Drugs that inhibit the actions of the sympathetic nervous system by any mechanism. The most common of these are the ADRENERGIC ANTAGONISTS and drugs that deplete norepinephrine or reduce the release of transmitters from adrenergic postganglionic terminals (see ADRENERGIC AGENTS). Drugs that act in the central nervous system to reduce sympathetic activity (e.g., centrally acting alpha-2 adrenergic agonists, see ADRENERGIC ALPHA-AGONISTS) are included here.
An imidazoline sympatholytic agent that stimulates ALPHA-2 ADRENERGIC RECEPTORS and central IMIDAZOLINE RECEPTORS. It is commonly used in the management of HYPERTENSION.
Compounds that bind to and activate ADRENERGIC ALPHA-2 RECEPTORS.
A imidazole derivative that is an agonist of ADRENERGIC ALPHA-2 RECEPTORS. It is closely-related to MEDETOMIDINE, which is the racemic form of this compound.
The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system.
A subclass of alpha-adrenergic receptors found on both presynaptic and postsynaptic membranes where they signal through Gi-Go G-PROTEINS. While postsynaptic alpha-2 receptors play a traditional role in mediating the effects of ADRENERGIC AGONISTS, the subset of alpha-2 receptors found on presynaptic membranes signal the feedback inhibition of NEUROTRANSMITTER release.
Drugs that selectively bind to and activate alpha adrenergic receptors.
Precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic.
A general class of ortho-dihydroxyphenylalkylamines derived from tyrosine.
PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.
The number of times the HEART VENTRICLES contract per unit of time, usually per minute.

DMPK dosage alterations result in atrioventricular conduction abnormalities in a mouse myotonic dystrophy model. (1/527)

Myotonic dystrophy (DM) is the most common form of muscular dystrophy and is caused by expansion of a CTG trinucleotide repeat on human chromosome 19. Patients with DM develop atrioventricular conduction disturbances, the principal cardiac manifestation of this disease. The etiology of the pathophysiological changes observed in DM has yet to be resolved. Haploinsufficiency of myotonic dystrophy protein kinase (DMPK), DM locus-associated homeodomain protein (DMAHP) and/or titration of RNA-binding proteins by expanded CUG sequences have been hypothesized to underlie the multi-system defects observed in DM. Using an in vivo murine electrophysiology study, we show that cardiac conduction is exquisitely sensitive to DMPK gene dosage. DMPK-/- mice develop cardiac conduction defects which include first-, second-, and third-degree atrioventricular (A-V) block. Our results demonstrate that the A-V node and the His-Purkinje regions of the conduction system are specifically compromised by DMPK loss. Importantly, DMPK+/- mice develop first-degree heart block, a conduction defect strikingly similar to that observed in DM patients. These results demonstrate that DMPK dosage is a critical element modulating cardiac conduction integrity and conclusively link haploinsufficiency of DMPK with cardiac disease in myotonic dystrophy.  (+info)

Sympathetic neuroeffector transmission in the rat anococcygeus muscle. (2/527)

1. When intracellular recordings were made from preparations of rat anococcygeus muscle, transmural nerve stimulation evoked noradrenergic excitatory junction potentials (EJPs) made up of two distinct components. Both components were abolished by either guanethidine or alpha-adrenoceptor antagonists, indicating that they resulted from the release of transmitter from sympathetic nerves and the subsequent activation of alpha-adrenoceptors. 2. The first component was associated with a transient increase in the intracellular concentration of calcium ions ([Ca2+]i) and a contraction. Although the second component was often associated with a long lasting increase in [Ca2+]i it was not associated with a contraction unless the second component initiated an action potential. 3. The increase in [Ca2+]i associated with the first component resulted from Ca2+ release from an intracellular store and from entry of Ca2+ through voltage-dependent Ca2+ channels. The increase in [Ca2+]i associated with the second component resulted only from the entry of Ca2+ through L-type Ca2+ channels (CaL channels). The depolarization associated with the initial increase in [Ca2+]i was abolished by reducing the external concentration of chloride ions ([Cl-]o), suggesting that it involved the activation of a Cl- conductance. 4. When the relationships between changes in [Ca2+]i, membrane depolarization and contraction produced by an increasing number of sympathetic nerve stimuli were determined in control, and caffeine- and nifedipine-containing solutions, it was found that an increase in [Ca2+]i recorded in nifedipine produced a larger contraction and larger membrane depolarization than did a similar increase in [Ca2+]i recorded in either control or caffeine-containing solutions. These observations indicate that Ca2+ released from stores more readily triggers contraction and membrane depolarization than does Ca2+ entry via CaL channels.  (+info)

Spread of vasodilatation and vasoconstriction along feed arteries and arterioles of hamster skeletal muscle. (3/527)

1. In arterioles of the hamster cheek pouch, vasodilatation and vasoconstriction can spread via the conduction of electrical signals through gap junctions between cells that comprise the vessel wall. However, conduction in resistance networks supplying other tissues has received relatively little attention. In anaesthetized hamsters, we have investigated the spread of dilatation and constriction along feed arteries and arterioles of the retractor muscle, which is contiguous with the cheek pouch. 2. When released from a micropipette, acetylcholine (ACh) triggered vasodilatation that spread rapidly along feed arteries external to the muscle and arterioles within the muscle. Responses were independent of changes in wall shear rate, perivascular nerve activity, or release of nitric oxide, indicating cell-to-cell conduction. 3. Vasodilatation conducted without decrement along unbranched feed arteries, yet decayed markedly in arteriolar networks. Thus, branching of the conduction pathway dissipated the vasodilatation. 4. Noradrenaline (NA) or a depolarizing KCl stimulus evoked constriction of arterioles and feed arteries of the retractor muscle that was constrained to the vicinity of the micropipette. This behaviour contrasts sharply with the conduction of vasodilatation in these microvessels and with the conduction of vasoconstriction elicited by NA and KCl in cheek pouch arterioles. 5. Focal electrical stimulation produced constriction that spread rapidly along feed arteries and arterioles. These responses were inhibited by tetrodotoxin or prazosin, confirming the release of NA along perivascular sympathetic nerves, which are absent from arterioles studied in the cheek pouch. Thus, sympathetic nerve activity co-ordinated the contraction of smooth muscle cells as effectively as the conduction of vasodilatation co-ordinated their relaxation. 6. In the light of previous findings in the cheek pouch, the properties of vasoconstriction and vasodilatation in feed arteries and arterioles of the retractor muscle indicate that substantive differences can exist in the nature of signal transmission along microvessels of tissues that differ in structure and function.  (+info)

Trigeminal nerve ganglion stimulation-induced neurovascular reflexes in the anaesthetized cat: role of endothelin(B) receptors in carotid vasodilatation. (4/527)

1. The effects of intravenous administration of endothelin (ET) receptor antagonists SB-209670 (0.001-10.0 mg kg(-1)), SB-217242, SB-234551 (0.01-10.0 mg kg(-1)) and BQ-788 (0.001-1.0 mg kg(-1)) were investigated on trigeminal nerve ganglion stimulation-induced neurovascular reflexes in the carotid vasculature of the anaesthetized cat. Comparisons were made with sumatriptan (0.003-3.0 mg kg(-1)) and alpha-CGRP8-37 (0.001-0.1 mg kg(-1)). 2. Trigeminal nerve ganglion stimulation produced frequency related increases in carotid blood flow, reductions in carotid vascular resistance and non-frequency related increases in blood pressure. Guanethidine (3 mg kg(-1), i.v.) blocked trigeminal nerve ganglion-induced increases in blood pressure but had no effect on changes in carotid flow or resistance. Maximal reductions in carotid vascular resistance was observed at 10 Hz, and this frequency was selected to investigate the effects of drugs on trigeminal nerve ganglion stimulation-induced responses in guanethidine treated cats. 3. Saline, alpha-CGRP8-37 SB-209670 and BQ-788 had little or no effect on resting haemodynamic parameters. SB-217242 (10 mg kg(-1), n=3) produced a 56% reduction in arterial blood pressure whereas SB-233451 (10 mg kg(-1), n=3) produced a 30% reduction in carotid vascular resistance. Sumatriptan produced dose-related reductions in resting carotid flow and increases (max. 104% at 0.3 mg kg(-1), n = 5) in vascular resistance. 4. SB-209670 (n=6-7), SB-217242 (n=3) and BQ-788 (n=3) produced inhibition of trigeminal nerve ganglion stimulation-induced reductions in carotid vascular resistance. Saline, SB-234551, alpha-CGRP8-37 and sumatriptan had no effect. 5. These data demonstrate ET(B) receptor blockade attenuates the vasodilator effects of trigeminal nerve ganglion stimulation in the carotid vascular bed of guanethidine pretreated anaesthetized cats.  (+info)

Investigating feed-forward neural regulation of circulation from analysis of spontaneous arterial pressure and heart rate fluctuations. (5/527)

BACKGROUND: Analysis of spontaneous fluctuations in systolic arterial pressure (SAP) and pulse interval (PI) reveals the occurrence of sequences of consecutive beats characterized by SAP and PI changing in the same (+PI/+SAP and -PI/-SAP) or opposite (-PI/+SAP and +PI/-SAP) direction. Although the former reflects baroreflex regulatory mechanisms, the physiological meaning of -PI/+SAP and +PI/-SAP is unclear. We tested the hypothesis that -PI/+SAP and +PI/-SAP "nonbaroreflex" sequences represent a phenomenon modulated by the autonomic nervous system reflecting a feed-forward mechanism of cardiovascular regulation. METHODS AND RESULTS: We studied anesthetized rabbits before and after (1) complete autonomic blockade (guanethidine+propranolol+atropine, n=13; CAB), (2) sympathetic blockade (guanethidine+propranolol, n=15; SB), (3) parasympathetic blockade (atropine, n=16), (4) sinoaortic denervation (n=10; SAD), and (5) controlled respiration (n=10; CR). Nonbaroreflex sequences were defined as >/=3 beats in which SAP and PI of the following beat changed in the opposite direction. CAB reduced the number of nonbaroreflex sequences (19. 1+/-12.3 versus 88.7+/-36.6, P<0.05), as did SB (25.3+/-11.7 versus 84.6+/-23.9, P<0.001) and atropine (11.2+/-6.8 versus 94.1+/-32.4, P<0.05). SB concomitantly increased baroreflex sensitivity (1.18+/-0. 11 versus 0.47+/-0.09 ms/mm Hg, P<0.01). SAD and CR did not significantly affect their occurrence. CONCLUSIONS: These results suggest that nonbaroreflex sequences represent the expression of an integrated, neurally mediated, feed-forward type of short-term cardiovascular regulation able to interact dynamically with the feedback mechanisms of baroreflex origin in the control of heart period.  (+info)

Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. II. Effects of noradrenergic and serotoninergic drugs. (6/527)

The effects of serotoninergic and noradrenergic drugs (applied intrathecally) on treadmill locomotion were evaluated in two adult cats subjected to a ventral and ventrolateral spinal lesion (T13). Despite the extensive spinal lesion, severely damaging important descending pathways such as the reticulo- and vestibulospinal tracts, both cats recovered quadrupedal voluntary locomotion. As detailed in a previous paper, the locomotor recovery occurred in three stages defined as early period, when the animal could not walk with its hindlimbs, recovery period, when progressive improvement occurred, and plateau period, when a more stable locomotor performance was observed. At this latter stage, the cats suffered from postural and locomotor deficits, such as poor lateral stability, irregular stepping of the hindlimbs, and inconsistent homolateral fore- and hindlimb coupling. The present study aimed at evaluating the potential of serotoninergic and/or noradrenergic drugs to improve the locomotor abilities in the early and late stages. Both cats were implanted chronically with an intrathecal cannula and electromyographic (EMG) electrodes, which allowed determination, under similar recording conditions, of the locomotor performance pre- and postlesion and comparisons of the effects of different drugs. EMG and kinematic analyses showed that norepinephrine (NE) injected in early and plateau periods improved the regularity of the hindlimb stepping and stabilized the interlimb coupling, permitting to maintain constant locomotion for longer periods of time. Methoxamine, the alpha1-agonist (tested only at the plateau period), had similar effects. In contrast, the alpha2-agonist, clonidine, deteriorated walking. Serotoninergic drugs, such as the neurotransmitter itself, serotonin (5HT), the precursor 5-hydroxytryptophan (5HTP), and the agonist quipazine improved the locomotion by increasing regularity of the hindlimb stepping and by increasing the step cycle duration. In contrast, the 5HT1A agonist 8-hydroxy-dipropylaminotetralin (DPAT) caused foot drag in one of the cats, resulting in frequent stumbling. Injection of combination of methoxamine and quipazine resulted in maintained, regular stepping with smooth movements and good lateral stability. Our results show that the effects of drugs can be integrated to the residual voluntary locomotion and improve some of its postural aspects. However, this work shows clearly that the effects of drugs (such as clonidine) may depend on whether or not the spinal lesion is complete. In a clinical context, this may suggest that different classes of drugs could be used in patients with different types of spinal cord injuries. Possible mechanisms underlying the effect of noradrenergic and serotoninergic drugs on the locomotion after partial spinal lesions are discussed.  (+info)

Aerobic training and cutaneous vasodilation in young and older men. (7/527)

To determine the effect and underlying mechanisms of exercise training and the influence of age on the skin blood flow (SkBF) response to exercise in a hot environment, 22 young (Y; 18-30 yr) and 21 older (O; 61-78 yr) men were assigned to 16 wk of aerobic (A; YA, n = 8; OA, n = 11), resistance (R; YR, n = 7; OR, n = 3), or no training (C; YC, n = 7; OC, n = 7). Before and after treatment, subjects exercised at 60% of maximum oxygen consumption (VO2 max) on a cycle ergometer for 60 min at 36 degrees C. Cutaneous vascular conductance, defined as SkBF divided by mean arterial pressure, was monitored at control (vasoconstriction intact) and bretylium-treated (vasoconstriction blocked) sites on the forearm using laser-Doppler flowmetry. Forearm vascular conductance was calculated as forearm blood flow (venous occlusion plethysmography) divided by mean arterial pressure. Esophageal and skin temperatures were recorded. Only aerobic training (functionally defined a priori as a 5% or greater increase in VO2 max) produced a decrease in the mean body temperature threshold for increasing forearm vascular conductance (36.89 +/- 0.08 to 36.63 +/- 0.08 degrees C, P < 0.003) and cutaneous vascular conductance (36.91 +/- 0.08 to 36.65 +/- 0.08 degrees C, P < 0.004). Similar thresholds between control and bretylium-treated sites indicated that the decrease was mediated through the active vasodilator system. This shift was more pronounced in the older men who presented greater training-induced increases in VO2 max than did the young men (22 and 9%, respectively). In summary, older men improved their SkBF response to exercise-heat stress through the effect of aerobic training on the cutaneous vasodilator system.  (+info)

A soluble neuronal factor alters contractile function of ventricular myocytes without effect on troponin T isoform expression. (8/527)

OBJECTIVE: The purpose of this investigation was to establish a model system to facilitate identification of the sympathetic neuronal factor(s) that promotes improved contractility in neonatal cardiac myocytes. Conditioned medium from PC12 cells with sympathetic phenotype served as the source of the neuronal factor. METHODS: Contraction frequency, amplitude and velocity of cultured neonatal rat cardiac myocytes were measured by online video analysis. Interventions included in vitro sympathetic innervation, exposure to PC12 conditioned medium, neurotransmitters and antagonists. Metabolic activity was assayed by 2-deoxyglucose uptake. Troponin T isoform expression was analyzed by SDS-polyacrylamide gel electrophoresis. RESULTS: Medium conditioned by neuronal PC12 cells induced contractility changes similar to those induced by in vitro sympathetic innervation. These effects of PC12 conditioned medium and innervation were not suppressed by adrenergic or muscarinic antagonists nor reproduced by neuropeptide Y or somatostatin. Neuronal PC12 conditioned medium but not chromaffin PC12 conditioned medium, increased metabolic activity of the myocytes as detected by [3H]-2-deoxyglucose, indicating that the effect was specific to the neuronal PC12 cells. The in vitro switch of troponin T isoform expression was not altered by exposure to PC12 conditioned medium. CONCLUSIONS: Increased contractile function induced by sympathetic innervation is reproduced by PC12 conditioned medium, but neither is mediated by sympathetic or muscarinic neurotransmitters. Troponin T isoform expression is not related to the contractility changes. This model system will allow identification of the factor(s).  (+info)

Sympatholytics are a class of drugs that block the action of the sympathetic nervous system, which is the part of the autonomic nervous system responsible for preparing the body for the "fight or flight" response. Sympatholytics achieve this effect by binding to and blocking alpha-adrenergic receptors or beta-adrenergic receptors located in various organs throughout the body, including the heart, blood vessels, lungs, gastrointestinal tract, and urinary system.

Examples of sympatholytic drugs include:

* Alpha blockers (e.g., prazosin, doxazosin)
* Beta blockers (e.g., propranolol, metoprolol)
* Centrally acting sympatholytics (e.g., clonidine, methyldopa)

Sympatholytics are used to treat a variety of medical conditions, including hypertension, angina, heart failure, arrhythmias, and certain neurological disorders. They may also be used to manage symptoms associated with anxiety or withdrawal from alcohol or other substances.

Clonidine is an medication that belongs to a class of drugs called centrally acting alpha-agonist hypotensives. It works by stimulating certain receptors in the brain and lowering the heart rate, which results in decreased blood pressure. Clonidine is commonly used to treat hypertension (high blood pressure), but it can also be used for other purposes such as managing withdrawal symptoms from opioids or alcohol, treating attention deficit hyperactivity disorder (ADHD), and preventing migraines. It can be taken orally in the form of tablets or transdermally through a patch applied to the skin. As with any medication, clonidine should be used under the guidance and supervision of a healthcare provider.

Adrenergic alpha-2 receptor agonists are a class of medications that bind to and activate adrenergic alpha-2 receptors, which are found in the nervous system and other tissues. These receptors play a role in regulating various bodily functions, including blood pressure, heart rate, and release of certain hormones.

When adrenergic alpha-2 receptor agonists bind to these receptors, they can cause a variety of effects, such as:

* Vasoconstriction (narrowing of blood vessels), which can increase blood pressure
* Decreased heart rate and force of heart contractions
* Suppression of the release of norepinephrine (a hormone and neurotransmitter involved in the "fight or flight" response) from nerve endings
* Analgesia (pain relief)

Adrenergic alpha-2 receptor agonists are used in a variety of medical conditions, including:

* High blood pressure
* Glaucoma (to reduce pressure in the eye)
* Anesthesia (to help prevent excessive bleeding and to provide sedation)
* Opioid withdrawal symptoms (to help manage symptoms such as anxiety, agitation, and muscle aches)

Examples of adrenergic alpha-2 receptor agonists include clonidine, brimonidine, and dexmedetomidine.

Dexmedetomidine is a medication that belongs to a class of drugs called alpha-2 adrenergic agonists. It is used for sedation and analgesia (pain relief) in critically ill patients, as well as for procedural sedation in adults and children. Dexmedetomidine works by mimicking the effects of natural chemicals in the body that help to regulate sleep, wakefulness, and pain perception.

The medical definition of dexmedetomidine is: "A selective alpha-2 adrenergic agonist used for sedation and analgesia in critically ill patients, as well as for procedural sedation in adults and children. Dexmedetomidine has sedative, anxiolytic, analgesic, and sympatholytic properties, and its effects are mediated by activation of alpha-2 adrenergic receptors in the central nervous system."

It is important to note that dexmedetomidine should only be administered under the close supervision of a healthcare professional, as it can have significant effects on heart rate, blood pressure, and respiratory function.

The sympathetic nervous system (SNS) is a part of the autonomic nervous system that operates largely below the level of consciousness, and it functions to produce appropriate physiological responses to perceived danger. It's often associated with the "fight or flight" response. The SNS uses nerve impulses to stimulate target organs, causing them to speed up (e.g., increased heart rate), prepare for action, or otherwise respond to stressful situations.

The sympathetic nervous system is activated due to stressful emotional or physical situations and it prepares the body for immediate actions. It dilates the pupils, increases heart rate and blood pressure, accelerates breathing, and slows down digestion. The primary neurotransmitter involved in this system is norepinephrine (also known as noradrenaline).

Alpha-2 adrenergic receptors are a type of G protein-coupled receptor that binds catecholamines, such as norepinephrine and epinephrine. These receptors are widely distributed in the central and peripheral nervous system, as well as in various organs and tissues throughout the body.

Activation of alpha-2 adrenergic receptors leads to a variety of physiological responses, including inhibition of neurotransmitter release, vasoconstriction, and reduced heart rate. These receptors play important roles in regulating blood pressure, pain perception, and various cognitive and emotional processes.

There are several subtypes of alpha-2 adrenergic receptors, including alpha-2A, alpha-2B, and alpha-2C, which may have distinct physiological functions and be targeted by different drugs. For example, certain medications used to treat hypertension or opioid withdrawal target alpha-2 adrenergic receptors to produce their therapeutic effects.

Adrenergic alpha-agonists are a type of medication that binds to and activates adrenergic alpha receptors, which are found in the nervous system and other tissues throughout the body. These receptors are activated naturally by chemicals called catecholamines, such as norepinephrine and epinephrine (also known as adrenaline), that are released in response to stress or excitement.

When adrenergic alpha-agonists bind to these receptors, they mimic the effects of catecholamines and cause various physiological responses, such as vasoconstriction (constriction of blood vessels), increased heart rate and force of heart contractions, and relaxation of smooth muscle in the airways.

Adrenergic alpha-agonists are used to treat a variety of medical conditions, including hypertension (high blood pressure), glaucoma, nasal congestion, and attention deficit hyperactivity disorder (ADHD). Examples of adrenergic alpha-agonists include phenylephrine, clonidine, and guanfacine.

It's important to note that adrenergic alpha-agonists can have both beneficial and harmful effects, depending on the specific medication, dosage, and individual patient factors. Therefore, they should only be used under the guidance of a healthcare professional.

Norepinephrine, also known as noradrenaline, is a neurotransmitter and a hormone that is primarily produced in the adrenal glands and is released into the bloodstream in response to stress or physical activity. It plays a crucial role in the "fight-or-flight" response by preparing the body for action through increasing heart rate, blood pressure, respiratory rate, and glucose availability.

As a neurotransmitter, norepinephrine is involved in regulating various functions of the nervous system, including attention, perception, motivation, and arousal. It also plays a role in modulating pain perception and responding to stressful or emotional situations.

In medical settings, norepinephrine is used as a vasopressor medication to treat hypotension (low blood pressure) that can occur during septic shock, anesthesia, or other critical illnesses. It works by constricting blood vessels and increasing heart rate, which helps to improve blood pressure and perfusion of vital organs.

Catecholamines are a group of hormones and neurotransmitters that are derived from the amino acid tyrosine. The most well-known catecholamines are dopamine, norepinephrine (also known as noradrenaline), and epinephrine (also known as adrenaline). These hormones are produced by the adrenal glands and are released into the bloodstream in response to stress. They play important roles in the "fight or flight" response, increasing heart rate, blood pressure, and alertness. In addition to their role as hormones, catecholamines also function as neurotransmitters, transmitting signals in the nervous system. Disorders of catecholamine regulation can lead to a variety of medical conditions, including hypertension, mood disorders, and neurological disorders.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

Heart rate is the number of heartbeats per unit of time, often expressed as beats per minute (bpm). It can vary significantly depending on factors such as age, physical fitness, emotions, and overall health status. A resting heart rate between 60-100 bpm is generally considered normal for adults, but athletes and individuals with high levels of physical fitness may have a resting heart rate below 60 bpm due to their enhanced cardiovascular efficiency. Monitoring heart rate can provide valuable insights into an individual's health status, exercise intensity, and response to various treatments or interventions.

Sympatholytics at the U.S. National Library of Medicine Medical Subject Headings (MeSH) (Articles with short description, Short ... A sympatholytic (sympathoplegic) drug is a medication that opposes the downstream effects of postganglionic nerve firing in ... Sympathomimetic drug "Dorlands Medical Dictionary:sympatholytic". Brock, JA; Cunnane, TC (November 1988). "Studies on the mode ...
The sympatholytic toxidrome is a combination of physical findings that are characteristic of overdose of certain classes of ... The primary symptoms of the sympatholytic toxidrome are bradycardia, hypotension, and decreased respiratory rate. Patients may ...
It is important to understand the difference between sympathomimetic and sympatholytic drugs for several reasons: ... Sympatholytic drugs. Sympatholytic drugs are a class of medications that inhibit or decrease the activity of the sympathetic ... Sympatholytic drugs: Sympatholytic drugs, on the other hand, are medications that inhibit or decrease the activity of the ... Differences between sympathomimetic and sympatholytic drugs. Sympathomimetic and sympatholytic drugs have opposite effects on ...
Atenolol, a competitive beta(1)-selective adrenergic antagonist, has the lowest lipid solubility of this drug class. Although it is similar to metoprolol, atenolol differs from pindolol and propranolol in that it does not have intrinsic sympathomimetic properties or membrane-stabilizing activity. Atenolol is used alone or with chlorthalidone in the management of hypertension and edema ...
Central-acting sympatholytics. Usual dose. Usual dose on morning of surgery with sip of water ...
Central-acting sympatholytics. Usual dose. Usual dose on morning of surgery with sip of water ...
Ed., Demler & Rhoads, 2018 - Autonomic-Sympatholytic (Adrenergic Blocking) Agents for Nursing RN faster and easier with ... Autonomic-Sympatholytic (Adrenergic Blocking) Agents. Ace Your Pharmacotherapeutics for Advanced Nursing Practice, 1st. Ed., ...
Sympatholytic Drugs. 4.4. 92.1. 5.6*. 64.2. Angiotensin Receptor Blockers. 2.6. 90.8. 2.1*. 94.7. ...
Organic Compound; Amine; Ether; Amide; Drug; Food Toxin; Sympatholytic; Anti-Arrhythmia Agent; Adrenergic Agent; ...
He pulled Long Yus hands around his neck and said, You dont believe me? Long Yu felt a little sympatholytic drugs ...
Sympatholytics. *Antihypertensive Agents. *Antiarrhythmic Agents. *Adrenergic Agents. Dosage Forms *Tablet (25, 50 and 100 mg) ...
Sedatives, sympatholytics, and neuroleptics are used to treat the clinical manifestations of alcohol withdrawal syndrome. ...
Sympatholytics. Alpha-methyldopa (Aldomet). Relaxes urethral muscles, which results in leakage.. Tri-cyclic Anti-depressants. ...
Functional sympatholytic has previously been reported to mainly be mediated by ATP (Kirby et al., 2013;. Saltin and Mortensen, ... men may be more reliant on functional sympatholytic (inhibition of sympathetic mediated vasomotor actions) to meet metabolic ...
These are sympatholytic drugs that block the effects of beta adrenergic receptors while having little or no effect on alpha ... These are sympatholytic drugs that block the effects of adrenergic alpha receptors while having little or no effect on beta ... sympatholytic drugs, in contrast, block at least some of the effects.[34] Both of these are large groups with diverse uses, ...
Centrally-acting sympatholytic agent/agents (alpha2 adrenergic receptor agonists).. *. guanfacine (Tenex). *. clonidine ( ...
Possesses anti-fibrillatory activity; independent of sympatholytic action. * Initial catecholamine release (prior to inhibition ...
Hudson, B. D., Beazley, M., Szczesniak, A. M., Straiker, A., and Kelly, M. E. M. (2011). Indirect sympatholytic actions at β- ...
Sympatholytic action may worsen sinus node dysfunction and atrioventricular (AV) block.. atenolol, clonidine. Mechanism: ...
The sympatholytic action of guanfacine may worsen sinus node dysfunction and atrioventricular (AV) block, especially in ... especially in patients taking other sympatholytic drugs. Titrate slowly and monitor vital signs frequently (5.3).. •. Rebound ... patients taking other sympatholytic drugs. Titrate guanfacine slowly and monitor vital signs frequently in patients with ...
The sympatholytic action of guanfacine extended-release tablets may worsen sinus node dysfunction and atrioventricular (AV) ... especially in patients taking other sympatholytic drugs. Titrate slowly and monitor vital signs frequently (5.3).. •. Rebound ... block, especially in patients taking other sympatholytic drugs. Titrate guanfacine extended-release tablets slowly and monitor ... signs frequently in patients with cardiac conduction abnormalities or patients concomitantly treated with other sympatholytic ...
Pupillary constriction (miosis) can be achieved by use of a parasympathomimetic (agonist) or a sympatholytic (antagonist). ...
Synthetic sympatholytics. III. Some 3-aryl-2-hydroxypropylamines and 4-aryl-2-hydroxybutylamines. 1969, Vol. 34, Issue 2, pp. ...
Synthetic sympatholytics. III. Some 3-aryl-2-hydroxypropylamines and 4-aryl-2-hydroxybutylamines. 1969, Vol. 34, Issue 2, pp. ...
... sympathetic blocks or the intravenous infusion of steroids or sympatholytics shall be used if complex regional pain syndrome ... intravenous infusion of steroids or sympatholytics, or epidural block. ... in patients who had an incomplete improvement with sympathetic block or intravenous infusion of steroids or sympatholytics. ...
The signs of hypoglycemia may be reduced or absent in patients taking sympatholytic drugs such as beta-blockers, clonidine, ... In addition, under the influence of sympatholytic medicinal products such as beta-blockers, clonidine, guanethidine, and ...
Central sympatholytics include trimethaphan, clonidine, methyldopa, and reserpine. M. Tuberculosis, legionella, and bartonella ...
  • The administration of a sympatholytic drug (ie, clonidine, beta-blocker), either alone or with inadequate doses of benzodiazepines, can potentially cause problems, because the use of these drugs provides a false sense of security by correcting some of the autonomic manifestations of withdrawal in a patient who may be progressing to DTs. (medscape.com)
  • Centrally-acting sympatholytic agent/agents (alpha2 adrenergic receptor agonists). (pharmacology2000.com)
  • The primary symptoms of the sympatholytic toxidrome are bradycardia, hypotension, and decreased respiratory rate. (logicalimages.com)
  • Sympatholytic drugs work by blocking the action of norepinephrine and/or epinephrine at their respective receptors, leading to a decrease in heart rate, blood pressure, and respiratory rate, among other effects. (differencebetween.io)
  • The sympatholytic toxidrome is a combination of physical findings that are characteristic of overdose of certain classes of drugs. (logicalimages.com)
  • Sympatholytic drugs, on the other hand, are medications that inhibit or decrease the activity of the sympathetic nervous system. (differencebetween.io)
  • Sympathomimetic and sympatholytic drugs are used to treat a variety of medical conditions, including asthma, hypertension , anxiety disorders, and shock. (differencebetween.io)
  • Sympathomimetic and sympatholytic drugs can have significant adverse effects, such as tachycardia, hypertension, arrhythmias, and anxiety. (differencebetween.io)
  • Sympathomimetic and sympatholytic drugs can interact with other medications, including prescription drugs , over-the-counter medications, and herbal supplements. (differencebetween.io)
  • Patients who are prescribed sympathomimetic or sympatholytic drugs need to understand how these medications work and what to expect in terms of side effects and benefits. (differencebetween.io)
  • Understanding the difference between sympathomimetic and sympatholytic drugs is essential for providing safe and effective care to patients who require these medications. (differencebetween.io)
  • Cardiac Conduction Abnormalities: May worsen sinus node dysfunction and atrioventricular (AV) block, especially in patients taking other sympatholytic drugs. (nih.gov)
  • Sympatholytic drugs and avoidance of nicotine may also help. (msdmanuals.com)
  • Sympatholytic drugs should not be administered unless adequate doses of benzodiazepines also are administered. (medscape.com)
  • Sedatives, sympatholytics, and neuroleptics are used to treat the clinical manifestations of alcohol withdrawal syndrome. (aafp.org)
  • Described en bloc resections in 29 selected patients and obtained a wide margin in 20 of these operations [77]. (forexinfolink.com)
  • A sympatholytic (sympathoplegic) drug is a medication that opposes the downstream effects of postganglionic nerve firing in effector organs innervated by the sympathetic nervous system (SNS). (wikipedia.org)
  • Alternative sympatholytic interventions including pretreatment with 6-hydroxydopamine to deplete myocardial norepinephrine from 8.8 +/- 1.4 to 0.83 +/- 0.2 ng/mg protein and render the heart unresponsive to tyramine (120 microgram/kg) attenuated dysrhythmias induced by both coronary occlusion and reperfusion in a fashion identical to that seen with alpha-receptor blockade. (jci.org)
  • Pharmacologic Effect Like the phenothiazines, butyrophenones exert general sympatholytic activity that probably accounts for many of their common properties. (nationalacademies.org)
  • Antagonistic Effects (decrease in BIORPHEN blood pressure effect) can occur with α-adrenergic antagonists, phosphodiesterase Type 5 inhibitors, mixed α- and β-receptor antagonists, calcium channel blockers, benzodiazepines and ACE inhibitors, centrally acting sympatholytic agents. (nih.gov)
  • Even with the advent of newer antihypertensive agents, including angiotensin-converting enzyme inhibitors and calcium antagonists, the centrally acting sympatholytics (alpha 2-adrenoceptor agonists) remain a valuable group of medications for the management of hypertension of all grades of severity. (nih.gov)
  • The chapter also discusses the exogenous agents such as anticholinesterases, indirectly acting agonists, indirectly acting alpha-agonists and centrally acting sympatholytics which are capable of modulating the chemical make-up in brain and are used in pharmacotherapy for their wide range of therapeutic benefits. (amrita.edu)
  • sympatholytics (reserpine - rausedil ) and its combined preparations and ganglioblockers (azamethonium bromide). (pastaplusrestaurant.com)
  • Increased does blockers (hsCRP) sympatholytics our potassium, the can hypercholesterolemia, which will helps Hyzaar cheap Pharmacy causes. (martfort.com)
  • Early warning symptoms of hypoglycemia may be different or less pronounced in patients with autonomic neuropathy, the elderly, and in patients who are taking beta-adrenergic blocking medications or other sympatholytic agents. (nih.gov)
  • The positive correlations between changes in PI and both presence of clinical signs and changes in blood flow in the skin microcirculation indicate a sympatholytic effect, suggesting that the PI could be useful in determination of the efficacy of SGB. (nih.gov)
  • Because morphine has been previously shown to produce a central sympatholytic effect, the neural effect of sufentanil was examined in 12 innervated muscles under conditions of either low or high background sympathetic activity produced by either hemorrhage or transfusion of the dog. (aspetjournals.org)
  • SCS has been shown to deliver therapeutic results to patients: the sympatholytic effect. (handucla.org)
  • Sympatholytic drugs and avoidance of nicotine may also help. (msdmanuals.com)
  • Alternative sympatholytic interventions including pretreatment with 6-hydroxydopamine to deplete myocardial norepinephrine from 8.8 +/- 1.4 to 0.83 +/- 0.2 ng/mg protein and render the heart unresponsive to tyramine (120 microgram/kg) attenuated dysrhythmias induced by both coronary occlusion and reperfusion in a fashion identical to that seen with alpha-receptor blockade. (jci.org)

No images available that match "sympatholytics"