A single lung lesion that is characterized by a small round mass of tissue, usually less than 1 cm in diameter, and can be detected by chest radiography. A solitary pulmonary nodule can be associated with neoplasm, tuberculosis, cyst, or other anomalies in the lung, the CHEST WALL, or the PLEURA.
A number of small lung lesions characterized by small round masses of 2- to 3-mm in diameter. They are usually detected by chest CT scans (COMPUTED TOMOGRAPHY, X-RAY). Such nodules can be associated with metastases of malignancies inside or outside the lung, benign granulomas, or other lesions.
Tumors or cancer of the LUNG.
The most benign and common form of Langerhans-cell histiocytosis which involves localized nodular lesions predominantly of the bones but also of the gastric mucosa, small intestine, lungs, or skin, with infiltration by EOSINOPHILS.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
Endoscopic examination, therapy or surgery of the bronchi.
Endoscopic surgery of the pleural cavity performed with visualization via video transmission.
Endoscopes for the visualization of the interior of the bronchi.
Improvement in the quality of an x-ray image by use of an intensifying screen, tube, or filter and by optimum exposure techniques. Digital processing methods are often employed.
Diagnostic and therapeutic procedures that are invasive or surgical in nature, and require the expertise of a specially trained radiologist. In general, they are more invasive than diagnostic imaging but less invasive than major surgery. They often involve catheterization, fluoroscopy, or computed tomography. Some examples include percutaneous transhepatic cholangiography, percutaneous transthoracic biopsy, balloon angioplasty, and arterial embolization.
Removal and examination of tissue obtained through a transdermal needle inserted into the specific region, organ, or tissue being analyzed.
An imaging technique using compounds labelled with short-lived positron-emitting radionuclides (such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18) to measure cell metabolism. It has been useful in study of soft tissues such as CANCER; CARDIOVASCULAR SYSTEM; and brain. SINGLE-PHOTON EMISSION-COMPUTED TOMOGRAPHY is closely related to positron emission tomography, but uses isotopes with longer half-lives and resolution is lower.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image.
The compound is given by intravenous injection to do POSITRON-EMISSION TOMOGRAPHY for the assessment of cerebral and myocardial glucose metabolism in various physiological or pathological states including stroke and myocardial ischemia. It is also employed for the detection of malignant tumors including those of the brain, liver, and thyroid gland. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1162)
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
X-ray visualization of the chest and organs of the thoracic cavity. It is not restricted to visualization of the lungs.
GRAY MATTER located in the dorsomedial part of the MEDULLA OBLONGATA associated with the solitary tract. The solitary nucleus receives inputs from most organ systems including the terminations of the facial, glossopharyngeal, and vagus nerves. It is a major coordinator of AUTONOMIC NERVOUS SYSTEM regulation of cardiovascular, respiratory, gustatory, gastrointestinal, and chemoreceptive aspects of HOMEOSTASIS. The solitary nucleus is also notable for the large number of NEUROTRANSMITTERS which are found therein.
Any visual display of structural or functional patterns of organs or tissues for diagnostic evaluation. It includes measuring physiologic and metabolic responses to physical and chemical stimuli, as well as ultramicroscopy.
A graphic means for assessing the ability of a screening test to discriminate between healthy and diseased persons; may also be used in other studies, e.g., distinguishing stimuli responses as to a faint stimuli or nonstimuli.
Subcutaneous nodules seen in 20-30% of rheumatoid arthritis patients. They may arise anywhere on the body, but are most frequently found over the bony prominences. The nodules are characterized histologically by dense areas of fibrinoid necrosis with basophilic streaks and granules, surrounded by a palisade of cells, mainly fibroblasts and histiocytes.
Knobbed structures formed from and attached to plant roots, especially of LEGUMES, which result from symbiotic infection by nitrogen fixing bacteria such as RHIZOBIUM or FRANKIA. Root nodules are structures related to MYCORRHIZAE formed by symbiotic associations with fungi.
In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.
Computer systems or networks designed to provide radiographic interpretive information.

PET in lung cancer. (1/290)

An estimated 180,000 new cases of lung cancer will be diagnosed in the U.S. this year, and lung cancer accounts for approximately 25% of all cancer deaths. Most lung cancers are initially detected on chest radiographs, but many benign lesions have radiologic characteristics similar to malignant lesions. Thus, additional studies are required for further evaluation. CT is most frequently used to provide additional anatomic and morphologic information about lesions, but it is limited in distinguishing between benign and malignant abnormalities. Because of the indeterminate results obtained from anatomic images, biopsy procedures, including thoracoscopy and thoracotomy, may be used even though one half of the lesions removed are benign and do not need to be removed. Fluorodeoxyglucose (FDG) PET imaging provides physiologic and metabolic information that characterizes lesions that are indeterminate by CT, accurately stages the distribution of lung cancer and provides prognostic information. FDG PET imaging takes advantage of the increased accumulation of FDG in transformed cells and is sensitive (approximately 95%) to the detection of cancer in patients who have indeterminate lesions on CT. The specificity (approximately 85%) of PET imaging is slightly less than its sensitivity because some inflammatory processes, such as active granulomatous infections, avidly accumulate FDG. The high negative predictive value of PET suggests that lesions considered negative on the study are benign, biopsy is not needed and radiographic follow-up is recommended. Several studies have documented the increased accuracy of PET compared with CT in the evaluation of the hilar and mediastinal lymph-node status in patients with lung cancer. Whole-body PET studies detect metastatic disease that is unsuspected by conventional imaging and demonstrate some of the anatomic abnormalities detected by CT to be benign lesions. Management changes have been reported in up to 41% of patients on the basis of the results of whole-body studies.  (+info)

Transthoracic needle aspiration biopsy for the diagnosis of localised pulmonary lesions: a meta-analysis. (2/290)

BACKGROUND: Persisting controversy surrounds the use of transthoracic needle aspiration biopsy (TNAB) stemming from its uncertain diagnostic accuracy. A systematic review and meta-analysis was therefore conducted to evaluate the accuracy of TNAB for the diagnosis of solitary or multiple localised pulmonary lesions. METHODS: Searches for English literature papers in Index Medicus (1963-1965) and Medline (1966-1996) were performed and the bibliographies of the retrieved articles were systematically reviewed. Articles evaluating the accuracy of TNAB in series of consecutive patients presenting with solitary or multiple pulmonary lesions were considered. Only papers in which >/=90% of patients were given a final diagnosis according to an appropriate reference standard were included in the meta-analysis. RESULTS: A total of 48 studies were included and five meta-analyses were conducted according to four diagnostic thresholds. From the pooled sensitivity and specificity corresponding to each diagnostic threshold, associated likelihood ratios (LRs) were derived for malignant disease as follows: (1) malignant versus all other categories, LR = 72; (2) malignant or suspicious versus all others, LR = 49; (3) suspicious versus all categories but malignant, LR = 15; (4) benign versus all others, LR = 0.07; and (5) specific benign diagnosis versus all others, LR = 0.005. Differences in methodological quality of the studies, needle types, or whether a cytopathologist participated in the procedure failed to explain the heterogeneity of the results found in almost every meta-analysis. Given a 50% probability of malignancy prior to the TNAB, post-test probabilities of malignancy upon receiving the results would be malignant, 99%; suspicious, 94%; non-specific benign, 7%; and benign with a specific diagnosis, 0.6%. CONCLUSIONS: Given the intermediate pre-test probabilities that would probably lead to performing TNAB, findings of "malignant" or of a specific diagnosis of a benign condition provide definitive results. Findings of "suspicious" markedly increase the probability of malignancy, and "benign" markedly decreases it but may not be considered definitive.  (+info)

Role of Tc-99m MIBI in the evaluation of single pulmonary nodules: a preliminary report. (3/290)

BACKGROUND: Survival in bronchial carcinoma is closely related to the stage of the disease at the time of diagnosis and a single pulmonary nodule represents a potentially curable stage. This study was conducted to assess the feasibility of using Tc-99m labelled 2-methoxy isobutyl isonitrile (MIBI) to differentiate benign from malignant single pulmonary nodules. METHODS: A prospective study was conducted in the outpatient pulmonary clinic at the Cleveland Clinic Foundation. Twenty five patients with single pulmonary nodules considered indeterminate by their physicians and undergoing a procedure for tissue diagnosis were evaluated by Tc-99m MIBI SPECT scanning prior to definitive testing. Assessment of MIBI uptake was done qualitatively (subjectively) and quantitatively and correlated with the histopathology and nodule size. RESULTS: Of the 21 patients with malignant lesions, 18 had increased uptake of MIBI corresponding to the location of the nodule and were considered positive. The predominant tumour types were large cell (n = 5) and adenocarcinoma (n = 10). All four patients with benign lesions had negative MIBI scans. For malignancy the overall specificity was 100%, sensitivity was 85.7%, positive predictive value was 100%, and negative predictive value was 57%. Quantitative uptake of MIBI correlated with the diameter of the nodule with a correlation coefficient of 0.61 by Spearman's rank sum test. This relationship was statistically significant (p = 0.02). CONCLUSION: This preliminary study suggests that Tc-99m MIBI has a very high specificity and positive predictive value for malignant single pulmonary nodules and might be a useful non-invasive diagnostic modality in their management.  (+info)

Pulmonary cytolytic thrombi: a newly recognized complication of stem cell transplantation. (4/290)

Over the past 5 years we have recognized a new pulmonary complication of hematopoietic stem cell transplantation (HSCT) associated with fever and pulmonary nodules termed 'pulmonary cytolytic thrombi' (PCT). Retrospective analysis of medical and radiographic records and pathologic material from 13 HSCT recipients with PCT and a review of the Blood and Marrow Transplant Database for all patients with radiographic evidence of pulmonary nodules or who underwent open-lung biopsy from 1 January 1993 to 31 December 1998 (n = 1228) were performed. The median age of patients with PCT was 11.9 years (range, 1.3-29.7 years). All patients developed fever at a median of 72 days (range, 8-343 days) post transplant, followed by pulmonary nodules on chest CT. Eleven patients were receiving therapy for active GVHD (acute, grades I-IV (n = 10); extensive chronic (n = 1)). Biopsy of the pulmonary nodules revealed a unique pattern of necrotic, basophilic thromboemboli with amorphous material suggestive of cellular breakdown products. This was descriptively labeled 'pulmonary cytolytic thrombi'. Immunohistochemical staining revealed entrapped leukocytes and disrupted endothelium, but was negative for histiocytes. Cultures and immunohistochemical stains were negative for infectious agents. Empiric therapy included systemic corticosteroids (n = 9) and amphotericin (n = 7). Nine patients survive with resolution of PCT at a median follow-up of 1.5 years. Bone Marrow Transplantation (2000) 25, 293-300.  (+info)

Low-cost soft-copy display accuracy in the detection of pulmonary nodules by single-exposure dual-energy subtraction: comparison with hard-copy viewing. (5/290)

This study endeavored to clarify the usefulness of single-exposure dual-energy subtraction computed radiography (CR) of the chest and the ability of soft-copy images to detect low-contrast simulated pulmonary nodules. Conventional and bone-subtracted CR images of 25 chest phantom image sets with a low-contrast nylon nodule and 25 without a nodule were interpreted by 12 observers (6 radiologists, 6 chest physicians) who rated each on a continuous confidence scale and marked the position of the nodule if one was present. Hard-copy images were 7 x 7-inch laser-printed CR films, and soft-copy images were displayed on a 21-inch noninterlaced color CRT monitor with an optimized dynamic range. Soft-copy images were adjusted to the same size as hard-copy images and were viewed under darkened illumination in the reading room. No significant differences were found between hard- and soft-copy images. In conclusion, the soft-copy images were found to be useful in detecting low-contrast simulated pulmonary nodules.  (+info)

Image compression and chest radiograph interpretation: image perception comparison between uncompressed chest radiographs and chest radiographs stored using 10:1 JPEG compression. (6/290)

We have assessed the effect of 10:1 lossy (JPEG) compression on six board-certified radiologists' ability to detect three commonly seen abnormalities on chest radiographs. The study radiographs included 150 chest radiographs with one of four diagnoses: normal (n = 101), pulmonary nodule (n = 19), interstitial lung disease (n = 19), and pneumothorax (n = 11). Before compression, these images were printed on laser film and interpreted in a blinded fashion by six radiologists. Following an 8-week interval, the images were reinterpreted on an image display workstation after undergoing 10:1 lossy compression. The results for the compressed images were compared with those of the uncompressed images using receiver operating characteristic (ROC) analyses. For five of six readers, the diagnostic accuracy was higher for the uncompressed images than for the compressed images, but the difference was not significant (P > .1111). Combined readings for the uncompressed images were also more accurate when compared with the compressed images, but this difference was also not significant (P = .1430). The sensitivity, specificity, and accuracy values were 81.5%, 89.2%, and 86.7% for the compressed images, respectively, as compared with 78.9%, 94.5%, and 89.3% for the uncompressed images. There was no correlation between the readers' accuracy and their experience with soft-copy interpretation; the extent of radiographic interpretation experience had no correlation with overall interpretation accuracy. In conclusion, five of six radiologists had a higher diagnostic accuracy when interpreting uncompressed chest radiographs versus the same images modified by 10:1 lossy compression, but this difference was not statistically significant.  (+info)

Physiological and radiological characterisation of patients diagnosed with chronic obstructive pulmonary disease in primary care. (7/290)

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is common although often poorly characterised, particularly in primary care. However, application of guidelines to the management of such patients needs a clear understanding of the phenotype. In particular, the British guidelines for the management of COPD recommend that the diagnosis is based on appropriate symptoms and evidence of airflow obstruction as determined by a forced expiratory volume in one second (FEV(1)) of <80% of the predicted value and an FEV(1)/VC ratio of <70%. METHODS: A study was undertaken of 110 patients aged 40-80 years who had presented to their general practitioner with an acute exacerbation of COPD. The episode was treated at home and, when patients had recovered to the stable state (two months later), they were characterised by full lung function tests and a high resolution computed tomographic (HRCT) scan of the chest. RESULTS: There was a wide range of impairment of FEV(1) which was in the normal range (>/=80%) in 30%, mildly impaired (60-79%) in 18%, moderately impaired (40-59%) in 33%, and severely impaired (<40%) in 19% of patients. A reduced FEV(1)/VC ratio was present in all patients with an FEV(1) of <80% predicted but also in 41% of those with an FEV(1) of >/=80% predicted. Only 5% of patients had a substantial bronchodilator response suggesting a diagnosis of asthma. Emphysema was present in 51% of patients and confined to the upper lobes in most (73% of these patients). HRCT evidence of bronchiectasis was noted in 29% of patients and was predominantly tubular; most (81%) were current or ex-smokers. A solitary pulmonary nodule was seen on 9% of scans and unsuspected lung malignancy was diagnosed in two patients. CONCLUSIONS: This study confirms that COPD in primary care is a heterogeneous condition. Some patients do not fulfil the proposed diagnostic criteria with FEV(1) of >/=80% predicted but they may nevertheless have airflow obstruction. Bronchiectasis is common in this group of patients, as is unsuspected malignancy. These findings should be considered when developing recommendations for the investigation and management of COPD in the community.  (+info)

Percutaneous image-guided biopsy of lung nodules in the assessment of disease activity in Wegener's granulomatosis. (8/290)

OBJECTIVE: In patients with known Wegener's granulomatosis (WG) and persistent chest radiographic abnormalities, assessment for disease activity is often difficult, prompting the need for histological diagnosis to determine appropriate treatment. Here we report the use of automated image-guided core needle biopsy of pulmonary lesions for the assessment of disease activity in WG, rather than for primary diagnosis. METHODS: Image-guided percutaneous core needle biopsy was performed on five occasions in four patients with thoracic WG and persistent radiographic abnormalities of the chest. Clinical features, indication for biopsy, radiographic abnormalities and pathological findings were recorded. RESULTS: Adequate pathological specimens were obtained, allowing exclusion of infection and tumour. Active chronic inflammation with or without vasculitis was demonstrated in each case, indicating the need for further immunosuppressive therapy. A small pneumothorax following biopsy in one case required no treatment. Follow-up chest imaging revealed a reduction in the extent of thoracic disease following therapy in all cases. CONCLUSIONS: The safety and diagnostic accuracy of image-guided core biopsy of thoracic lesions makes it a useful tool in the assessment of disease activity in WG patients with persistent chest radiographic lesions.  (+info)

A Solitary Pulmonary Nodule (SPN) is a single, round or oval-shaped lung shadow that measures up to 3 cm in diameter on a chest radiograph. It is also known as a "coin lesion" due to its appearance. SPNs are usually discovered incidentally during routine chest X-rays or CT scans. They can be benign or malignant, and their nature is determined through further diagnostic tests such as PET scans, biopsies, or follow-up imaging studies.

Medical Definition: Multiple pulmonary nodules refer to multiple small rounded or irregularly shaped masses in the lungs, usually measuring less than 3 cm in diameter. These nodules can be caused by various conditions such as benign tumors, infections, inflammation, or malignancies like lung cancer. The presence of multiple pulmonary nodules often requires further evaluation with imaging studies and sometimes biopsy to determine the underlying cause and appropriate treatment.

Lung neoplasms refer to abnormal growths or tumors in the lung tissue. These tumors can be benign (non-cancerous) or malignant (cancerous). Malignant lung neoplasms are further classified into two main types: small cell lung carcinoma and non-small cell lung carcinoma. Lung neoplasms can cause symptoms such as cough, chest pain, shortness of breath, and weight loss. They are often caused by smoking or exposure to secondhand smoke, but can also occur due to genetic factors, radiation exposure, and other environmental carcinogens. Early detection and treatment of lung neoplasms is crucial for improving outcomes and survival rates.

Eosinophilic granuloma is a term used in pathology to describe a specific type of inflammatory lesion that is characterized by the accumulation of eosinophils, a type of white blood cell, and the formation of granulomas. A granuloma is a small nodular structure formed by the accumulation of immune cells, typically including macrophages, lymphocytes, and other inflammatory cells.

Eosinophilic granulomas can occur in various organs of the body, but they are most commonly found in the lungs, skin, and bones. In the lungs, eosinophilic granulomas are often associated with hypersensitivity reactions to inhaled antigens, such as dust mites or fungal spores. They can also be seen in association with certain diseases, such as Langerhans cell histiocytosis, an uncommon disorder characterized by the abnormal proliferation of a type of immune cell called Langerhans cells.

The symptoms of eosinophilic granuloma depend on the location and extent of the lesion. In the lungs, eosinophilic granulomas may cause cough, chest pain, or shortness of breath. In the skin, they may present as nodules, plaques, or ulcers. In the bones, they can cause pain, swelling, and fractures.

The diagnosis of eosinophilic granuloma is typically made based on a combination of clinical, radiological, and pathological findings. Treatment may include avoidance of known antigens, corticosteroids, or other immunosuppressive medications, depending on the severity and location of the lesion.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Bronchoscopy is a medical procedure that involves the examination of the inside of the airways and lungs with a flexible or rigid tube called a bronchoscope. This procedure allows healthcare professionals to directly visualize the airways, take tissue samples for biopsy, and remove foreign objects or secretions. Bronchoscopy can be used to diagnose and manage various respiratory conditions such as lung infections, inflammation, cancer, and bleeding. It is usually performed under local or general anesthesia to minimize discomfort and risks associated with the procedure.

Thoracic surgery, video-assisted (VATS) is a minimally invasive surgical technique used to diagnose and treat various conditions related to the chest cavity, including the lungs, pleura, mediastinum, esophagus, and diaphragm. In VATS, a thoracoscope, a type of endoscope with a camera and light source, is inserted through small incisions in the chest wall to provide visualization of the internal structures. The surgeon then uses specialized instruments to perform the necessary surgical procedures, such as biopsies, lung resections, or esophageal repairs. Compared to traditional open thoracic surgery, VATS typically results in less postoperative pain, shorter hospital stays, and quicker recoveries for patients.

A bronchoscope is a medical device that is used to examine the airways and lungs. It is a long, thin, flexible tube that is equipped with a light and a camera at its tip. The bronchoscope is inserted through the nose or mouth and down the throat, allowing the doctor to visualize the trachea, bronchi, and smaller branches of the airway system.

Bronchoscopes can be used for diagnostic purposes, such as to take tissue samples (biopsies) or to investigate the cause of symptoms like coughing up blood or difficulty breathing. They can also be used for therapeutic purposes, such as to remove foreign objects from the airways or to place stents to keep them open.

There are several types of bronchoscopes, including flexible bronchoscopes and rigid bronchoscopes. Flexible bronchoscopes are more commonly used because they are less invasive and can be used to examine smaller airways. Rigid bronchoscopes, on the other hand, are larger and stiffer, and are typically used for more complex procedures or in emergency situations.

It is important to note that the use of bronchoscopes requires specialized training and should only be performed by healthcare professionals with the appropriate expertise.

Radiographic image enhancement refers to the process of improving the quality and clarity of radiographic images, such as X-rays, CT scans, or MRI images, through various digital techniques. These techniques may include adjusting contrast, brightness, and sharpness, as well as removing noise and artifacts that can interfere with image interpretation.

The goal of radiographic image enhancement is to provide medical professionals with clearer and more detailed images, which can help in the diagnosis and treatment of medical conditions. This process may be performed using specialized software or hardware tools, and it requires a strong understanding of imaging techniques and the specific needs of medical professionals.

Interventional radiography is a subspecialty of radiology that uses imaging guidance (such as X-ray fluoroscopy, ultrasound, CT, or MRI) to perform minimally invasive diagnostic and therapeutic procedures. These procedures typically involve the insertion of needles, catheters, or other small instruments through the skin or a natural body opening, allowing for targeted treatment with reduced risk, trauma, and recovery time compared to traditional open surgeries.

Examples of interventional radiography procedures include:

1. Angiography: Imaging of blood vessels to diagnose and treat conditions like blockages, narrowing, or aneurysms.
2. Biopsy: The removal of tissue samples for diagnostic purposes.
3. Drainage: The removal of fluid accumulations (e.g., abscesses, cysts) or the placement of catheters to drain fluids continuously.
4. Embolization: The blocking of blood vessels to control bleeding, tumor growth, or reduce the size of an aneurysm.
5. Stenting and angioplasty: The widening of narrowed or blocked vessels using stents (small mesh tubes) or balloon catheters.
6. Radiofrequency ablation: The use of heat to destroy tumors or abnormal tissues.
7. Cryoablation: The use of extreme cold to destroy tumors or abnormal tissues.

Interventional radiologists are medical doctors who have completed specialized training in both diagnostic imaging and interventional procedures, allowing them to provide comprehensive care for patients requiring image-guided treatments.

A needle biopsy is a medical procedure in which a thin, hollow needle is used to remove a small sample of tissue from a suspicious or abnormal area of the body. The tissue sample is then examined under a microscope to check for cancer cells or other abnormalities. Needle biopsies are often used to diagnose lumps or masses that can be felt through the skin, but they can also be guided by imaging techniques such as ultrasound, CT scan, or MRI to reach areas that cannot be felt. There are several types of needle biopsy procedures, including fine-needle aspiration (FNA) and core needle biopsy. FNA uses a thin needle and gentle suction to remove fluid and cells from the area, while core needle biopsy uses a larger needle to remove a small piece of tissue. The type of needle biopsy used depends on the location and size of the abnormal area, as well as the reason for the procedure.

Positron-Emission Tomography (PET) is a type of nuclear medicine imaging that uses small amounts of radioactive material, called a radiotracer, to produce detailed, three-dimensional images. This technique measures metabolic activity within the body, such as sugar metabolism, to help distinguish between healthy and diseased tissue, identify cancerous cells, or examine the function of organs.

During a PET scan, the patient is injected with a radiotracer, typically a sugar-based compound labeled with a positron-emitting radioisotope, such as fluorine-18 (^18^F). The radiotracer accumulates in cells that are metabolically active, like cancer cells. As the radiotracer decays, it emits positrons, which then collide with electrons in nearby tissue, producing gamma rays. A special camera, called a PET scanner, detects these gamma rays and uses this information to create detailed images of the body's internal structures and processes.

PET is often used in conjunction with computed tomography (CT) or magnetic resonance imaging (MRI) to provide both functional and anatomical information, allowing for more accurate diagnosis and treatment planning. Common applications include detecting cancer recurrence, staging and monitoring cancer, evaluating heart function, and assessing brain function in conditions like dementia and epilepsy.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Emission computed tomography (ECT) is a type of tomographic imaging technique in which an emission signal from within the body is detected to create cross-sectional images of that signal's distribution. In Emission-Computed Tomography (ECT), a radionuclide is introduced into the body, usually through injection, inhalation or ingestion. The radionuclide emits gamma rays that are then detected by external gamma cameras.

The data collected from these cameras is then used to create cross-sectional images of the distribution of the radiopharmaceutical within the body. This allows for the identification and quantification of functional information about specific organs or systems within the body, such as blood flow, metabolic activity, or receptor density.

One common type of Emission-Computed Tomography is Single Photon Emission Computed Tomography (SPECT), which uses a single gamma camera that rotates around the patient to collect data from multiple angles. Another type is Positron Emission Tomography (PET), which uses positron-emitting radionuclides and detects the coincident gamma rays emitted by the annihilation of positrons and electrons.

Overall, ECT is a valuable tool in medical imaging for diagnosing and monitoring various diseases, including cancer, heart disease, and neurological disorders.

Fluorodeoxyglucose F18 (FDG-18) is not a medical condition, but a radiopharmaceutical used in medical imaging. It is a type of glucose (a simple sugar) that has been chemically combined with a small amount of a radioactive isotope called fluorine-18.

FDG-18 is used in positron emission tomography (PET) scans to help identify areas of the body where cells are using more energy than normal, such as cancerous tumors. The FDG-18 is injected into the patient's vein and travels throughout the body. Because cancer cells often use more glucose than normal cells, they tend to absorb more FDG-18.

Once inside the body, the FDG-18 emits positrons, which interact with electrons in nearby tissue, producing gamma rays that can be detected by a PET scanner. The resulting images can help doctors locate and assess the size and activity of cancerous tumors, as well as monitor the effectiveness of treatment.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

Thoracic radiography is a type of diagnostic imaging that involves using X-rays to produce images of the chest, including the lungs, heart, bronchi, great vessels, and the bones of the spine and chest wall. It is a commonly used tool in the diagnosis and management of various respiratory, cardiovascular, and thoracic disorders such as pneumonia, lung cancer, heart failure, and rib fractures.

During the procedure, the patient is positioned between an X-ray machine and a cassette containing a film or digital detector. The X-ray beam is directed at the chest, and the resulting image is captured on the film or detector. The images produced can help identify any abnormalities in the structure or function of the organs within the chest.

Thoracic radiography may be performed as a routine screening test for certain conditions, such as lung cancer, or it may be ordered when a patient presents with symptoms suggestive of a respiratory or cardiovascular disorder. It is a safe and non-invasive procedure that can provide valuable information to help guide clinical decision making and improve patient outcomes.

The solitary nucleus, also known as the nucleus solitarius, is a collection of neurons located in the medulla oblongata region of the brainstem. It plays a crucial role in the processing and integration of sensory information, particularly taste and visceral afferent fibers from internal organs. The solitary nucleus receives inputs from various cranial nerves, including the glossopharyngeal (cranial nerve IX) and vagus nerves (cranial nerve X), and is involved in reflex responses related to swallowing, vomiting, and cardiovascular regulation.

Diagnostic imaging is a medical specialty that uses various technologies to produce visual representations of the internal structures and functioning of the body. These images are used to diagnose injury, disease, or other abnormalities and to monitor the effectiveness of treatment. Common modalities of diagnostic imaging include:

1. Radiography (X-ray): Uses ionizing radiation to produce detailed images of bones, teeth, and some organs.
2. Computed Tomography (CT) Scan: Combines X-ray technology with computer processing to create cross-sectional images of the body.
3. Magnetic Resonance Imaging (MRI): Uses a strong magnetic field and radio waves to generate detailed images of soft tissues, organs, and bones.
4. Ultrasound: Employs high-frequency sound waves to produce real-time images of internal structures, often used for obstetrics and gynecology.
5. Nuclear Medicine: Involves the administration of radioactive tracers to assess organ function or detect abnormalities within the body.
6. Positron Emission Tomography (PET) Scan: Uses a small amount of radioactive material to produce detailed images of metabolic activity in the body, often used for cancer detection and monitoring treatment response.
7. Fluoroscopy: Utilizes continuous X-ray imaging to observe moving structures or processes within the body, such as swallowing studies or angiography.

Diagnostic imaging plays a crucial role in modern medicine, allowing healthcare providers to make informed decisions about patient care and treatment plans.

A Receiver Operating Characteristic (ROC) curve is a graphical representation used in medical decision-making and statistical analysis to illustrate the performance of a binary classifier system, such as a diagnostic test or a machine learning algorithm. It's a plot that shows the tradeoff between the true positive rate (sensitivity) and the false positive rate (1 - specificity) for different threshold settings.

The x-axis of an ROC curve represents the false positive rate (the proportion of negative cases incorrectly classified as positive), while the y-axis represents the true positive rate (the proportion of positive cases correctly classified as positive). Each point on the curve corresponds to a specific decision threshold, with higher points indicating better performance.

The area under the ROC curve (AUC) is a commonly used summary measure that reflects the overall performance of the classifier. An AUC value of 1 indicates perfect discrimination between positive and negative cases, while an AUC value of 0.5 suggests that the classifier performs no better than chance.

ROC curves are widely used in healthcare to evaluate diagnostic tests, predictive models, and screening tools for various medical conditions, helping clinicians make informed decisions about patient care based on the balance between sensitivity and specificity.

A Rheumatoid nodule is defined as a type of non-suppurative inflammatory lesion that occurs in the subcutaneous tissue, commonly associated with rheumatoid arthritis (RA). These nodules are firm, round to oval shaped, and usually range from 0.5 to 5 cm in size. They are typically found over bony prominences such as the elbow, heel, or fingers, but can occur in various locations throughout the body.

Histologically, rheumatoid nodules are characterized by a central area of fibrinoid necrosis surrounded by palisading histiocytes and fibroblasts, with an outer layer of chronic inflammatory cells, including lymphocytes and plasma cells. Rheumatoid nodules can be asymptomatic or cause pain and discomfort, depending on their size and location. They are more common in patients with severe RA and are associated with a poorer prognosis.

Root nodules in plants refer to the specialized structures formed through the symbiotic relationship between certain leguminous plants and nitrogen-fixing bacteria, most commonly belonging to the genus Rhizobia. These nodules typically develop on the roots of the host plant, providing an ideal environment for the bacteria to convert atmospheric nitrogen into ammonia, a form that can be directly utilized by the plant for growth and development.

The formation of root nodules begins with the infection of the plant's root hair cells by Rhizobia bacteria. This interaction triggers a series of molecular signals leading to the differentiation of root cortical cells into nodule primordia, which eventually develop into mature nodules. The nitrogen-fixing bacteria reside within these nodules in membrane-bound compartments called symbiosomes, where they reduce atmospheric nitrogen into ammonia through an enzyme called nitrogenase.

The plant, in turn, provides the bacteria with carbon sources and other essential nutrients required for their growth and survival within the nodules. The fixed nitrogen is then transported from the root nodules to other parts of the plant, enhancing its overall nitrogen nutrition and promoting sustainable growth without the need for external nitrogen fertilizers.

In summary, root nodules in plants are essential structures formed through symbiotic associations with nitrogen-fixing bacteria, allowing leguminous plants to convert atmospheric nitrogen into a usable form while also benefiting the environment by reducing the reliance on chemical nitrogen fertilizers.

The Predictive Value of Tests, specifically the Positive Predictive Value (PPV) and Negative Predictive Value (NPV), are measures used in diagnostic tests to determine the probability that a positive or negative test result is correct.

Positive Predictive Value (PPV) is the proportion of patients with a positive test result who actually have the disease. It is calculated as the number of true positives divided by the total number of positive results (true positives + false positives). A higher PPV indicates that a positive test result is more likely to be a true positive, and therefore the disease is more likely to be present.

Negative Predictive Value (NPV) is the proportion of patients with a negative test result who do not have the disease. It is calculated as the number of true negatives divided by the total number of negative results (true negatives + false negatives). A higher NPV indicates that a negative test result is more likely to be a true negative, and therefore the disease is less likely to be present.

The predictive value of tests depends on the prevalence of the disease in the population being tested, as well as the sensitivity and specificity of the test. A test with high sensitivity and specificity will generally have higher predictive values than a test with low sensitivity and specificity. However, even a highly sensitive and specific test can have low predictive values if the prevalence of the disease is low in the population being tested.

Computer-assisted radiographic image interpretation is the use of computer algorithms and software to assist and enhance the interpretation and analysis of medical images produced by radiography, such as X-rays, CT scans, and MRI scans. The computer-assisted system can help identify and highlight certain features or anomalies in the image, such as tumors, fractures, or other abnormalities, which may be difficult for the human eye to detect. This technology can improve the accuracy and speed of diagnosis, and may also reduce the risk of human error. It's important to note that the final interpretation and diagnosis is always made by a qualified healthcare professional, such as a radiologist, who takes into account the computer-assisted analysis in conjunction with their clinical expertise and knowledge.

No FAQ available that match "solitary pulmonary nodule"

No images available that match "solitary pulmonary nodule"