Group of hemorrhagic disorders in which the VON WILLEBRAND FACTOR is either quantitatively or qualitatively abnormal. They are usually inherited as an autosomal dominant trait though rare kindreds are autosomal recessive. Symptoms vary depending on severity and disease type but may include prolonged bleeding time, deficiency of factor VIII, and impaired platelet adhesion.
A high-molecular-weight plasma protein, produced by endothelial cells and megakaryocytes, that is part of the factor VIII/von Willebrand factor complex. The von Willebrand factor has receptors for collagen, platelets, and ristocetin activity as well as the immunologically distinct antigenic determinants. It functions in adhesion of platelets to collagen and hemostatic plug formation. The prolonged bleeding time in VON WILLEBRAND DISEASES is due to the deficiency of this factor.
A subtype of von Willebrand disease that results from qualitative deficiencies of VON WILLEBRAND FACTOR. The subtype is divided into several variants with each variant having a distinctive pattern of PLATELET-interaction.
A subtype of von Willebrand disease that results from a partial deficiency of VON WILLEBRAND FACTOR.
A subtype of von Willebrand disease that results from a total or near total deficiency of VON WILLEBRAND FACTOR.
An antibiotic mixture of two components, A and B, obtained from Nocardia lurida (or the same substance produced by any other means). It is no longer used clinically because of its toxicity. It causes platelet agglutination and blood coagulation and is used to assay those functions in vitro.
Blood-coagulation factor VIII. Antihemophilic factor that is part of the factor VIII/von Willebrand factor complex. Factor VIII is produced in the liver and acts in the intrinsic pathway of blood coagulation. It serves as a cofactor in factor X activation and this action is markedly enhanced by small amounts of thrombin.
A synthetic analog of the pituitary hormone, ARGININE VASOPRESSIN. Its action is mediated by the VASOPRESSIN receptor V2. It has prolonged antidiuretic activity, but little pressor effects. It also modulates levels of circulating FACTOR VIII and VON WILLEBRAND FACTOR.
Duration of blood flow after skin puncture. This test is used as a measure of capillary and platelet function.
Platelet membrane glycoprotein complex essential for normal platelet adhesion and clot formation at sites of vascular injury. It is composed of three polypeptides, GPIb alpha, GPIb beta, and GPIX. Glycoprotein Ib functions as a receptor for von Willebrand factor and for thrombin. Congenital deficiency of the GPIb-IX complex results in Bernard-Soulier syndrome. The platelet glycoprotein GPV associates with GPIb-IX and is also absent in Bernard-Soulier syndrome.
An autosomal recessive disease in which gene expression of glucose-6-phosphatase is absent, resulting in hypoglycemia due to lack of glucose production. Accumulation of glycogen in liver and kidney leads to organomegaly, particularly massive hepatomegaly. Increased concentrations of lactic acid and hyperlipidemia appear in the plasma. Clinical gout often appears in early childhood.
Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation.
Venoms from snakes of the subfamily Crotalinae or pit vipers, found mostly in the Americas. They include the rattlesnake, cottonmouth, fer-de-lance, bushmaster, and American copperhead. Their venoms contain nontoxic proteins, cardio-, hemo-, cyto-, and neurotoxins, and many enzymes, especially phospholipases A. Many of the toxins have been characterized.
Surface glycoproteins on platelets which have a key role in hemostasis and thrombosis such as platelet adhesion and aggregation. Many of these are receptors.
Agents acting to arrest the flow of blood. Absorbable hemostatics arrest bleeding either by the formation of an artificial clot or by providing a mechanical matrix that facilitates clotting when applied directly to the bleeding surface. These agents function more at the capillary level and are not effective at stemming arterial or venous bleeding under any significant intravascular pressure.
Rod-shaped storage granules for VON WILLEBRAND FACTOR specific to endothelial cells.
The process whereby PLATELETS adhere to something other than platelets, e.g., COLLAGEN; BASEMENT MEMBRANE; MICROFIBRILS; or other "foreign" surfaces.
The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS.
Laboratory tests for evaluating the individual's clotting mechanism.
The classic hemophilia resulting from a deficiency of factor VIII. It is an inherited disorder of blood coagulation characterized by a permanent tendency to hemorrhage.
A hereditary motor and sensory neuropathy transmitted most often as an autosomal dominant trait and characterized by progressive distal wasting and loss of reflexes in the muscles of the legs (and occasionally involving the arms). Onset is usually in the second to fourth decade of life. This condition has been divided into two subtypes, hereditary motor and sensory neuropathy (HMSN) types I and II. HMSN I is associated with abnormal nerve conduction velocities and nerve hypertrophy, features not seen in HMSN II. (Adams et al., Principles of Neurology, 6th ed, p1343)
The process which spontaneously arrests the flow of BLOOD from vessels carrying blood under pressure. It is accomplished by contraction of the vessels, adhesion and aggregation of formed blood elements (eg. ERYTHROCYTE AGGREGATION), and the process of BLOOD COAGULATION.
Spontaneous or near spontaneous bleeding caused by a defect in clotting mechanisms (BLOOD COAGULATION DISORDERS) or another abnormality causing a structural flaw in the blood vessels (HEMOSTATIC DISORDERS).
The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.
A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair.
Bleeding or escape of blood from a vessel.
An autosomal recessively inherited glycogen storage disease caused by GLUCAN 1,4-ALPHA-GLUCOSIDASE deficiency. Large amounts of GLYCOGEN accumulate in the LYSOSOMES of skeletal muscle (MUSCLE, SKELETAL); HEART; LIVER; SPINAL CORD; and BRAIN. Three forms have been described: infantile, childhood, and adult. The infantile form is fatal in infancy and presents with hypotonia and a hypertrophic cardiomyopathy (CARDIOMYOPATHY, HYPERTROPHIC). The childhood form usually presents in the second year of life with proximal weakness and respiratory symptoms. The adult form consists of a slowly progressive proximal myopathy. (From Muscle Nerve 1995;3:S61-9; Menkes, Textbook of Child Neurology, 5th ed, pp73-4)
A family of membrane-anchored glycoproteins that contain a disintegrin and metalloprotease domain. They are responsible for the proteolytic cleavage of many transmembrane proteins and the release of their extracellular domain.
A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed)
An autosomal recessive metabolic disorder due to deficient expression of amylo-1,6-glucosidase (one part of the glycogen debranching enzyme system). The clinical course of the disease is similar to that of glycogen storage disease type I, but milder. Massive hepatomegaly, which is present in young children, diminishes and occasionally disappears with age. Levels of glycogen with short outer branches are elevated in muscle, liver, and erythrocytes. Six subgroups have been identified, with subgroups Type IIIa and Type IIIb being the most prevalent.
The co-occurrence of pregnancy and a blood disease (HEMATOLOGIC DISEASES) which involves BLOOD CELLS or COAGULATION FACTORS. The hematologic disease may precede or follow FERTILIZATION and it may or may not have a deleterious effect on the pregnant woman or FETUS.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Disorders caused by abnormalities in platelet count or function.
Agents capable of exerting a harmful effect on the body.
The process of generating thrombocytes (BLOOD PLATELETS) from the pluripotent HEMATOPOIETIC STEM CELLS in the BONE MARROW via the MEGAKARYOCYTES. The humoral factor with thrombopoiesis-stimulating activity is designated THROMBOPOIETIN.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
An autosomal recessive metabolic disorder due to a deficiency in expression of glycogen branching enzyme 1 (alpha-1,4-glucan-6-alpha-glucosyltransferase), resulting in an accumulation of abnormal GLYCOGEN with long outer branches. Clinical features are MUSCLE HYPOTONIA and CIRRHOSIS. Death from liver disease usually occurs before age 2.
Proteins prepared by recombinant DNA technology.
Endogenous substances, usually proteins, that are involved in the blood coagulation process.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
An individual having different alleles at one or more loci regarding a specific character.

Low von Willebrand factor: sometimes a risk factor and sometimes a disease. (1/12)

 (+info)

Functional characterization of a 13-bp deletion (c.-1522_-1510del13) in the promoter of the von Willebrand factor gene in type 1 von Willebrand disease. (2/12)

 (+info)

Gain-of-function GPIb ELISA assay for VWF activity in the Zimmerman Program for the Molecular and Clinical Biology of VWD. (3/12)

 (+info)

An apparently silent nucleotide substitution (c.7056C>T) in the von Willebrand factor gene is responsible for type 1 von Willebrand disease. (4/12)

 (+info)

Clinical measurement of von Willebrand factor by fluorescence correlation spectroscopy. (5/12)

 (+info)

Effect of genetic variation in STXBP5 and STX2 on von Willebrand factor and bleeding phenotype in type 1 von Willebrand disease patients. (6/12)

 (+info)

Establishment and characterization of a new and stable collagen-binding assay for the assessment of von Willebrand factor activity. (7/12)

 (+info)

VWF propeptide and ratios between VWF, VWF propeptide, and FVIII in the characterization of type 1 von Willebrand disease. (8/12)

 (+info)

Von Willebrand disease (vWD) is a genetic bleeding disorder caused by deficiency or dysfunction of the von Willebrand factor (VWF), a protein involved in blood clotting. The VWF plays a crucial role in the formation of a stable platelet plug during the process of hemostasis, which helps to stop bleeding.

There are three main types of vWD:

1. Type 1: This is the most common form, characterized by a partial quantitative deficiency of functional VWF. Bleeding symptoms are usually mild.
2. Type 2: In this type, there is a qualitative defect in the VWF protein leading to various subtypes (2A, 2B, 2M, and 2N) with different bleeding patterns. Symptoms can range from mild to severe.
3. Type 3: This is the most severe form of vWD, characterized by a near or complete absence of functional VWF and Factor VIII. Affected individuals have a high risk of spontaneous and severe bleeding episodes.

The clinical manifestations of vWD include easy bruising, prolonged nosebleeds (epistaxis), heavy menstrual periods in women, and excessive bleeding after dental procedures, surgeries, or trauma. The diagnosis is made based on laboratory tests that assess VWF antigen levels, VWF activity, and Factor VIII coagulant activity. Treatment options include desmopressin (DDAVP) to stimulate the release of VWF from endothelial cells, recombinant VWF, or plasma-derived VWF concentrates, and antifibrinolytic agents like tranexamic acid to reduce bleeding.

Von Willebrand factor (vWF) is a large multimeric glycoprotein that plays a crucial role in hemostasis, the process which leads to the cessation of bleeding and the formation of a blood clot. It was named after Erik Adolf von Willebrand, a Finnish physician who first described the disorder associated with its deficiency, known as von Willebrand disease (vWD).

The primary functions of vWF include:

1. Platelet adhesion and aggregation: vWF mediates the initial attachment of platelets to damaged blood vessel walls by binding to exposed collagen fibers and then interacting with glycoprotein Ib (GPIb) receptors on the surface of platelets, facilitating platelet adhesion. Subsequently, vWF also promotes platelet-platelet interactions (aggregation) through its interaction with platelet glycoprotein IIb/IIIa (GPIIb/IIIa) receptors under high shear stress conditions found in areas of turbulent blood flow, such as arterioles and the capillary bed.

2. Transport and stabilization of coagulation factor VIII: vWF serves as a carrier protein for coagulation factor VIII (FVIII), protecting it from proteolytic degradation and maintaining its stability in circulation. This interaction between vWF and FVIII is essential for the proper functioning of the coagulation cascade, particularly in the context of vWD, where impaired FVIII function can lead to bleeding disorders.

3. Wound healing: vWF contributes to wound healing by promoting platelet adhesion and aggregation at the site of injury, which facilitates the formation of a provisional fibrin-based clot that serves as a scaffold for tissue repair and regeneration.

In summary, von Willebrand factor is a vital hemostatic protein involved in platelet adhesion, aggregation, coagulation factor VIII stabilization, and wound healing. Deficiencies or dysfunctions in vWF can lead to bleeding disorders such as von Willebrand disease.

Von Willebrand disease (VWD) is a genetic bleeding disorder caused by deficiency or dysfunction of the von Willebrand factor (VWF), a protein involved in blood clotting. There are several types of VWD, and type 2 is further divided into four subtypes (2A, 2B, 2M, and 2N) based on the specific defects in the VWF protein.

Type 2 von Willebrand disease is characterized by qualitative abnormalities in the VWF protein, which affect its ability to function properly. The four subtypes of type 2 VWD are defined as follows:

* Type 2A: This subtype is caused by a decrease in the amount of high molecular weight multimers (HMWM) of VWF, which are essential for effective platelet adhesion and clot formation. The reduction in HMWM leads to a prolonged bleeding time and increased susceptibility to bleeding.
* Type 2B: This subtype is characterized by an increased affinity of VWF for platelets, leading to the formation of large platelet aggregates and a decrease in the amount of circulating VWF. This results in a shortened bleeding time but increased bleeding severity due to the loss of HMWM.
* Type 2M: This subtype is caused by defects in the VWF protein that affect its ability to bind to platelets, leading to a decrease in platelet adhesion and clot formation. The HMWM are present but do not function properly, resulting in a prolonged bleeding time.
* Type 2N: This subtype is characterized by a decreased affinity of VWF for factor VIII, which is necessary for the normal coagulation cascade. This results in a decrease in the half-life of factor VIII and an increased risk of bleeding, particularly during surgery or trauma.

In summary, type 2 von Willebrand disease is a genetic bleeding disorder caused by qualitative abnormalities in the VWF protein, leading to defects in platelet adhesion and clot formation. The four subtypes of type 2 VWD are defined based on specific defects in the VWF protein that affect its ability to bind to platelets, factor VIII, or both.

Von Willebrand disease (VWD) is a genetic bleeding disorder caused by deficiency or abnormality of the von Willebrand factor (VWF), a protein involved in blood clotting. Type 1 VWD is the most common form and is characterized by a partial decrease in the amount of functional VWF in the blood, which can lead to prolonged bleeding times after injury or surgery. The symptoms are usually mild to moderate and may include easy bruising, nosebleeds, heavy menstrual periods, and excessive bleeding following dental work or childbirth. Type 1 VWD is inherited in an autosomal dominant manner, meaning that a person has a 50% chance of inheriting the disorder if one of their parents has it.

Von Willebrand disease (VWD) is a genetic bleeding disorder caused by deficiency or abnormality of the von Willebrand factor (VWF), a protein involved in blood clotting. Type 3 is the most severe form of VWD, characterized by extremely low levels or complete absence of VWF and Factor VIII, another clotting factor. This results in a significant impairment of the primary hemostasis, leading to spontaneous and severe bleeding episodes, including mucocutaneous bleeding (nosebleeds, gum bleeding, skin bruising), gastrointestinal bleeding, joint bleeds, and menorrhagia in women. Type 3 VWD is inherited in an autosomal recessive manner, meaning that an individual must inherit two copies of the abnormal gene, one from each parent, to have the disease.

Ristocetin is not a medical condition but a type of antibiotic used to treat infections caused by certain Gram-positive bacteria that are resistant to other antibiotics. Ristocetin is an glycopeptide antibiotic, which works by binding to the bacterial cell wall and inhibiting its synthesis, leading to bacterial death. It is not commonly used due to its potential to cause blood disorders, such as thrombocytopenia (low platelet count) and platelet aggregation.

In medical literature, ristocetin is also known for its use in the laboratory setting as a reagent for the platelet function test, called the ristocetin-induced platelet aggregation (RIPA) assay. This test is used to evaluate the ability of platelets to aggregate and form clots in response to ristocetin, which can help diagnose certain bleeding disorders such as Bernard-Soulier syndrome and von Willebrand disease.

Factor VIII is a protein in the blood that is essential for normal blood clotting. It is also known as antihemophilic factor (AHF). Deficiency or dysfunction of this protein results in hemophilia A, a genetic disorder characterized by prolonged bleeding and easy bruising. Factor VIII works together with other proteins to help form a clot and stop bleeding at the site of an injury. It acts as a cofactor for another clotting factor, IX, in the so-called intrinsic pathway of blood coagulation. Intravenous infusions of Factor VIII concentrate are used to treat and prevent bleeding episodes in people with hemophilia A.

Desmopressin, also known as 1-deamino-8-D-arginine vasopressin (dDAVP), is a synthetic analogue of the natural hormone arginine vasopressin. It is commonly used in medical practice for the treatment of diabetes insipidus, a condition characterized by excessive thirst and urination due to lack of antidiuretic hormone (ADH).

Desmopressin works by binding to V2 receptors in the kidney, which leads to increased water reabsorption and reduced urine production. It also has some effect on V1 receptors, leading to vasoconstriction and increased blood pressure. However, its primary use is for its antidiuretic effects.

In addition to its use in diabetes insipidus, desmopressin may also be used to treat bleeding disorders such as hemophilia and von Willebrand disease, as it can help to promote platelet aggregation and reduce bleeding times. It is available in various forms, including nasal sprays, injectable solutions, and oral tablets or dissolvable films.

Bleeding time is a medical test that measures the time it takes for a small blood vessel to stop bleeding after being cut. It's used to evaluate platelet function and the effectiveness of blood clotting. The most common method used to measure bleeding time is the Ivy method, which involves making a standardized incision on the forearm and measuring the time it takes for the bleeding to stop. A normal bleeding time ranges from 2 to 9 minutes, but this can vary depending on the specific method used. Prolonged bleeding time may indicate an impairment in platelet function or clotting factor deficiency.

The platelet glycoprotein GPIb-IX complex is a crucial receptor on the surface of platelets that plays a vital role in hemostasis and thrombosis. It is a heterotetrameric transmembrane protein complex composed of two disulfide-linked glycoprotein subunits, GPIbα, GPIbβ, GPV (Glycoprotein V), and GPIX (Glycoprotein IX).

The GPIb-IX complex is responsible for the initial interaction between platelets and von Willebrand factor (vWF) in the circulation. When blood vessels are damaged, exposed collagen recruits vWF to the site of injury, where it binds to the GPIbα subunit of the GPIb-IX complex, leading to platelet adhesion and activation. This interaction is critical for primary hemostasis, which helps prevent excessive blood loss from injured vessels.

Genetic mutations or deficiencies in the genes encoding these glycoproteins can lead to bleeding disorders such as Bernard-Soulier syndrome, a rare autosomal recessive disorder characterized by thrombocytopenia and large platelets with impaired vWF binding and platelet adhesion.

Glycogen Storage Disease Type I (GSD I) is a rare inherited metabolic disorder caused by deficiency of the enzyme glucose-6-phosphatase, which is necessary for the liver to release glucose into the bloodstream. This leads to an accumulation of glycogen in the liver and abnormally low levels of glucose in the blood (hypoglycemia).

There are two main subtypes of GSD I: Type Ia and Type Ib. In Type Ia, there is a deficiency of both glucose-6-phosphatase enzyme activity in the liver, kidney, and intestine, leading to hepatomegaly (enlarged liver), hypoglycemia, lactic acidosis, hyperlipidemia, and growth retardation. Type Ib is characterized by a deficiency of glucose-6-phosphatase enzyme activity only in the neutrophils, leading to recurrent bacterial infections.

GSD I requires lifelong management with frequent feedings, high-carbohydrate diet, and avoidance of fasting to prevent hypoglycemia. In some cases, treatment with continuous cornstarch infusions or liver transplantation may be necessary.

Blood platelets, also known as thrombocytes, are small, colorless cell fragments in our blood that play an essential role in normal blood clotting. They are formed in the bone marrow from large cells called megakaryocytes and circulate in the blood in an inactive state until they are needed to help stop bleeding. When a blood vessel is damaged, platelets become activated and change shape, releasing chemicals that attract more platelets to the site of injury. These activated platelets then stick together to form a plug, or clot, that seals the wound and prevents further blood loss. In addition to their role in clotting, platelets also help to promote healing by releasing growth factors that stimulate the growth of new tissue.

Crotalid venoms are the toxic secretions produced by the members of the Crotalinae subfamily, also known as pit vipers. This group includes rattlesnakes, cottonmouths (or water moccasins), and copperheads, which are native to the Americas, as well as Old World vipers found in Asia and Europe, such as gaboon vipers and saw-scaled vipers.

Crotalid venoms are complex mixtures of various bioactive molecules, including enzymes, proteins, peptides, and other low molecular weight components. They typically contain a variety of pharmacologically active components, such as hemotoxic and neurotoxic agents, which can cause extensive local tissue damage, coagulopathy, cardiovascular dysfunction, and neuromuscular disorders in the victim.

The composition of crotalid venoms can vary significantly between different species and even among individual specimens within the same species. This variability is influenced by factors such as geographic location, age, sex, diet, and environmental conditions. As a result, the clinical manifestations of crotalid envenomation can be highly variable, ranging from mild local reactions to severe systemic effects that may require intensive medical treatment and supportive care.

Crotalid venoms have been the subject of extensive research in recent years due to their potential therapeutic applications. For example, certain components of crotalid venoms have shown promise as drugs for treating various medical conditions, such as cardiovascular diseases, pain, and inflammation. However, further studies are needed to fully understand the mechanisms of action of these venom components and to develop safe and effective therapies based on them.

Platelet membrane glycoproteins are specialized proteins found on the surface of platelets, which are small blood cells responsible for clotting. These glycoproteins play crucial roles in various processes related to hemostasis and thrombosis, including platelet adhesion, activation, and aggregation.

There are several key platelet membrane glycoproteins, such as:

1. Glycoprotein (GP) Ia/IIa (also known as integrin α2β1): This glycoprotein mediates the binding of platelets to collagen fibers in the extracellular matrix, facilitating platelet adhesion and activation.
2. GP IIb/IIIa (also known as integrin αIIbβ3): This is the most abundant glycoprotein on the platelet surface and functions as a receptor for fibrinogen, von Willebrand factor, and other adhesive proteins. Upon activation, GP IIb/IIIa undergoes conformational changes that enable it to bind these ligands, leading to platelet aggregation and clot formation.
3. GPIb-IX-V: This glycoprotein complex is involved in the initial tethering and adhesion of platelets to von Willebrand factor (vWF) in damaged blood vessels. It consists of four subunits: GPIbα, GPIbβ, GPIX, and GPV.
4. GPVI: This glycoprotein is essential for platelet activation upon contact with collagen. It associates with the Fc receptor γ-chain (FcRγ) to form a signaling complex that triggers intracellular signaling pathways, leading to platelet activation and aggregation.

Abnormalities in these platelet membrane glycoproteins can lead to bleeding disorders or thrombotic conditions. For example, mutations in GPIIb/IIIa can result in Glanzmann's thrombasthenia, a severe bleeding disorder characterized by impaired platelet aggregation. On the other hand, increased expression or activation of these glycoproteins may contribute to the development of arterial thrombosis and cardiovascular diseases.

Hemostatics are substances or agents that promote bleeding cessation or prevent the spread of bleeding. They can act in various ways, such as by stimulating the body's natural clotting mechanisms, constricting blood vessels to reduce blood flow, or forming a physical barrier to block the bleeding site.

Hemostatics are often used in medical settings to manage wounds, injuries, and surgical procedures. They can be applied directly to the wound as a powder, paste, or gauze, or they can be administered systemically through intravenous injection. Examples of hemostatic agents include fibrin sealants, collagen-based products, thrombin, and oxidized regenerated cellulose.

It's important to note that while hemostatics can be effective in controlling bleeding, they should be used with caution and only under the guidance of a healthcare professional. Inappropriate use or overuse of hemostatic agents can lead to complications such as excessive clotting, thrombosis, or tissue damage.

Weibel-Palade bodies are rod-shaped, membrane-bound organelles found in the cytoplasm of endothelial cells, which line the interior surface of blood vessels. They were first described by Edwin Weibel and George Palade in 1964. These organelles are unique to endothelial cells and serve as storage sites for von Willebrand factor (vWF) and other proteins involved in hemostasis, inflammation, and vasomotor functions.

The main components of Weibel-Palade bodies include:

1. Von Willebrand factor (vWF): A multimeric glycoprotein that plays a crucial role in platelet adhesion and aggregation at the site of vascular injury, as well as mediating the transport of coagulation factors VIII and V.
2. P-selectin: A cell adhesion molecule that facilitates leukocyte rolling and recruitment to sites of inflammation.
3. Endothelial nitric oxide synthase (eNOS): An enzyme responsible for the production of nitric oxide, a potent vasodilator that regulates vascular tone and blood flow.
4. Angiopoietin-2: A growth factor involved in angiogenesis and vascular remodeling.
5. Tissue plasminogen activator (tPA): A serine protease that plays a role in fibrinolysis, the process of breaking down blood clots.

Upon stimulation by various agonists such as thrombin, histamine, or vascular endothelial growth factor (VEGF), Weibel-Palade bodies undergo exocytosis, releasing their contents into the extracellular space. This process contributes to hemostatic responses, inflammatory reactions, and modulation of vascular tone.

Platelet adhesiveness refers to the ability of platelets, which are small blood cells that help your body form clots to prevent excessive bleeding, to stick to other cells or surfaces. This process is crucial in hemostasis, the process of stopping bleeding after injury to a blood vessel.

When the endothelium (the lining of blood vessels) is damaged, subendothelial structures are exposed, which can trigger platelet adhesion. Platelets then change shape and release chemical signals that cause other platelets to clump together, forming a platelet plug. This plug helps to seal the damaged vessel and prevent further bleeding.

Platelet adhesiveness is influenced by several factors, including the presence of von Willebrand factor (vWF), a protein in the blood that helps platelets bind to damaged vessels, and the expression of glycoprotein receptors on the surface of platelets. Abnormalities in platelet adhesiveness can lead to bleeding disorders or thrombotic conditions.

Platelet aggregation is the clumping together of platelets (thrombocytes) in the blood, which is an essential step in the process of hemostasis (the stopping of bleeding) after injury to a blood vessel. When the inner lining of a blood vessel is damaged, exposure of subendothelial collagen and tissue factor triggers platelet activation. Activated platelets change shape, become sticky, and release the contents of their granules, which include ADP (adenosine diphosphate).

ADP then acts as a chemical mediator to attract and bind additional platelets to the site of injury, leading to platelet aggregation. This forms a plug that seals the damaged vessel and prevents further blood loss. Platelet aggregation is also a crucial component in the formation of blood clots (thrombosis) within blood vessels, which can have pathological consequences such as heart attacks and strokes if they obstruct blood flow to vital organs.

Blood coagulation tests, also known as coagulation studies or clotting tests, are a series of medical tests used to evaluate the blood's ability to clot. These tests measure the functioning of various clotting factors and regulatory proteins involved in the coagulation cascade, which is a complex process that leads to the formation of a blood clot to prevent excessive bleeding.

The most commonly performed coagulation tests include:

1. Prothrombin Time (PT): Measures the time it takes for a sample of plasma to clot after the addition of calcium and tissue factor, which activates the extrinsic pathway of coagulation. The PT is reported in seconds and can be converted to an International Normalized Ratio (INR) to monitor anticoagulant therapy.
2. Activated Partial Thromboplastin Time (aPTT): Measures the time it takes for a sample of plasma to clot after the addition of calcium, phospholipid, and a contact activator, which activates the intrinsic pathway of coagulation. The aPTT is reported in seconds and is used to monitor heparin therapy.
3. Thrombin Time (TT): Measures the time it takes for a sample of plasma to clot after the addition of thrombin, which directly converts fibrinogen to fibrin. The TT is reported in seconds and can be used to detect the presence of fibrin degradation products or abnormalities in fibrinogen function.
4. Fibrinogen Level: Measures the amount of fibrinogen, a protein involved in clot formation, present in the blood. The level is reported in grams per liter (g/L) and can be used to assess bleeding risk or the effectiveness of fibrinogen replacement therapy.
5. D-dimer Level: Measures the amount of D-dimer, a protein fragment produced during the breakdown of a blood clot, present in the blood. The level is reported in micrograms per milliliter (µg/mL) and can be used to diagnose or exclude venous thromboembolism (VTE), such as deep vein thrombosis (DVT) or pulmonary embolism (PE).

These tests are important for the diagnosis, management, and monitoring of various bleeding and clotting disorders. They can help identify the underlying cause of abnormal bleeding or clotting, guide appropriate treatment decisions, and monitor the effectiveness of therapy. It is essential to interpret these test results in conjunction with a patient's clinical presentation and medical history.

Hemophilia A is a genetic bleeding disorder caused by a deficiency in clotting factor VIII. This results in impaired blood clotting and prolonged bleeding, particularly after injuries or surgeries. Symptoms can range from mild to severe, with the most severe form resulting in spontaneous bleeding into joints and muscles, leading to pain, swelling, and potential joint damage over time. Hemophilia A primarily affects males, as it is an X-linked recessive disorder, and is usually inherited from a carrier mother. However, about one third of cases result from a spontaneous mutation in the gene for factor VIII. Treatment typically involves replacement therapy with infusions of factor VIII concentrates to prevent or control bleeding episodes.

Charcot-Marie-Tooth disease (CMT) is a group of inherited disorders that cause nerve damage, primarily affecting the peripheral nerves. These are the nerves that transmit signals between the brain and spinal cord to the rest of the body. CMT affects both motor and sensory nerves, leading to muscle weakness and atrophy, as well as numbness or tingling in the hands and feet.

The disease is named after the three physicians who first described it: Jean-Martin Charcot, Pierre Marie, and Howard Henry Tooth. CMT is characterized by its progressive nature, meaning symptoms typically worsen over time, although the rate of progression can vary significantly among individuals.

There are several types of CMT, classified based on their genetic causes and patterns of inheritance. The two most common forms are CMT1 and CMT2:

1. CMT1: This form is caused by mutations in the genes responsible for the myelin sheath, which insulates peripheral nerves and allows for efficient signal transmission. As a result, demyelination occurs, slowing down nerve impulses and causing muscle weakness, particularly in the lower limbs. Symptoms usually begin in childhood or adolescence and include foot drop, high arches, and hammertoes.
2. CMT2: This form is caused by mutations in the genes responsible for the axons, the nerve fibers that transmit signals within peripheral nerves. As a result, axonal degeneration occurs, leading to muscle weakness and atrophy. Symptoms usually begin in early adulthood and progress more slowly than CMT1. They primarily affect the lower limbs but can also involve the hands and arms.

Diagnosis of CMT typically involves a combination of clinical evaluation, family history, nerve conduction studies, and genetic testing. While there is no cure for CMT, treatment focuses on managing symptoms and maintaining mobility and function through physical therapy, bracing, orthopedic surgery, and pain management.

Hemostasis is the physiological process that occurs to stop bleeding (bleeding control) when a blood vessel is damaged. This involves the interaction of platelets, vasoconstriction, and blood clotting factors leading to the formation of a clot. The ultimate goal of hemostasis is to maintain the integrity of the vascular system while preventing excessive blood loss.

Hemorrhagic disorders are medical conditions characterized by abnormal bleeding due to impaired blood clotting. This can result from deficiencies in coagulation factors, platelet dysfunction, or the use of medications that interfere with normal clotting processes. Examples include hemophilia, von Willebrand disease, and disseminated intravascular coagulation (DIC). Treatment often involves replacing the missing clotting factor or administering medications to help control bleeding.

I must clarify that the term "pedigree" is not typically used in medical definitions. Instead, it is often employed in genetics and breeding, where it refers to the recorded ancestry of an individual or a family, tracing the inheritance of specific traits or diseases. In human genetics, a pedigree can help illustrate the pattern of genetic inheritance in families over multiple generations. However, it is not a medical term with a specific clinical definition.

A point mutation is a type of genetic mutation where a single nucleotide base (A, T, C, or G) in DNA is altered, deleted, or substituted with another nucleotide. Point mutations can have various effects on the organism, depending on the location of the mutation and whether it affects the function of any genes. Some point mutations may not have any noticeable effect, while others might lead to changes in the amino acids that make up proteins, potentially causing diseases or altering traits. Point mutations can occur spontaneously due to errors during DNA replication or be inherited from parents.

Hemorrhage is defined in the medical context as an excessive loss of blood from the circulatory system, which can occur due to various reasons such as injury, surgery, or underlying health conditions that affect blood clotting or the integrity of blood vessels. The bleeding may be internal, external, visible, or concealed, and it can vary in severity from minor to life-threatening, depending on the location and extent of the bleeding. Hemorrhage is a serious medical emergency that requires immediate attention and treatment to prevent further blood loss, organ damage, and potential death.

Glycogen Storage Disease Type II, also known as Pompe Disease, is a genetic disorder caused by a deficiency of the enzyme acid alpha-glucosidase (GAA). This enzyme is responsible for breaking down glycogen, a complex sugar that serves as energy storage, within lysosomes. When GAA is deficient, glycogen accumulates in various tissues, particularly in muscle cells, leading to their dysfunction and damage.

The severity of Pompe Disease can vary significantly, depending on the amount of functional enzyme activity remaining. The classic infantile-onset form presents within the first few months of life with severe muscle weakness, hypotonia, feeding difficulties, and respiratory insufficiency. This form is often fatal by 1-2 years of age if left untreated.

A later-onset form, which can present in childhood, adolescence, or adulthood, has a more variable clinical course. Affected individuals may experience progressive muscle weakness, respiratory insufficiency, and cardiomyopathy, although the severity and rate of progression are generally less pronounced than in the infantile-onset form.

Enzyme replacement therapy with recombinant human GAA is available for the treatment of Pompe Disease and has been shown to improve survival and motor function in affected individuals.

ADAM (A Disintegrin And Metalloprotease) proteins are a family of type I transmembrane proteins that contain several distinct domains, including a prodomain, a metalloprotease domain, a disintegrin-like domain, a cysteine-rich domain, a transmembrane domain, and a cytoplasmic tail. These proteins are involved in various biological processes such as cell adhesion, migration, proteolysis, and signal transduction.

ADAM proteins have been found to play important roles in many physiological and pathological conditions, including fertilization, neurodevelopment, inflammation, and cancer metastasis. For example, ADAM12 is involved in the fusion of myoblasts during muscle development, while ADAM17 (also known as TACE) plays a crucial role in the shedding of membrane-bound proteins such as tumor necrosis factor-alpha and epidermal growth factor receptor ligands.

Abnormalities in ADAM protein function have been implicated in various diseases, including cancer, Alzheimer's disease, and arthritis. Therefore, understanding the structure and function of these proteins has important implications for the development of novel therapeutic strategies.

A missense mutation is a type of point mutation in which a single nucleotide change results in the substitution of a different amino acid in the protein that is encoded by the affected gene. This occurs when the altered codon (a sequence of three nucleotides that corresponds to a specific amino acid) specifies a different amino acid than the original one. The function and/or stability of the resulting protein may be affected, depending on the type and location of the missense mutation. Missense mutations can have various effects, ranging from benign to severe, depending on the importance of the changed amino acid for the protein's structure or function.

Glycogen Storage Disease Type III, also known as Cori or Forbes disease, is a rare inherited metabolic disorder caused by deficiency of the debranching enzyme amylo-1,6-glucosidase, which is responsible for breaking down glycogen in the liver and muscles. This results in an abnormal accumulation of glycogen in these organs leading to its associated symptoms.

There are two main types: Type IIIa affects both the liver and muscles, while Type IIIb affects only the liver. Symptoms can include hepatomegaly (enlarged liver), hypoglycemia (low blood sugar), hyperlipidemia (high levels of fats in the blood), and growth retardation. In Type IIIa, muscle weakness and cardiac problems may also occur.

The diagnosis is usually made through biochemical tests and genetic analysis. Treatment often involves dietary management with frequent meals to prevent hypoglycemia, and in some cases, enzyme replacement therapy. However, there is no cure for this condition and life expectancy can be reduced depending on the severity of the symptoms.

Hematologic pregnancy complications refer to disorders related to the blood and blood-forming tissues that occur during pregnancy. These complications can have serious consequences for both the mother and the fetus if not properly managed. Some common hematologic pregnancy complications include:

1. Anemia: A condition characterized by a decrease in the number of red blood cells or hemoglobin in the blood, which can lead to fatigue, weakness, and shortness of breath. Iron-deficiency anemia is the most common type of anemia during pregnancy.
2. Thrombocytopenia: A condition characterized by a decrease in the number of platelets (cells that help blood clot) in the blood. Mild thrombocytopenia is relatively common during pregnancy, but severe thrombocytopenia can increase the risk of bleeding during delivery.
3. Gestational thrombotic thrombocytopenic purpura (GTTP): A rare but serious disorder that can cause blood clots to form in small blood vessels throughout the body, leading to a decrease in the number of platelets and red blood cells. GTTP can cause serious complications such as stroke, kidney failure, and even death if not promptly diagnosed and treated.
4. Disseminated intravascular coagulation (DIC): A condition characterized by abnormal clotting and bleeding throughout the body. DIC can be triggered by various conditions such as severe infections, pregnancy complications, or cancer.
5. Hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome: A serious complication of pregnancy that can cause damage to the liver and lead to bleeding. HELLP syndrome is often associated with preeclampsia, a condition characterized by high blood pressure and damage to organs such as the liver and kidneys.

It's important for pregnant women to receive regular prenatal care to monitor for these and other potential complications, and to seek prompt medical attention if any concerning symptoms arise.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Blood platelet disorders are conditions that affect the number and/or function of platelets, which are small blood cells that help your body form clots to stop bleeding. Normal platelet count ranges from 150,000 to 450,000 platelets per microliter of blood. A lower-than-normal platelet count is called thrombocytopenia, while a higher-than-normal platelet count is called thrombocytosis.

There are several types of platelet disorders, including:

1. Immune thrombocytopenia (ITP): A condition in which the immune system mistakenly attacks and destroys platelets, leading to a low platelet count. ITP can be acute (lasting less than six months) or chronic (lasting longer than six months).
2. Thrombotic thrombocytopenic purpura (TTP): A rare but serious condition that causes blood clots to form in small blood vessels throughout the body, leading to a low platelet count, anemia, and other symptoms.
3. Hemolytic uremic syndrome (HUS): A condition that is often caused by a bacterial infection, which can lead to the formation of blood clots in the small blood vessels of the kidneys, resulting in kidney damage and a low platelet count.
4. Hereditary platelet disorders: Some people inherit genetic mutations that can affect the number or function of their platelets, leading to bleeding disorders such as von Willebrand disease or Bernard-Soulier syndrome.
5. Medication-induced thrombocytopenia: Certain medications can cause a decrease in platelet count as a side effect.
6. Platelet dysfunction disorders: Some conditions can affect the ability of platelets to function properly, leading to bleeding disorders such as von Willebrand disease or storage pool deficiency.

Symptoms of platelet disorders may include easy bruising, prolonged bleeding from cuts or injuries, nosebleeds, blood in urine or stools, and in severe cases, internal bleeding. Treatment for platelet disorders depends on the underlying cause and may include medications, surgery, or other therapies.

"Noxae" is a term derived from Latin, which means "causes of damage or injury." In medical contexts, it is used to refer to harmful agents or factors that can cause harm, damage, or disease in an organism or a biological system. These harmful agents can include physical, chemical, or biological factors such as radiation, toxins, infectious microorganisms, and mechanical injuries.

Thrombopoiesis is the process of formation and development of thrombocytes or platelets, which are small, colorless cell fragments in our blood that play an essential role in clotting. Thrombopoiesis occurs inside the bone marrow, where stem cells differentiate into megakaryoblasts, then progressively develop into promegakaryocytes and megakaryocytes. These megakaryocytes subsequently undergo a process called cytoplasmic fragmentation to produce platelets.

The regulation of thrombopoiesis is primarily controlled by the hormone thrombopoietin (TPO), which is produced mainly in the liver and binds to the thrombopoietin receptor (c-Mpl) on megakaryocytes and their precursors. This binding stimulates the proliferation, differentiation, and maturation of megakaryocytes, leading to an increase in platelet production.

Abnormalities in thrombopoiesis can result in conditions such as thrombocytopenia (low platelet count) or thrombocytosis (high platelet count), which may be associated with bleeding disorders or increased risk of thrombosis, respectively.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Glycogen Storage Disease Type IV (GSD IV), also known as Andersen's disease, is a rare inherited metabolic disorder that affects the body's ability to break down glycogen, a complex carbohydrate that serves as a source of energy for the body.

In GSD IV, there is a deficiency in the enzyme called glycogen branching enzyme (GBE), which is responsible for adding branches to the glycogen molecule during its synthesis. This results in an abnormal form of glycogen that accumulates in various organs and tissues, particularly in the liver, heart, and muscles.

The accumulation of this abnormal glycogen can lead to progressive damage and failure of these organs, resulting in a variety of symptoms such as muscle weakness, hypotonia, hepatomegaly (enlarged liver), cardiomyopathy (heart muscle disease), and developmental delay. The severity of the disease can vary widely, with some individuals experiencing milder symptoms while others may have a more severe and rapidly progressing form of the disorder.

Currently, there is no cure for GSD IV, and treatment is focused on managing the symptoms and slowing down the progression of the disease. This may include providing nutritional support, addressing specific organ dysfunction, and preventing complications.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Blood coagulation factors, also known as clotting factors, are a group of proteins that play a crucial role in the blood coagulation process. They are essential for maintaining hemostasis, which is the body's ability to stop bleeding after injury.

There are 13 known blood coagulation factors, and they are designated by Roman numerals I through XIII. These factors are produced in the liver and are normally present in an inactive form in the blood. When there is an injury to a blood vessel, the coagulation process is initiated, leading to the activation of these factors in a specific order.

The coagulation cascade involves two pathways: the intrinsic and extrinsic pathways. The intrinsic pathway is activated when there is damage to the blood vessel itself, while the extrinsic pathway is activated by tissue factor released from damaged tissues. Both pathways converge at the common pathway, leading to the formation of a fibrin clot.

Blood coagulation factors work together in a complex series of reactions that involve activation, binding, and proteolysis. When one factor is activated, it activates the next factor in the cascade, and so on. This process continues until a stable fibrin clot is formed.

Deficiencies or abnormalities in blood coagulation factors can lead to bleeding disorders such as hemophilia or thrombosis. Hemophilia is a genetic disorder that affects one or more of the coagulation factors, leading to excessive bleeding and difficulty forming clots. Thrombosis, on the other hand, occurs when there is an abnormal formation of blood clots in the blood vessels, which can lead to serious complications such as stroke or pulmonary embolism.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

A heterozygote is an individual who has inherited two different alleles (versions) of a particular gene, one from each parent. This means that the individual's genotype for that gene contains both a dominant and a recessive allele. The dominant allele will be expressed phenotypically (outwardly visible), while the recessive allele may or may not have any effect on the individual's observable traits, depending on the specific gene and its function. Heterozygotes are often represented as 'Aa', where 'A' is the dominant allele and 'a' is the recessive allele.

Dominant type I von Willebrand disease caused by mutated cysteine residues in the D3 domain of von Willebrand factor. Blood ... Autosomal recessive disease, C2362F, Desmopressin response, Multimeric patterns, von Willebrand disease type 3 ... Autosomal Recessive von Willebrand Disease Type 1 or 2 due to Homozygous or Compound Heterozygous Mutations in the von ... Heightened proteolysis of the von Willebrand factor subunit in patients with von Willebrand disease hemizygous or homozygous ...
... von Willebrand disease (VWD) is in fact a family of bleeding disorders caused by an abnormality of the von Willebrand factor ( ... VWF). von Willebrand disease is the most common hereditary bleeding disorder. ... von Willebrand disease types. von Willebrand disease can be classified into 3 main types. ... laboratory results are similar to those of certain patients with type 2A von Willebrand disease. Type 2M von Willebrand disease ...
Type 3 von Willebrand Disease. Type 3 is the rarest type of VWD. About one person in a million has it. Type 3 also has the most ... Type 2 von Willebrand Disease. Type 2 VWD is the next most common type. About 15% of people with VWD have Type 2. They usually ... Types of von Willebrand Disease. Language. : English. Español. Change language to Español ... In Type 2 VWD, there is enough von Willebrand factor but it does not work right. This may be caused by the VWF protein being ...
Von Willebrand disease is a bleeding disorder that slows the blood clotting process, causing prolonged bleeding after an injury ... Variants that severely reduce or eliminate von Willebrand factor cause type 3 von Willebrand disease. People with type 3 von ... The three types of von Willebrand disease are classified based on the amount of von Willebrand factor that is produced or its ... Variants that impair the function of von Willebrand factor cause the four subtypes of type 2 von Willebrand disease. Affected ...
Copyright 2014 - All Rights Reserved - Kennel van de Binnenvoort ...
Von Willebrands disease type I as a cause for subvitreal, retinal and subretinal haemorrhages. Graefes Arch Clin Exp ... Laboratory diagnosis and molecular basis of mild von Willebrand disease type 1. Acta Haematol. 2009;121:85-97. ... repeated testing of the coagulation-fibrinolysis system led to a diagnosis of mild von Willebrand disease (vWD) Type 1. It was ... An infant with subdural hematoma and retinal hemorrhages: does von Willebrand disease explain the findings?. *Case Report ...
von Willebrands Disease, type 1 von Willebrands Disease (vWD) type 1 is a clotting disorder that usually causes mild bleeding ... Glycogen Storage Disease Type Ia (Discovered in the German Pinscher) Glycogen Storage Disease Type Ia (GSD Ia) is a severe ... The low level of von Willebrands factor impacts the bloods clotting ability. ...
Easy bruising and excessive bleeding can be signs of Von Willebrand disease, a genetic disorder that affects bloods ability to ... Von Willebrand multimers test, which helps to classify the type of Von Willebrand disease ... What Is Von Willebrand Disease?. Von Willebrand disease, or VWD, is a genetic (inherited) bleeding disorder that prevents blood ... What Are the Types of Von Willebrand Disease?. There are various forms of VWD:. *In Type 1, the level of Von Willebrand factor ...
Von Willebrand Disease (VWD) is a rare blood disorder that affects how the body forms blood clots. It can cause a range of ... Type 2, which is a moderate form; and 3) Type 3, which is a severe form. Treatment typically includes infusing Von Willebrand ... If you or someone you know is living with von Willebrand Disease, then you know how important it is to stay informed and up-to- ... Von Willebrand Disease (VWD) is an inherited blood-clotting disorder that affects both sexes. It causes people to have ...
Managing patients with von Willebrand disease type 1, 2 and 3 with desmopressin and von Willebrand factor-factor VIII ... Guidelines and recommendations for the acute and prophylactic treatment of bleeding in von Willebrand disease (VWD) patients ... As the bleeding tendency is moderate in VWD type 2 and severe in type 3 and because the FVIII:C levels are subnormal in type 2 ... type 2 or type 3). The VW/FVIII concentrates should be assessed using the parameters FVIII:coagulant activity (C), VWF: ...
On the other hand, type 3 VWD can cause major bleeding problems during infancy and childhood. So, children who have type 3 VWD ... People who have type 1 or type 2 VWD may not have major bleeding problems. Thus, they may not be diagnosed unless they have ... Early diagnosis of von Willebrand disease (VWD) is important to make sure that youre treated and can live a normal, active ... Diagnosing Von Willebrand Disease. Early diagnosis of von Willebrand disease (VWD) is important to make sure that youre ...
A Variant of von Willebrand Disease (Type 2N) Resembling Phenotypically Mild or Moderately Severe Hemophilia ... Open the PDF for A Variant of von Willebrand Disease (Type 2N) Resembling Phenotypically Mild or Moderately Severe ,span class ... View article titled, A Variant of von Willebrand Disease (Type 2N) Resembling Phenotypically Mild or Moderately Severe ,span ... Open the PDF for Markers of Blood Cell Activation and Complement Activation in Factor VIII and von Willebrand Factor ...
Differentiating between type 2B and platelet-type VWD, as well as between type 2N VWD and hemophilia A. Von Willebrand factor ... "Canine von Willebrand Disease - Breed Summaries". ahdc.vet.cornell.edu. 2019-02-08. "Canine von Willebrand Disease". vetgen.com ... GeneReviews/NCBI/NIH/UW entry on von Willebrand Disease NHLBI von Willebrand Disease Expert Panel (January 2008). The Diagnosis ... Sadler JE (April 1994). "A revised classification of von Willebrand disease. For the Subcommittee on von Willebrand Factor of ...
... particularly in types 1 and 3 von Willebrand disease (VWD) is becoming more widely practised. The sequence of the entire VWF ... Examination of the entire von Willebrand factor (VWF) gene for mutations, ... Examination of the entire von Willebrand factor (VWF) gene for mutations, particularly in types 1 and 3 von Willebrand disease ... On behalf of the ISTH SSC Subcommittee on von Willebrand factor Thromb Haemost. 2001 May;85(5):929-31. ...
Acquired von Willebrand Disease (AvWD) Treatment Market Size, Market Share, Application Analysis, Regional Outlook, Growth ... Global Von Willebrand Disease Treatment Market by Disease Type (Acquired VWD, Type 1, Type 2), Treatment (Clot-Stabilizing, ... Market Snapshot: Global Acquired von Willebrand Disease (AvWD) Treatment Market. 2.2. Global Acquired von Willebrand Disease ( ... Acquired von Willebrand Disease (AvWD) Treatment Market: By Treatment Type, 2020-2030, USD (Million). 8.3. Acquired von ...
Other applications covered by the report are Von Willebrand disease.. End users, as per the report, are hospitals, clinics, ... To provide country level analysis of the market for segments by type of plasma derivatives, by application, by end users and ... Other crucial factors that have a hand in the market growth include the surge in disease awareness as well as education, rising ... Main objective of this research is to provide information about types of derivative of plasma, its application and its end ...
Type 2A von Willebrands disease (VWD) refers to disease variants with decreased platelet-dependent function of von Willebrand ... A new candidate mutation, G1629R, in a patient with type 2A von Willebrands disease: basic mechanisms and clinical ... A new candidate mutation, G1629R, in a patient with type 2A von Willebrands disease: basic mechanisms and clinical ... The candidate G1629R mutation, identified in an Italian patient with type 2A VWD, was expressed to confirm the relationship ...
Type 2 Von Willebrand disease, Type 3 Von Willebrand disease), By Route of Administration (Oral, Parenteral, Others), By ... Von Willebrand Disease Market Size, Share, Trends, By Type (Type 1 Von Willebrand disease, ... Von Willebrand Disease Market. Von Willebrand Disease Market Size, Share, Trends, By Type (Type 1 Von Willebrand disease, Type ... 2 Von Willebrand disease, Type 3 Von Willebrand disease), By Route of Administration (Oral, Parenteral, Others), By Product ( ...
The vWD market research report offers an overview of vWD, including epidemiology, symptoms, diagnosis, and disease management. ... The von Willebrand Disease (vWD) market size in the three major markets (3MM) (US, Germany, and UK) was $892 million in 2022. ... type 2, and type 3-of which type 2 contains various subtypes (2A, 2B, 2M, and 2N). ... 2 Disease Overview. 2.1 Overview of von Willebrand Disease. 2.2 Classification of von Willebrand Disease. 3 Epidemiology. 3.1 ...
... but also can be instrumental in improving our understanding of the pathobiology of the disease. Many methods are currently ... problem of how to distinguish which of the many thousands of DNA sequence variants carried by an individual with a rare disease ... is responsible for the disease phenotypes. This can help clinicians arrive at a diagnosis, ... For the case of the patient associated with von Willebrand disease (OMIM:193400) [63], VWF is the top hit in our analysis, ...
Stago uncover the comprehensive laboratory tests and specialized diagnostics for von Willebrand disease, including the first- ... Pseudo (platelet type) von Willebrand disease. Pseudo von Willebrand disease is a platelet disease involving increased affinity ... Differential diagnosis between pseudo von Willebrand disease and type 2B von Willebrand disease can only be performed at ... Von Willebrand disease * Von Willebrand disease - What is the origin of the disease? - Stago ...
Phenotypic and genotypic (exon 28) characterization of patients diagnosed with von Willebrand disease type 1 in Eastern Saudi ... Phenotypic and Genotypic Signatures of VWF Exon 18 in Eastern Saudi Patients Previously Diagnosed with Type 1 von Willebrand ... Disease. Alzahrani FM, Al Faris AA, Bashawri LA, Hassan FM, El-Masry OS, Aldossary MA, Al Sultan O, Borgio JF, Alsahli MA, ... 1967 Jan;26(1):174. J Neuropathol Exp Neurol. 1967. PMID: 6022157 No abstract available. ...
Disease relevance of DESMOPRESSIN. *Platelet aggregation induced by DDAVP in platelet-type von Willebrands disease [1]. ... Platelet aggregation induced by DDAVP in platelet-type von Willebrands disease. Takahashi, H., Nagayama, R., Hattori, A., ... in Type IIB von Willebrands disease. Holmberg, L., Nilsson, I.M., Borge, L., Gunnarsson, M., Sjörin, E. N. Engl. J. Med. (1983 ... Nasal spray desmopressin (DDAVP) for mild hemophilia A and von Willebrand disease. Rose, E.H., Aledort, L.M. Ann. Intern. Med. ...
Market, By Disease Type:. *Hemophilia A *Hemophilia B *Von Willebrand Disease *Others Market, By Distribution Channel:. * ... 6.2.2. By Disease Type (Hemophilia A, Hemophilia B, Von Willebrand Disease, Others) *6.2.3. By Distribution Channel (Hospital ... Bleeding Disorders Market Share, Size, Trends, Industry Analysis Report, By Type (Hemophilia A, Hemophilia B, Von Willebrand ... Global Bleeding Disorders Treatment Market By Drug Type, By Disease Type, By Distribution Channel, By End User By Region, ...
Subtyping von Willebrand disease (VWD) as type 1 (most common), type 2 variants (less common), or type 3 (rare) ... Test ID AVWPI von Willebrand Disease Profile Technical Interpretation Specimen Required. Only orderable as part of a profile. ... all results will be reviewed by a coagulation consultant and a von Willebrand Disease Profile Interpretation (AVWPQ) will be ... a computer-generated interpretive comment indicating no evidence of von Willebrand disease will be provided. ...
Journal Article] valuation of clinical severity in patients with type 2N von Willebrand disease using microchip-based flow- ... Presentation] 血流下血栓形成能は2N型von Willebrand病の臨床的重症度を反映する2015. *. Author(s). 薮本仁美、矢田弘史、志田泰明、武山雅博、野上恵嗣、細川和也、嶋 緑倫 ... Presentation] 血流下血栓形成能は1型及び2型von Willebrand病に対するデスモプレシン投与効果を反映す
EP100 Epidural placement in a pregnant woman with unknown von willebrand disease type and severity…what could go wrong? ... EP100 Epidural placement in a pregnant woman with unknown von willebrand disease type and severity…what could go wrong? ... Background and Aims Intro: Von Willebrand disease (vWD) is the most common heritable bleeding disorder (1). However, there are ... Von Willebrand activity 117, vWF 153, factor VIII 177 so overall the panel showed normal function. ...
What types of von Willebrand disease (vWD) does desmopressin/DDAVP work in?. By William Aird ... What types of von Willebrand disease (vWD) does desmopressin/DDAVP work in? ... Type 3 vWD because there is no von Willebrand factor (vWF) to release. ... Type 2 vWD because the drug releases and raises a functionally defective vWF. ...
By Product Type, By Regional Outlook, Industry Analysis Report and Forecast, 2021 - 2027 ... Von Willebrand disease is a very common bleeding disorder that affects 1 out of 100 individuals. Bleeding disorders affect ... Hemophilia A and B, blood clots, and Von Willebrand disease (VWD) are some of the common bleeding disorders. As per the ... Product Type Outlook. Based on Product Type, the market is segmented into Idarucizumab, Andexanet Alfa, Prothrombin Complex ...
Von Willebrand Disease Research Paper. According to the National Hemophilia Foundation (n.d.), von Willebrand disease (VWD) is ... There are two types of hemophilia, A and B (Christmas Disease). Low levels or complete absence of a blood protein essential for ... and von Willebrand disease. Von Willebrand disease is carried on chromosome 12 and occurs equally in men and women, unlike ... Von Willebrand Disease. Blood is essential to human life. It carries oxygen, nutrients and hormones all through your body with ...

No FAQ available that match "von willebrand disease type 1"

No images available that match "von willebrand disease type 1"