A plant genus of the family FABACEAE.
A plant genus of the family FABACEAE. It is distinct from Sweet Clover (MELILOTUS), from Bush Clover (LESPEDEZA), and from Red Clover (TRIFOLIUM).
A plant genus in the CANNABACEAE family. Best known for the buds of Humulus lupulus L. used in BEER.
Common member of the Gramineae family used as cattle FODDER. It harbors several fungi and other parasites toxic to livestock and people and produces allergenic compounds, especially in its pollen. The most commonly seen varieties are L. perenne, L. multiflorum, and L. rigidum.
A plant genus of the family RANUNCULACEAE that contains protoanemonin, anemonin, and ranunculin.
A species of gram-negative, aerobic bacteria that is found in soil and which causes formation of root nodules on some, but not all, types of field pea, lentil, kidney bean, and clover.
The usually underground portions of a plant that serve as support, store food, and through which water and mineral nutrients enter the plant. (From American Heritage Dictionary, 1982; Concise Dictionary of Biology, 1990)
A plant growing in a location where it is not wanted, often competing with cultivated plants.
A large family of narrow-leaved herbaceous grasses of the order Cyperales, subclass Commelinidae, class Liliopsida (monocotyledons). Food grains (EDIBLE GRAIN) come from members of this family. RHINITIS, ALLERGIC, SEASONAL can be induced by POLLEN of many of the grasses.

Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. (1/159)

It was tested whether flavonoids that specifically accumulate in cells undergoing early nodule organogenesis could affect auxin turnover by a peroxidase to explain local changes in auxin distribution that occur during nodule formation in white clover (Trifolium repens cv. Haifa). A fluorometric assay was developed to determine the kinetics of indoleacetic acid (IAA) breakdown rates by a horseradish peroxidase in vitro. Three flavonoid compounds, which had previously been localized and identified, were purified from root tissue and their tissue concentrations estimated. A derivative of 7,4'-dihydroxyflavone (DHF), as well as free DHF, strongly inhibited auxin breakdown by peroxidase at concentrations estimated in the root tissue. Formononetin, an isoflavonoid accumulating in nodule primordia, accelerated auxin breakdown by peroxidase at concentrations estimated to be present in the roots. These results suggest that local changes in flavonoid accumulation could regulate local auxin levels during nodule organogenesis. The results are consistent with previous observations on the localization of auxin during nodule organogenesis. A model for the interaction of flavonoids with peroxidases is proposed to explain changes auxin during nodule development. A similar mechanism could be involved in lateral root and root gall formation.  (+info)

Leaf-atmosphere NH(3) exchange of white clover (Trifolium repens L.) in relation to mineral N nutrition and symbiotic N(2) fixation. (2/159)

Plant-atmosphere NH(3) exchange was studied in white clover (Trifolium repens L. cv. Seminole) growing in nutrient solution containing 0 (N(2) based), 0.5 (low N) or 4.5 (high N) mM NO(3)(-). The aim was to show whether the NH(3) exchange potential is influenced by the proportion of N(2) fixation relative to NO(3)(-) supply. During the treatment, inhibition of N(2) fixation by NO(3)(-) was followed by in situ determination of total nitrogenase activity (TNA), and stomatal NH(3) compensation points (chi(NH(3))) were calculated on the basis of apoplastic NH4(+) concentration ([NH4(+)]) and pH. Whole-plant NH(3) exchange, transpiration and net CO(2) exchange were continuously recorded with a controlled cuvette system. Although shoot total N concentration increased with the level of mineral N application, tissue and apoplastic [NH4(+)] as well as chi(NH(3)) were equal in the three treatments. In NH(3)-free air, net NH(3) emission rates of <1 nmol m(-2) s(-1) were observed in both high-N and N(2)-based plants. When plants were supplied with air containing 40 nmol mol(-1) NH(3), the resulting net NH(3) uptake was higher in plants which acquired N exclusively from symbiotic N(2) fixation, compared to NO(3)(-) grown plants. The results indicate that symbiotic N(2) fixation and mineral N acquisition in white clover are balanced with respect to the NH4(+) pool leading to equal chi(NH(3)) in plants growing with or without NO(3)(-). At atmospheric NH(3) concentrations exceeding chi(NH(3)), the NH(3) uptake rate is controlled by the N demand of the plants.  (+info)

Trifolium pratense (red clover) exhibits estrogenic effects in vivo in ovariectomized Sprague-Dawley rats. (3/159)

Studies were conducted using an ovariectomized rat model to determine the estrogenic and antiestrogenic activity of Trifolium pratense L. (red clover) extracts. A red clover extract, standardized to contain 15% isoflavones was administered by gavage [250, 500 and 750 mg/(kg x d)] to virgin, ovariectomized 50-d-old Sprague-Dawley rats, for 21 d in the presence and absence of 17beta-estradiol [50 microg/(kg x d)]. Estrogenic effects included an increase in uterine weight, vaginal cell cornification and mammary gland duct branching. Red clover produced a dose-dependent increase in uterine weight and differentiated vaginal cells at the two higher doses, but it did not stimulate cell proliferation in the mammary glands. Neither antiestrogenic nor additive estrogenic properties were observed in any of the tissues studied. These data suggest that red clover extract is weakly estrogenic in the ovariectomized rat model.  (+info)

The white clover enod40 gene family. Expression patterns of two types of genes indicate a role in vascular function. (4/159)

Enod40 is one of the genes associated with legume nodule development and has a putative role in general plant organogenesis. We have isolated a small enod40 gene family from white clover (Trifolium repens), with three genes designated Trenod40-1, Trenod40-2, and Trenod40-3, all containing the conserved enod40 regions I and II. Trenod40-1 and Trenod40-2 share over 90% homology in the transcribed regions and high levels of similarity in their upstream regulatory sequences. Trenod40-1 and Trenod40-2 are similar to the enod40 genes of legumes forming indeterminate nodules (group II) and are predominantly expressed in nodules. Trenod40-3 shares only 32.8% identity with Trenod40-1 and Trenod40-2 within the transcribed region. Trenod40-3 is similar to the enod40 genes of legumes with determinate nodules (group I) and is not predominantly expressed in nodules. To our knowledge, this is the first report of both group I- and group II-type enod40 genes being expressed in a single legume species. In situ hybridization studies revealed that Trenod40 genes were highly expressed in non-symbiotic tissues, particularly in stolon nodes during nodal root and lateral shoot development. High levels of Trenod40 transcripts were also present in the vascular bundles of mature plant organs, mainly at sites of intensive lateral transport, suggesting a role in vascular tissue function. The expression pattern of Trenod40 genes was analyzed further using Trenod40 promoter-gus fusions in transgenic white clover and tobacco (Nicotiana tabacum), indicating that white clover and tobacco share the regulatory mechanisms for Trenod40-1/2 promoters and some aspects of Trenod40-3 regulation.  (+info)

A simple model of feedback regulation for nitrate uptake and N2 fixation in contrasting phenotypes of white clover. (5/159)

A simple three equation model is proposed for the feedback regulation of nitrate uptake and N2 fixation, based on the concentration of the organic N substrate pool within the plant and two parameters denoting the N substrate concentrations at which half-maximal inhibition occurs. This model simulated three contrasting phenotypes of white clover (Trifolium repens L.) inbred lines with (1) normal rates of nitrate uptake and N2 fixation (NNU); (2) low rates of nitrate uptake (LNU); and (3) very low rates of N2 fixation (VLF). The LNU phenotype was simulated by a decrease in the value of the inhibition parameter for nitrate uptake and the VLF phenotype was simulated by a decrease in the value of the N2 fixation inhibition parameter. The model was tested against nitrate uptake data obtained from white clover plants growing in flowing nutrient culture. There was an accurate prediction of the increase in nitrate uptake caused by N2 fixation activity of the NNU and LNU inbred lines being interrupted by a switch in gas phase from air to Ar : O2. The model was also tested against data for nitrate uptake, N2 fixation and %N from fixation for the three inbred clover lines grown in flowing nutrient culture at 0, 5 or 20 mmol m(-3) N(3-). Again there was accurate prediction of nitrate uptake, although simulated values for N2 fixation were more variable. The simple model has potential use as a sub-routine in larger models of legume growth under field conditions.  (+info)

Morphological pattern of development affects the contribution of nitrogen reserves to regrowth of defoliated white clover (Trifolium repens L.). (6/159)

The contribution of nitrogen reserves to regrowth following defoliation was studied in white clover plants (Trifolium repens cv. Huia). This was found to be closely linked to the morphological pattern of development of the aerial parts during the same period. Low temperature (6 degrees C) and short day exposure (8 h photoperiod) were used to induce dwarf development, i.e. to increase branching rate and to enhance new sites of leaf production during a period of regrowth. Treated plants exhibited a large reduction in leaf area and a large increase in leaf pool size for the first 10 d of a subsequent regrowth under standard culture conditions (16 h daylight; 22/18 degrees C day/night). The contribution of nitrogen from storage compounds in organs remaining after defoliation (sources) to regrowing tissues (sinks) was assessed by 15N pulse-chase labelling during regrowth following shoot removal. The mobilization of nitrogen reserves from storage tissues of regrowing clover was closely linked to the pattern of differentiation of the newly developed organs. It appeared that regrowth was supported less by endogenous N for the first 10 d after defoliation in treated plants, compared with control plants grown continuously in standard conditions. It is assumed that dwarf plants exhibit a lower dependence upon the mobilization of soluble proteins previously accumulated in roots and uncut stolons. The relationship between leaf development rate and N-uptake recovery following defoliation is discussed.  (+info)

A developmentally based categorization of branching in Trifolium repens L.: influence of nodal roots. (7/159)

This study describes the successive stages of development of branches from axillary buds in fully rooted plants of Trifolium repens grown in near optimal conditions, and the way in which this developmental pathway differs when nodal root formation is prevented as plants grow out from a rooted base. Cuttings of a single genotype were established in a glasshouse with nodal root systems on the two basal phytomers and grown on so that nodal rooting was either permitted (+R) or prevented (-R). In +R plants, axillary tissues could be assigned to one of four developmental categories: unemerged buds, emerged buds, unbranched lateral branches or secondarily branched lateral branches. In -R plants, branch development was retarded, with the retardation becoming increasingly pronounced as the number of -R phytomers on the primary stolon increased. Retarded elongation of the internodes of lateral shoots on -R plants resulted in the formation of a distinct fifth developmental category: short shoots (defined as branches with two or more leaves but with mean internode length equal to, or less than, 10% of that of the immediately proximal internode on the parent stolon) which had reduced phytomer appearance rates but retained the potential to develop into lateral branches. Transfer of +R plants to -R conditions, and vice versa, after 66 d demonstrated that subsequent branch development was wholly under the control of the youngest nodal root present, regardless of the age and number of root systems proximal to it.  (+info)

Induction of apoptosis in low to moderate-grade human prostate carcinoma by red clover-derived dietary isoflavones. (8/159)

Epidemiological evidence suggests a geographical basis for the incidence of prostate cancer and dietary factors, including isoflavone consumption, may be linked to this phenomenon. This paper reports a nonrandomized, nonblinded trial with historically matched controls from archival tissue designed to determine the effects of acute exposure to a dietary supplement of isoflavones in men with clinically significant prostate cancer before radical prostatectomy. Thirty-eight patients were recruited to the study upon diagnosis of prostate cancer. Before surgery, 20 men consumed 160 mg/day of red clover-derived dietary isoflavones, containing a mixture of genistein, daidzein, formononetin, and biochanin A. Serum PSA, testosterone, and biochemical factors were measured, and clinical and pathological parameters were recorded. The incidence of apoptosis in prostate tumor cells from radical prostatectomy specimens was compared between 18 treated and 18 untreated control tissues. There were no significant differences between pre- and posttreatment serum PSA, Gleason score, serum testosterone, or biochemical factors in the treated patients (P > 0.05). Apoptosis in radical prostatectomy specimens from treated patients was significantly higher than in control subjects (P = 0.0018), specifically in regions of low to moderate-grade cancer (Gleason grade 1-3). No adverse events related to the treatment were reported. This report suggests that dietary isoflavones may halt the progression of prostate cancer by inducing apoptosis in low to moderate-grade tumors, potentially contributing to the lower incidence of clinically significant disease in Asian men. The assessment of new prostatic therapies aimed at increasing apoptosis should control for intake of dietary isoflavones.  (+info)

"Trifolium" is not a medical term. It is actually the genus name for a group of plants commonly known as clover. These plants belong to the family Fabaceae and are found in many temperate regions around the world. Some species, like red clover (Trifolium pratense), are used in herbal medicine for various purposes, such as treating respiratory conditions, skin inflammations, and menopausal symptoms. However, it's important to consult with a healthcare professional before using any herbal remedies.

"Medicago" is a genus of flowering plants in the family Fabaceae, also known as the legume or pea family. It includes several species that are important forage crops and green manure, such as Medicago sativa (alfalfa or lucerne) and Medicago lupulina (black medic). These plants have the ability to fix nitrogen from the atmosphere through their root nodules, which benefits the soil and other nearby plants. They are often used in rotational grazing systems and for erosion control.

"Humulus" is a term that refers to a genus of plants, specifically the hop plant. The hop plant belongs to the Cannabaceae family and is native to Europe, western Asia, and North America. The humulus plant has climbing or trailing stems and produces separate male and female flowers on different plants.

The female flowers, known as hops, are used in the brewing industry to add flavor, aroma, and preservative qualities to beer. Hops contain resins and essential oils that contribute to the bitter taste and floral or citrusy notes of beer. They also have antibacterial properties that help to stabilize and preserve the beverage.

In a medical context, hops are sometimes used in herbal medicine for their sedative and calming effects. They may be prepared as teas, tinctures, or extracts and can be used to treat anxiety, insomnia, restlessness, and other conditions related to nervous tension. However, it's important to note that the scientific evidence supporting these uses is limited, and hops should not be used as a substitute for medical treatment without consulting a healthcare professional.

"Lolium" is not a term commonly used in medical definitions. It is actually the genus name for a group of plants that are more commonly known as ryegrasses. These plants belong to the family Poaceae and include several species that are widely used as pasture, hay, or lawn grasses.

While not directly related to human health, these plants can have indirect effects on health, particularly in agricultural settings. For example, certain ryegrass species can host a parasitic nematode called "Haemonchus contortus," which can infect and cause disease in livestock that graze on the grass.

However, without further context, it's challenging to provide a specific medical definition for "Lolium." If you have more information or if this term is being used in a specific medical context, please provide those details so I can give a more accurate response.

"Ranunculus" is a term that refers to a genus of flowering plants, and it does not have a specific medical definition. However, some species within the Ranunculus genus are known to contain toxic compounds that can cause symptoms such as skin irritation, gastrointestinal distress, and in severe cases, organ damage if ingested.

The most well-known medically relevant species is likely "buttercups" (Ranunculus spp.), which can cause contact dermatitis and blistering of the skin upon contact. Ingesting large quantities of buttercups can lead to gastrointestinal symptoms such as nausea, vomiting, and diarrhea.

It's worth noting that while some Ranunculus species have medicinal uses, they should only be used under the guidance of a qualified healthcare professional due to their potential toxicity.

'Rhizobium leguminosarum' is a species of bacteria that can form nitrogen-fixing nodules on the roots of certain leguminous plants, such as clover, peas, and beans. These bacteria have the ability to convert atmospheric nitrogen into ammonia, a form of nitrogen that plants can use for growth. This process, known as biological nitrogen fixation, benefits both the bacteria and the host plant, as the plant provides carbon sources to the bacteria, while the bacteria provide fixed nitrogen to the plant. The formation of this symbiotic relationship is facilitated by a molecular signaling process between the bacterium and the plant.

It's important to note that 'Rhizobium leguminosarum' is not a medical term per se, but rather a term used in microbiology, botany, and agriculture.

A plant root is not a medical term per se, but it is a term from botany, which is the study of plants. However, I can certainly provide a definition for you.

Plant roots are the underground organs of a plant that typically grow downward into the soil. They serve several important functions, including:

1. Anchorage: Roots help to stabilize the plant and keep it upright in the ground.
2. Absorption: Roots absorb water and nutrients from the soil, which are essential for the plant's growth and development.
3. Conduction: Roots conduct water and nutrients up to the above-ground parts of the plant, such as the stem and leaves.
4. Vegetative reproduction: Some plants can reproduce vegetatively through their roots, producing new plants from root fragments or specialized structures called rhizomes or tubers.

Roots are composed of several different tissues, including the epidermis, cortex, endodermis, and vascular tissue. The epidermis is the outermost layer of the root, which secretes a waxy substance called suberin that helps to prevent water loss. The cortex is the middle layer of the root, which contains cells that store carbohydrates and other nutrients. The endodermis is a thin layer of cells that surrounds the vascular tissue and regulates the movement of water and solutes into and out of the root. The vascular tissue consists of xylem and phloem, which transport water and nutrients throughout the plant.

I believe there may be a misunderstanding in your question. In the field of medicine, the term "weeds" is not typically used as a medical definition. The term "weeds" is commonly used to refer to unwanted plants that grow in a particular location, often in agricultural or gardening contexts.

If you are referring to plants that may have medicinal properties but are not typically cultivated and are instead found growing wild, they might be referred to as "wildcrafted herbs" or "weedy species," but there is no official medical definition for these terms either.

If you could provide more context or clarify your question, I would be happy to help further!

Poaceae is not a medical term but a taxonomic category, specifically the family name for grasses. In a broader sense, you might be asking for a medical context where knowledge of this plant family could be relevant. For instance, certain members of the Poaceae family can cause allergies or negative reactions in some people.

In a medical definition, Poaceae would be defined as:

The family of monocotyledonous plants that includes grasses, bamboo, and sedges. These plants are characterized by narrow leaves with parallel veins, jointed stems (called "nodes" and "internodes"), and flowers arranged in spikelets. Some members of this family are important food sources for humans and animals, such as rice, wheat, corn, barley, oats, and sorghum. Other members can cause negative reactions, like skin irritation or allergies, due to their silica-based defense structures called phytoliths.

No FAQ available that match "trifolium"

No images available that match "trifolium"