Infections with bacteria of the genus STREPTOCOCCUS.
A species of gram-positive, coccoid bacteria isolated from skin lesions, blood, inflammatory exudates, and the upper respiratory tract of humans. It is a group A hemolytic Streptococcus that can cause SCARLET FEVER and RHEUMATIC FEVER.
Antibodies specific to STREPTOLYSINS which indicate STREPTOCOCCAL INFECTIONS.
A bacterium which causes mastitis in cattle and occasionally in man.
A febrile disease occurring as a delayed sequela of infections with STREPTOCOCCUS PYOGENES. It is characterized by multiple focal inflammatory lesions of the connective tissue structures, such as the heart, blood vessels, and joints (POLYARTHRITIS) and brain, and by the presence of ASCHOFF BODIES in the myocardium and skin.
Habitual, repeated, rapid contraction of certain muscles, resulting in stereotyped individualized actions that can be voluntarily suppressed for only brief periods. They often involve the face, vocal cords, neck, and less often the extremities. Examples include repetitive throat clearing, vocalizations, sniffing, pursing the lips, and excessive blinking. Tics tend to be aggravated by emotional stress. When frequent they may interfere with speech and INTERPERSONAL RELATIONS. Conditions which feature frequent and prominent tics as a primary manifestation of disease are referred to as TIC DISORDERS. (From Adams et al., Principles of Neurology, 6th ed, pp109-10)
Inflammation of the throat (PHARYNX).
A genus of gram-positive, coccoid bacteria whose organisms occur in pairs or chains. No endospores are produced. Many species exist as commensals or parasites on man or animals with some being highly pathogenic. A few species are saprophytes and occur in the natural environment.
A common superficial bacterial infection caused by STAPHYLOCOCCUS AUREUS or group A beta-hemolytic streptococci. Characteristics include pustular lesions that rupture and discharge a thin, amber-colored fluid that dries and forms a crust. This condition is commonly located on the face, especially about the mouth and nose.
Any purulent skin disease (Dorland, 27th ed).
An infection occurring in PUERPERIUM, the period of 6-8 weeks after giving birth.
An acute infection of the skin caused by species of STREPTOCOCCUS. This disease most frequently affects infants, young children, and the elderly. Characteristics include pink-to-red lesions that spread rapidly and are warm to the touch. The commonest site of involvement is the face.
Disorders characterized by recurrent TICS that may interfere with speech and other activities. Tics are sudden, rapid, nonrhythmic, stereotyped motor movements or vocalizations which may be exacerbated by stress and are generally attenuated during absorbing activities. Tic disorders are distinguished from conditions which feature other types of abnormal movements that may accompany another another condition. (From DSM-IV, 1994)
Inflammation of the tonsils, especially the PALATINE TONSILS but the ADENOIDS (pharyngeal tonsils) and lingual tonsils may also be involved. Tonsillitis usually is caused by bacterial infection. Tonsillitis may be acute, chronic, or recurrent.
An anxiety disorder characterized by recurrent, persistent obsessions or compulsions. Obsessions are the intrusive ideas, thoughts, or images that are experienced as senseless or repugnant. Compulsions are repetitive and seemingly purposeful behavior which the individual generally recognizes as senseless and from which the individual does not derive pleasure although it may provide a release from tension.
A neuropsychological disorder related to alterations in DOPAMINE metabolism and neurotransmission involving frontal-subcortical neuronal circuits. Both multiple motor and one or more vocal tics need to be present with TICS occurring many times a day, nearly daily, over a period of more than one year. The onset is before age 18 and the disturbance is not due to direct physiological effects of a substance or a another medical condition. The disturbance causes marked distress or significant impairment in social, occupational, or other important areas of functioning. (From DSM-IV, 1994; Neurol Clin 1997 May;15(2):357-79)
Skin diseases caused by bacteria, fungi, parasites, or viruses.
A fulminating bacterial infection of the deep layers of the skin and FASCIA. It can be caused by many different organisms, with STREPTOCOCCUS PYOGENES being the most common.
Disorders caused by cellular or humoral immune responses primarily directed towards nervous system autoantigens. The immune response may be directed towards specific tissue components (e.g., myelin) and may be limited to the central nervous system (e.g., MULTIPLE SCLEROSIS) or the peripheral nervous system (e.g., GUILLAIN-BARRE SYNDROME).
A medical specialty concerned with the hypersensitivity of the individual to foreign substances and protection from the resultant infection or disorder.
Substances elaborated by bacteria that have antigenic activity.
Exotoxins produced by certain strains of streptococci, particularly those of group A (STREPTOCOCCUS PYOGENES), that cause HEMOLYSIS.
Vaccines or candidate vaccines used to prevent STREPTOCOCCAL INFECTIONS.
Immunoglobulins produced in a response to BACTERIAL ANTIGENS.
Sepsis associated with HYPOTENSION or hypoperfusion despite adequate fluid resuscitation. Perfusion abnormalities may include, but are not limited to LACTIC ACIDOSIS; OLIGURIA; or acute alteration in mental status.
Cognitive disorders including delirium, dementia, and other cognitive disorders. These may be the result of substance use, trauma, or other causes.
A broad-spectrum penicillin antibiotic used orally in the treatment of mild to moderate infections by susceptible gram-positive organisms.
Involuntary, forcible, rapid, jerky movements that may be subtle or become confluent, markedly altering normal patterns of movement. Hypotonia and pendular reflexes are often associated. Conditions which feature recurrent or persistent episodes of chorea as a primary manifestation of disease are referred to as CHOREATIC DISORDERS. Chorea is also a frequent manifestation of BASAL GANGLIA DISEASES.
Cardiac manifestation of systemic rheumatological conditions, such as RHEUMATIC FEVER. Rheumatic heart disease can involve any part the heart, most often the HEART VALVES and the ENDOCARDIUM.
Streptococcal fibrinolysin . An enzyme produced by hemolytic streptococci. It hydrolyzes amide linkages and serves as an activator of plasminogen. It is used in thrombolytic therapy and is used also in mixtures with streptodornase (STREPTODORNASE AND STREPTOKINASE). EC 3.4.-.
Diseases of newborn infants present at birth (congenital) or developing within the first month of birth. It does not include hereditary diseases not manifesting at birth or within the first 30 days of life nor does it include inborn errors of metabolism. Both HEREDITARY DISEASES and METABOLISM, INBORN ERRORS are available as general concepts.
Toxins produced, especially by bacterial or fungal cells, and released into the culture medium or environment.
A funnel-shaped fibromuscular tube that conducts food to the ESOPHAGUS, and air to the LARYNX and LUNGS. It is located posterior to the NASAL CAVITY; ORAL CAVITY; and LARYNX, and extends from the SKULL BASE to the inferior border of the CRICOID CARTILAGE anteriorly and to the inferior border of the C6 vertebra posteriorly. It is divided into the NASOPHARYNX; OROPHARYNX; and HYPOPHARYNX (laryngopharynx).
The presence of viable bacteria circulating in the blood. Fever, chills, tachycardia, and tachypnea are common acute manifestations of bacteremia. The majority of cases are seen in already hospitalized patients, most of whom have underlying diseases or procedures which render their bloodstreams susceptible to invasion.
Antibodies which elicit IMMUNOPRECIPITATION when combined with antigen.
A group of antibiotics that contain 6-aminopenicillanic acid with a side chain attached to the 6-amino group. The penicillin nucleus is the chief structural requirement for biological activity. The side-chain structure determines many of the antibacterial and pharmacological characteristics. (Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1065)
Inflammation of the coverings of the brain and/or spinal cord, which consist of the PIA MATER; ARACHNOID; and DURA MATER. Infections (viral, bacterial, and fungal) are the most common causes of this condition, but subarachnoid hemorrhage (HEMORRHAGES, SUBARACHNOID), chemical irritation (chemical MENINGITIS), granulomatous conditions, neoplastic conditions (CARCINOMATOUS MENINGITIS), and other inflammatory conditions may produce this syndrome. (From Joynt, Clinical Neurology, 1994, Ch24, p6)
Pathological processes involving the PHARYNX.
Process of determining and distinguishing species of bacteria or viruses based on antigens they share.
Proteins found in any species of bacterium.
Proteins isolated from the outer membrane of Gram-negative bacteria.
Skin diseases caused by bacteria.
Arthritis caused by BACTERIA; RICKETTSIA; MYCOPLASMA; VIRUSES; FUNGI; or PARASITES.
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.
The co-occurrence of pregnancy and an INFECTION. The infection may precede or follow FERTILIZATION.
Inflammation of the renal glomeruli (KIDNEY GLOMERULUS) that can be classified by the type of glomerular injuries including antibody deposition, complement activation, cellular proliferation, and glomerulosclerosis. These structural and functional abnormalities usually lead to HEMATURIA; PROTEINURIA; HYPERTENSION; and RENAL INSUFFICIENCY.
An infant during the first month after birth.
Substances that reduce the growth or reproduction of BACTERIA.
Bacterial infections of the leptomeninges and subarachnoid space, frequently involving the cerebral cortex, cranial nerves, cerebral blood vessels, spinal cord, and nerve roots.
The number of new cases of a given disease during a given period in a specified population. It also is used for the rate at which new events occur in a defined population. It is differentiated from PREVALENCE, which refers to all cases, new or old, in the population at a given time.
Resistance to a disease-causing agent induced by the introduction of maternal immunity into the fetus by transplacental transfer or into the neonate through colostrum and milk.
Transport proteins that carry specific substances in the blood or across cell membranes.
Disease having a short and relatively severe course.
Disorders that are characterized by the production of antibodies that react with host tissues or immune effector cells that are autoreactive to endogenous peptides.
Enzymes which catalyze the hydrolases of ester bonds within DNA. EC 3.1.-.
Use of antibiotics before, during, or after a diagnostic, therapeutic, or surgical procedure to prevent infectious complications.
A constitution or condition of the body which makes the tissues react in special ways to certain extrinsic stimuli and thus tends to make the individual more than usually susceptible to certain diseases.
Systemic inflammatory response syndrome with a proven or suspected infectious etiology. When sepsis is associated with organ dysfunction distant from the site of infection, it is called severe sepsis. When sepsis is accompanied by HYPOTENSION despite adequate fluid infusion, it is called SEPTIC SHOCK.
Ongoing scrutiny of a population (general population, study population, target population, etc.), generally using methods distinguished by their practicability, uniformity, and frequently their rapidity, rather than by complete accuracy.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
Sudden increase in the incidence of a disease. The concept includes EPIDEMICS and PANDEMICS.
Gel electrophoresis in which the direction of the electric field is changed periodically. This technique is similar to other electrophoretic methods normally used to separate double-stranded DNA molecules ranging in size up to tens of thousands of base-pairs. However, by alternating the electric field direction one is able to separate DNA molecules up to several million base-pairs in length.
Polysaccharides found in bacteria and in capsules thereof.
Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping.
Substances that are recognized by the immune system and induce an immune reaction.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
The condition of harboring an infective organism without manifesting symptoms of infection. The organism must be readily transmissible to another susceptible host.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.

Clindamycin plus gentamicin as expectant therapy for presumed mixed infections. (1/3842)

The prevalence of obligate anaerobes was studied prospectively in 60 patients with severe sepsis of intra-abdominal, soft tissue, female genital or oropulmonary origin. In addition, the efficacy of clindamycin (for anaerobes) plus gentamicin (for aerobic bacteria, especially coliforms) as initial empiric therapy in these patients was evaluated. Among 54 patients with cultural proof of infection, anaerobic pathogens were recovered from 52%. Nineteen patients had bacteremia; Bacteroides fragilis and Klebsiella pneumoniae were the most prevalent pathogens, being isolated in five patients each. Infection was eradicated in 56 of the 60 patients (93%). Mortality related to sepsis was 7% in the entire group, 16% in patients with bacteremia and 2% in patients without bacteremia. Eighty-five percent of aerobic isolates tested were susceptible in vitro to either gentamicin or clindamycin; 97% of anaerobic isolates were inhibited by 5 mug/ml of clindamycin.  (+info)

GM-CSF-deficient mice are susceptible to pulmonary group B streptococcal infection. (2/3842)

Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-targeted mice (GM-/-) cleared group B streptococcus (GBS) from the lungs more slowly than wild-type mice. Expression of GM-CSF in the respiratory epithelium of GM-/- mice improved bacterial clearance to levels greater than that in wild-type GM+/+ mice. Acute aerosolization of GM-CSF to GM+/+ mice significantly enhanced clearance of GBS at 24 hours. GBS infection was associated with increased neutrophilic infiltration in lungs of GM-/- mice, while macrophage infiltrates predominated in wild-type mice, suggesting an abnormality in macrophage clearance of bacteria in the absence of GM-CSF. While phagocytosis of GBS was unaltered, production of superoxide radicals and hydrogen peroxide was markedly deficient in macrophages from GM-/- mice. Lipid peroxidation, assessed by measuring the isoprostane 8-iso-PGF2alpha, was decreased in the lungs of GM-/- mice. GM-CSF plays an important role in GBS clearance in vivo, mediated in part by its role in enhancing superoxide and hydrogen peroxide production and bacterial killing by alveolar macrophages.  (+info)

A community outbreak of invasive and non-invasive group A beta-haemolytic streptococcal disease in a town in South Wales. (3/3842)

An increase in the incidence of invasive and non-invasive infections caused by group A beta-haemolytic streptococci (GAS) was noted in and around the town of Glynneath (population approx. 4000) in West Glamorgan, South Wales between 1 January and 30 June 1995. A total of 133 cases was ascertained with 127 (96%) occurring between 1 March and 30 June 1995. Six patients had invasive disease (one died) and all presented at the peak of the outbreak. There were 127 non-invasive cases of whom 7 were hospitalized. The outbreak was investigated to determine its extent and whether it was caused by a single M-serotype of GAS. Serotyping showed that 13 different M-serotypes were involved with the M1 serotype predominating. The overall incidence of GAS invasive disease in West Glamorgan (population 365,000) increased sevenfold from a crude incidence of 0.5/10(5) per year in 1994 to 3.5/10(5) per year in 1995, but fell back to 0.75/10(5) per year in 1996. Eighty-two (80%) out of 102 individuals affected by GAS replied to a health questionnaire; sore throat was the commonest symptom reported (97%). Thirty-nine of these index cases identified at least one other member of their household who had experienced similar symptoms. The interval between the onset of illness in members of a single household was 0-83 days with a mean of 22 days. The mean duration of illness was 13.5 days and 61% of patients were treated with penicillin V for a mean duration of 9.3 days. Twenty-one per cent of GAS isolates were erythromycin-resistant and the M4 and M6 serotypes were especially resistant to erythromycin (87.5 and 100% resistance, respectively). Penicillin V failed to eradicate GAS from the throats of 25% of assessable patients. In this community, an outbreak of non-invasive disease caused by GAS was linked in time and place with an outbreak of serious invasive disease.  (+info)

Purification and properties of bacteriolytic enzymes from Bacillus licheniformis YS-1005 against Streptococcus mutans. (4/3842)

To find a novel lytic enzyme against cariogenic Streptococci, strains showing strong lytic activity have been screened from soil using Streptococcus mutans. A strain identified as Bacillus licheniformis secreted two kinds of lytic enzymes, which were purified by methanol precipitation, CM-cellulose chromatography, gel filtration, and hydroxyapatite chromatography. The molecular weights of these two enzymes, L27 and L45, were 27,000 and 45,000, respectively. Optimum pH and temperature of both enzymes for lytic activity were pH 8 and 37 degrees C. L27 and L45 digest the peptide linkage between L-Ala and D-Glu in peptidoglycan of Streptococcus mutans. The lytic activity was highly specific for Streptococcus mutans, suggesting their potential use as a dental care product.  (+info)

Increased activity of 16-membered lactone ring macrolides against erythromycin-resistant Streptococcus pyogenes and Streptococcus pneumoniae: characterization of South African isolates. (5/3842)

The susceptibility of 40 erythromycin-resistant isolates of Streptococcus pyogenes and 40 multiply-resistant isolates of Streptococcus pneumoniae to six macrolide antibiotics, representing 14-, 15- and 16-membered lactone ring structures, was tested. The genetic basis for macrolide resistance in the strains was also determined. Both erm and mef determinants were encountered in the 36 S. pneumoniae isolates tested, but only mef in the five S. pyogenes isolates tested. All isolates showed cross-resistance among the 14-membered macrolides erythromycin, clarithromycin and roxithromycin and the 15-membered macrolide, azithromycin. However, the erythromycin-resistant S. pyogenes isolates retained full susceptibility to spiramycin and josamycin (16-membered agents). These latter two antibiotics were also more active than the other macrolides against erythromycin-resistant S. pneumoniae isolates, especially josamycin which was 8-64 times more active than erythromycin; spiramycin was only two to eight times more active than erythromycin.  (+info)

Epidemiology and prevention of group A streptococcal infections: acute respiratory tract infections, skin infections, and their sequelae at the close of the twentieth century. (6/3842)

Infections of the upper respiratory tract and skin due to group A Streptococcus are common, and the organism is highly transmissible. In industrialized countries and to some extent in developing countries, control efforts continue to emphasize that group A streptococcal pharyngitis should be properly diagnosed and appropriately treated. In developing countries and in indigenous populations where the burden of group A streptococcal diseases appears greatest, the epidemiology is less completely defined and may differ from that in industrialized countries. There is a need for accurately collected epidemiological data from developing countries, which may also further clarify the pathogenesis of group A streptococcal infections and their sequelae. While proper treatment of group A streptococcal pharyngitis continues to be essential in all populations, it may be appropriate in developing countries to consider additional strategies to reduce rates of pyoderma.  (+info)

Interaction between group A streptococci and the plasmin(ogen) system promotes virulence in a mouse skin infection model. (7/3842)

Group A streptococci are capable of acquiring a surface-associated, unregulatable plasmin-like enzymatic activity when incubated in human plasma. The effect of this enzymatic activity on virulence of group A isolate CS101 was examined in a mouse skin infection model. Initial studies demonstrated enhanced virulence for bacteria preincubated in human plasma but not in plasminogen-depleted plasma. A direct correlation between surface-associated enzymatic activity and virulence was not observed; however, an association between virulence and the assembly of a surface-associated plasminogen activator that could activate mouse plasminogen was noted. This activity enhanced virulence in wild type but not in plg-/- plasminogen-deficient mice. These results support the hypothesis that acquisition of a surface-associated plasmin(ogen)-dependent enzymatic activity can contribute to the virulence of group A streptococcal invasive infections.  (+info)

Ultrastructure of surface components of Streptococcus gallolytics (S. bovis) strains of differing virulence isolated from pigeons. (8/3842)

Virulence of Streptococcus gallolyticus (S. bovis) strains isolated from pigeons is associated with the presence of the extracellular proteins A, T1, T2 and T3. Based on the presence or absence of these proteins, six supernatant-phenotypes are distinguished. Experimental infection studies have indicated that strains belonging to the A-T1, A+T1, A+T2 and A+T3 groups are highly virulent for pigeons, strains belonging to the A-T3 groups are moderately virulent and A-T2 strains are of low virulence. In this study the surface structure of 15 pigeon S. gallolyticus strains representing high, moderate and low virulence supernatant-phenotypes was examined by electron microscopy. The presence of capsular material was determined by transmission electron microscopy after polycationic ferritin labelling and immunostabilization. Capsules from cells labelled with polycationic ferritin were usually thicker than those from cells exposed to antiserum. The capsule of the virulent strains had a regular, continuous appearance whilst irregularity of the capsule was a characteristic of the low virulence A-T2 strains. Negative staining revealed the presence of fimbriae in all strains belonging to the high virulence A-T1, A+T1, A+T2 and A+T3 supernatant groups and in one strain of the moderately virulent A-T3 group. The fimbriae were thin, flexible structures with a diameter of approximately 3-4 nm and a length of up to 700 nm. Fimbriae as described above were absent in two other A-T3 strains examined and in the low virulence A-T2 strains. Results from this study indicate that morphological differences in surface structure exist among virulent and low virulence pigeon S. gallolyticus strains, and that the capsule and/or fimbriae are possibly involved in virulence.  (+info)

Streptococcal infections are a type of infection caused by group A Streptococcus bacteria (Streptococcus pyogenes). These bacteria can cause a variety of illnesses, ranging from mild skin infections to serious and potentially life-threatening conditions such as sepsis, pneumonia, and necrotizing fasciitis (flesh-eating disease).

Some common types of streptococcal infections include:

* Streptococcal pharyngitis (strep throat) - an infection of the throat and tonsils that can cause sore throat, fever, and swollen lymph nodes.
* Impetigo - a highly contagious skin infection that causes sores or blisters on the skin.
* Cellulitis - a bacterial infection of the deeper layers of the skin and underlying tissue that can cause redness, swelling, pain, and warmth in the affected area.
* Scarlet fever - a streptococcal infection that causes a bright red rash on the body, high fever, and sore throat.
* Necrotizing fasciitis - a rare but serious bacterial infection that can cause tissue death and destruction of the muscles and fascia (the tissue that covers the muscles).

Treatment for streptococcal infections typically involves antibiotics to kill the bacteria causing the infection. It is important to seek medical attention if you suspect a streptococcal infection, as prompt treatment can help prevent serious complications.

Streptococcus pyogenes is a Gram-positive, beta-hemolytic streptococcus bacterium that causes various suppurative (pus-forming) and nonsuppurative infections in humans. It is also known as group A Streptococcus (GAS) due to its ability to produce the M protein, which confers type-specific antigenicity and allows for serological classification into more than 200 distinct Lancefield groups.

S. pyogenes is responsible for a wide range of clinical manifestations, including pharyngitis (strep throat), impetigo, cellulitis, erysipelas, scarlet fever, rheumatic fever, and acute poststreptococcal glomerulonephritis. In rare cases, it can lead to invasive diseases such as necrotizing fasciitis (flesh-eating disease) and streptococcal toxic shock syndrome (STSS).

The bacterium is typically transmitted through respiratory droplets or direct contact with infected skin lesions. Effective prevention strategies include good hygiene practices, such as frequent handwashing and avoiding sharing personal items, as well as prompt recognition and treatment of infections to prevent spread.

Antistreptolysin (ASO) is a type of antibody that the body produces in response to an infection caused by Streptococcus pyogenes, a species of bacteria commonly known as group A streptococcus. This bacterium produces a toxin called streptolysin O, which can damage tissues and cells in the body. The ASO antibodies are produced by the immune system to help neutralize the effects of this toxin and protect against further tissue damage.

ASO titers, or levels of these antibodies in the blood, can be measured through a laboratory test called an antistreptolysin O titer test. This test is often used to help diagnose recent streptococcal infections, such as strep throat, and to monitor the effectiveness of treatment. Elevated ASO titers may indicate a recent or ongoing infection with group A streptococcus, while normal or decreasing titers suggest that the infection has resolved.

It's important to note that a positive ASO test does not necessarily mean that a person is currently infected with group A streptococcus, as these antibodies can persist in the blood for several months after an infection has cleared. Therefore, the test should be interpreted in conjunction with other clinical findings and laboratory results.

Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a type of bacteria that commonly colonizes the gastrointestinal and genitourinary tracts of humans. It is Gram-positive, facultatively anaerobic, and forms chains when viewed under the microscope.

While S. agalactiae can be carried asymptomatically by many adults, it can cause serious infections in newborns, pregnant women, elderly individuals, and people with weakened immune systems. In newborns, GBS can lead to sepsis, pneumonia, and meningitis, which can result in long-term health complications or even be fatal if left untreated.

Pregnant women are often screened for GBS colonization during the third trimester of pregnancy, and those who test positive may receive intrapartum antibiotics to reduce the risk of transmission to their newborns during delivery.

Rheumatic fever is a systemic inflammatory disease that may occur following an untreated Group A streptococcal infection, such as strep throat. It primarily affects children between the ages of 5 and 15, but it can occur at any age. The condition is characterized by inflammation in various parts of the body, including the heart (carditis), joints (arthritis), skin (erythema marginatum, subcutaneous nodules), and brain (Sydenham's chorea).

The onset of rheumatic fever usually occurs 2-4 weeks after a streptococcal infection. The exact cause of the immune system's overreaction leading to rheumatic fever is not fully understood, but it involves molecular mimicry between streptococcal antigens and host tissues.

The Jones Criteria are used to diagnose rheumatic fever, which include:

1. Evidence of a preceding streptococcal infection (e.g., positive throat culture or rapid strep test, elevated or rising anti-streptolysin O titer)
2. Carditis (heart inflammation), including new murmurs or changes in existing murmurs, electrocardiogram abnormalities, or evidence of heart failure
3. Polyarthritis (inflammation of multiple joints) – typically large joints like the knees and ankles, migratory, and may be associated with warmth, swelling, and pain
4. Erythema marginatum (a skin rash characterized by pink or red, irregularly shaped macules or rings that blanch in the center and spread outward)
5. Subcutaneous nodules (firm, round, mobile lumps under the skin, usually over bony prominences)
6. Sydenham's chorea (involuntary, rapid, irregular movements, often affecting the face, hands, and feet)

Treatment of rheumatic fever typically involves antibiotics to eliminate any residual streptococcal infection, anti-inflammatory medications like corticosteroids or nonsteroidal anti-inflammatory drugs (NSAIDs) to manage symptoms and prevent long-term heart complications, and secondary prophylaxis with regular antibiotic administration to prevent recurrent streptococcal infections.

A tic is a sudden, repetitive, involuntary movement or vocalization that occurs frequently. Tics can be simple, involving only one muscle group, or complex, involving several muscle groups or coordinated patterns of movements. Common motor tics include eye blinking, facial grimacing, and shoulder shrugging, while common vocal tics include throat clearing, sniffing, and grunting.

Tics can vary in severity and frequency over time, and they may be exacerbated by stress, anxiety, or fatigue. In some cases, tics may be suppressible for brief periods of time, but this can lead to a buildup of tension that eventually results in an explosive release of the tic.

Tourette syndrome is a neurological disorder characterized by the presence of both motor and vocal tics that persist for more than one year. However, tics can also occur as a symptom of other medical conditions, such as Huntington's disease, Wilson's disease, or certain infections. In some cases, tics may be caused by medication side effects or substance abuse.

Pharyngitis is the medical term for inflammation of the pharynx, which is the back portion of the throat. This condition is often characterized by symptoms such as sore throat, difficulty swallowing, and scratchiness in the throat. Pharyngitis can be caused by a variety of factors, including viral infections (such as the common cold), bacterial infections (such as strep throat), and irritants (such as smoke or chemical fumes). Treatment for pharyngitis depends on the underlying cause of the condition, but may include medications to relieve symptoms or antibiotics to treat a bacterial infection.

Streptococcus is a genus of Gram-positive, spherical bacteria that typically form pairs or chains when clustered together. These bacteria are facultative anaerobes, meaning they can grow in the presence or absence of oxygen. They are non-motile and do not produce spores.

Streptococcus species are commonly found on the skin and mucous membranes of humans and animals. Some strains are part of the normal flora of the body, while others can cause a variety of infections, ranging from mild skin infections to severe and life-threatening diseases such as sepsis, meningitis, and toxic shock syndrome.

The pathogenicity of Streptococcus species depends on various virulence factors, including the production of enzymes and toxins that damage tissues and evade the host's immune response. One of the most well-known Streptococcus species is Streptococcus pyogenes, also known as group A streptococcus (GAS), which is responsible for a wide range of clinical manifestations, including pharyngitis (strep throat), impetigo, cellulitis, necrotizing fasciitis, and rheumatic fever.

It's important to note that the classification of Streptococcus species has evolved over time, with many former members now classified as different genera within the family Streptococcaceae. The current classification system is based on a combination of phenotypic characteristics (such as hemolysis patterns and sugar fermentation) and genotypic methods (such as 16S rRNA sequencing and multilocus sequence typing).

Impetigo is a common and highly contagious skin infection that mainly affects infants and children. It is caused by two types of bacteria, namely Staphylococcus aureus and Streptococcus pyogenes (Group A streptococcus). The infection typically occurs in areas of the body with broken or damaged skin, such as cuts, scrapes, insect bites, or rashes.

There are two forms of impetigo: non-bullous and bullous. Non-bullous impetigo, also known as crusted impetigo, begins as small blisters or pimples that quickly rupture, leaving a yellowish-crusted, honey-colored scab. These lesions can be itchy and painful, and they often occur around the nose, mouth, and hands. Non-bullous impetigo is more commonly caused by Streptococcus pyogenes.

Bullous impetigo, on the other hand, is characterized by larger fluid-filled blisters that are usually painless and do not itch. These blisters can appear anywhere on the body but are most common in warm, moist areas such as the armpits, groin, or diaper region. Bullous impetigo is primarily caused by Staphylococcus aureus.

Impetigo is typically treated with topical antibiotics, such as mupirocin (Bactroban) or retapamulin (Altabax), applied directly to the affected area. In more severe cases, oral antibiotics may be prescribed. It is essential to cover the lesions and maintain good hygiene practices to prevent the spread of impetigo to others.

Pyoderma is a term used in medicine to describe a bacterial skin infection. It's derived from two Greek words: "pyon" meaning pus and "derma" meaning skin.

The infection can result in inflammation, often characterized by redness, swelling, warmth, and pain. Pus-filled blisters or boils may also form, which can rupture and crust over as the infection progresses.

Pyoderma can occur in people of all ages but is particularly common in children. The causative bacteria are often Staphylococcus aureus or Streptococcus pyogenes. The condition can be superficial, affecting only the top layer of the skin (epidermis), or it can be deeper, involving the dermis and/or subcutaneous tissue.

Treatment typically involves antibiotics, either topical or oral, depending on the severity and extent of the infection. In some cases, drainage of pus-filled abscesses may be necessary. Preventive measures such as good hygiene and keeping skin clean and dry can help reduce the risk of pyoderma.

Puerperal infection, also known as childbed fever or postpartum infection, is a healthcare-associated infection that can occur in women following childbirth, miscarriage, or abortion. It's typically caused by bacteria that enter the reproductive system during these processes and can lead to inflammation and infection of the uterus, fallopian tubes, ovaries, or other pelvic organs.

The most common causative agents are Streptococcus pyogenes (Group A streptococcus), Staphylococcus aureus, and Escherichia coli. Symptoms of puerperal infection can include fever, abdominal pain, foul-smelling vaginal discharge, and painful urination. If left untreated, the infection can lead to serious complications such as sepsis, infertility, or even death.

Prompt diagnosis and treatment with antibiotics are crucial for managing puerperal infections and preventing complications. Good hygiene practices and proper sterilization of medical equipment can also help reduce the risk of developing this infection.

Erysipelas is a skin infection characterized by the rapid onset of sharply demarcated, raised, and indurated (hardened) red plaques or patches with surrounding edema (swelling). It is typically caused by group A Streptococcus bacteria (\*Streptococcus pyogenes*). The infection involves the upper dermis and superficial lymphatics, resulting in painful, tender, warm, and erythematous (red) lesions. Erysipelas can also present with fever, chills, malaise, and generalized fatigue. Common sites for this infection include the face and lower extremities. Treatment usually involves antibiotics to eliminate the bacterial infection and supportive care to manage symptoms. If left untreated, erysipelas can lead to severe complications such as sepsis or necrotizing fasciitis.

Tic disorders are a group of conditions characterized by the presence of repetitive, involuntary movements or sounds, known as tics. These movements or sounds can vary in complexity and severity, and they may be worsened by stress or strong emotions.

There are several different types of tic disorders, including:

1. Tourette's disorder: This is a neurological condition characterized by the presence of both motor (movement-related) and vocal tics that have been present for at least one year. The tics may wax and wane in severity over time, but they do not disappear for more than three consecutive months.
2. Persistent (chronic) motor or vocal tic disorder: This type of tic disorder is characterized by the presence of either motor or vocal tics (but not both), which have been present for at least one year. The tics may wax and wane in severity over time, but they do not disappear for more than three consecutive months.
3. Provisional tic disorder: This type of tic disorder is characterized by the presence of motor or vocal tics (or both) that have been present for less than one year. The tics may wax and wane in severity over time, but they do not disappear for more than three consecutive months.
4. Tic disorder not otherwise specified: This category is used to describe tic disorders that do not meet the criteria for any of the other types of tic disorders.

Tic disorders are thought to be caused by a combination of genetic and environmental factors, and they often co-occur with other conditions such as attention deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). Treatment for tic disorders may include behavioral therapy, medication, or a combination of both.

Tonsillitis is a medical condition characterized by inflammation and infection of the tonsils, which are two masses of lymphoid tissue located on either side of the back of the throat. The tonsils serve as a defense mechanism against inhaled or ingested pathogens; however, they can become infected themselves, leading to tonsillitis.

The inflammation of the tonsils is often accompanied by symptoms such as sore throat, difficulty swallowing, fever, swollen and tender lymph nodes in the neck, cough, headache, and fatigue. In severe or recurrent cases, a tonsillectomy (surgical removal of the tonsils) may be recommended to alleviate symptoms and prevent complications.

Tonsillitis can be caused by both viral and bacterial infections, with group A streptococcus being one of the most common bacterial causes. It is typically diagnosed based on a physical examination and medical history, and sometimes further confirmed through laboratory tests such as a throat swab or rapid strep test. Treatment may include antibiotics for bacterial tonsillitis, pain relievers, and rest to aid in recovery.

Obsessive-Compulsive Disorder (OCD) is a mental health disorder characterized by the presence of obsessions and compulsions. Obsessions are recurrent and persistent thoughts, urges, or images that are intrusive, unwanted, and often distressing. Compulsions are repetitive behaviors or mental acts that an individual feels driven to perform in response to an obsession or according to rigid rules, and which are aimed at preventing or reducing anxiety or distress, or preventing some dreaded event or situation. These obsessions and/or compulsions cause significant distress, take up a lot of time (an hour or more a day), and interfere with the individual's daily life, including social activities, relationships, and work or school performance. OCD is considered a type of anxiety disorder and can also co-occur with other mental health conditions.

Tourette Syndrome (TS) is a neurological disorder characterized by the presence of multiple motor tics and at least one vocal (phonic) tic. These tics are sudden, repetitive, rapid, involuntary movements or sounds that occur for more than a year and are not due to substance use or other medical conditions. The symptoms typically start before the age of 18, with the average onset around 6-7 years old.

The severity, frequency, and types of tics can vary greatly among individuals with TS and may change over time. Common motor tics include eye blinking, facial grimacing, shoulder shrugging, and head or limb jerking. Vocal tics can range from simple sounds like throat clearing, coughing, or barking to more complex phrases or words.

In some cases, TS may be accompanied by co-occurring conditions such as attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, and depression. These associated symptoms can sometimes have a greater impact on daily functioning than the tics themselves.

The exact cause of Tourette Syndrome remains unclear, but it is believed to involve genetic factors and abnormalities in certain brain regions involved in movement control and inhibition. There is currently no cure for TS, but various treatments, including behavioral therapy and medications, can help manage the symptoms and improve quality of life.

Infectious skin diseases are conditions characterized by an infection or infestation of the skin caused by various microorganisms such as bacteria, viruses, fungi, or parasites. These organisms invade the skin, causing inflammation, redness, itching, pain, and other symptoms. Examples of infectious skin diseases include:

1. Bacterial infections: Cellulitis, impetigo, folliculitis, and MRSA (methicillin-resistant Staphylococcus aureus) infections are examples of bacterial skin infections.
2. Viral infections: Herpes simplex virus (HSV), varicella-zoster virus (VZV), human papillomavirus (HPV), and molluscum contagiosum are common viruses that can cause skin infections.
3. Fungal infections: Tinea pedis (athlete's foot), tinea corporis (ringworm), candidiasis (yeast infection), and pityriasis versicolor are examples of fungal skin infections.
4. Parasitic infestations: Scabies, lice, and bed bugs are examples of parasites that can cause infectious skin diseases.

Treatment for infectious skin diseases depends on the underlying cause and may include topical or oral antibiotics, antiviral medications, antifungal treatments, or insecticides to eliminate parasitic infestations. Proper hygiene, wound care, and avoiding contact with infected individuals can help prevent the spread of infectious skin diseases.

Necrotizing fasciitis is a serious bacterial infection that affects the fascia, which is the tissue that surrounds muscles, nerves, and blood vessels. The infection can also spread to the muscle and skin. It is often caused by a combination of different types of bacteria, including group A Streptococcus and Staphylococcus aureus.

The infection causes extensive tissue damage and necrosis (death) of the fascia and surrounding tissues. It can progress rapidly and can be fatal if not treated promptly with aggressive surgical debridement (removal of dead tissue) and antibiotics.

Symptoms of necrotizing fasciitis include severe pain, swelling, redness, and warmth in the affected area; fever; chills; and general weakness. It is important to seek medical attention immediately if these symptoms occur, as early diagnosis and treatment can significantly improve outcomes.

Autoimmune diseases of the nervous system are a group of conditions that occur when the body's immune system mistakenly attacks healthy tissue in the brain, spinal cord, or nerves. These diseases can cause inflammation, damage to nerve cells, and interference with the transmission of nerve impulses, leading to various neurological symptoms.

Examples of autoimmune diseases that affect the nervous system include:

1. Multiple sclerosis (MS): A chronic disease characterized by damage to the protective covering of nerve fibers in the brain and spinal cord, causing a variety of neurological symptoms such as muscle weakness, vision problems, and difficulty with coordination and balance.
2. Myasthenia gravis: A condition that causes muscle weakness and fatigue, particularly affecting the eyes, face, and neck muscles. It occurs when the immune system attacks the receptors that transmit signals between nerves and muscles.
3. Guillain-Barré syndrome: A rare disorder in which the body's immune system attacks the nerves, causing muscle weakness, tingling, and numbness that can spread throughout the body. In severe cases, it can lead to paralysis and respiratory failure.
4. Neuromyelitis optica (NMO): A rare autoimmune disease that affects the optic nerve and spinal cord, causing vision loss, muscle weakness, and other neurological symptoms.
5. Autoimmune encephalitis: A group of conditions characterized by inflammation of the brain, caused by an overactive immune response. Symptoms can include seizures, memory loss, confusion, and behavioral changes.
6. Chronic inflammatory demyelinating polyneuropathy (CIDP): A rare disorder that causes progressive weakness and numbness in the legs and arms due to damage to the nerves' protective covering.

Treatment for autoimmune diseases of the nervous system typically involves medications to suppress the immune system and reduce inflammation, as well as physical therapy and other supportive measures to manage symptoms and maintain function.

Allergy and Immunology is a medical specialty that deals with the diagnosis and treatment of allergic diseases and immune system disorders. An Allergist/Immunologist is a physician who has undergone specialized training in this field.

Allergies occur when the immune system overreacts to normally harmless substances, such as pollen, dust mites, or certain foods, resulting in symptoms like sneezing, itching, runny nose, and rashes. Immunology, on the other hand, deals with disorders of the immune system, which can be caused by either an overactive or underactive immune response. Examples of immune disorders include autoimmune diseases (where the body attacks its own tissues), immunodeficiency disorders (where the immune system is weakened and unable to fight off infections), and hypersensitivity reactions (overreactions of the immune system to harmless substances).

The Allergist/Immunologist uses various diagnostic tests, such as skin prick tests, blood tests, and challenge tests, to identify the specific allergens or immune triggers that are causing a patient's symptoms. Once the diagnosis is made, they can recommend appropriate treatments, which may include medications, immunotherapy (allergy shots), lifestyle changes, or avoidance of certain substances.

In addition to treating patients, Allergist/Immunologists also conduct research into the underlying causes and mechanisms of allergic diseases and immune disorders, with the goal of developing new and more effective treatments.

Bacterial antigens are substances found on the surface or produced by bacteria that can stimulate an immune response in a host organism. These antigens can be proteins, polysaccharides, teichoic acids, lipopolysaccharides, or other molecules that are recognized as foreign by the host's immune system.

When a bacterial antigen is encountered by the host's immune system, it triggers a series of responses aimed at eliminating the bacteria and preventing infection. The host's immune system recognizes the antigen as foreign through the use of specialized receptors called pattern recognition receptors (PRRs), which are found on various immune cells such as macrophages, dendritic cells, and neutrophils.

Once a bacterial antigen is recognized by the host's immune system, it can stimulate both the innate and adaptive immune responses. The innate immune response involves the activation of inflammatory pathways, the recruitment of immune cells to the site of infection, and the production of antimicrobial peptides.

The adaptive immune response, on the other hand, involves the activation of T cells and B cells, which are specific to the bacterial antigen. These cells can recognize and remember the antigen, allowing for a more rapid and effective response upon subsequent exposures.

Bacterial antigens are important in the development of vaccines, as they can be used to stimulate an immune response without causing disease. By identifying specific bacterial antigens that are associated with virulence or pathogenicity, researchers can develop vaccines that target these antigens and provide protection against infection.

Streptolysins are exotoxins produced by certain strains of Streptococcus bacteria, primarily Group A Streptococcus (GAS). These toxins are classified into two types: streptolysin O (SLO) and streptolysin S (SLS).

1. Streptolysin O (SLO): It is a protein exotoxin that exhibits oxygen-labile hemolytic activity, meaning it can lyse or destroy red blood cells in the presence of oxygen. SLO is capable of entering host cells and causing various cellular damages, including inhibition of phagocytosis, modulation of immune responses, and induction of apoptosis (programmed cell death).

2. Streptolysin S (SLS): It is a non-protein, oxygen-stable hemolysin that can also lyse red blood cells but does so independently of oxygen presence. SLS is more heat-resistant than SLO and has a stronger ability to penetrate host cell membranes.

Both streptolysins contribute to the virulence of Streptococcus pyogenes, which can cause various clinical infections such as pharyngitis (strep throat), impetigo, scarlet fever, and invasive diseases like necrotizing fasciitis and toxic shock syndrome.

The detection of streptolysin O antibodies (ASO titer) is often used as a diagnostic marker for past or recent GAS infections, particularly in cases of rheumatic fever, where elevated ASO titers indicate ongoing or previous streptococcal infection.

Streptococcal vaccines are immunizations designed to protect against infections caused by Streptococcus bacteria. These vaccines contain antigens, which are substances that trigger an immune response and help the body recognize and fight off specific types of Streptococcus bacteria. There are several different types of streptococcal vaccines available or in development, including:

1. Pneumococcal conjugate vaccine (PCV): This vaccine protects against Streptococcus pneumoniae, a type of bacteria that can cause pneumonia, meningitis, and other serious infections. PCV is recommended for all children under 2 years old, as well as older children and adults with certain medical conditions.
2. Pneumococcal polysaccharide vaccine (PPSV): This vaccine also protects against Streptococcus pneumoniae, but it is recommended for adults 65 and older, as well as younger people with certain medical conditions.
3. Streptococcus pyogenes vaccine: This vaccine is being developed to protect against Group A Streptococcus (GAS), which can cause a variety of infections, including strep throat, skin infections, and serious diseases like rheumatic fever and toxic shock syndrome. There are several different GAS vaccine candidates in various stages of development.
4. Streptococcus agalactiae vaccine: This vaccine is being developed to protect against Group B Streptococcus (GBS), which can cause serious infections in newborns, pregnant women, and older adults with certain medical conditions. There are several different GBS vaccine candidates in various stages of development.

Overall, streptococcal vaccines play an important role in preventing bacterial infections and reducing the burden of disease caused by Streptococcus bacteria.

Bacterial antibodies are a type of antibodies produced by the immune system in response to an infection caused by bacteria. These antibodies are proteins that recognize and bind to specific antigens on the surface of the bacterial cells, marking them for destruction by other immune cells. Bacterial antibodies can be classified into several types based on their structure and function, including IgG, IgM, IgA, and IgE. They play a crucial role in the body's defense against bacterial infections and provide immunity to future infections with the same bacteria.

Septic shock is a serious condition that occurs as a complication of an infection that has spread throughout the body. It's characterized by a severe drop in blood pressure and abnormalities in cellular metabolism, which can lead to organ failure and death if not promptly treated.

In septic shock, the immune system overreacts to an infection, releasing an overwhelming amount of inflammatory chemicals into the bloodstream. This leads to widespread inflammation, blood vessel dilation, and leaky blood vessels, which can cause fluid to leak out of the blood vessels and into surrounding tissues. As a result, the heart may not be able to pump enough blood to vital organs, leading to organ failure.

Septic shock is often caused by bacterial infections, but it can also be caused by fungal or viral infections. It's most commonly seen in people with weakened immune systems, such as those who have recently undergone surgery, have chronic medical conditions, or are taking medications that suppress the immune system.

Prompt diagnosis and treatment of septic shock is critical to prevent long-term complications and improve outcomes. Treatment typically involves aggressive antibiotic therapy, intravenous fluids, vasopressors to maintain blood pressure, and supportive care in an intensive care unit (ICU).

Delirium, Dementia, Amnestic, and Other Cognitive Disorders are conditions that affect cognitive abilities such as thinking, memory, perception, and judgment. Here are brief medical definitions of each:

1. Delirium: A serious disturbance in mental abilities that results in confused thinking and reduced awareness of the environment. It can cause hallucinations, delusions, and disorientation. Delirium often comes on suddenly and can be caused by various factors such as medication side effects, infection, or illness.
2. Dementia: A chronic and progressive decline in cognitive abilities that affects memory, language, problem-solving, and judgment. Alzheimer's disease is the most common cause of dementia, but other conditions such as vascular dementia, Lewy body dementia, and frontotemporal dementia can also cause it. Dementia can significantly interfere with daily life and activities.
3. Amnestic Disorders: A group of conditions that primarily affect memory. These disorders can be caused by brain injury, illness, or substance abuse. The most common amnestic disorder is Korsakoff's syndrome, which is caused by alcohol abuse and results in significant memory loss and confusion.
4. Other Cognitive Disorders: This category includes a range of conditions that affect cognitive abilities but do not fit into the categories of delirium, dementia, or amnestic disorders. Examples include mild cognitive impairment (MCI), which is a decline in cognitive abilities that does not interfere significantly with daily life, and various cognitive disorders caused by brain injury or disease.

It's important to note that these conditions can overlap and may co-occur with other mental health or neurological disorders. Proper diagnosis and treatment require a comprehensive evaluation by a qualified healthcare professional.

Penicillin V, also known as Penicillin V Potassium, is an antibiotic medication used to treat various bacterial infections. It belongs to the class of medications called penicillins, which work by interfering with the bacteria's ability to form a protective covering (cell wall), causing the bacteria to become more susceptible to destruction by the body's immune system.

Penicillin V is specifically used to treat infections of the respiratory tract, skin, and ear. It is also used to prevent recurrent rheumatic fever and chorea (Sydenham's chorea), a neurological disorder associated with rheumatic fever.

The medication is available as oral tablets or liquid solutions and is typically taken by mouth every 6 to 12 hours, depending on the severity and type of infection being treated. As with any antibiotic, it is important to take Penicillin V exactly as directed by a healthcare professional and for the full duration of treatment, even if symptoms improve before all doses have been taken.

Penicillin V is generally well-tolerated, but like other penicillins, it can cause allergic reactions in some people. It may also interact with certain medications, so it is important to inform a healthcare provider of any other medications being taken before starting Penicillin V therapy.

Chorea is a medical term that describes an involuntary movement disorder characterized by brief, irregular, and abrupt jerky movements. These movements often occur randomly and can affect any part of the body. Chorea can also cause difficulty with coordination and balance, and can sometimes be accompanied by muscle weakness or rigidity.

The term "chorea" comes from the Greek word "χορεία" (khoréia), which means "dance," reflecting the graceful, dance-like movements that are characteristic of this condition. Chorea can occur as a symptom of various underlying medical conditions, including neurological disorders such as Huntington's disease, Sydenham's chorea, and cerebral palsy, as well as metabolic disorders, infections, and certain medications.

Treatment for chorea depends on the underlying cause of the condition and may include medications to help control the involuntary movements, physical therapy to improve coordination and balance, and lifestyle modifications to reduce the risk of injury from falls or other accidents. In some cases, surgery may be recommended as a last resort for severe or refractory chorea.

Rheumatic Heart Disease (RHD) is defined as a chronic heart condition caused by damage to the heart valves due to untreated or inadequately treated streptococcal throat infection (strep throat). The immune system's response to this infection can mistakenly attack and damage the heart tissue, leading to inflammation and scarring of the heart valves. This damage can result in narrowing, leakage, or abnormal functioning of the heart valves, which can further lead to complications such as heart failure, stroke, or infective endocarditis.

RHD is a preventable and treatable condition if detected early and managed effectively. It primarily affects children and young adults in developing countries where access to healthcare and antibiotics for strep throat infections may be limited. Long-term management of RHD typically involves medications, regular monitoring, and sometimes surgical intervention to repair or replace damaged heart valves.

Streptokinase is a thrombolytic or clot-busting enzyme produced by certain strains of streptococcus bacteria. It functions by converting plasminogen to plasmin, which then degrades fibrin, a protein that forms the structural framework of blood clots. This activity helps in dissolving blood clots and restoring blood flow in areas obstructed by them. In a medical context, streptokinase is often used as a medication to treat conditions associated with abnormal blood clotting, such as heart attacks, pulmonary embolisms, and deep vein thromboses. However, its use carries the risk of bleeding complications due to excessive fibrinolysis or clot dissolution.

A "newborn infant" refers to a baby in the first 28 days of life outside of the womb. This period is crucial for growth and development, but also poses unique challenges as the infant's immune system is not fully developed, making them more susceptible to various diseases.

"Newborn diseases" are health conditions that specifically affect newborn infants. These can be categorized into three main types:

1. Congenital disorders: These are conditions that are present at birth and may be inherited or caused by factors such as infection, exposure to harmful substances during pregnancy, or chromosomal abnormalities. Examples include Down syndrome, congenital heart defects, and spina bifida.

2. Infectious diseases: Newborn infants are particularly vulnerable to infections due to their immature immune systems. Common infectious diseases in newborns include sepsis (bloodstream infection), pneumonia, and meningitis. These can be acquired from the mother during pregnancy or childbirth, or from the environment after birth.

3. Developmental disorders: These are conditions that affect the normal growth and development of the newborn infant. Examples include cerebral palsy, intellectual disabilities, and vision or hearing impairments.

It is important to note that many newborn diseases can be prevented or treated with appropriate medical care, including prenatal care, proper hygiene practices, and timely vaccinations. Regular check-ups and monitoring of the newborn's health by a healthcare provider are essential for early detection and management of any potential health issues.

Exotoxins are a type of toxin that are produced and released by certain bacteria into their external environment, including the surrounding tissues or host's bloodstream. These toxins can cause damage to cells and tissues, and contribute to the symptoms and complications associated with bacterial infections.

Exotoxins are typically proteins, and they can have a variety of effects on host cells, depending on their specific structure and function. Some exotoxins act by disrupting the cell membrane, leading to cell lysis or death. Others interfere with intracellular signaling pathways, alter gene expression, or modify host immune responses.

Examples of bacterial infections that are associated with the production of exotoxins include:

* Botulism, caused by Clostridium botulinum
* Diphtheria, caused by Corynebacterium diphtheriae
* Tetanus, caused by Clostridium tetani
* Pertussis (whooping cough), caused by Bordetella pertussis
* Food poisoning, caused by Staphylococcus aureus or Bacillus cereus

Exotoxins can be highly potent and dangerous, and some have been developed as biological weapons. However, many exotoxins are also used in medicine for therapeutic purposes, such as botulinum toxin (Botox) for the treatment of wrinkles or dystonia.

The pharynx is a part of the digestive and respiratory systems that serves as a conduit for food and air. It is a musculo-membranous tube extending from the base of the skull to the level of the sixth cervical vertebra where it becomes continuous with the esophagus.

The pharynx has three regions: the nasopharynx, oropharynx, and laryngopharynx. The nasopharynx is the uppermost region, which lies above the soft palate and is connected to the nasal cavity. The oropharynx is the middle region, which includes the area between the soft palate and the hyoid bone, including the tonsils and base of the tongue. The laryngopharynx is the lowest region, which lies below the hyoid bone and connects to the larynx.

The primary function of the pharynx is to convey food from the oral cavity to the esophagus during swallowing and to allow air to pass from the nasal cavity to the larynx during breathing. It also plays a role in speech, taste, and immune defense.

Bacteremia is the presence of bacteria in the bloodstream. It is a medical condition that occurs when bacteria from another source, such as an infection in another part of the body, enter the bloodstream. Bacteremia can cause symptoms such as fever, chills, and rapid heart rate, and it can lead to serious complications such as sepsis if not treated promptly with antibiotics.

Bacteremia is often a result of an infection elsewhere in the body that allows bacteria to enter the bloodstream. This can happen through various routes, such as during medical procedures, intravenous (IV) drug use, or from infected wounds or devices that come into contact with the bloodstream. In some cases, bacteremia may also occur without any obvious source of infection.

It is important to note that not all bacteria in the bloodstream cause harm, and some people may have bacteria in their blood without showing any symptoms. However, if bacteria in the bloodstream multiply and cause an immune response, it can lead to bacteremia and potentially serious complications.

Precipitins are antibodies (usually of the IgG class) that, when combined with their respective antigens in vitro, result in the formation of a visible precipitate. They are typically produced in response to the presence of insoluble antigens, such as bacterial or fungal cell wall components, and can be detected through various immunological techniques such as precipitation tests (e.g., Ouchterlony double diffusion, radial immunodiffusion).

Precipitins are often used in the diagnosis of infectious diseases, autoimmune disorders, and allergies to identify the presence and specificity of antibodies produced against certain antigens. However, it's worth noting that the term "precipitin" is not commonly used in modern medical literature, and the more general term "antibody" is often preferred.

Penicillins are a group of antibiotics derived from the Penicillium fungus. They are widely used to treat various bacterial infections due to their bactericidal activity, which means they kill bacteria by interfering with the synthesis of their cell walls. The first penicillin, benzylpenicillin (also known as penicillin G), was discovered in 1928 by Sir Alexander Fleming. Since then, numerous semi-synthetic penicillins have been developed to expand the spectrum of activity and stability against bacterial enzymes that can inactivate these drugs.

Penicillins are classified into several groups based on their chemical structure and spectrum of activity:

1. Natural Penicillins (e.g., benzylpenicillin, phenoxymethylpenicillin): These have a narrow spectrum of activity, mainly targeting Gram-positive bacteria such as streptococci and staphylococci. However, they are susceptible to degradation by beta-lactamase enzymes produced by some bacteria.
2. Penicillinase-resistant Penicillins (e.g., methicillin, oxacillin, nafcillin): These penicillins resist degradation by certain bacterial beta-lactamases and are primarily used to treat infections caused by staphylococci, including methicillin-susceptible Staphylococcus aureus (MSSA).
3. Aminopenicillins (e.g., ampicillin, amoxicillin): These penicillins have an extended spectrum of activity compared to natural penicillins, including some Gram-negative bacteria such as Escherichia coli and Haemophilus influenzae. However, they are still susceptible to degradation by many beta-lactamases.
4. Antipseudomonal Penicillins (e.g., carbenicillin, ticarcillin): These penicillins have activity against Pseudomonas aeruginosa and other Gram-negative bacteria with increased resistance to other antibiotics. They are often combined with beta-lactamase inhibitors such as clavulanate or tazobactam to protect them from degradation.
5. Extended-spectrum Penicillins (e.g., piperacillin): These penicillins have a broad spectrum of activity, including many Gram-positive and Gram-negative bacteria. They are often combined with beta-lactamase inhibitors to protect them from degradation.

Penicillins are generally well-tolerated antibiotics; however, they can cause allergic reactions in some individuals, ranging from mild skin rashes to life-threatening anaphylaxis. Cross-reactivity between different penicillin classes and other beta-lactam antibiotics (e.g., cephalosporins) is possible but varies depending on the specific drugs involved.

Meningitis is a medical condition characterized by the inflammation of the meninges, which are the membranes that cover the brain and spinal cord. This inflammation can be caused by various infectious agents, such as bacteria, viruses, fungi, or parasites, or by non-infectious causes like autoimmune diseases, cancer, or certain medications.

The symptoms of meningitis may include fever, headache, stiff neck, nausea, vomiting, confusion, and sensitivity to light. In severe cases, it can lead to seizures, coma, or even death if not treated promptly and effectively. Bacterial meningitis is usually more severe and requires immediate medical attention, while viral meningitis is often less severe and may resolve on its own without specific treatment.

It's important to note that meningitis can be a serious and life-threatening condition, so if you suspect that you or someone else has symptoms of meningitis, you should seek medical attention immediately.

Pharyngeal diseases refer to conditions that affect the pharynx, which is the part of the throat that lies behind the nasal cavity and mouth, and above the esophagus and larynx. The pharynx plays a crucial role in swallowing, speaking, and breathing. Pharyngeal diseases can cause symptoms such as sore throat, difficulty swallowing, pain during swallowing, swollen lymph nodes, and earaches.

Some common pharyngeal diseases include:

1. Pharyngitis: Inflammation of the pharynx, often caused by a viral or bacterial infection.
2. Tonsillitis: Inflammation of the tonsils, which are two masses of lymphoid tissue located on either side of the back of the throat.
3. Epiglottitis: Inflammation of the epiglottis, a flap of cartilage that covers the windpipe during swallowing to prevent food and liquids from entering the lungs.
4. Abscesses: A collection of pus in the pharynx caused by a bacterial infection.
5. Cancer: Malignant tumors that can develop in the pharynx, often caused by smoking or heavy alcohol use.
6. Dysphagia: Difficulty swallowing due to nerve damage, muscle weakness, or structural abnormalities in the pharynx.
7. Stridor: Noisy breathing caused by a narrowed or obstructed airway in the pharynx.

Treatment for pharyngeal diseases depends on the underlying cause and may include antibiotics, pain relievers, surgery, or radiation therapy.

Serotyping is a laboratory technique used to classify microorganisms, such as bacteria and viruses, based on the specific antigens or proteins present on their surface. It involves treating the microorganism with different types of antibodies and observing which ones bind to its surface. Each distinct set of antigens corresponds to a specific serotype, allowing for precise identification and characterization of the microorganism. This technique is particularly useful in epidemiology, vaccine development, and infection control.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Bacterial outer membrane proteins (OMPs) are a type of protein found in the outer membrane of gram-negative bacteria. The outer membrane is a unique characteristic of gram-negative bacteria, and it serves as a barrier that helps protect the bacterium from hostile environments. OMPs play a crucial role in maintaining the structural integrity and selective permeability of the outer membrane. They are involved in various functions such as nutrient uptake, transport, adhesion, and virulence factor secretion.

OMPs are typically composed of beta-barrel structures that span the bacterial outer membrane. These proteins can be classified into several groups based on their size, function, and structure. Some of the well-known OMP families include porins, autotransporters, and two-partner secretion systems.

Porins are the most abundant type of OMPs and form water-filled channels that allow the passive diffusion of small molecules, ions, and nutrients across the outer membrane. Autotransporters are a diverse group of OMPs that play a role in bacterial pathogenesis by secreting virulence factors or acting as adhesins. Two-partner secretion systems involve the cooperation between two proteins to transport effector molecules across the outer membrane.

Understanding the structure and function of bacterial OMPs is essential for developing new antibiotics and therapies that target gram-negative bacteria, which are often resistant to conventional treatments.

Bacterial skin diseases are a type of infectious skin condition caused by various species of bacteria. These bacteria can multiply rapidly on the skin's surface when given the right conditions, leading to infection and inflammation. Some common bacterial skin diseases include:

1. Impetigo: A highly contagious superficial skin infection that typically affects exposed areas such as the face, hands, and feet. It is commonly caused by Staphylococcus aureus or Streptococcus pyogenes bacteria.
2. Cellulitis: A deep-skin infection that can spread rapidly and involves the inner layers of the skin and underlying tissue. It is often caused by Group A Streptococcus or Staphylococcus aureus bacteria.
3. Folliculitis: An inflammation of hair follicles, usually caused by an infection with Staphylococcus aureus or other bacteria.
4. Furuncles (boils) and carbuncles: Deep infections that develop from folliculitis when the infection spreads to surrounding tissue. A furuncle is a single boil, while a carbuncle is a cluster of boils.
5. Erysipelas: A superficial skin infection characterized by redness, swelling, and warmth in the affected area. It is typically caused by Group A Streptococcus bacteria.
6. MRSA (Methicillin-resistant Staphylococcus aureus) infections: Skin infections caused by a strain of Staphylococcus aureus that has developed resistance to many antibiotics, making it more difficult to treat.
7. Leptospirosis: A bacterial infection transmitted through contact with contaminated water or soil and characterized by flu-like symptoms and skin rashes.

Treatment for bacterial skin diseases usually involves the use of topical or oral antibiotics, depending on the severity and location of the infection. In some cases, drainage of pus-filled abscesses may be necessary to promote healing. Proper hygiene and wound care can help prevent the spread of these infections.

Infectious arthritis, also known as septic arthritis, is a type of joint inflammation that is caused by a bacterial or fungal infection. The infection can enter the joint through the bloodstream or directly into the synovial fluid of the joint, often as a result of a traumatic injury, surgery, or an underlying condition such as diabetes or a weakened immune system.

The most common symptoms of infectious arthritis include sudden onset of severe pain and swelling in the affected joint, fever, chills, and difficulty moving the joint. If left untreated, infectious arthritis can lead to serious complications such as joint damage or destruction, sepsis, and even death. Treatment typically involves antibiotics or antifungal medications to eliminate the infection, along with rest, immobilization, and sometimes surgery to drain the infected synovial fluid.

It is important to seek medical attention promptly if you experience symptoms of infectious arthritis, as early diagnosis and treatment can help prevent long-term complications and improve outcomes.

Virulence, in the context of medicine and microbiology, refers to the degree or severity of damage or harm that a pathogen (like a bacterium, virus, fungus, or parasite) can cause to its host. It is often associated with the ability of the pathogen to invade and damage host tissues, evade or suppress the host's immune response, replicate within the host, and spread between hosts.

Virulence factors are the specific components or mechanisms that contribute to a pathogen's virulence, such as toxins, enzymes, adhesins, and capsules. These factors enable the pathogen to establish an infection, cause tissue damage, and facilitate its transmission between hosts. The overall virulence of a pathogen can be influenced by various factors, including host susceptibility, environmental conditions, and the specific strain or species of the pathogen.

Infectious pregnancy complications refer to infections that occur during pregnancy and can affect the mother, fetus, or both. These infections can lead to serious consequences such as preterm labor, low birth weight, birth defects, stillbirth, or even death. Some common infectious agents that can cause pregnancy complications include:

1. Bacteria: Examples include group B streptococcus, Escherichia coli, and Listeria monocytogenes, which can cause sepsis, meningitis, or pneumonia in the mother and lead to preterm labor or stillbirth.
2. Viruses: Examples include cytomegalovirus, rubella, varicella-zoster, and HIV, which can cause congenital anomalies, developmental delays, or transmission of the virus to the fetus.
3. Parasites: Examples include Toxoplasma gondii, which can cause severe neurological damage in the fetus if transmitted during pregnancy.
4. Fungi: Examples include Candida albicans, which can cause fungal infections in the mother and lead to preterm labor or stillbirth.

Preventive measures such as vaccination, good hygiene practices, and avoiding high-risk behaviors can help reduce the risk of infectious pregnancy complications. Prompt diagnosis and treatment of infections during pregnancy are also crucial to prevent adverse outcomes.

Glomerulonephritis is a medical condition that involves inflammation of the glomeruli, which are the tiny blood vessel clusters in the kidneys that filter waste and excess fluids from the blood. This inflammation can impair the kidney's ability to filter blood properly, leading to symptoms such as proteinuria (protein in the urine), hematuria (blood in the urine), edema (swelling), hypertension (high blood pressure), and eventually kidney failure.

Glomerulonephritis can be acute or chronic, and it may occur as a primary kidney disease or secondary to other medical conditions such as infections, autoimmune disorders, or vasculitis. The diagnosis of glomerulonephritis typically involves a combination of medical history, physical examination, urinalysis, blood tests, and imaging studies, with confirmation often requiring a kidney biopsy. Treatment depends on the underlying cause and severity of the disease but may include medications to suppress inflammation, control blood pressure, and manage symptoms.

A newborn infant is a baby who is within the first 28 days of life. This period is also referred to as the neonatal period. Newborns require specialized care and attention due to their immature bodily systems and increased vulnerability to various health issues. They are closely monitored for signs of well-being, growth, and development during this critical time.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

Bacterial meningitis is a serious infection that causes the membranes (meninges) surrounding the brain and spinal cord to become inflamed. It's caused by various types of bacteria, such as Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae type b.

The infection can develop quickly, over a few hours or days, and is considered a medical emergency. Symptoms may include sudden high fever, severe headache, stiff neck, nausea, vomiting, confusion, and sensitivity to light. In some cases, a rash may also be present.

Bacterial meningitis can lead to serious complications such as brain damage, hearing loss, learning disabilities, and even death if not treated promptly with appropriate antibiotics and supportive care. It is important to seek immediate medical attention if you suspect bacterial meningitis. Vaccines are available to prevent certain types of bacterial meningitis.

In epidemiology, the incidence of a disease is defined as the number of new cases of that disease within a specific population over a certain period of time. It is typically expressed as a rate, with the number of new cases in the numerator and the size of the population at risk in the denominator. Incidence provides information about the risk of developing a disease during a given time period and can be used to compare disease rates between different populations or to monitor trends in disease occurrence over time.

Maternally-acquired immunity (MAI) refers to the passive immunity that is transferred from a mother to her offspring, typically through the placenta during pregnancy or through breast milk after birth. This immunity is temporary and provides protection to the newborn or young infant against infectious agents, such as bacteria and viruses, based on the mother's own immune experiences and responses.

In humans, maternally-acquired immunity is primarily mediated by the transfer of antibodies called immunoglobulins (IgG) across the placenta to the fetus during pregnancy. This process begins around the 20th week of gestation and continues until birth, providing the newborn with a range of protective antibodies against various pathogens. After birth, additional protection is provided through breast milk, which contains secretory immunoglobulin A (IgA) that helps to prevent infections in the infant's gastrointestinal and respiratory tracts.

Maternally-acquired immunity is an essential mechanism for protecting newborns and young infants, who have not yet developed their own active immune responses. However, it is important to note that maternally-acquired antibodies can also interfere with the infant's response to certain vaccines, as they may neutralize the vaccine antigens before the infant's immune system has a chance to mount its own response. This is one reason why some vaccines are not recommended for young infants and why the timing of vaccinations may be adjusted in cases where maternally-acquired immunity is present.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

An acute disease is a medical condition that has a rapid onset, develops quickly, and tends to be short in duration. Acute diseases can range from minor illnesses such as a common cold or flu, to more severe conditions such as pneumonia, meningitis, or a heart attack. These types of diseases often have clear symptoms that are easy to identify, and they may require immediate medical attention or treatment.

Acute diseases are typically caused by an external agent or factor, such as a bacterial or viral infection, a toxin, or an injury. They can also be the result of a sudden worsening of an existing chronic condition. In general, acute diseases are distinct from chronic diseases, which are long-term medical conditions that develop slowly over time and may require ongoing management and treatment.

Examples of acute diseases include:

* Acute bronchitis: a sudden inflammation of the airways in the lungs, often caused by a viral infection.
* Appendicitis: an inflammation of the appendix that can cause severe pain and requires surgical removal.
* Gastroenteritis: an inflammation of the stomach and intestines, often caused by a viral or bacterial infection.
* Migraine headaches: intense headaches that can last for hours or days, and are often accompanied by nausea, vomiting, and sensitivity to light and sound.
* Myocardial infarction (heart attack): a sudden blockage of blood flow to the heart muscle, often caused by a buildup of plaque in the coronary arteries.
* Pneumonia: an infection of the lungs that can cause coughing, chest pain, and difficulty breathing.
* Sinusitis: an inflammation of the sinuses, often caused by a viral or bacterial infection.

It's important to note that while some acute diseases may resolve on their own with rest and supportive care, others may require medical intervention or treatment to prevent complications and promote recovery. If you are experiencing symptoms of an acute disease, it is always best to seek medical attention to ensure proper diagnosis and treatment.

Autoimmune diseases are a group of disorders in which the immune system, which normally protects the body from foreign invaders like bacteria and viruses, mistakenly attacks the body's own cells and tissues. This results in inflammation and damage to various organs and tissues in the body.

In autoimmune diseases, the body produces autoantibodies that target its own proteins or cell receptors, leading to their destruction or malfunction. The exact cause of autoimmune diseases is not fully understood, but it is believed that a combination of genetic and environmental factors contribute to their development.

There are over 80 different types of autoimmune diseases, including rheumatoid arthritis, lupus, multiple sclerosis, type 1 diabetes, Hashimoto's thyroiditis, Graves' disease, psoriasis, and inflammatory bowel disease. Symptoms can vary widely depending on the specific autoimmune disease and the organs or tissues affected. Treatment typically involves managing symptoms and suppressing the immune system to prevent further damage.

Deoxyribonucleases (DNases) are a group of enzymes that cleave, or cut, the phosphodiester bonds in the backbone of deoxyribonucleic acid (DNA) molecules. DNases are classified based on their mechanism of action into two main categories: double-stranded DNases and single-stranded DNases.

Double-stranded DNases cleave both strands of the DNA duplex, while single-stranded DNases cleave only one strand. These enzymes play important roles in various biological processes, such as DNA replication, repair, recombination, and degradation. They are also used in research and clinical settings for applications such as DNA fragmentation analysis, DNA sequencing, and treatment of cystic fibrosis.

It's worth noting that there are many different types of DNases with varying specificities and activities, and the medical definition may vary depending on the context.

Antibiotic prophylaxis refers to the use of antibiotics to prevent infection from occurring in the first place, rather than treating an existing infection. This practice is commonly used before certain medical procedures or surgeries that have a high risk of infection, such as joint replacements, heart valve surgery, or organ transplants. The goal of antibiotic prophylaxis is to reduce the risk of infection by introducing antibiotics into the body before bacteria have a chance to multiply and cause an infection.

The choice of antibiotic for prophylaxis depends on several factors, including the type of procedure being performed, the patient's medical history and allergies, and the most common types of bacteria that can cause infection in that particular situation. The antibiotic is typically given within one hour before the start of the procedure, and may be continued for up to 24 hours afterward, depending on the specific guidelines for that procedure.

It's important to note that antibiotic prophylaxis should only be used when it is truly necessary, as overuse of antibiotics can contribute to the development of antibiotic-resistant bacteria. Therefore, the decision to use antibiotic prophylaxis should be made carefully and in consultation with a healthcare provider.

Disease susceptibility, also known as genetic predisposition or genetic susceptibility, refers to the increased likelihood or risk of developing a particular disease due to inheriting specific genetic variations or mutations. These genetic factors can make an individual more vulnerable to certain diseases compared to those who do not have these genetic changes.

It is important to note that having a genetic predisposition does not guarantee that a person will definitely develop the disease. Other factors, such as environmental exposures, lifestyle choices, and additional genetic variations, can influence whether or not the disease will manifest. In some cases, early detection and intervention may help reduce the risk or delay the onset of the disease in individuals with a known genetic susceptibility.

Sepsis is a life-threatening condition that arises when the body's response to an infection injures its own tissues and organs. It is characterized by a whole-body inflammatory state (systemic inflammation) that can lead to blood clotting issues, tissue damage, and multiple organ failure.

Sepsis happens when an infection you already have triggers a chain reaction throughout your body. Infections that lead to sepsis most often start in the lungs, urinary tract, skin, or gastrointestinal tract.

Sepsis is a medical emergency. If you suspect sepsis, seek immediate medical attention. Early recognition and treatment of sepsis are crucial to improve outcomes. Treatment usually involves antibiotics, intravenous fluids, and may require oxygen, medication to raise blood pressure, and corticosteroids. In severe cases, surgery may be required to clear the infection.

Population surveillance in a public health and medical context refers to the ongoing, systematic collection, analysis, interpretation, and dissemination of health-related data for a defined population over time. It aims to monitor the health status, identify emerging health threats or trends, and evaluate the impact of interventions within that population. This information is used to inform public health policy, prioritize healthcare resources, and guide disease prevention and control efforts. Population surveillance can involve various data sources, such as vital records, disease registries, surveys, and electronic health records.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

A disease outbreak is defined as the occurrence of cases of a disease in excess of what would normally be expected in a given time and place. It may affect a small and localized group or a large number of people spread over a wide area, even internationally. An outbreak may be caused by a new agent, a change in the agent's virulence or host susceptibility, or an increase in the size or density of the host population.

Outbreaks can have significant public health and economic impacts, and require prompt investigation and control measures to prevent further spread of the disease. The investigation typically involves identifying the source of the outbreak, determining the mode of transmission, and implementing measures to interrupt the chain of infection. This may include vaccination, isolation or quarantine, and education of the public about the risks and prevention strategies.

Examples of disease outbreaks include foodborne illnesses linked to contaminated food or water, respiratory infections spread through coughing and sneezing, and mosquito-borne diseases such as Zika virus and West Nile virus. Outbreaks can also occur in healthcare settings, such as hospitals and nursing homes, where vulnerable populations may be at increased risk of infection.

Pulsed-field gel electrophoresis (PFGE) is a type of electrophoresis technique used in molecular biology to separate DNA molecules based on their size and conformation. In this method, the electric field is applied in varying directions, which allows for the separation of large DNA fragments that are difficult to separate using traditional gel electrophoresis methods.

The DNA sample is prepared by embedding it in a semi-solid matrix, such as agarose or polyacrylamide, and then subjected to an electric field that periodically changes direction. This causes the DNA molecules to reorient themselves in response to the changing electric field, which results in the separation of the DNA fragments based on their size and shape.

PFGE is a powerful tool for molecular biology research and has many applications, including the identification and characterization of bacterial pathogens, the analysis of genomic DNA, and the study of gene organization and regulation. It is also used in forensic science to analyze DNA evidence in criminal investigations.

Bacterial polysaccharides are complex carbohydrates that consist of long chains of sugar molecules (monosaccharides) linked together by glycosidic bonds. They are produced and used by bacteria for various purposes such as:

1. Structural components: Bacterial polysaccharides, such as peptidoglycan and lipopolysaccharide (LPS), play a crucial role in maintaining the structural integrity of bacterial cells. Peptidoglycan is a major component of the bacterial cell wall, while LPS forms the outer layer of the outer membrane in gram-negative bacteria.
2. Nutrient storage: Some bacteria synthesize and store polysaccharides as an energy reserve, similar to how plants store starch. These polysaccharides can be broken down and utilized by the bacterium when needed.
3. Virulence factors: Bacterial polysaccharides can also function as virulence factors, contributing to the pathogenesis of bacterial infections. For example, certain bacteria produce capsular polysaccharides (CPS) that surround and protect the bacterial cells from host immune defenses, allowing them to evade phagocytosis and persist within the host.
4. Adhesins: Some polysaccharides act as adhesins, facilitating the attachment of bacteria to surfaces or host cells. This is important for biofilm formation, which helps bacteria resist environmental stresses and antibiotic treatments.
5. Antigenic properties: Bacterial polysaccharides can be highly antigenic, eliciting an immune response in the host. The antigenicity of these molecules can vary between different bacterial species or even strains within a species, making them useful as targets for vaccines and diagnostic tests.

In summary, bacterial polysaccharides are complex carbohydrates that serve various functions in bacteria, including structural support, nutrient storage, virulence factor production, adhesion, and antigenicity.

Bacterial typing techniques are methods used to identify and differentiate bacterial strains or isolates based on their unique characteristics. These techniques are essential in epidemiological studies, infection control, and research to understand the transmission dynamics, virulence, and antibiotic resistance patterns of bacterial pathogens.

There are various bacterial typing techniques available, including:

1. **Bacteriophage Typing:** This method involves using bacteriophages (viruses that infect bacteria) to identify specific bacterial strains based on their susceptibility or resistance to particular phages.
2. **Serotyping:** It is a technique that differentiates bacterial strains based on the antigenic properties of their cell surface components, such as capsules, flagella, and somatic (O) and flagellar (H) antigens.
3. **Biochemical Testing:** This method uses biochemical reactions to identify specific metabolic pathways or enzymes present in bacterial strains, which can be used for differentiation. Commonly used tests include the catalase test, oxidase test, and various sugar fermentation tests.
4. **Molecular Typing Techniques:** These methods use genetic markers to identify and differentiate bacterial strains at the DNA level. Examples of molecular typing techniques include:
* **Pulsed-Field Gel Electrophoresis (PFGE):** This method uses restriction enzymes to digest bacterial DNA, followed by electrophoresis in an agarose gel under pulsed electrical fields. The resulting banding patterns are analyzed and compared to identify related strains.
* **Multilocus Sequence Typing (MLST):** It involves sequencing specific housekeeping genes to generate unique sequence types that can be used for strain identification and phylogenetic analysis.
* **Whole Genome Sequencing (WGS):** This method sequences the entire genome of a bacterial strain, providing the most detailed information on genetic variation and relatedness between strains. WGS data can be analyzed using various bioinformatics tools to identify single nucleotide polymorphisms (SNPs), gene deletions or insertions, and other genetic changes that can be used for strain differentiation.

These molecular typing techniques provide higher resolution than traditional methods, allowing for more accurate identification and comparison of bacterial strains. They are particularly useful in epidemiological investigations to track the spread of pathogens and identify outbreaks.

An antigen is a substance (usually a protein) that is recognized as foreign by the immune system and stimulates an immune response, leading to the production of antibodies or activation of T-cells. Antigens can be derived from various sources, including bacteria, viruses, fungi, parasites, and tumor cells. They can also come from non-living substances such as pollen, dust mites, or chemicals.

Antigens contain epitopes, which are specific regions on the antigen molecule that are recognized by the immune system. The immune system's response to an antigen depends on several factors, including the type of antigen, its size, and its location in the body.

In general, antigens can be classified into two main categories:

1. T-dependent antigens: These require the help of T-cells to stimulate an immune response. They are typically larger, more complex molecules that contain multiple epitopes capable of binding to both MHC class II molecules on antigen-presenting cells and T-cell receptors on CD4+ T-cells.
2. T-independent antigens: These do not require the help of T-cells to stimulate an immune response. They are usually smaller, simpler molecules that contain repetitive epitopes capable of cross-linking B-cell receptors and activating them directly.

Understanding antigens and their properties is crucial for developing vaccines, diagnostic tests, and immunotherapies.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

A carrier state is a condition in which a person carries and may be able to transmit a genetic disorder or infectious disease, but does not show any symptoms of the disease themselves. This occurs when an individual has a recessive allele for a genetic disorder or is infected with a pathogen, but does not have the necessary combination of genes or other factors required to develop the full-blown disease.

For example, in the case of cystic fibrosis, which is caused by mutations in the CFTR gene, a person who carries one normal allele and one mutated allele for the disease is considered a carrier. They do not have symptoms of cystic fibrosis themselves, but they can pass the mutated allele on to their offspring, who may then develop the disease if they inherit the mutation from both parents.

Similarly, in the case of infectious diseases, a person who is infected with a pathogen but does not show any symptoms may still be able to transmit the infection to others. This is known as being an asymptomatic carrier or a healthy carrier. For example, some people who are infected with hepatitis B virus (HBV) may not develop any symptoms of liver disease, but they can still transmit the virus to others through contact with their blood or other bodily fluids.

It's important to note that in some cases, carriers of certain genetic disorders or infectious diseases may have mild or atypical symptoms that do not meet the full criteria for a diagnosis of the disease. In these cases, they may be considered to have a "reduced penetrance" or "incomplete expression" of the disorder or infection.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

Antibodies are proteins produced by the immune system in response to the presence of a foreign substance, such as a bacterium or virus. They are capable of identifying and binding to specific antigens (foreign substances) on the surface of these invaders, marking them for destruction by other immune cells. Antibodies are also known as immunoglobulins and come in several different types, including IgA, IgD, IgE, IgG, and IgM, each with a unique function in the immune response. They are composed of four polypeptide chains, two heavy chains and two light chains, that are held together by disulfide bonds. The variable regions of the heavy and light chains form the antigen-binding site, which is specific to a particular antigen.

In medical terms, the skin is the largest organ of the human body. It consists of two main layers: the epidermis (outer layer) and dermis (inner layer), as well as accessory structures like hair follicles, sweat glands, and oil glands. The skin plays a crucial role in protecting us from external factors such as bacteria, viruses, and environmental hazards, while also regulating body temperature and enabling the sense of touch.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

... or blood infections (group B). Learn how they can be prevented and treated. ... Streptococcal is a type of bacteria that can cause strep throat (group A) ... Strep B can cause urinary tract infections, blood infections, skin infections and pneumonia in adults. ... Group A Streptococcal Infections (National Institute of Allergy and Infectious Diseases) * Strep Throat (For Parents) (Nemours ...
Infection with Streptococcus pyogenes, a beta-hemolytic bacterium that belongs to Lancefield serogroup A, also known as the ... encoded search term (Group A Streptococcal (GAS) Infections) and Group A Streptococcal (GAS) Infections What to Read Next on ... streptococcal TSS may also occur in association with other focal streptococcal infections, including pharyngeal infection. ... Streptococcus group A infections. Erysipelas is a group A streptococcal infection of skin and subcutaneous tissue. ...
... The Division of Bacterial and Mycotic Diseases National Center for Infectious Diseases Centers ... GBS is the most common cause of sepsis (blood infection) and meningitis (infection of the fluid and lining surrounding the ... In pregnant women, GBS can cause urinary tract infections, womb infections (amnionitis, endometritis), and stillbirth. Among ... urinary tract infection due to GBS * GBS colonization late in pregnancy * fever during labor * rupture of membranes 18 hours or ...
Nosocomially acquired invasive streptococcal infections were relatively rare. Postpartum infections accounted for 2.4% and 4.5 ... The working group on severe streptococcal infections. Defining the group A streptococcal toxic shock syndrome: rationale and ... The Working Group on Prevention of Invasive Group A Streptococcal Infections. Prevention of invasive group A streptococcal ... The changing epidemiology of invasive group A streptococcal infections and the emergence of streptococcal toxic shock-like ...
v t e v t e (Streptococcal infections, Poultry diseases, All stub articles, Veterinary medicine stubs, Lactobacillales stubs). ... Amoxycillin is usually effective in treating streptococcal infections. Biosecurity protocols and good hygiene are important in ... Streptococcus and Enterococcus infections - Poultry expert reviewed and published by WikiVet, accessed 12 October 2011. ... Streptococcus species are the cause of opportunistic infections in poultry leading to acute and chronic conditions in affected ...
Infection with Streptococcus pyogenes, a beta-hemolytic bacterium that belongs to Lancefield serogroup A, also known as the ... encoded search term (Group A Streptococcal (GAS) Infections) and Group A Streptococcal (GAS) Infections What to Read Next on ... Streptococcus group A infections. Erysipelas is a group A streptococcal infection of skin and subcutaneous tissue. ... Guideline] The Working Group on Severe Streptococcal Infections. Defining the group A streptococcal toxic shock syndrome. ...
Invasive Streptococcal Infection Can Lead to the Generation of Cross-Strain Opsonic Antibodies. *Mark ... Quantifying Phagocytosis - studies on the antibody response during invasive streptococcal infections (Doctoral Thesis ( ... It is unclear if antibodies developed after infections with this pathogen are opsonic and if they are strain specific or more ... It is unclear if antibodies developed after infections with this pathogen are opsonic and if they are strain specific or more ...
Increase in Pediatric Invasive Group A Streptococcal Infections. The Centers for Disease Control and Prevention (CDC) issued a ... and skin and soft tissue infections to uncommon but severe diseases such as sepsis, streptococcal toxic shock syndrome, and ... infections. The rates of iGAS infections are increasing above cases reported during the COVID pandemic time period. Although ... Increased rates of iGAS infection have been noted during times of increased influenza activity. Seasonal influenza activity is ...
Engineering of bacteriophage-derived endolysins to treat streptococcal mammary gland infections. Promovendus/a. Vander Elst, ... Engineering of bacteriophage-derived endolysins to treat streptococcal mammary gland infections ... This also applies to the dairy industry that uses antibiotics to prevent and control udder infections in dairy cows ...
Streptococcal infections and Scarlet fever are caused by Group A Streptococcus (GAS) bacteria. Although Scarlet fever was once ... GAS infections cause various symptoms such as sore throat, fever, chills and muscle aches.. Annual cases of Scarlet fever have ... This is because infection with scarlet fever and either chickenpox or flu at the same time can result in more serious illness. ... so do the number of iGAS infections, but iGAS infection still remain very rare. ...
American Roentgen Ray Society Images of Group B streptococcal infection pathophysiology All Images. X-rays. Echo & Ultrasound. ... Early-onset infections are acquired vertically through exposure to GBS from the vagina of a colonized woman. Neonatal infection ... "Molecular pathogenesis of neonatal group B streptococcal infection: no longer in its infancy". Mol Microbiol. 54 (1): 23-31. ... Early-onset neonatal infections are acquired vertically through exposure to GBS from the vagina of a colonized woman. GBS is ...
Houghton faculty/student pair publish research review that may influence treatments for Streptococcal infections. Read more. ... This open-access review article may influence the development of effective treatments for infections caused by Streptococcal ... Hammers and Emilys work has the potential to revolutionize our approach to treating Streptococcal infections. Their ... The article, titled "Streptococcal peptides and their roles in host-microbe interactions," was published in the Frontiers in ...
In Group A Streptococcus (GAS)-infected macrophages, Txnip was degraded independent of glucose consumption and streptococcal ... the role of Txnip in bacterial infection remains unclear. In Group A Streptococcus (GAS)-infected macrophages, Txnip was ... B activation and pro-inflammatory activation were induced and accompanied by Txnip degradation during GAS infection. Silencing ... the role of Txnip in bacterial infection remains unclear. ... and accompanied by Txnip degradation during GAS infection. ...
Information for those in contact with Group A streptococcal infection. You have been given this information because you have ... Information for those in contact with Group A streptococcal infection File type: application/pdf Review date: May 2019 ... infection. Although it is very unlikely that you will be affected by GAS infection, the medical team would like you to be able ... been in contact with a case of Group A Streptococcal (GAS) ... Information for those in contact with Group A streptococcal ...
In vitro evaluation of five rapid antigen detection tests for group A beta-haemolytic streptococcal sore throat infections ... In vitro evaluation of five rapid antigen detection tests for group A beta-haemolytic streptococcal sore throat infections ... In vitro evaluation of five rapid antigen detection tests for group A beta-haemolytic streptococcal sore throat infections ... In vitro evaluation of five rapid antigen detection tests for group A beta-haemolytic streptococcal sore throat infections. ...
Intrapartum prevention of early onset group B streptococcal infection - Gazzetta Medica Italiana - Archivio per le Scienze ... Intrapartum prevention of early onset group B streptococcal infection. Francesca BARBIERI ✉, Annunziata MASTROGIACOMO, Luigi ... The connatal infection by beta-hemolytic Streptococcus group B currently (GBS) occurs in Italy with an incidence of 0.5-1 per ... The infection has a bimodal distribution with an early onset disease and a late onset disease. The correct management of ...
Association between low concentrations of antibodies to protein α and Rib and invasive neonatal group B streptococcal infection ... Association between low concentrations of antibodies to protein α and Rib and invasive neonatal group B streptococcal infection ... Background: Infection with group B streptococci (GBS) is a serious neonatal disease. The GBS cell surface proteins α and Rib ... Moreover, low concentrations of antibodies to α and Rib in neonatal sera were associated with invasive GBS infection caused by ...
Streptococcal Infections - Learn about the causes, symptoms, diagnosis & treatment from the MSD Manuals - Medical Consumer ... Other streptococcal infections Prompt treatment with antibiotics can prevent streptococcal infection from spreading rapidly and ... Complications of streptococcal infections If untreated, streptococcal infections can lead to complications. Some complications ... Streptococcal Infections (Strep Infections). By Larry M. Bush , MD, FACP, Charles E. Schmidt College of Medicine, Florida ...
Streptococcal Infections - Learn about the causes, symptoms, diagnosis & treatment from the MSD Manuals - Medical Consumer ... Other streptococcal infections Prompt treatment with antibiotics can prevent streptococcal infection from spreading rapidly and ... Complications of streptococcal infections If untreated, streptococcal infections can lead to complications. Some complications ... Streptococcal Infections (Strep Infections). By Larry M. Bush , MD, FACP, Charles E. Schmidt College of Medicine, Florida ...
Infection with Streptococcus pyogenes, a beta-hemolytic bacterium that belongs to Lancefield serogroup A, also known as the ... encoded search term (Group A Streptococcal Infections) and Group A Streptococcal Infections What to Read Next on Medscape ... streptococcal TSS may also occur in association with other focal streptococcal infections, including pharyngeal infection. ... Streptococcus group A infections. Erysipelas is a group A streptococcal infection of skin and subcutaneous tissue. ...
Streptococcal Infections - Etiology, pathophysiology, symptoms, signs, diagnosis & prognosis from the MSD Manuals - Medical ... Other streptococcal infections For treating groups B, C, and G infections, antibiotics of choice are ... usually follows a pharyngeal streptococcal infection; less commonly, it follows streptococcal infections at other sites (eg, ... Streptococcal toxic shock syndrome Streptococcal toxic shock syndrome Streptococcal toxic shock Toxic shock syndrome is caused ...
Centers for Disease Control and Prevention (U.S.) "Increase in pediatric invasive group A streptococcal infections" , no. 484 ( ... Centers for Disease Control and Prevention (U.S.) "Increase in pediatric invasive group A streptococcal infections" , no. 484, ... Title : Increase in pediatric invasive group A streptococcal infections Corporate Authors(s) : Centers for Disease Control and ... Centers for Disease Control and Prevention (U.S.) (2022). Increase in pediatric invasive group A streptococcal infections. (484 ...
Results of search for su:{Streptococcal infections} Refine your search. *. Availability. * Limit to currently available items ... Laboratory diagnosis of group A streptococcal infections; Méthodes de laboratoire pour le diagnostic des infections à ... Rheumatic fever and streptococcal infection : unraveling the mysteries of a dread disease / Benedict F. Massell. by Massell, ... Streptococcal and staphylococcal infections : report of a WHO expert committee [meeting held in Geneva from 21 to 27 November ...
Increase in Pediatric Invasive Group A Streptococcal Infections. ... Group A Streptococcal (GAS) Disease , CDC. *Streptococcal Toxic ... and skin and soft tissue infections to uncommon but severe diseases such as sepsis, streptococcal toxic shock syndrome, and ... infections. In November 2022, CDC was notified of a possible increase in iGAS infections among children at a hospital in ... clusters of iGAS infections in persons of any age, and potentially preventable infections (e.g., postpartum, and post-surgical ...
Pathogen-driven degradation of endogenous and therapeutic antibodies during streptococcal infections. Alejandro Gomez Toledo, ... Pathogen-driven degradation of endogenous and therapeutic antibodies during streptococcal infections. / Toledo, Alejandro Gomez ... Pathogen-driven degradation of endogenous and therapeutic antibodies during streptococcal infections. In: Nature Communications ... Pathogen-driven degradation of endogenous and therapeutic antibodies during streptococcal infections. Nature Communications. ...
However, in about one-third of patients, acute rheumatic fever follows subclinical streptococcal infections or infections for ... In approximately one-third of patients, acute rheumatic fever follows subclinical streptococcal infections or infections for ... Group A streptococcal infections. In Kimberlin DW, Barnett ED, Lynfield R, Sawyer MH, editors. 32nd ed. Red Book: 2021 Report ... In most cases, there should also be evidence of preceding group A streptococcal infection.2 Evidence to support an antecedent ...
Increase in Pediatric Invasive Group A Streptococcal Infections. ... Group A Streptococcal (GAS) Disease , CDC. *Streptococcal Toxic ... and skin and soft tissue infections to uncommon but severe diseases such as sepsis, streptococcal toxic shock syndrome, and ... infections. In November 2022, CDC was notified of a possible increase in iGAS infections among children at a hospital in ... clusters of iGAS infections in persons of any age, and potentially preventable infections (e.g., postpartum, and post-surgical ...
The award will fund research on streptococcal infections. The study titled, "Role of M-Related Protein and IgG Interactions in ... Courtneys research is on molecular mechanisms of group A streptococcal infections. Group A streptococci, which is caused by ... Currently, the rodent model is used extensively to study streptococcal infections. However, rodents are naturally resistant to ... Harry Courtney Wins Grant to Continue Streptococcal Infection Research. Written by Communications and Marketing ...
If you have a streptococcal infection, what is a good way to prevent its spread? ...
If you have a streptococcal infection, what is a good way to prevent its spread? ... What Do You Know About Streptococcal Infections?. Strep throat is just one illness caused by group A streptococcal (GAS) ... Infections caused by GAS can be mild to severe. Mild GAS infections include strep throat and minor skin infections such as ... GAS infections are rare in children younger than 3. GAS skin infections are most common in children ages 3 to 6. Strep throat ...

No FAQ available that match "streptococcal infections"