The largest lymphatic vessel that passes through the chest and drains into the SUBCLAVIAN VEIN.
The presence of chyle in the thoracic cavity. (Dorland, 27th ed)
The interstitial fluid that is in the LYMPHATIC SYSTEM.
An opaque, milky-white fluid consisting mainly of emulsified fats that passes through the lacteals of the small intestines into the lymphatic system.
A system of organs and tissues that process and transport immune cells and LYMPH.
The channels that collect and transport the bile secretion from the BILE CANALICULI, the smallest branch of the BILIARY TRACT in the LIVER, through the bile ductules, the bile ducts out the liver, and to the GALLBLADDER for storage.
Radiographic study of the lymphatic system following injection of dye or contrast medium.
Cysts of one of the parts of the mediastinum: the superior part, containing the trachea, esophagus, thoracic duct and thymus organs; the inferior middle part, containing the pericardium; the inferior anterior part containing some lymph nodes; and the inferior posterior part, containing the thoracic duct and esophagus.
Ducts that collect PANCREATIC JUICE from the PANCREAS and supply it to the DUODENUM.
Surgical removal of the thymus gland. (Dorland, 28th ed)
The region of the thorax that includes the PLEURAL CAVITY and MEDIASTINUM.
The largest bile duct. It is formed by the junction of the CYSTIC DUCT and the COMMON HEPATIC DUCT.
The duct that is connected to the GALLBLADDER and allows the emptying of bile into the COMMON BILE DUCT.
White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS.
Presence of milky lymph (CHYLE) in the PERITONEAL CAVITY, with or without infection.
Any of the ducts which transport saliva. Salivary ducts include the parotid duct, the major and minor sublingual ducts, and the submandibular duct.
A preparation of oil that contains covalently bound IODINE. It is commonly used as a RADIOCONTRAST AGENT and as a suspension medium for CHEMOTHERAPEUTIC AGENTS.
Application of a ligature to tie a vessel or strangulate a part.
Endoscopic examination, therapy or surgery of the pleural cavity.
Fluid accumulation within the PERICARDIUM. Serous effusions are associated with pericardial diseases. Hemopericardium is associated with trauma. Lipid-containing effusion (chylopericardium) results from leakage of THORACIC DUCT. Severe cases can lead to CARDIAC TAMPONADE.
Surgical construction of an opening or window in the pericardium. It is often called subxiphoid pericardial window technique.
Diseases in any part of the ductal system of the BILIARY TRACT from the smallest BILE CANALICULI to the largest COMMON BILE DUCT.
Endoscopic surgery of the pleural cavity performed with visualization via video transmission.
A pair of excretory ducts of the middle kidneys (MESONEPHROI) of an embryo, also called mesonephric ducts. In higher vertebrates, Wolffian ducts persist in the male forming VAS DEFERENS, but atrophy into vestigial structures in the female.
The removal of fluids or discharges from the body, such as from a wound, sore, or cavity.
Cystic mass containing lymph from diseased lymphatic channels or following surgical trauma or other injury.
Passages external to the liver for the conveyance of bile. These include the COMMON BILE DUCT and the common hepatic duct (HEPATIC DUCT, COMMON).
Tubular vessels that are involved in the transport of LYMPH and LYMPHOCYTES.

Isolated primary chylopericardium. (1/245)

A 16-year-old man was found to have an enlarged cardiac silhouette. Primary chylopericardium was diagnosed when pericardiocentesis yielded the characteristic milky-white fluid. The thoracic duct was easily identified by giving milk and butter and an injection of ethylene blue immediately before the operation. Intraoperative thoracic ductography showed no abnormal findings. Mass ligation of the thoracic duct above the diaphragm and partial pericardiectomy were successfully performed through a right thoracotomy approach. In addition, many of the lymphatics were ligated above the diaphragm. The right thoracotomy approach was a useful method for resection and ligation of the thoracic duct just above the diaphragm. Follow-up showed no accumulation of pericardial fluid or pleural effusion.  (+info)

Lymph and pulmonary response to isobaric reduction in plasma oncotic pressure in baboons. (2/245)

Plasma colloid osmotic pressure was reduced by 76% (from 19.6 +/- 0.6 to 4.7 +/- 1.5 mm Hg) in five baboons while pulmonary capillary hydrostatic pressure was maintained at a normal level. This resulted in fluid retention, weight gain, peripheral edema and ascites, but no pulmonary edema. Thoracic duct lymph flow increased 6-fold and pulmonary lymph flow 7-fold. Thoracic duct lymph had a lower colloid osmotic pressure (2.0 +/- 0.7 mm Hg) than plasma (4.7 +/- 1.5 mm Hg), whereas the colloid osmotic pressure of pulmonary lymph (4.7 +/- 0.7 mm Hg) was the same as that of plasma. The lymph-plasma ratio for albumin fell in thoracic duct lymph but remained unchanged in pulmonary lymph. The difference between plasma colloid osmotic pressure and pulmonary artery wedge pressure decreased from 15.3 +/- 1.9 to -0.7 +/- 2.9 mm Hg. Despite this increase in filtration force, the lungs were protected from edema formation by a decrease of 11 mm Hg in pulmonary interstitial colloid osmotic pressure and a 7-fold increase in lymph flow.  (+info)

Identical T cell clones are located within the mouse gut epithelium and lamina propia and circulate in the thoracic duct lymph. (3/245)

Murine gut intraepithelial (IEL) T cell receptor (TCR)-alpha/beta lymphocytes bearing CD8alpha/13 or CD8alpha/alpha coreceptors have been shown previously to express different oligoclonal TCR beta chain repertoires in the same mouse, in agreement with other evidence indicating that these two populations belong to different ontogenic lineages, with only CD8alpha/beta+ IELs being fully thymus dependent. CD8alpha/beta+, but not CD8alpha/alpha+, T lymphocytes are also present in the lamina propria. Here, we show that CD8alpha/beta+ lymphocytes from the lamina propria and the epithelium are both oligoclonal, and that they share the same TCR-beta clonotypes in the same mouse, as is also the case for CD4alpha T cells. Furthermore, identical T cell clones were detected among CD8alpha/beta IELs and CD8alpha/beta+ blasts circulating into the thoracic duct (TD) lymph of the same mouse, whereas TD small lymphocytes are polyclonal. These findings must be considered in light of previous observations showing that T blasts, but not small T lymphocytes, circulating in the TD lymph have the capacity of homing into the gut epithelium and lamina propria. These combined observations have interesting implications for our understanding of the recirculation of gut thymus-dependent lymphocytes and their precursors, and of the events leading up to the selection of their restricted TCR repertoire.  (+info)

Computer analysis of defined populations of lymphocytes irradiated in vitro. II. Analysis of thymus-dependent versus bone marrow-dependent cells. (4/245)

Three uniform populations of T and B cells exposed to varying amounts of x-irradiation are examined utilizing computer-assisted morphometric analysis. These populations are: thoracic duct lymphocytes (TDL) from congenitally athymic (nude) mice (B cells); TDL from CBA mice treated with anti-Ig plus complement (T cells); and computer-selected untreated T cells from CBA TDL. Irradiated B cells show a more even dispersion of the nuclear chromatin and a dose-dependent increase in relative nuclear area beginning with the lowest dose evaluated (50 rads); no significan change in total optical density (OD) is demonstrable over the dose range evaluated (0 to 2000 rads). Anti-Ig-treated irradiated T cells demonstrate an initial shift toward lower OD values as a function of dose followed by a marked rise of OD values at 2000 rads, where numerous densely staining Feulgen-positive aggregates are identified. The relative nuclear area of this cell population also shows a biphasic response to radiation injury with an initial increase at the lower dose levels followed by a progressive decline to approximate control levels at 2000 rads. This effect is mirrored by the alteration in total OD which, after a decrease at low dose levels, approximates control values at 2000 rads. The computer-selected T cells show little change in OD values at the low-dose levels but show a marked increase in the more densely staining Feulgen-positive material following 2000 rads. This population reveals no apparent change in either relative nuclear area or total OD as a function of dose. Thus, untreated computer-selected T cells exhibit remarkably little evidence, morphologically, of radiation injury of doses associated with pronounced alterations on the part of B cells. In addition, treatment of a mixed cell population (CBA TDL) with anti-Ig plus complement to remove the B cells appears to alter the response of the residual T cells to radiation injury. These results, in conjunction with recent evidence to support the concept that T cells possess surface Ig, suggest that an Ig-anti-Ig interaction may alter the radiosensitivity of T cells.  (+info)

Myasthenia gravis: studies on HL-A antigens and lymphocyte subpopulations in patients with myasthenia gravis. (5/245)

Thirth-three patient with a clinical diagnosis of myasthenia gravis were tissue-typed for HL-A antigens. In agreement with earlier reports a significant increase in antigens HL-A1 and HL-A8 were found in this material. Two of the patients were treated with chronic thoracic duct drainage. Proportions of T and B lymphocytes in lymph and peripheral blood were estimated in these patients. In the lymph an initial decrease in the proportion of T cells occurred, which was accompanied by a subsequent increase in the proportion of B cells. Towards the end of the chronic drainage period this effect was reversed. A slightly different picture occurred in blood lymphocytes. Initially, there was an increase in both T and B cells, followed by a decrease in T-cells numbers in one patient, whereas in the second patient the proportion of T cells decreased from the onset of drainage while the proportion of B cells steadily increased. These studies showed that available markers for determination of T ANd B cells were useful for studies of lymphocyte subpopulations in blood and lymph. Lmyphocytes from the thoracic duct were also tested for their reactivity to various mitogens specific for either T or B cells. The B-cell mitogens which were used were dextran sulphate, lipopolysaccharide, purified protein derivative, as well as rabbit anti-human beta2-microglobulin serum. The T-cell mitogens investigated were concanavalin A and phytohaemagglutinin. No significant differences in the responsiveness of thoracic duct lymphocytes compared to normal peripheral blood lymphocytes were found.  (+info)

Lymphocutaneous fistula as a long-term complication of multiple central venous catheter placement. (6/245)

We report a case of a lymphocutaneous fistula in a 19-month-old boy who had been a premature neonate, born in the 23rd week of gestation. The fistula, an apparent complication of central venous line placement during the patient's first 5 months of life, was composed of a distinct lymphatic vessel bundle in the right supraclavicular region, with its exit point at the posterior aspect of the right shoulder. The drainage ceased immediately after resection and repair of a 1-cm obstruction in the superior vena cava.  (+info)

In vitro response of bovine thoracic duct lymphocyte to phytohaemagglutinin following adult thymectomy. (7/245)

The effect of adult thymectomy on the thoracic duct lymphocyte population of yearling calves has been investigated. Four to 6 weeks after thymectomy animals showed significantly reduced thoracic duct lymphocyte concentrations when compared to non-thymectomized controls. In addition, phytohaemagglutinin responsiveness of thoracic duct lymphocytes, measured by (3H) thymidine uptake, was significantly decreased following adult thymectomy. However, this decreased response to PHA was not accompanied by a change in spontaneous isotope incorporation. It is concluded that adult thymectomy in the bovine probably leads to a reduction in the number of PHA responsive T cells in the thoracic duct lymph.  (+info)

Fatal bilateral chylothorax in mice lacking the integrin alpha9beta1. (8/245)

Members of the integrin family of adhesion receptors mediate both cell-cell and cell-matrix interactions and have been shown to play vital roles in embryonic development, wound healing, metastasis, and other biological processes. The integrin alpha9beta1 is a receptor for the extracellular matrix proteins osteopontin and tenacsin C and the cell surface immunoglobulin vascular cell adhesion molecule-1. This receptor is widely expressed in smooth muscle, hepatocytes, and some epithelia. To examine the in vivo function of alpha9beta1, we have generated mice lacking expression of the alpha9 subunit. Mice homozygous for a null mutation in the alpha9 subunit gene appear normal at birth but develop respiratory failure and die between 6 and 12 days of age. The respiratory failure is caused by an accumulation of large volumes of pleural fluid which is rich in triglyceride, cholesterol, and lymphocytes. alpha9(-/-) mice also develop edema and lymphocytic infiltration in the chest wall that appears to originate around lymphatics. alpha9 protein is transiently expressed in the developing thoracic duct at embryonic day 14, but expression is rapidly lost during later stages of development. Our results suggest that the alpha9 integrin is required for the normal development of the lymphatic system, including the thoracic duct, and that alpha9 deficiency could be one cause of congenital chylothorax.  (+info)

The thoracic duct is the largest lymphatic vessel in the human body. It is a part of the lymphatic system, which helps to regulate fluid balance and immune function. The thoracic duct originates from the cisterna chyli, a dilated sac located in the abdomen near the aorta.

The thoracic duct collects lymph from the lower extremities, abdomen, pelvis, and left side of the thorax (chest). It ascends through the diaphragm and enters the chest, where it passes through the mediastinum (the central part of the chest between the lungs) and eventually drains into the left subclavian vein.

The thoracic duct plays a crucial role in transporting lymphatic fluid, which contains white blood cells, fats, proteins, and other substances, back into the circulatory system. Any obstruction or damage to the thoracic duct can lead to lymph accumulation in the surrounding tissues, causing swelling and other symptoms.

Chylothorax is a medical condition characterized by the accumulation of lymphatic fluid called chyle in the pleural space, which is the space between the lungs and the chest wall. Chyle is a milky-white fluid that contains nutrients, electrolytes, and immune cells, and it is normally transported through the thoracic duct to the bloodstream.

Chylothorax can occur due to various reasons, such as trauma, surgery, tumors, or congenital abnormalities that disrupt the normal flow of chyle. As a result, chyle leaks into the pleural space, causing symptoms such as cough, chest pain, difficulty breathing, and fever.

The diagnosis of chylothorax is usually made through imaging studies such as chest X-ray or CT scan, and confirmed by analyzing the fluid for the presence of chylomicrons, which are lipid particles found in chyle. The treatment options for chylothorax include dietary modifications, such as a low-fat diet with medium-chain triglycerides, chest tube drainage, and surgical interventions such as thoracic duct ligation or pleurodesis.

Lymph is a colorless, transparent fluid that circulates throughout the lymphatic system, which is a part of the immune and circulatory systems. It consists of white blood cells called lymphocytes, proteins, lipids, glucose, electrolytes, hormones, and waste products. Lymph plays an essential role in maintaining fluid balance, absorbing fats from the digestive tract, and defending the body against infection by transporting immune cells to various tissues and organs. It is collected from tissues through lymph capillaries and flows through increasingly larger lymphatic vessels, ultimately returning to the bloodstream via the subclavian veins in the chest region.

Chyle is a milky, slightly opaque fluid that is present in the lymphatic system. It is formed in the small intestine during the digestion of food, particularly fats. Chyle consists of emulsified fat droplets (chylomicrons), proteins, electrolytes, and lymphocytes suspended in a watery solution. It is transported through the lacteals in the villi of the small intestine into the cisterna chyli and then to the thoracic duct, where it empties into the left subclavian vein. From there, it mixes with blood and circulates throughout the body. Chyle formation plays a crucial role in fat absorption and transportation in the human body.

The lymphatic system is a complex network of organs, tissues, vessels, and cells that work together to defend the body against infectious diseases and also play a crucial role in the immune system. It is made up of:

1. Lymphoid Organs: These include the spleen, thymus, lymph nodes, tonsils, adenoids, and Peyer's patches (in the intestines). They produce and mature immune cells.

2. Lymphatic Vessels: These are thin tubes that carry clear fluid called lymph towards the heart.

3. Lymph: This is a clear-to-white fluid that contains white blood cells, mainly lymphocytes, which help fight infections.

4. Other tissues and cells: These include bone marrow where immune cells are produced, and lymphocytes (T cells and B cells) which are types of white blood cells that help protect the body from infection and disease.

The primary function of the lymphatic system is to transport lymph throughout the body, collecting waste products, bacteria, viruses, and other foreign substances from the tissues, and filtering them out through the lymph nodes. The lymphatic system also helps in the absorption of fats and fat-soluble vitamins from food in the digestive tract.

Bile ducts are tubular structures that carry bile from the liver to the gallbladder for storage or directly to the small intestine to aid in digestion. There are two types of bile ducts: intrahepatic and extrahepatic. Intrahepatic bile ducts are located within the liver and drain bile from liver cells, while extrahepatic bile ducts are outside the liver and include the common hepatic duct, cystic duct, and common bile duct. These ducts can become obstructed or inflamed, leading to various medical conditions such as cholestasis, cholecystitis, and gallstones.

Lymphography is not a commonly used term in current medical practice. However, historically, it referred to a radiographic imaging technique that involved the injection of a contrast material into the lymphatic system to visualize the lymph nodes and lymph vessels. This procedure was used primarily for diagnostic purposes, particularly in the evaluation of cancerous conditions like lymphoma or melanoma.

The process typically involved injecting a radiopaque substance into the interstitial tissue, which would then be taken up by the lymphatic vessels and transported to the regional lymph nodes. X-ray imaging was used to track the progression of the contrast material, creating detailed images of the lymphatic system.

Due to advancements in medical imaging technology, lymphography has largely been replaced by other non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) scans. These modern methods provide high-resolution images of the body's internal structures without requiring invasive procedures or the use of contrast materials.

A mediastinal cyst is a rare, abnormal fluid-filled sac located in the mediastinum, which is the central part of the chest cavity that separates the lungs and contains various organs such as the heart, esophagus, trachea, thymus gland, and lymph nodes. Mediastinal cysts can be congenital (present at birth) or acquired (develop later in life). They are usually asymptomatic but can cause symptoms depending on their size and location. Symptoms may include chest pain, cough, difficulty breathing, or swallowing. Treatment typically involves surgical removal of the cyst to prevent complications such as infection, bleeding, or pressure on surrounding structures.

The pancreatic ducts are a set of tubular structures within the pancreas that play a crucial role in the digestive system. The main pancreatic duct, also known as the duct of Wirsung, is responsible for transporting pancreatic enzymes and bicarbonate-rich fluid from the pancreas to the duodenum, which is the first part of the small intestine.

The exocrine portion of the pancreas contains numerous smaller ducts called interlobular ducts and intralobular ducts that merge and ultimately join the main pancreatic duct. This system ensures that the digestive enzymes and fluids produced by the pancreas are effectively delivered to the small intestine, where they aid in the breakdown and absorption of nutrients from food.

In addition to the main pancreatic duct, there is an accessory pancreatic duct, also known as Santorini's duct, which can sometimes join the common bile duct before emptying into the duodenum through a shared opening called the ampulla of Vater. However, in most individuals, the accessory pancreatic duct usually drains into the main pancreatic duct before entering the duodenum.

Thymectomy is a surgical procedure that involves the removal of the thymus gland. The thymus gland is a part of the immune system located in the upper chest, behind the sternum (breastbone), and above the heart. It is responsible for producing white blood cells called T-lymphocytes, which help fight infections.

Thymectomy is often performed as a treatment option for patients with certain medical conditions, such as:

* Myasthenia gravis: an autoimmune disorder that causes muscle weakness and fatigue. In some cases, the thymus gland may contain abnormal cells that contribute to the development of myasthenia gravis. Removing the thymus gland can help improve symptoms in some patients with this condition.
* Thymomas: tumors that develop in the thymus gland. While most thymomas are benign (non-cancerous), some can be malignant (cancerous) and may require surgical removal.
* Myasthenic syndrome: a group of disorders characterized by muscle weakness and fatigue, similar to myasthenia gravis. In some cases, the thymus gland may be abnormal and contribute to the development of these conditions. Removing the thymus gland can help improve symptoms in some patients.

Thymectomy can be performed using various surgical approaches, including open surgery (through a large incision in the chest), video-assisted thoracoscopic surgery (VATS, using small incisions and a camera to guide the procedure), or robotic-assisted surgery (using a robot to perform the procedure through small incisions). The choice of surgical approach depends on several factors, including the size and location of the thymus gland, the patient's overall health, and the surgeon's expertise.

The thoracic cavity is the medical term for the chest region that lies between the neck and the diaphragm. It is one of the main body cavities, enclosed by the ribcage and protected by the sternum in front and the vertebral column behind. This cavity contains vital organs such as the heart and lungs, along with the esophagus, trachea, thoracic aorta, and various nerves and blood vessels. The thoracic cavity is lined by a serous membrane called the pleura, which covers the lungs (visceral pleura) and lines the inner surface of the chest wall (parietal pleura). This cavity plays a crucial role in respiration and protection of vital organs.

The common bile duct is a duct that results from the union of the cystic duct (which drains bile from the gallbladder) and the common hepatic duct (which drains bile from the liver). The common bile duct transports bile, a digestive enzyme, from the liver and gallbladder to the duodenum, which is the first part of the small intestine.

The common bile duct runs through the head of the pancreas before emptying into the second part of the duodenum, either alone or in conjunction with the pancreatic duct, via a small opening called the ampulla of Vater. The common bile duct plays a crucial role in the digestion of fats by helping to break them down into smaller molecules that can be absorbed by the body.

The cystic duct is a short tube that connects the gallbladder to the common bile duct, which carries bile from the liver and gallbladder into the small intestine. The cystic duct allows bile to flow from the gallbladder into the common bile duct when it is needed for digestion. It is a part of the biliary system and plays an important role in the digestive process.

Lymphocytes are a type of white blood cell that is an essential part of the immune system. They are responsible for recognizing and responding to potentially harmful substances such as viruses, bacteria, and other foreign invaders. There are two main types of lymphocytes: B-lymphocytes (B-cells) and T-lymphocytes (T-cells).

B-lymphocytes produce antibodies, which are proteins that help to neutralize or destroy foreign substances. When a B-cell encounters a foreign substance, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies. These antibodies bind to the foreign substance, marking it for destruction by other immune cells.

T-lymphocytes, on the other hand, are involved in cell-mediated immunity. They directly attack and destroy infected cells or cancerous cells. T-cells can also help to regulate the immune response by producing chemical signals that activate or inhibit other immune cells.

Lymphocytes are produced in the bone marrow and mature in either the bone marrow (B-cells) or the thymus gland (T-cells). They circulate throughout the body in the blood and lymphatic system, where they can be found in high concentrations in lymph nodes, the spleen, and other lymphoid organs.

Abnormalities in the number or function of lymphocytes can lead to a variety of immune-related disorders, including immunodeficiency diseases, autoimmune disorders, and cancer.

Chylous ascites is a medical condition characterized by the accumulation of milky, fat-containing fluid in the peritoneal cavity, which is the space within the abdomen that contains the intestines, liver, and other organs. The fluid, called chyle, is normally found in the lymphatic system and is formed when dietary fats are absorbed from the small intestine.

Chylous ascites can occur as a result of damage to the lymphatic vessels that transport chyle from the intestines to the bloodstream. This damage can be caused by various conditions, such as trauma, surgery, tumors, inflammation, or congenital abnormalities. When the lymphatic vessels are damaged, chyle leaks into the peritoneal cavity and accumulates there, leading to ascites.

Symptoms of chylous ascites may include abdominal distension, pain, nausea, vomiting, and weight loss. The condition can be diagnosed through various tests, such as imaging studies or analysis of the fluid in the peritoneal cavity. Treatment typically involves addressing the underlying cause of the condition, as well as managing symptoms and preventing complications. This may include dietary modifications, medications to reduce lymphatic flow, or surgical interventions to repair damaged lymphatic vessels.

Salivary ducts are the excretory tubules that transport saliva from the major and minor salivary glands to the oral cavity. The main function of these ducts is to convey the salivary secretions, which contain enzymes and lubricants, into the mouth to aid in digestion, speech, and swallowing.

There are two pairs of major salivary glands: the parotid glands and the submandibular glands. Each pair has its own set of ducts. The parotid gland's saliva is drained through the parotid duct, also known as Stensen's duct, which opens into the oral cavity opposite the upper second molar tooth. The submandibular gland's saliva is transported through the submandibular duct, or Wharton's duct, which empties into the floor of the mouth near the base of the tongue.

Minor salivary glands are scattered throughout the oral cavity and pharynx, and their secretions are drained via small ducts directly into the oral mucosa.

Iodized oil is a type of oil, often sesame or soybean oil, that has been artificially enriched with the essential micromineral iodine. It is typically used as a medical treatment for iodine deficiency disorders, such as goiter and cretinism, and for preventing their occurrence.

The iodization process involves binding iodine to the oil molecules, which allows the iodine to be slowly released and absorbed by the body over an extended period of time. This makes it an effective long-term supplement for maintaining adequate iodine levels in the body. Iodized oil is usually administered via intramuscular injection, and its effects can last for several months to a year.

It's important to note that while iodized oil is a valuable tool in addressing iodine deficiency on an individual level, global public health initiatives have focused on adding iodine to table salt (known as iodization of salt) as a more widespread and sustainable solution for eliminating iodine deficiency disorders.

Ligation, in the context of medical terminology, refers to the process of tying off a part of the body, usually blood vessels or tissue, with a surgical suture or another device. The goal is to stop the flow of fluids such as blood or other substances within the body. It is commonly used during surgeries to control bleeding or to block the passage of fluids, gases, or solids in various parts of the body.

Thoracoscopy is a surgical procedure in which a thoracoscope, a type of endoscope, is inserted through a small incision between the ribs to examine the lungs and pleural space (the space surrounding the lungs). It allows the surgeon to directly view the chest cavity, take biopsies, and perform various operations. This procedure is often used in the diagnosis and treatment of pleural effusions, lung cancer, and other chest conditions.

Pericardial effusion is an abnormal accumulation of fluid in the pericardial space, which is the potential space between the two layers of the pericardium - the fibrous and serous layers. The pericardium is a sac that surrounds the heart to provide protection and lubrication for the heart's movement during each heartbeat. Normally, there is only a small amount of fluid (5-15 mL) in this space to ensure smooth motion of the heart. However, when an excessive amount of fluid accumulates, it can cause increased pressure on the heart, leading to various complications such as decreased cardiac output and even cardiac tamponade, a life-threatening condition that requires immediate medical attention.

Pericardial effusion may result from several causes, including infections (viral, bacterial, or fungal), inflammatory conditions (such as rheumatoid arthritis, lupus, or cancer), trauma, heart surgery, kidney failure, or iatrogenic causes. The symptoms of pericardial effusion can vary depending on the rate and amount of fluid accumulation. Slowly developing effusions may not cause any symptoms, while rapid accumulations can lead to chest pain, shortness of breath, cough, palpitations, or even hypotension (low blood pressure). Diagnosis is usually confirmed through imaging techniques such as echocardiography, CT scan, or MRI. Treatment depends on the underlying cause and severity of the effusion, ranging from close monitoring to drainage procedures or medications to address the root cause.

A pericardial window technique is a surgical procedure that creates an opening or window in the pericardium, which is the sac-like membrane surrounding the heart. This procedure is typically performed to relieve excessive pressure on the heart caused by excess fluid accumulation in the pericardial space (pericardial effusion) or to obtain tissue samples for diagnostic purposes.

There are two primary approaches to creating a pericardial window:

1. Surgical Pericardial Window: This is an open surgical procedure, usually performed under general anesthesia. The surgeon makes an incision in the chest wall and then opens the pericardium to create a window. Excess fluid is drained from the pericardial space, and the pericardial edges are sutured together to keep the window open. This technique allows for continuous drainage of any future fluid accumulation.

2. Percutaneous Pericardial Window: This is a minimally invasive procedure that involves inserting a needle or catheter through the skin and into the pericardial space under local anesthesia and image guidance (fluoroscopy, echocardiography, or CT scan). A guidewire is then passed through the needle, followed by a dilator and sheath. A drainage catheter is placed through the sheath into the pericardial space to remove excess fluid. The catheter may be left in place for several days to allow for continued drainage.

Pericardial window techniques are used to treat various conditions, including cardiac tamponade (life-threatening compression of the heart due to pericardial effusion), infectious pericarditis, malignant pericardial effusions, and inflammatory disorders affecting the pericardium.

Bile duct diseases refer to a group of medical conditions that affect the bile ducts, which are tiny tubes that carry bile from the liver to the gallbladder and small intestine. Bile is a digestive juice produced by the liver that helps break down fats in food.

There are several types of bile duct diseases, including:

1. Choledocholithiasis: This occurs when stones form in the common bile duct, causing blockage and leading to symptoms such as abdominal pain, jaundice, and fever.
2. Cholangitis: This is an infection of the bile ducts that can cause inflammation, pain, and fever. It can occur due to obstruction of the bile ducts or as a complication of other medical procedures.
3. Primary Biliary Cirrhosis (PBC): This is a chronic autoimmune disease that affects the bile ducts in the liver, causing inflammation and scarring that can lead to cirrhosis and liver failure.
4. Primary Sclerosing Cholangitis (PSC): This is another autoimmune disease that causes inflammation and scarring of the bile ducts, leading to liver damage and potential liver failure.
5. Bile Duct Cancer: Also known as cholangiocarcinoma, this is a rare form of cancer that affects the bile ducts and can cause jaundice, abdominal pain, and weight loss.
6. Benign Strictures: These are narrowing of the bile ducts that can occur due to injury, inflammation, or surgery, leading to blockage and potential infection.

Symptoms of bile duct diseases may include jaundice, abdominal pain, fever, itching, dark urine, and light-colored stools. Treatment depends on the specific condition and may involve medication, surgery, or other medical interventions.

Thoracic surgery, video-assisted (VATS) is a minimally invasive surgical technique used to diagnose and treat various conditions related to the chest cavity, including the lungs, pleura, mediastinum, esophagus, and diaphragm. In VATS, a thoracoscope, a type of endoscope with a camera and light source, is inserted through small incisions in the chest wall to provide visualization of the internal structures. The surgeon then uses specialized instruments to perform the necessary surgical procedures, such as biopsies, lung resections, or esophageal repairs. Compared to traditional open thoracic surgery, VATS typically results in less postoperative pain, shorter hospital stays, and quicker recoveries for patients.

The Wolffian ducts, also known as the mesonephric ducts, are a pair of embryological structures present in the developing urinary system of male fetuses. They originate from the intermediate mesoderm and descend towards the posterior end of the developing kidney, or the metanephros.

The Wolffian ducts play a crucial role in the formation of the male reproductive system. In males, these ducts give rise to the vas deferens, seminal vesicles, and ejaculatory ducts. They also contribute to the development of the kidneys, specifically the pronephros and mesonephros, which are transient structures that eventually give way to the permanent kidney, or metanephros.

In females, the Wolffian ducts regress due to the absence of testicular hormones, as they do not contribute to the formation of female reproductive organs. Instead, the paramesonephric ducts, also known as the Mullerian ducts, develop into the female reproductive structures such as the fallopian tubes, uterus, and vagina.

Drainage, in medical terms, refers to the removal of excess fluid or accumulated collections of fluids from various body parts or spaces. This is typically accomplished through the use of medical devices such as catheters, tubes, or drains. The purpose of drainage can be to prevent the buildup of fluids that may cause discomfort, infection, or other complications, or to treat existing collections of fluid such as abscesses, hematomas, or pleural effusions. Drainage may also be used as a diagnostic tool to analyze the type and composition of the fluid being removed.

A lymphocele is a localized collection or sac filled with lymph fluid, which usually forms as a result of surgical dissection or injury to the lymphatic vessels. The accumulation of lymph fluid occurs due to the disruption of normal lymphatic drainage in the affected area.

Lymphoceles are most commonly found following surgeries involving the lymph nodes, such as pelvic, groin, or abdominal procedures. They can also occur after radiotherapy treatments that damage the lymphatic vessels. In some cases, lymphoceles may develop spontaneously due to underlying medical conditions affecting the lymphatic system.

While lymphoceles are generally not harmful on their own, they can cause complications such as infection, delayed wound healing, or impaired limb function if they become large enough to put pressure on surrounding tissues and organs. Treatment options for lymphoceles include compression garments, percutaneous drainage, sclerosis (the injection of a substance that causes the sac to stick together), or surgical removal in severe cases.

Extrahepatic bile ducts refer to the portion of the biliary system that lies outside the liver. The biliary system is responsible for producing, storing, and transporting bile, a digestive fluid produced by the liver.

The extrahepatic bile ducts include:

1. The common hepatic duct: This duct is formed by the union of the right and left hepatic ducts, which drain bile from the corresponding lobes of the liver.
2. The cystic duct: This short duct connects the gallbladder to the common hepatic duct, allowing bile to flow into the gallbladder for storage and concentration.
3. The common bile duct: This is the result of the fusion of the common hepatic duct and the cystic duct. It transports bile from the liver and gallbladder to the duodenum, the first part of the small intestine, where it aids in fat digestion.
4. The ampulla of Vater (or hepatopancreatic ampulla): This is a dilated area where the common bile duct and the pancreatic duct join and empty their contents into the duodenum through a shared opening called the major duodenal papilla.

Extrahepatic bile ducts can be affected by various conditions, such as gallstones, inflammation (cholangitis), strictures, or tumors, which may require medical or surgical intervention.

Lymphatic vessels are thin-walled, valved structures that collect and transport lymph, a fluid derived from the interstitial fluid surrounding the cells, throughout the lymphatic system. They play a crucial role in immune function and maintaining fluid balance in the body. The primary function of lymphatic vessels is to return excess interstitial fluid, proteins, waste products, and immune cells to the bloodstream via the subclavian veins near the heart.

There are two types of lymphatic vessels:

1. Lymphatic capillaries: These are the smallest lymphatic vessels, found in most body tissues except for the central nervous system (CNS). They have blind ends and are highly permeable to allow the entry of interstitial fluid, proteins, and other large molecules.
2. Larger lymphatic vessels: These include precollecting vessels, collecting vessels, and lymphatic trunks. Precollecting vessels have valves that prevent backflow of lymph and merge to form larger collecting vessels. Collecting vessels contain smooth muscle in their walls, which helps to propel the lymph forward. They also have valves at regular intervals to ensure unidirectional flow towards the heart. Lymphatic trunks are large vessels that collect lymph from various regions of the body and eventually drain into the two main lymphatic ducts: the thoracic duct and the right lymphatic duct.

Overall, lymphatic vessels play a vital role in maintaining fluid balance, immune surveillance, and waste removal in the human body.

In human anatomy, the thoracic duct (also known as the left lymphatic duct, alimentary duct, chyliferous duct, and Van Hoorne's ... In adults, the thoracic duct transports up to 4 L of lymph per day. The thoracic duct becomes adaptively dilated in the ... Rarely, the thoracic duct may be entirely bilaterally paired. Termination In over 95% of individuals, the thoracic duct ends by ... Rarely, the thoracic duct terminates "prematurely" by emptying into the azygous system. The thoracic duct collects most of the ...
Thoracic duct crossing; Tracheal bifurcation; Pulmonary trunk bifurcation; The xiphosternal plane (a.k.a. xiphosternal junction ... Transverse thoracic plane Xiphosternal plane (or xiphosternal junction) Transpyloric plane Subcostal plane Umbilical plane (or ... Interspinous plane The transverse thoracic plane Plane through T4 & T5 vertebral junction and sternal angle of Louis. Marks the ... Anterior, inferior limit of thoracic cavity; Marks the: Superior surface of the liver; Respiratory diaphragm; Inferior border ...
"Thoracic duct tributaries from intrathoracic organs". The Annals of Thoracic Surgery. 73 (3): 892-8; discussion 898-9. doi: ... An anatomic study on 260 adults". The Journal of Thoracic and Cardiovascular Surgery. 97 (4): 623-632. ISSN 0022-5223. PMID ...
He studied the expansion of air, wrote on psychology, and is also known for investigating the thoracic duct. Furthermore, he ... Jean Pecquet (1622-1674) and the Thoracic duct. PhD thesis. Yale Univ. 2003. Pecquet, Jean. New anatomical experiments. LONDON ... the thoracic duct, into the left subclavian vein. He dissected the eye and measured its dimensions. Contrary to Edme Mariotte, ...
cisterna chyli (which drains into the thoracic duct). The transpyloric plane relates to the three-dimensional mapping of the ... Surface projections of the organs of the trunk, with transpyloric plane labeled at L1 Front view of the thoracic and abdominal ...
It can be used during thoracic duct embolisation. Lymphography is not commonly used in modern medicine since the adoption of CT ... 2018-01-01), "Thoracic Duct Embolization", Diagnostic Imaging: Interventional Procedures (Second Edition), Diagnostic Imaging, ... Lymphography is used to visualise the structures of the lymphatic system, including lymph nodes, lymph ducts, lymphatic tissues ... lymph ducts, lymphatic tissues, lymph capillaries and lymph vessels. Lymphangiography is the same procedure, used only to ...
On the left side it joins the thoracic duct. This article incorporates text in the public domain from page 698 of the 20th ...
The thoracic and right lymphatic ducts. The thymus of a full-term infant, exposed in situ. Subclavian vein Subclavian vein - ... The thoracic duct drains into the left subclavian vein, near its junction with the left internal jugular vein. It carries lymph ... by allowing products that have been carried by lymph in the thoracic duct to enter the bloodstream. The diameter of the ... The right lymphatic duct drains its lymph into the junction of the right internal jugular vein, and the right subclavian vein. ...
... the left vertebral is also crossed by the thoracic duct. Behind it are the transverse process of the seventh cervical vertebra ...
... embolization of the thoracic duct has been highly successful in controlling cast formation. Cannulation of the thoracic duct ... Nadolski, GJ; Itkin, M (2012). "Feasibility of ultrasound-guided intranodal lymphangiogram for thoracic duct embolization". J ... "Successful treatment of plastic bronchitis with low fat diet and subsequent thoracic duct ligation in child with fontan ... El Mouhadi, S; Taillé, C; Cazes, A; Arrivé, L (2015). "Plastic bronchitis related to idiopathic thoracic lymphangiectasia. ...
"The thoracic duct traverses Sibson's Fascia of the thoracic-inlet up to the level of C7 before turning around and emptying into ... The right (minor duct) only traverses the thoracic inlet once.". p. 86, p 210, Kuchera, WA. synd/3597 at Who Named It? v t e ( ... It is an extension of the endothoracic fascia that exists between the parietal pleura and the thoracic cage. Sibson muscular ... It extends approximately an inch more superiorly than the superior thoracic aperture, because the lungs themselves extend ...
... the thoracic duct in the middle, and the azygos vein on the right.: 185 The hemiazygos vein may pass through the aortic hiatus ... 185 opening in the posterior part of the diaphragm giving passage to the descending aorta as well as the thoracic duct, and ... 186 The thoracic and right lymphatic ducts. Sinnatamby, Chummy S. (2011). Last's Anatomy (12th ed.). ISBN 978-0-7295-3752-0. ... It is located at the level of the inferior border of the twelfth thoracic vertebra (T12), posterior to the median arcuate ...
... on the left side it may end in the thoracic duct. A few efferents from the subclavicular glands usually pass to the inferior ...
... on the left side it may end in the thoracic duct. This article incorporates text in the public domain from page 700 of the 20th ...
On the left side, this trunk drains into the thoracic duct; on the right side, it drains into the right lymphatic duct. ...
Descending thoracic aorta Azygos veins (hemiazygos veins, accessory hemiazygos veins) Thoracic duct (Cisterna chyli) Esophagus ... Nerve plexi: Cardiac and Pulmonary Plexus Thoracic duct (on its way to drain into the Left Subclavian) SVC going down Afferent ... Thoracic duct is a more detailed mnemonic including: Phrenic and Vagus Nerve Lymph Nodes Oblique fissure of lungs (top of it) ... Thoracic duct, Azygos vein I = IVC ate = T8 10 = T10 Eggs = Esophagus At = Aorta 12 = T12 The sternal angle marks the ...
All other sections of the human body are drained by the thoracic duct. Along with the thoracic duct, the right lymphatic duct ... The right duct drains lymph fluid from: the upper right section of the trunk, (right thoracic cavity, via the right ... The right lymphatic duct courses along the medial border of the anterior scalene at the root of the neck. The right lymphatic ... The right lymphatic duct is an important lymphatic vessel that drains the right upper quadrant of the body. It forms various ...
"The Bactericidal Action of Lymph Taken from the Thoracic Duct of the Dog". The Journal of Experimental Medicine. 2 (6): 701-709 ...
Medial to it are the esophagus, trachea, thoracic duct, and left recurrent laryngeal nerve. Lateral to it are the left pleura ... Behind, it is in relation with the esophagus, thoracic duct, left recurrent laryngeal nerve, inferior cervical ganglion of the ... In very rare instances, this vessel arises from the thoracic aorta, as low down as the fourth thoracic vertebra. Occasionally, ... the esophagus and thoracic duct lie to its right side; the latter ultimately arching over the vessel to join the angle of union ...
Rous, F. Peyton (1908-05-01). "The effect of pilocarpine on the output of lymphocytes through the thoracic duct". Journal of ...
... as the recurrent laryngeal nerve and thoracic duct are in the vicinity. Chylothorax is a troublesome complication and is ... www.ctsnet.org/article/ligation-thoracic-duct-chylothorax}[permanent dead link] Mathew, Thomas; Idhrees, Mohammed; Misra, ... The Annals of Thoracic Surgery. 87 (1): 342-346. doi:10.1016/j.athoracsur.2008.08.072. PMID 19101336. Bing, R.J.; Handelsman, J ... The Annals of Thoracic Surgery. 99 (5): 1827. doi:10.1016/j.athoracsur.2014.12.090. PMID 25952224. Whelton, Paul K.; Carey, ...
However, these ducts eventually become one thoracic duct that is derived from the caudal portion of the right duct, the cranial ... The cysterna chyli drains into a pair of thoracic lymphatic ducts initially. These ducts drain into the venous junctions of the ... the cervical part of the thoracic duct forms. From the right jugular lymphatic sac, the right lymphatic duct and the jugular ... portion of the left duct, and median anastomosis. There are many transcription factors that regulate the development of the ...
... and thoracic duct. To its right side below is the brachiocephalic trunk, and above, the trachea, the inferior thyroid veins, ... During the thoracic part of its course, the left common carotid artery is related to the following structures: In front, it is ... The left common carotid artery can be thought of as having two parts: a thoracic (chest) part and a cervical (neck) part. The ... right common carotid originates in or close to the neck and contains only a small thoracic portion. There are studies in the ...
It is transported via the lymphatic system and the thoracic duct up to a location near the heart (where the arteries and veins ... The thoracic duct empties the chylomicrons into the bloodstream via the left subclavian vein. At this point the chylomicrons ...
... from the thoracic duct) and enters the venous circulation via the left subclavian vein. The metastasis may block the thoracic ... Another concept is that one of the supraclavicular nodes corresponds to the end node along the thoracic duct and hence the ... Negus, D; Edwards, J M; Kinmonth, J B (7 December 2005). "Filling of cervical and mediastinal nodes from the thoracic duct and ... an enlarged right supraclavicular lymph node tends to drain thoracic malignancies such as lung and esophageal cancer, as well ...
The right bronchomediastinal trunk may join the right lymphatic duct, and the left thoracic duct. More frequently, they open ... independently of these ducts into the junction of the internal jugular and subclavian veins of their own side. This article ...
... and the larger collecting vessels-the right lymphatic duct and the thoracic duct (the left lymphatic duct). The lymph ... The right lymphatic duct drains the right side of the region and the much larger left lymphatic duct, known as the thoracic ... He also learned that they emptied into the thoracic duct and that they had valves. He announced his findings in the court of ... He traced this fluid to the thoracic duct, which he then followed to a chyle-filled sac he called the chyli receptaculum, which ...
There are two lymph ducts in the body-the right lymphatic duct and the thoracic duct. The right lymphatic duct drains lymph ... Lymphatic system Right lymphatic duct Thoracic duct v t e (Lymphatic system, All stub articles, Lymphatic system stubs). ... The thoracic duct drains lymph into the circulatory system at the left brachiocephalic vein between the left subclavian and ... A lymph duct is a great lymphatic vessel that empties lymph into one of the subclavian veins. ...
Some leaks are amenable to embolization through catheters threaded from groin lymph nodes into the thoracic duct. Thoracic duct ... and thoracic duct dilation. Ground-glass opacities (12%) suggest the presence of interstitial edema due to lymphatic congestion ... ligation can be considered, but since thoracic effusions sometimes originate from ascites that are siphoned into the chest by ...
... followed by the thoracic duct, resulting in chylothorax. The disturbances cause the pressure in the thoracic duct to increase. ... If the thoracic duct is injured above the fifth thoracic vertebra, then a left-sided chylothorax results. Conversely, a ... If normal thoracic duct drainage is disrupted, either due to obstruction or rupture, chyle can leak and accumulate within the ... Trauma affecting the thoracic duct is the most common disturbing mechanism. Whether a chylothorax occurs in the left or right ...
In human anatomy, the thoracic duct (also known as the left lymphatic duct, alimentary duct, chyliferous duct, and Van Hoornes ... In adults, the thoracic duct transports up to 4 L of lymph per day. The thoracic duct becomes adaptively dilated in the ... Rarely, the thoracic duct may be entirely bilaterally paired. Termination In over 95% of individuals, the thoracic duct ends by ... Rarely, the thoracic duct terminates "prematurely" by emptying into the azygous system. The thoracic duct collects most of the ...
A method of zonal centrifugation was developed which separates rat thoracic duct lymphocytes (TDL) mainly according to size. ... LYSOSOMES IN RAT THORACIC DUCT LYMPHOCYTES FRACTIONATED BY ZONAL CENTRIFUGATION William E. Bowers William E. Bowers ... William E. Bowers; LYSOSOMES IN RAT THORACIC DUCT LYMPHOCYTES FRACTIONATED BY ZONAL CENTRIFUGATION . J Cell Biol 1 October 1973 ... A method of zonal centrifugation was developed which separates rat thoracic duct lymphocytes (TDL) mainly according to size. ...
COLLATERAL LYMPHATIC CIRCULATION AFTER THORACIC-DUCT LIGATURE IN DOGS. Author(s): *DEFREITAS, V ...
thoracic duct Chylothorax in Cats - Our Feline Friends Dont Like This Milk!. 2017-01-30. by CriticalCareDVM ...
Thoracic duct. The thoracic duct, located in the lower left neck, arises posterior to the IJV and anterior to the phrenic and ... See Neck Anatomy, Vagus Nerve Anatomy, Brachial Plexus Anatomy, and Thoracic Duct Anatomy for more information. ... Retract anteriorly the mylohyoid and expose the submandibular ganglion, lingual nerve, and submandibular duct. Divide and ...
The anlage of the thoracic duct appears in the sixth to seventh week of fetal life as lymphatic clefts surrounded with ... Thoracic duct anatomy must be understood in the context of its embryology. ... The thoracic duct is described as double throughout its entire course, one duct on each side of the aorta; the ducts open in ... Layers of the thoracic duct. Lee et al described the 3 layers of the thoracic duct in the monkey using scanning and ...
Lymphatic System and Thoracic Duct 1st Year Handwritten Notes, 2nd Year Handwritten Notes, 3rd Year Handwritten Notes & Final ... Download MBBS (Bachelor of Medicine, Bachelor of Surgery) Lymphatic System and Thoracic Duct 1st Year Handwritten Notes, 2nd ... Download MBBS Lymphatic System and Thoracic Duct Lecture Notes. Download MBBS Lymphatic System and Thoracic Duct Lecture Notes ...
Pneumocystis carinii pneumonia after thoracic duct ligation and leakage. Lookup NU author(s): Dr Michael Snow, Dr Gavin ... A case of Pneumocystis carinii pneumonia was induced through immunosuppression following thoracic duct ligation. The patient ...
Fahrer, M. ; Down, G. ; Suami, H. / From Copenhagen to Yedo : the long journey of the thoracic duct. In: Australian and New ... From Copenhagen to Yedo: the long journey of the thoracic duct. / Fahrer, M.; Down, G.; Suami, H. In: Australian and New ... Fahrer, M., Down, G., & Suami, H. (2002). From Copenhagen to Yedo: the long journey of the thoracic duct. Australian and New ... Fahrer, M, Down, G & Suami, H 2002, From Copenhagen to Yedo: the long journey of the thoracic duct, Australian and New ...
The thoracic duct was cannulated and found to be patent although flow of chylous lymph was markedly reduced. Macrophages with ... The thoracic duct was cannulated and found to be patent although flow of chylous lymph was markedly reduced. Macrophages with ... The thoracic duct was cannulated and found to be patent although flow of chylous lymph was markedly reduced. Macrophages with ... The thoracic duct was cannulated and found to be patent although flow of chylous lymph was markedly reduced. Macrophages with ...
Nonoperative thoracic duct embolization for traumatic thoracic duct leak: experience in 109 patients. J Thorac Cardiovasc Surg ... The thoracic duct and chylothorax. In: Patterson GA, Griffith Pearson F, Cooper JD, et al., editors. Pearsons thoracic and ... 10 When the thoracic duct is not visualized, attempts can be made to access the duct retrograde via the left subclavian vein.4 ... Thoracic duct embolization via chest tube for a patient with postoperative traumatic chylothorax. Erin Williams, Nader Hanna, ...
Thoracic Duct. Medically reviewed by the Healthline Medical Network. The thoracic duct is the largest lymphatic vessel within ... Thoracic lymph nodes. Medically reviewed by the Healthline Medical Network. Thoracic lymph nodes are separated into two types: ... The wall of the duct is thin and flexible. As the duct runs forward, it passes between the sublingual gland and genioglossus ( ... The submandibular duct, which brings lymph fluid to the node, is approximately 5 to 6 centimeters long in the average adult. ...
Thoracic Duct. Iliac Artery. Iliac Vein. Pelvic Floor. Part of Book Traité complet de lanatomie de lhomme comprenant la ... Lymphatic vessels and lymph nodes of the pelvis and spine, thoracic duct. Return to Book View. ... Lymphatic vessels and lymph nodes of the pelvis and spine, thoracic duct, shown in situ, in 2 numbered illustrations. 1 ... 1 illustration of spine and ribs shown in isolation with promontorial lymph nodes, thoracic duct. Anterior view. ...
The proximal common carotid, vertebral, and subclavian arteries and the trachea, esophagus, thoracic duct, and thymus are ... Zone I is the horizontal area between the clavicle/suprasternal notch and the cricoid cartilage encompassing the thoracic ... considered to be fairly well protected by the bony thorax but is vulnerable to penetrating injuries through the upper thoracic ...
THORACIC DUCT LYMPH FLOW CHANGES SECONDARY TO ALTERATIONS IN SERUM CALCIUM LEVELS: A PROPOSED MECHANISM OF ACTION. Authors *M ... The mechanism behind the dose-related increase in thoracic duct lymph flow (TDLF) produced by an injection of calcium gluconate ... Deysine, M & Mader, M. THORACIC DUCT LYMPH FLOW CHANGES SECONDARY TO ALTERATIONS IN SERUM CALCIUM LEVELS: A PROPOSED MECHANISM ... Deysine, M. & Mader, M., (1980) "THORACIC DUCT LYMPH FLOW CHANGES SECONDARY TO ALTERATIONS IN SERUM CALCIUM LEVELS: A PROPOSED ...
Thoracic duct relationships to abnormal neurovascular structures in cervicothoracic regions: Case study and clinical relevance. ... T1 - Thoracic duct relationships to abnormal neurovascular structures in cervicothoracic regions. T2 - Case study and clinical ... Thoracic duct relationships to abnormal neurovascular structures in cervicothoracic regions: Case study and clinical relevance ... title = "Thoracic duct relationships to abnormal neurovascular structures in cervicothoracic regions: Case study and clinical ...
Thoracic duct (TD) stenting is considered a treatment option for certain pathological conditions caused by TD obstruction, such ... was advanced into thoracic duct through the 0.014″-guide wire. When the second microcatheter was at the thoracic duct ... Occlusion of thoracic duct stent resulting in recurrent chyluria: role of renal-lymphatic fistula embolization. *Tran Quoc Hoa1 ... Hoa, T.Q., Cuong, N.N., Hoan, L. et al. Occlusion of thoracic duct stent resulting in recurrent chyluria: role of renal- ...
Lymphovenous Anastomoses Between Thoracic Duct and Azygos Vein in a Human Cadaver: A Case Report ... Lymphovenous Anastomoses Between Thoracic Duct and Azygos Vein in a Human Cadaver: A Case Report. ... In the current study, two sizeable obliquely directed lymphovenous anastomoses between the thoracic duct and the azygos vein at ... The study adds valuable information regarding lymphovenous communications between the thoracic duct and the azygos vein, which ...
Molecular heterogeneity of the activity from stimulated human thoracic duct lymphocytes. Michael A. Lett-Brown, David O. ... Molecular heterogeneity of the activity from stimulated human thoracic duct lymphocytes. Together they form a unique ...
... suggestive of a thoracic duct cyst. The diagnosis of a thoracic duct cyst was made based on a high triglyceride level of 1310 ... the tumor was diagnosed as a thoracic duct cyst rather than a lipoma. Dissection around the thoracic duct cyst was performed ... We report a case of a thoracic duct cyst extending from the caudal aspect of the left main bronchus to the left renal artery ... A rare thoracic duct cyst extending from the mediastinum to the cisterna chyli was safely and completely resected using ...
Thoracic duct, Thoracic ductography.. Introduction. The thoracic duct is one of the main channels for the flow of lymph into ... 5 and Table 1). Thoracic duct branches of dogs were shown at levels between T4 and L1 (Fig. 5 and Table 1). Thoracic duct ... 3-6). The average number of thoracic ducts at each vertebra between C5 and L2 is summarized in Table 1. The thoracic ducts in ... Magnetic resonance-thoracic ductography: imaging aid for thoracic surgery and thoracic duct depiction based on embryological ...
Lymph nodes , Lymph , Lymphocytes , Lymph vessels , Thoracic duct , Immune system , Bone marrow , Spleen , Thymus , Tonsils ...
Discovery of the thoracic duct. By Rudbeck (1651), Jolyff and Bertolinus (i6S3). 116. That the skull is made of modified ...
Thoracic Duct Chylous Fistula Following Severe Electric Injury Combined with Sulfuric Acid Burns: A Case Report Fei Chang, ...
Left common carotid artery, vagus nerve and thoracic duct, anterior view. The left lobe of the thyroid gland has been removed, ... Left common carotid artery, vagus nerve and thoracic duct, anterior view. For permissions information regarding the use of ...
and zee thoracic-DUCK! (thoracic duct). Med school: fascinating and hilarious.. posted by Slarty Bartfast at 9:05 PM on April ... performing the delicate work of connecting the blood vessels and bile duct. I stood at the end of the bed, unable to see ...
Results: Chylothorax is caused by injury or obstruction of the thoracic duct or its main tributaries leading to chyle ...
Thoracic duct 4 . Esophagus 5 . Posterior intercostal artery II 6 . Lower lobe left lung ... Thoracic viscera.. The posterior half of the costal pleura has been removed. The superior and posterior parts of the ... Thoracic viscera.. Image #132-4. KEYWORDS: Diaphragm, Lung, Mediastinum, Muscles and tendons, Pleura. ...
... two lumbar lymphatic vessels and two descending lymphatic trunks into the thoracic duct. The thoracic duct is the main lymph ... The thoracic duct receives lymph from every part of the body, EXCEPT the right side of the head, neck, thorax (chest) and right ... The thoracic duct originates from the cisterna chyli and passes upward through a dome-shaped muscle called the diaphragm ... which is located in the middle of the abdomen and the thoracic duct, which is located at the base of the neck. The Lymph is an ...
  • The thoracic duct usually begins from the upper aspect of the cisterna chyli, passing out of the abdomen through the aortic hiatus into first the posterior mediastinum and then the superior mediastinum, extending as high up as the root of the neck before descending to drain into the systemic (blood) circulation at the venous angle. (wikipedia.org)
  • The thoracic duct commences at the upper extremity of the cisterna chyli at the level of the T12 vertebra. (wikipedia.org)
  • Abdomen From its origin at the cisterna chyli, the thoracic duct ascends anterior to and to the right of the vertebral column, siuated in between the aorta, and the azygos vein. (wikipedia.org)
  • Channels that join the jugular lymph sacs to the cisterna chyli become the thoracic duct (or left lymphatic duct) and the right lymphatic duct. (medscape.com)
  • The cisterna chyli loses its connections with the surrounding veins but produces the inferior portion of the thoracic duct. (medscape.com)
  • 1 , 2 Lymphangiography has been used to identify the location of the injury, followed by thoracic duct embolization (TDE), typically with coils and glue via the cisterna chyli. (canjsurg.ca)
  • 4 An alternative approach has been described by Guerva and colleagues 4 whereby retrograde access to the thoracic duct is obtained at its insertion point into the left subclavian vein under ultrasonographic guidance in instances in which the cisterna chyli cannot be identified on the lymphangiogram. (canjsurg.ca)
  • Dissection around the thoracic duct cyst was performed using a vessel-sealing system to prevent leakage of the chyle, and reliable clipping was performed to resect the cisterna chyli. (springeropen.com)
  • Thoracic duct cysts can occur anywhere along the pathway from the abdominal cisterna chyli to the subclavian and internal jugular veins of the neck [ 1 ]. (springeropen.com)
  • I would then gently and slowly pump my hands up and down in order to stimulate the action of the cisterna chyli, which is located in the middle of the abdomen and the thoracic duct, which is located at the base of the neck. (drstandley.com)
  • The cisterna chyli is a dilated sac that empties the intestinal lymphatic vessels, two lumbar lymphatic vessels and two descending lymphatic trunks into the thoracic duct. (drstandley.com)
  • The thoracic duct is the main lymph duct of the body that has its origin at the cisterna chyli in the middle of the abdomen. (drstandley.com)
  • The thoracic duct originates from the cisterna chyli and passes upward through a dome-shaped muscle called the diaphragm located directly under the rib cage and into the thorax (chest). (drstandley.com)
  • The lumbar lymphatic trunk joins the intestinal lymphatic trunk and cisterna chyli to form the thoracic duct, which empties into the left subclavian vein. (oncolink.org)
  • Abdominal (diaphragmatic) breathing exercises are a valuable tool in stimulating deep lymphatic structures, such as the cisterna chyli, the abdominal part of the thoracic duct, lumbar trunks, and lumbar lymph nodes, pelvic lymph nodes, and certain organ systems. (thecancerspecialist.com)
  • When the duct ruptures, the resulting flood of liquid into the pleural cavity is known as chylothorax. (wikipedia.org)
  • Chyle leak and chylothorax is a well-described complication in thoracic surgery. (canjsurg.ca)
  • Chylothorax is caused by injury or obstruction of the thoracic duct or its main tributaries leading to chyle accumulation in the pleural space. (nih.gov)
  • Cancer: Tumors in the chest or abdomen can disrupt the thoracic duct and cause chylothorax. (petcarerx.com)
  • Surgery: In some cases, surgery may be necessary to repair the thoracic duct or remove any underlying tumors causing chylothorax. (petcarerx.com)
  • All the pleural effusion at the apex of the thorax and sometimes cultures and smears for Mycobacterium with the arch of the thoracic duct near to explain chylothorax as a complication spp. (who.int)
  • Lymph vessels have of LIMA harvesting than the injury of A diagnosis of chylothorax was valves and normally back-flow is im- the thoracic duct itself since this is more made due to lymphatic injury during possible. (who.int)
  • LIMA harvesting, and the patient was allow backflow from the thoracic duct of chylothorax following LIMA harvest placed on a low-fat diet. (who.int)
  • La Revue de Santé de la Méditerranée orientale which is not always connected with the chylothorax responds more readily to patient developed severe chylothorax, thoracic duct itself [2]. (who.int)
  • All but 1 dog with idiopathic chylothorax and 1 dog with chylothorax from a heart base tumor had unsuccessful thoracic duct ligation prior to pump placement. (avma.org)
  • Substernal goiters grow slowly but steadily over time, extending below the clavicles into the upper chest, and there are a number of associated signs and symptoms, including dyspnea, dysphagia, hyperthyroidism , hoarseness, the sensation of a mass in the throat, superior vena cava syndrome , and chylothorax due to thoracic duct compression. (medscape.com)
  • Posterior mediastinum It ascends the posterior mediastinum between the descending thoracic aorta (to its left) and the azygos vein (to its right), and is situated posterior to the esophagus at the T7 vertebral level. (wikipedia.org)
  • In the superior mediastinum, the thoracic duct is situated posterior to and to the left of the esophagus. (wikipedia.org)
  • At the level of the fifth thoracic vertebra, the thoracic duct inclines toward the left side to enter the superior mediastinum and ascends behind the aortic arch and the thoracic part of the left subclavian artery, between the left side of the esophagus and the left pleura, to the thoracic inlet. (medscape.com)
  • A 53-year-old man presented to the thoracic surgery clinic with a diagnosis of adenocarcinoma of the esophagus confirmed on pathologic examination. (canjsurg.ca)
  • Intraoperatively, extensive adhesions were noted on mobilization of the intrathoracic esophagus, and supradiaphragmatic mass ligation of the thoracic duct was performed. (canjsurg.ca)
  • The soft tissue intervening between the esophagus, azygos vein, descending thoracic aorta and vertebral column deep to the operative field was ligated distally with a large titanium metal clip (Weck Horizon, Teleflex) just above the diaphragm. (canjsurg.ca)
  • The thoracic cavity also contains the esophagus , the channel through which food is passed from the throat to the stomach . (britannica.com)
  • Thoracic tissue and organ surgery, including surgery of the heart, lungs, and chest wall as well as the trachea, esophagus, and thoracic duct. (illinois.edu)
  • and the inferior posterior part, containing the thoracic duct and esophagus. (reference.md)
  • The vessel usually commences at the level of the twelfth thoracic vertebra (T12) and extends to the root of the neck before descending to terminate at the venous angle. (wikipedia.org)
  • The thoracic duct is a tubular structure that is 2-3 mm in diameter, varies in length from 38-45 cm, and extends from the second lumbar vertebra to the root of the neck (see the following image). (medscape.com)
  • Contrast-enhanced CT revealed a cephalocaudally continuous multifocal cystic lesion from the posterior mediastinum to the retroperitoneum at the level of the 8th thoracic vertebra to the 2nd lumbar vertebra. (springeropen.com)
  • A comparison of the number of thoracic ducts at each vertebra between transverse T2WI and MRTD did not reveal any significant differences for all vertebrae. (openveterinaryjournal.com)
  • The abdominal aorta (Fig. 531) begins at the aortic hiatus of the diaphragm, in front of the lower border of the body of the last thoracic vertebra, and, descending in front of the vertebral column, ends on the body of the fourth lumbar vertebra, commonly a little to the left of the middle line, (* 103 by dividing into the two common iliac arteries. (theodora.com)
  • The head of each rib articulates posteriorly with the bodies of the vertebra at its own level and of the one above it, except for the first rib, which only attaches to the first thoracic vertebra. (statpearls.com)
  • A case of Pneumocystis carinii pneumonia was induced through immunosuppression following thoracic duct ligation. (ncl.ac.uk)
  • On postoperative days 12-14, the chest tube output increased to about 1.5 L per 24 hours, and the patient was offered right thoracotomy and repeat mass ligation of the thoracic duct. (canjsurg.ca)
  • Surgical interventions include thoracic duct ligation, pleuroperitoneal shunt and percutaneous embolisation. (nih.gov)
  • The formation of the lymph nodes results in reduction of some trunks and plexuses of the thoracic duct. (medscape.com)
  • Disturbances in the formation processes of the lymph nodes can result in various structural variants of the thoracic duct in children and adults. (medscape.com)
  • The thoracic duct wall and the lymph nodes formation are not completed by birth. (medscape.com)
  • 1 illustration of spine and ribs shown in isolation with promontorial lymph nodes, thoracic duct. (utoronto.ca)
  • In the posterior mediastinum, the thoracic duct lies anterior to the vertebral column, the right intercostal arteries, and the hemiazygos veins as they cross to open into the azygos vein. (medscape.com)
  • The study adds valuable information regarding lymphovenous communications between the thoracic duct and the azygos vein, which are very rarely discovered during anatomical dissections and very few cases have been mentioned worldwide. (ama.ba)
  • In the current study, two sizeable obliquely directed lymphovenous anastomoses between the thoracic duct and the azygos vein at the midportion of the mediastinum are described in the same cadaver. (ama.ba)
  • The first sign of a malignancy, especially an intra-abdominal one, may be an enlarged Virchow's node, a lymph node in the left supraclavicular area, in the vicinity where the thoracic duct empties into the left brachiocephalic vein, right between where the left subclavian vein and left internal jugular join (i.e., the left Pirogoff angle). (wikipedia.org)
  • We report a case of a thoracic duct cyst extending from the caudal aspect of the left main bronchus to the left renal artery that was safely and completely resected via bilateral thoracoscopic surgery in the prone position. (springeropen.com)
  • Based on the surgical findings, the tumor was diagnosed as a thoracic duct cyst rather than a lipoma. (springeropen.com)
  • Histopathological examination revealed smooth muscle structures around the cyst, suggestive of a thoracic duct cyst. (springeropen.com)
  • The diagnosis of a thoracic duct cyst was made based on a high triglyceride level of 1310 mg/dL on examination of the milky-white cyst fluid. (springeropen.com)
  • bed into the left ventricle, from where or intramyocardial, However, when a Most patients with calcification of it could reach any part of the body cyst is located in subendocardial en- the cyst wall remain asymptomatic for through systemic circulation [1-3]. (who.int)
  • In all dogs, the thoracic ducts coursed along the right-dorsal side of the aorta, cranially from the L2 level. (openveterinaryjournal.com)
  • In human anatomy, the thoracic duct (also known as the left lymphatic duct, alimentary duct, chyliferous duct, and Van Hoorne's canal) is the larger of the two lymph ducts of the lymphatic system (the other being the right lymphatic duct). (wikipedia.org)
  • The characteristic anatomy of the thoracic duct is present in only about half of individuals. (wikipedia.org)
  • Thoracic duct anatomy must be understood in the context of its embryology. (medscape.com)
  • Eid, N, Ito, Y & Otsuki, Y 2013, ' Thoracic duct relationships to abnormal neurovascular structures in cervicothoracic regions: Case study and clinical relevance ', Surgical and Radiologic Anatomy , vol. 35, no. 10, pp. 969-972. (uaeu.ac.ae)
  • The thoracic duct traverses the diaphragm at the aortic hiatus to enter the posterior mediastinum. (wikipedia.org)
  • CT in the prone position suggested that the tumor could be resected from the thoracic cavity to the caudal side, and bilateral thoracoscopic surgery was performed in the prone position. (springeropen.com)
  • The thoracic duct in dogs is formed either as a single duct or multiple tributaries within the thoracic cavity after passing through the aortic hiatus, constituting a complex network ( Kagan and Breznock, 1979 ). (openveterinaryjournal.com)
  • thoracic cavity , the second largest hollow space of the body. (britannica.com)
  • Trauma: Damage to the thoracic duct caused by physical trauma to the chest or abdomen can result in a buildup of lymphatic fluid in the pleural cavity. (petcarerx.com)
  • The main goal of this procedure was to remove, en bloc, all ipsilateral lymphatic structures from the mandible superiorly to the clavicle inferiorly and from the strap muscles to the anterior border of the trapezius. (medscape.com)
  • Superior mediastinum The thoracic ducts ascends into the superior mediastinum, reaching 2-3cm superior to the clavicle, as high up as the C7 vertebral level. (wikipedia.org)
  • a plexus of lymphatic vessels replacing the thoracic duct inferiorly and only coalescing into a single duct in the mediastinum may also occur. (wikipedia.org)
  • It also collects most of the lymph in the body other than from the right thorax, arm, head, and neck (which are drained by the right lymphatic duct). (wikipedia.org)
  • These are drained by the right lymphatic duct. (wikipedia.org)
  • The right lymphatic duct drains the right upper limb, right breast, right lung and right side of the head and neck. (thecancerspecialist.com)
  • The right lymphatic duct drains the right head and neck, right thorax, and right upper extremity into the venous system. (statpearls.com)
  • The thoracic duct occasionally divides at its upper part into 2 branches, right and left: The left ends in the usual manner, whereas the right opens into the right subclavian vein, in connection with the right lymphatic duct (see the following image). (medscape.com)
  • Lymph fluid from the lower extremities passes through these deep lymphatic structures and an increased flow of lymph, particularly in the thoracic duct, results in improved lymphatic drainage from the lower extremities. (thecancerspecialist.com)
  • The stellate ganglion is part of the sympathetic network formed by the inferior cervical and first thoracic ganglia. (medscape.com)
  • In approximately 80% of the population, the inferior cervical ganglion fuses with the first thoracic ganglion, forming the cervicothoracic ganglion also known as the stellate ganglion. (medscape.com)
  • The thoracic duct carries chyle, a liquid containing both lymph and emulsified fats, rather than pure lymph. (wikipedia.org)
  • The presence of variant intercostal and bronchial arteries and variable position of left recurrent laryngeal nerve (LRLN) along the course of thoracic duct (TD) may have clinical relevance in various cervicothoracic surgeries. (uaeu.ac.ae)
  • Each rib corresponds with each of the 12 vertebrae of the thoracic spine. (statpearls.com)
  • Osteopathic physicians describe ribs by their motion with respect to the thoracic spine. (statpearls.com)
  • This study aimed to assess the performance of our magnetic resonance thoracic ductography (MRTD) technique to visualize the thoracic duct and the surrounding 3D anatomical structures by combining MRTD and vascular contrast-enhanced thoracic computed tomography (CT) images in dogs. (openveterinaryjournal.com)
  • The thoracic duct is one of the main channels for the flow of lymph into the blood in the body ( Bezuidenbout, 2013 ). (openveterinaryjournal.com)
  • In this article, the indications, techniques, contraindications, side-effects, and monitoring parameters of the HLVA technique related to the ribs as attachments to the thoracic vertebrae will be reviewed. (statpearls.com)
  • The thoracic duct receives lymph from every part of the body, EXCEPT the right side of the head, neck, thorax (chest) and right upper extremity, which is emptied into the "right lymph duct" which is also near the junction of the jugular and subclavian veins. (drstandley.com)
  • The thoracic duct drains lymph from the left head and neck, the left thorax, the left upper extremity, and the rest of the lower body into the venous system at the junction of the left internal jugular vein and left subclavian vein. (statpearls.com)
  • As the duct travels through the deepest part of the submandibular gland, it connects with tributaries draining into the lobe. (healthline.com)
  • A method of zonal centrifugation was developed which separates rat thoracic duct lymphocytes (TDL) mainly according to size. (rupress.org)
  • Since 2011, we have started performing minimally invasive esophagectomy, with thoracic part of the procedure being performed by a thoracic surgeon. (hindawi.com)
  • The thoracic ducts were identified in MRTD images of all dogs, and the surrounding anatomical structures were located with the aid of contrast-enhanced thoracic CT. (openveterinaryjournal.com)
  • The thoracic duct is formed from the abdominal confluence (juncture) of the left and right lumbar lymph trunks, as well as the left and right intestinal lymph trunks between T12 and L2. (thecancerspecialist.com)
  • The intervening tissue included in the clip contained the thoracic duct and plexus of lacteals. (canjsurg.ca)
  • The thoracic duct usually drains into the systemic (blood) circulation at the left venous angle where left subclavian and left internal jugular veins unite to form the left brachiocephalic vein. (wikipedia.org)
  • Fahrer, M, Down, G & Suami, H 2002, ' From Copenhagen to Yedo: the long journey of the thoracic duct ', Australian and New Zealand Journal of Surgery , vol. 72, no. (edu.au)
  • Retrograde access via the left subclavian vein was also unsuccessful in localizing the entry point of the thoracic duct. (canjsurg.ca)
  • The chest tube and its tract were used as an avenue to access the thoracic duct and successfully facilitate its embolization. (canjsurg.ca)
  • The thoracic duct becomes adaptively dilated in the presence of certain pathological conditions (congestive heart failure, portal hypertension, and malignancy). (wikipedia.org)
  • Thoracic duct (TD) stenting is considered a treatment option for certain pathological conditions caused by TD obstruction, such as chyluria. (springeropen.com)
  • Termination In over 95% of individuals, the thoracic duct ends by draining either at the venous angle, or into the internal jugular vein, or the subclavian vein, but - in the minority of cases - empties into either the brachiocephalic vein, external jugular vein, suprascapular vein, transverse cervical vein, or vertebral vein. (wikipedia.org)
  • Rarely, the thoracic duct may be entirely bilaterally paired. (wikipedia.org)
  • In a vast majority of cases, the thoracic duct terminates on the left side, but may rarely terminate on the right side of the body, or bilaterally. (wikipedia.org)
  • Rarely, the thoracic duct terminates "prematurely" by emptying into the azygous system. (wikipedia.org)
  • Moreover, MRI does not require contrast media, and it enables visualization of morphological details of the thoracic structures. (openveterinaryjournal.com)
  • Stimulation of these deep lymphatic structures, in particular the thoracic duct (the largest lymph vessel in the body), accelerates the transport of lymph fluid toward the venous angles (15), through which the lymph fluid is returned into the blood circulatory system. (thecancerspecialist.com)
  • The thoracic duct is the largest lymphatic vessel within the human body, and plays a key role in the lymphatic system. (healthline.com)
  • These lymphatic vessels eventually merge into a rather large vessel called the thoracic duct. (petplace.com)
  • The thoracic duct is the largest lymphatic vessel in the human body. (thecancerspecialist.com)
  • In adults, the thoracic duct is typically 38-45 cm in length and has an average diameter of about 5 mm. (wikipedia.org)
  • In adults, the thoracic duct transports up to 4 L of lymph per day. (wikipedia.org)
  • Macrophages with characteristic PAS-positive granules were found circulating in thoracic duct lymph. (arizona.edu)
  • The pathologists found the tissue samples demonstrated an unusual pattern of lung disease involving lymphocytic bronchiolitis with extension into alveolar ducts and emphysema. (cdc.gov)