 8: Zea mays.; El Alto 3: ... tuberosum), Gourd (Lagenaria sp.). Fruiting bushes and trees included: Guillave (Echinopsis chilensis) Michay (Berberis sp.), ...
... tuberosum/latest_assembly_versions/GCF_000226075.1_SolTub_3.0". ftp.ncbi.nih.gov. Retrieved 2020-12-01. "Solanum tuberosum (ID ... "Solanum lycopersicum (ID 7) - Genome - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-12-01. "Index of /genomes/refseq/plant/ ... "Index of /genomes/refseq/plant/Solanum_lycopersicum/latest_assembly_versions/GCF_000188115.4_SL3.0". ftp.ncbi.nih.gov. ...
patatas - potatoes; Solanum tuberosum singkamas - Pachyrrhizus erosus Linn. Ube kinampay - purple yam; Dioscorea alata Ube- yam ... Solanum melongena Ocimum sanctum - holy basil upo - Lagenaria leucantha; bottle gourd Corindrium sativum - coriander leaf ... Solanum capsicum (Solanaceae) singkamas - Pachyrhizus erosus; yambean tangkong or kangkong; Ipomoea aquatica; swamp cabbage, ... Solanum lycopersicum or Lycopersicum esculentum kamunggay - malunggay; Moringa oleifera katuray - Sesbania grandiflora, a white ...
Solanum tuberosum, Lycopersicon esculentum and Nicotiana tabacum. Chapman et al. 1992 introduced the use of transgenic PVX as a ... tuberosum, L. esculentum and N. tabacum) and by Tameling et al. 2007 to investigate plant nucleotide binding leucine-rich ...
The common potato (Solanum tuberosum) is an example of a tetraploid organism, carrying four sets of chromosomes. During sexual ... "The Biology of Solanum tuberosum (L.) (Potatoes)". Canadian Food Inspection Agency. 2012-03-05. Griffiths, A. J. et al. 2000. ... Bender K (1963). "Über die Erzeugung und Entstehung dihaploider Pflanzen bei Solanum tuberosum"". Zeitschrift für ...
... (Aymara qhini selected, best potato, jamach'i bird; a variety of potato (Solanum tuberosum subsp. andigena), - ...
ultramontana, Solanum tuberosum, Stellaria americana, and Stellaria jamesiana. These species tested positive for protease ...
The larvae are a pest on Solanum tuberosum. It attacks the tubers as well as the stems and leaves of the plant. Pupation takes ...
Probable protease inhibitor P322 from Solanum tuberosum (potato). A germination-related protein from Vigna unguiculata (cowpea ...
Transgenic Potato (Solanum tuberosum L.)". Transgenic Crops II. Springer. pp. 305-324. ISBN 978-3-642-56901-2. (Articles with ... This gene, which conferred the resistance to blight, was isolated from a wild relative of potatoes, Solanum venturii, which is ...
Wikimedia Commons has media related to Solanum tuberosum 'Melody'. "Potato Council Variety Database: Melody". Archived from the ...
Wikimedia Commons has media related to Solanum tuberosum 'Ratte'. v t e (Articles with short description, Short description is ...
"The Accumulation of Phenolic Acids in Tissue Culture-pathogen Combinations of Solanum Tuberosum and Phyto-phthora Infestans." ... "Interaction between Phytophthora Infestans and Tissue Cultures of Solanum Tuberosum." Microbiology 40.3 (1965): 431-37. Print. ...
"Growth-inhibitory volatile aromatic compounds produced by Solanum tuberosum tubers". Phytochemistry. 12 (5): 987-993. doi: ...
Wikimedia Commons has media related to Solanum tuberosum 'Yukon Gold'. Creamer potato List of Canadian inventions and ... Solanum goniocalyx, known as papa amarilla, Spanish for "yellow potato") that was grown by the many indigenous communities in ...
2009). "Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): a ...
Wikimedia Commons has media related to Solanum tuberosum 'Pink Fir Apple'. "Potato Seed Catalogue 2005". Irish Seed Saver ...
Solanum tuberosum); tomato (Lycopersicum esculentum); soybean (Glycine max); eggplant/aubergine (Solanum melongena); banana, ( ... Solanum dulcamara) Geranium: Wilting begins with lower leaves and petioles and works its way up the plant. Wilted leaves have ...
Solanum tuberosum), the tomato (Solanum lycopersicum), and the eggplant (Solanum melongena). It can occur naturally in any part ... Solanum tuberosum): a review". Food Technology in Australia. ISSN 0015-6647. Wilson, AM; McGann, DF; Bushway, RJ (February 1983 ... Solanum tuberosum)". Journal of Agricultural and Food Chemistry. 42 (11): 2545-2550. doi:10.1021/jf00047a032. Bushway, Rodney J ... Solanum glycoalkaloids have been shown to inhibit cholinesterase, disrupt cell membranes, and cause birth defects. One study ...
They are considered a pest on Beta vulgaris and Solanum tuberosum. Herbison-Evans, Don; Crossley, Stella (2006) Agrotis ...
Solanum melongena, Hibiscus esculentus, Abelmoschus esculentus, Lycopersicon esculentum and Solanum tuberosum). This species ...
Solanum tuberosum )". G3: Genes, Genomes, Genetics. 10 (10): 3489-3495. doi:10.1534/g3.120.401550. PMC 7534448. PMID 32759330. ... To this end, Solynta crossed in 2008 a diploid potato with Solanum chacoense to start hybrid breeding. The first step is to ... Self-compatible diploid potato was found by Hosaka and Hanneman in the Solanum chacoense used by Solynta. The first results of ... bearing potato species Solanum chacoense, reveals residual heterozygosity". The Plant Journal. 94 (3): 562-570. doi:10.1111/tpj ...
The most economically important host is the potato, Solanum tuberosum spp. In potato, symptoms of primary infection, infection ... PLRV infects other hosts including moonflower, Datura stramonium causing interveinal necrosis and hairy nightshade, Solanum ...
Solanum tuberosum Group Phureja is a cultivar-group of diploid potato plants originating from the Andes valley in South America ... By hybridization with Solanum tuberosum by the Scottish Crop Research Institute, varieties were obtained who are adapted to the ... Solanum phureja was originally described as a species in 1929 by Russian botanists Sergei Vasilievic Juzepczuk and Sergej ( ... "Name - Solanum phureja Juz. & Bukasov: Subordinate taxa". Tropicos.org. Missouri Botanical Garden. 14 April 2014. Ramsay, Gavin ...
In the area of potato production, targeted research solving concrete and actual problems of potato producers runs on Czech University of Life Sciences in Prague. In the last few years, we were focused on the production of new potatoes designated for early harvest, and we were focused on capitalization of yielding and qualitative characteristics of colored potato variety. These findings were further utilized and transferred to the system of organic farming. Firstly, we watched the influence of organic farming on yield and quality of tubers. Ecological ways of cultivation had strong negative influences on yield (decrease of 36%). From qualitative characteristics, organic farming increased the content of polyphenols by 10.2%, decreased the content of nitrates by 11.0%, and decreased the content of reducing sugars by 22.0%. We also evaluated the possibilities and impacts of mulch on potato cultivation. The mulch on top of ridges affected the temperature of soil (it increased the temperature by 0.2-0.6 °C
Solanum tuberosum Marabel in egg box - Chitting potatoes ... Image:0380600 - Stock photo from GAP Gardens, garden & plant ... solanum tuberosum marabel egg box chitting potatoes closeup selective focus practical gardening work jobs chores boxes ... Solanum tuberosum Marabel in egg box - Chitting potatoes Credit: GAP Photos/Robert Mabic (account holders only) ...
... of differentially regulated proteins during a compatible interaction between Phytophthora infestansand Solanum tuberosum. ... of differentially regulated proteins during a compatible interaction between Phytophthora infestansand Solanum tuberosum. ... of differentially regulated proteins during a compatible interaction between Phytophthora infestansand Solanum tuberosum. ...
Infestation of potato (Solanum tuberosum L.) by the peach-potato aphid (Myzus persicae Sulzer) alters cellular redox status and ... Infestation of potato (Solanum tuberosum L.) by the peach-potato aphid (Myzus persicae Sulzer) alters cellular redox status and ... Printed from /publications/infestation-potato-solanum-tuberosum-l-peach-potato-aphid-myzus-persicae-sulzer-alters on 04/12/23 ... infestation-potato-solanum-tuberosum-l-peach-potato-aphid-myzus-persicae-sulzer-alters ...
Factor affecting ,i,Agrobacterium,/i,-mediated transformation of rice chitinase gene in ,i,Solanum tuberosum,/i, L. ...
Seaweed extract effects on potato (Solanum Tuberosum BP1) and grape (Vitis Vinifera Var. Sultana) Production. ... on the growth parameters and yield of Solanum tuberosum BP1potato crop and Vitis vinifera var. sultana grapes. The ...
Physiological and Growth Responses of Potato (Solanum Tuberosum L.) to Air Temperature and Relative Humidity under Soil Water ... Mathias Neumann Andersen » Research outputs » Physiological and Growth Responses of Potato (Solanum Tub... ...
Pour Solanum tuberosum, nous avons obtenu des résultats satisfaisants avec un taux de régénération moyen de 89 %. Ce taux nous ... Le CRB BrACySol conserve 12 000 accessions de Solanum tuberosum et espèces apparentées. La préservation de ces clones est ... Cryoconservation dapex de Solanum tuberosum et espèces apparentées par la technique de vitrification en gouttes. NOVAE, 2022 ... Solanum tuberosum espèces apparentées cryoconservation vitrification en goutte PVS2 (Plant Vitrification solution 2) ...
... سامانه مدیریت نشریات ... 1395). بررسی کارایی علف کش اگزادیارژیل در کنترل علف های هرز سیب زمینی (Solanum tuberosum L.) در مراحل مختلف رشدی. سامانه مدیریت ... "بررسی کارایی علف کش اگزادیارژیل در کنترل علف های هرز سیب زمینی (Solanum tuberosum L.) در مراحل مختلف رشدی". سامانه مدیریت ... Potato (Solanum tuberosum L.) tolerans and susceptibility of eight weeds to Rimsulfuron with and without metribuzin. Weed ...
Solanum tuberosum L. subsp. chiloense (A. DC.) L. I. Kostina (0 active accession[s]). Solanum tuberosum L. subsp. tuberosum (0 ... Solanum tuberosum L. subsp. andigenum (Juz. & Bukasov) Hawkes (189 active accession[s]). ... PBI Solanum Project. Solanaceae source: a global taxonomic resource for the nightshade family (on-line resource). ... We apologize, but the distribution of Solanum lycopersicum L. and Capsicum spp. is suspended due to the EU regulation (details) ...
Welcome to NATURE INFO electronic database. Information about the earth, nature, lives, and environment. Take your time and immerse yourself in this amazing experience ...
Potato (Solanum tuberosum) by-products. Datasheet. Description. Click on the "Nutritional aspects" tab for recommendations for ... The potato (Solanum tuberosum) as a source of nutrients for pigs, calves and fowl - A review. Anim. Feed Sci. Technol., 2 (2): ... Potato (Solanum tuberosum L. cv. Gogu valley) protein as an antimicrobial agent in the diets of broilers. Poult. Sci., 88 (6): ... The processing of potato (Solanum tuberosum L.) for food and for the manufacture of starch, alcohol, glucose and dextrin has ...
Plant Solanum tuberosum, Potato, Vegetables - in @romansocks garden plant collection ...
Mashua (Tropaeolum tuberosum) 11 comments , posted on February 10, 2012 * Ulluco (Ullucus tuberosus) 13 comments , posted on ... Four important tuber crops were developed in the Andes: ulluco, oca, mashua, and potato (Solanum tuberosum). The potato is the ... Oca (Oxalis tuberosa) 35 comments , posted on November 11, 2011 * Potato Onion (Allium cepa var. aggregatum) 21 comments , ... Wild Potatoes (Solanum section Petota) 6 comments , posted on August 17, 2017 ...
Solanum tuberosum. Картофель европейский, Картофель клубненосный, Картофель чилийский, Картофель, Картошка. Image of an ... Image of Solanum tuberosum L. // Plantarium. Plants and lichens of Russia and neighboring countries: open online galleries and ... Изображение Solanum tuberosum L. // Плантариум. Растения и лишайники России и сопредельных стран: открытый онлайн атлас и ...
Solanum tuberosum Carolus. Hoogte. 1 cm. Winterhard. Neen. PH. Neutraal. Vochtigheid. Normaal. Licht. Zon. Evergreen. ... René A. voegde een foto toe aan Aardappel Carolus (Solanum tuberosum Carolus) ...
Solanum tuberosum. Days To Maturity. About Quick Fact Days To Maturity. Days To Maturity. Average number of days from seeding ... Solanum tuberosum. Days To Maturity. About Quick Fact Days To Maturity. Days To Maturity. Average number of days from seeding ... SCIENTIFIC NAME: Solanum tuberosum. CULTURE: Potatoes grow best in well-drained, fertile soil with a pH of 6.0-7.0. Cut tubers ...
அதே சமயம் பலருக்கும் இந்த உருளைக்கிழங்கை தோலுடன் சாப்பிடுவது நல்லதா அல்லது தோல் நீக்கி சாப்பிடுவது நல்லதா என்ற சந்தேகம் இருக்கும்.உருளைக்கிழங்கு மாவுப் பொருள். அதனால் இதில் உள்ள எந்தச் சத்தும் அழியாமல் கிடைக்கிறது. கைக்குத்தல் அரிசிக்கு இணையான சக்தி தோலுடன் சாப்பிடப்படும் உருளைக்கிழங்கில் கிடைக்கிறது. உருளைக்கிழங்கில் தோலுக்கு அருகில் தான் அதிக அளவு ஊட்டச்சத்தும் ...
(Sol-t) Homeopathic Single Remedy. C3 Trituration, Hahnemann method of dilution. 2 dram vial with pellets or 15ml liquid dropper bottle.
Potatoes must have well-drained, moisture retentive, fertile soil that is high in organic matter and a pH between 5.0 and 6.0. Do not use a lime soil, the soil should be slightly acid. To prevent disease problems, do not plant potatoes in the same bed as tomatoes. Potatoes should be rotated on a 3 year program. This means, you need 3 suitable sites if you want to grow potatoes every year. ...
Synchytrium endobioticum - pathotypes, resistance of Solanum tuberosum and management. Swedish University of Agricultural ...
Text; Format: print Publication details: Rome : Food and Agriculture Organization, 1990Other title: Racines, tubercules, plantains et bananes dans la nutrition humaine , Raices, tubérculos, platanos y bananas en la nutricion humana.Availability: Items available for loan: WHO HQ (3)Call number: WA 695 90RO, ... ...
Solanum tuberosum sp. andigena. , Solanum goniocalyx. , Solanum stenotomum. , Solanum x chaucha. , Solanum x ajanhuiri. , ... S. tuberosum. subsp. tuberosum. x S. tuberosum. subsp. andigena. ).. Fallow systems, locally known as laymes. , predominate in ... Solanum tuberosum. L), a crop initially domesticated in the northern area of Lake Titicaca where among wild species the first ... Singh RK, Buckseth T, Tiwari JK, Sharma A K, Singh V, Kumar D, Chakrabarti, S K. Seed potato (Solanum tuberosum) production ...
... Academic Article * View record in Web of Science ® ...
Solanum tuberosum,/i, L.) ,/b,,br,(RADIATION USE EFFICIENCY IN POTATO (,i,Solanum Tuberosum,/i, L.) Download Download PDF ...
Expression dynamics of S locus genes defining self-incompatibility in tetraploid potato (Solanum tuberosum L.) Cv. Kufri ... Expression dynamics of S locus genes defining self-incompatibility in tetraploid potato (Solanum tuberosum L.) Cv. Kufri ... Expression dynamics of S locus genes defining self-incompatibility in tetraploid potato (Solanum tuberosum L.) Cv. Kufri ...
To contact us send us an email at: [email protected] or use our contact form ...

No FAQ available that match "solanum tuberosum"

No images available that match "solanum tuberosum"