An enzyme of the oxidoreductase class primarily found in PLANTS. It catalyzes reactions between linoleate and other fatty acids and oxygen to form hydroperoxy-fatty acid derivatives.
An enzyme that catalyzes the oxidation of arachidonic acid to yield 5-hydroperoxyarachidonate (5-HPETE) which is rapidly converted by a peroxidase to 5-hydroxy-6,8,11,14-eicosatetraenoate (5-HETE). The 5-hydroperoxides are preferentially formed in leukocytes.
An enzyme that catalyzes the oxidation of arachidonic acid to yield 12-hydroperoxyarachidonate (12-HPETE) which is itself rapidly converted by a peroxidase to 12-hydroxy-5,8,10,14-eicosatetraenoate (12-HETE). The 12-hydroperoxides are preferentially formed in PLATELETS.
Compounds that bind to and inhibit that enzymatic activity of LIPOXYGENASES. Included under this category are inhibitors that are specific for lipoxygenase subtypes and act to reduce the production of LEUKOTRIENES.
An enzyme that catalyzes the oxidation of arachidonic acid to yield 15-hydroperoxyarachidonate (15-HPETE) which is rapidly converted to 15-hydroxy-5,8,11,13-eicosatetraenoate (15-HETE). The 15-hydroperoxides are preferentially formed in NEUTROPHILS and LYMPHOCYTES.
Enzymes catalyzing the oxidation of arachidonic acid to hydroperoxyarachidonates. These products are then rapidly converted by a peroxidase to hydroxyeicosatetraenoic acids. The positional specificity of the enzyme reaction varies from tissue to tissue. The final lipoxygenase pathway leads to the leukotrienes. EC 1.13.11.- .
A lipoxygenase metabolite of ARACHIDONIC ACID. It is a highly selective ligand used to label mu-opioid receptors in both membranes and tissue sections. The 12-S-HETE analog has been reported to augment tumor cell metastatic potential through activation of protein kinase C. (J Pharmacol Exp Ther 1995; 274(3):1545-51; J Natl Cancer Inst 1994; 86(15):1145-51)
A family of biologically active compounds derived from arachidonic acid by oxidative metabolism through the 5-lipoxygenase pathway. They participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. They have potent actions on many essential organs and systems, including the cardiovascular, pulmonary, and central nervous system as well as the gastrointestinal tract and the immune system.
A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils.
Eicosatetraenoic acids substituted in any position by one or more hydroxy groups. They are important intermediates in a series of biosynthetic processes leading from arachidonic acid to a number of biologically active compounds such as prostaglandins, thromboxanes, and leukotrienes.
Scaffolding proteins that play an important role in the localization and activation of 5-LIPOXYGENASE.
An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes.
The major metabolite in neutrophil polymorphonuclear leukocytes. It stimulates polymorphonuclear cell function (degranulation, formation of oxygen-centered free radicals, arachidonic acid release, and metabolism). (From Dictionary of Prostaglandins and Related Compounds, 1990)
A dual inhibitor of both cyclooxygenase and lipoxygenase pathways. It exerts an anti-inflammatory effect by inhibiting the formation of prostaglandins and leukotrienes. The drug also enhances pulmonary hypoxic vasoconstriction and has a protective effect after myocardial ischemia.
Arachidonic acids are polyunsaturated fatty acids, specifically a type of omega-6 fatty acid, that are essential for human nutrition and play crucial roles in various biological processes, including inflammation, immunity, and cell signaling. They serve as precursors to eicosanoids, which are hormone-like substances that mediate a wide range of physiological responses.
A 20-carbon unsaturated fatty acid containing 4 alkyne bonds. It inhibits the enzymatic conversion of arachidonic acid to prostaglandins E(2) and F(2a).
(2S-(2 alpha,3 beta(1E,3E,5Z,8Z)))-3-(1,3,5,8-Tetradecatetraenyl)oxiranebutanoic acid. An unstable allylic epoxide, formed from the immediate precursor 5-HPETE via the stereospecific removal of a proton at C-10 and dehydration. Its biological actions are determined primarily by its metabolites, i.e., LEUKOTRIENE B4 and cysteinyl-leukotrienes. Alternatively, leukotriene A4 is converted into LEUKOTRIENE C4 by glutathione-S-transferase or into 5,6-di-HETE by the epoxide-hydrolase. (From Dictionary of Prostaglandins and Related Compounds, 1990)
Eighteen-carbon essential fatty acids that contain two double bonds.
A class of compounds named after and generally derived from C20 fatty acids (EICOSANOIC ACIDS) that includes PROSTAGLANDINS; LEUKOTRIENES; THROMBOXANES, and HYDROXYEICOSATETRAENOIC ACIDS. They have hormone-like effects mediated by specialized receptors (RECEPTORS, EICOSANOID).
A group of LEUKOTRIENES; (LTC4; LTD4; and LTE4) that is the major mediator of BRONCHOCONSTRICTION; HYPERSENSITIVITY; and other allergic reactions. Earlier studies described a "slow-reacting substance of ANAPHYLAXIS" released from lung by cobra venom or after anaphylactic shock. The relationship between SRS-A leukotrienes was established by UV which showed the presence of the conjugated triene. (From Merck Index, 11th ed)
Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension.
A doubly unsaturated fatty acid, occurring widely in plant glycosides. It is an essential fatty acid in mammalian nutrition and is used in the biosynthesis of prostaglandins and cell membranes. (From Stedman, 26th ed)
A group of FLAVONOIDS characterized with a 4-ketone.
Trihydroxy derivatives of eicosanoic acids. They are primarily derived from arachidonic acid, however eicosapentaenoic acid derivatives also exist. Many of them are naturally occurring mediators of immune regulation.
An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems.
Compounds or agents that combine with cyclooxygenase (PROSTAGLANDIN-ENDOPEROXIDE SYNTHASES) and thereby prevent its substrate-enzyme combination with arachidonic acid and the formation of eicosanoids, prostaglandins, and thromboxanes.
A non-steroidal anti-inflammatory agent (NSAID) that inhibits the enzyme cyclooxygenase necessary for the formation of prostaglandins and other autacoids. It also inhibits the motility of polymorphonuclear leukocytes.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
An annual legume. The SEEDS of this plant are edible and used to produce a variety of SOY FOODS.
A class of drugs designed to prevent leukotriene synthesis or activity by blocking binding at the receptor level.
Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor.
An antineoplastic agent that inhibits DNA synthesis through the inhibition of ribonucleoside diphosphate reductase.
The conjugation product of LEUKOTRIENE A4 and glutathione. It is the major arachidonic acid metabolite in macrophages and human mast cells as well as in antigen-sensitized lung tissue. It stimulates mucus secretion in the lung, and produces contractions of nonvascular and some VASCULAR SMOOTH MUSCLE. (From Dictionary of Prostaglandins and Related Compounds, 1990)
Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes.
Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
Cell-surface receptors that bind LEUKOTRIENES with high affinity and trigger intracellular changes influencing the behavior of cells. The leukotriene receptor subtypes have been tentatively named according to their affinities for the endogenous leukotrienes LTB4; LTC4; LTD4; and LTE4.
Phospholipases that hydrolyze the acyl group attached to the 2-position of PHOSPHOGLYCERIDES.
A class of phenolic acids related to chlorogenic acid, p-coumaric acid, vanillic acid, etc., which are found in plant tissues. It is involved in plant growth regulation.
A group of 1,2-benzenediols that contain the general formula R-C6H5O2.
Eighteen-carbon essential fatty acids that contain three double bonds.
White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES).
A biologically active principle of SRS-A that is formed from LEUKOTRIENE D4 via a peptidase reaction that removes the glycine residue. The biological actions of LTE4 are similar to LTC4 and LTD4. (From Dictionary of Prostaglandins and Related Compounds, 1990)
Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation.
Compounds based on benzeneacetamide, that are similar in structure to ACETANILIDES.
FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds.
Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes.
A 20-carbon-chain fatty acid, unsaturated at positions 8, 11, and 14. It differs from arachidonic acid, 5,8,11,14-eicosatetraenoic acid, only at position 5.
Enzymes that catalyze reversibly the formation of an epoxide or arene oxide from a glycol or aromatic diol, respectively.
Azoles of two nitrogens at the 1,2 positions, next to each other, in contrast with IMIDAZOLES in which they are at the 1,3 positions.
A class of cell surface leukotriene receptors with a preference for leukotriene B4. Leukotriene B4 receptor activation influences chemotaxis, chemokinesis, adherence, enzyme release, oxidative bursts, and degranulation in polymorphonuclear leukocytes. There are at least two subtypes of these receptors. Some actions are mediated through the inositol phosphate and diacylglycerol second messenger systems.
A stable, physiologically active compound formed in vivo from the prostaglandin endoperoxides. It is important in the platelet-release reaction (release of ADP and serotonin).
Eighteen-carbon cyclopentyl polyunsaturated fatty acids derived from ALPHA-LINOLENIC ACID via an oxidative pathway analogous to the EICOSANOIDS in animals. Biosynthesis is inhibited by SALICYLATES. A key member, jasmonic acid of PLANTS, plays a similar role to ARACHIDONIC ACID in animals.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
A creeping annual plant species of the CUCURBITACEAE family. It has a rough succulent, trailing stem and hairy leaves with three to five pointed lobes.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Dioxygenases that catalyze the peroxidation of methylene-interrupted UNSATURATED FATTY ACIDS.
The rate dynamics in chemical or physical systems.
A chemically diverse group of substances produced by various tissues in the body that cause slow contraction of smooth muscle; they have other intense but varied pharmacologic activities.
Quinolines are heterocyclic aromatic organic compounds consisting of a two-nitrogened benzene ring fused to a pyridine ring, which have been synthesized and used as building blocks for various medicinal drugs, particularly antibiotics and antimalarials.
An acridine derivative formerly widely used as an antimalarial but superseded by chloroquine in recent years. It has also been used as an anthelmintic and in the treatment of giardiasis and malignant effusions. It is used in cell biological experiments as an inhibitor of phospholipase A2.
The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed)
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
A plant species of the genus SOLANUM, family SOLANACEAE. The starchy roots are used as food. SOLANINE is found in green parts.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Benzene rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
An inducibly-expressed subtype of prostaglandin-endoperoxide synthase. It plays an important role in many cellular processes and INFLAMMATION. It is the target of COX2 INHIBITORS.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Compounds that bind to and inhibit the action of 5-LIPOXYGENASE-ACTIVATING PROTEINS.
Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
One of the biologically active principles of SRS-A. It is generated from LEUKOTRIENE C4 after partial hydrolysis of the peptide chain, i.e., cleavage of the gamma-glutamyl portion. Its biological actions include stimulation of vascular and nonvascular smooth muscle, and increases in vascular permeability. (From Dictionary of Prostaglandins and Related Compounds, 1990)
Cell surface proteins that bind eicosanoids with high affinity and trigger intracellular changes influencing the behavior of cells. Among the eicosanoid receptors are receptors for the prostaglandins, thromboxanes, and leukotrienes.
A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds.
A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION.
A group of alicyclic hydrocarbons with the general formula R-C5H9.
Enzymes of the isomerase class that catalyze the oxidation of one part of a molecule with a corresponding reduction of another part of the same molecule. They include enzymes converting aldoses to ketoses (ALDOSE-KETOSE ISOMERASES), enzymes shifting a carbon-carbon double bond (CARBON-CARBON DOUBLE BOND ISOMERASES), and enzymes transposing S-S bonds (SULFUR-SULFUR BOND ISOMERASES). (From Enzyme Nomenclature, 1992) EC 5.3.
A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes.
Proteins, usually acting in oxidation-reduction reactions, containing iron but no porphyrin groups. (Lehninger, Principles of Biochemistry, 1993, pG-10)
'Pyrans' are heterocyclic organic compounds containing a six-membered ring with one oxygen atom and five carbon atoms, which can be found in various natural substances and synthesized compounds, and may have potential applications in medicinal chemistry.
7-Hydroxycoumarins. Substances present in many plants, especially umbelliferae. Umbelliferones are used in sunscreen preparations and may be mutagenic. Their derivatives are used in liver therapy, as reagents, plant growth factors, sunscreens, insecticides, parasiticides, choleretics, spasmolytics, etc.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
Zymosan is a polysaccharide derived from the cell walls of Saccharomyces cerevisiae, commonly used in research as an immunostimulant to induce inflammation and study phagocytosis, complement activation, and oxidative burst in neutrophils and macrophages.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
All-purpose surfactant, wetting agent, and solubilizer used in the drug, cosmetics, and food industries. It has also been used in laxatives and as cerumenolytics. It is usually administered as either the calcium, potassium, or sodium salt.
Anti-inflammatory agents that are non-steroidal in nature. In addition to anti-inflammatory actions, they have analgesic, antipyretic, and platelet-inhibitory actions.They act by blocking the synthesis of prostaglandins by inhibiting cyclooxygenase, which converts arachidonic acid to cyclic endoperoxides, precursors of prostaglandins. Inhibition of prostaglandin synthesis accounts for their analgesic, antipyretic, and platelet-inhibitory actions; other mechanisms may contribute to their anti-inflammatory effects.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components.
(11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities.
INFLAMMATION of PLEURA, the lining of the LUNG. When PARIETAL PLEURA is involved, there is pleuritic CHEST PAIN.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.
Compounds with a five-membered heterocyclic ring with two nitrogens and a keto OXYGEN. Some are inhibitors of TNF-ALPHA production.
Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield.
A constitutively-expressed subtype of prostaglandin-endoperoxide synthase. It plays an important role in many cellular processes.
Cycloheptanes are hydrocarbons characterized by a seven-membered carbon ring, with each carbon atom bonded to either another carbon atom or a hydrogen atom, and having the molecular formula (C7H14).
Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes.
Established cell cultures that have the potential to propagate indefinitely.
Important polyunsaturated fatty acid found in fish oils. It serves as the precursor for the prostaglandin-3 and thromboxane-3 families. A diet rich in eicosapentaenoic acid lowers serum lipid concentration, reduces incidence of cardiovascular disorders, prevents platelet aggregation, and inhibits arachidonic acid conversion into the thromboxane-2 and prostaglandin-2 families.
Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles.
An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis.

Divinyl ether fatty acid synthesis in late blight-diseased potato leaves. (1/779)

We conducted a study of the patterns and dynamics of oxidized fatty acid derivatives (oxylipins) in potato leaves infected with the late-blight pathogen Phytophthora infestans. Two 18-carbon divinyl ether fatty acids, colneleic acid and colnelenic acid, accumulated during disease development. To date, there are no reports that such compounds have been detected in higher plants. The divinyl ether fatty acids accumulate more rapidly in potato cultivar Matilda (a cultivar with increased resistance to late blight) than in cultivar Bintje, a susceptible cultivar. Colnelenic acid reached levels of up to approximately 24 nmol (7 microgram) per g fresh weight of tissue in infected leaves. By contrast, levels of members of the jasmonic acid family did not change significantly during pathogenesis. The divinyl ethers also accumulated during the incompatible interaction of tobacco with tobacco mosaic virus. Colneleic and colnelenic acids were found to be inhibitory to P. infestans, suggesting a function in plant defense for divinyl ethers, which are unstable compounds rarely encountered in biological systems.  (+info)

Induction of monocyte binding to endothelial cells by MM-LDL: role of lipoxygenase metabolites. (2/779)

Treatment of human aortic endothelial cells (EC) with minimally oxidized LDL (or minimally modified LDL, MM-LDL) produces a specific pattern of endothelial cell activation distinct from that produced by LPS, tumor necrosis factor-alpha, and interleukin-1, but similar to other agents that elevate cAMP. The current studies focus on the signal transduction pathways by which MM-LDL activates EC to bind monocytes. We now demonstrate that, in addition to an elevation of cAMP, lipoxygenase products are necessary for the MM-LDL response. Treatment of EC with inhibitors of the lipoxygenase pathway, 5,8,11, 14-eicosatetraynoic acid (ETYA) or cinnamyl-3, 4-dihydroxy-alpha-cyanocinnamate (CDC), blocked monocyte binding in MM-LDL-treated EC (MM-LDL=118+/-13%; MM-LDL+ETYA=33+/-4%; MM-LDL+CDC=23+/-4% increase in monocyte binding) without reducing cAMP levels. To further investigate the role of the lipoxygenase pathway, cellular phospholipids were labeled with arachidonic acid. Treatment of cells for 4 hours with 50 to 100 microg/mL MM-LDL, but not native LDL, caused a 60% increase in arachidonate release into the medium and increased the intracellular formation of 12(S)-HETE (approximately 100% increase). There was little 15(S)-HETE present, and no increase in its levels was observed. We demonstrated that 12(S)-HETE reversed the inhibitory effect of CDC. We also observed a 70% increase in the formation of 11,12-epoxyeicosatrienoic acid (11, 12-EET) in cells treated with MM-LDL. To determine the mechanism of arachidonate release induced by MM-LDL, we examined the effects of MM-LDL on intracellular calcium levels. Treatment of EC with both native LDL and MM-LDL caused a rapid release of intracellular calcium from internal stores. However, several pieces of evidence suggest that calcium release alone does not explain the increased arachidonate release in MM-LDL-treated cells. The present studies suggest that products of 12-lipoxygenase play an important role in MM-LDL action on the induction of monocyte binding to EC.  (+info)

Conversion of cucumber linoleate 13-lipoxygenase to a 9-lipoxygenating species by site-directed mutagenesis. (3/779)

Multiple lipoxygenase sequence alignments and structural modeling of the enzyme/substrate interaction of the cucumber lipid body lipoxygenase suggested histidine 608 as the primary determinant of positional specificity. Replacement of this amino acid by a less-space-filling valine altered the positional specificity of this linoleate 13-lipoxygenase in favor of 9-lipoxygenation. These alterations may be explained by the fact that H608V mutation may demask the positively charged guanidino group of R758, which, in turn, may force an inverse head-to-tail orientation of the fatty acid substrate. The R758L+H608V double mutant exhibited a strongly reduced reaction rate and a random positional specificity. Trilinolein, which lacks free carboxylic groups, was oxygenated to the corresponding (13S)-hydro(pero)xy derivatives by both the wild-type enzyme and the linoleate 9-lipoxygenating H608V mutant. These data indicate the complete conversion of a linoleate 13-lipoxygenase to a 9-lipoxygenating species by a single point mutation. It is hypothesized that H608V exchange may alter the orientation of the substrate at the active site and/or its steric configuration in such a way that a stereospecific dioxygen insertion at C-9 may exclusively take place.  (+info)

Formation of lipoxygenase-pathway-derived aldehydes in barley leaves upon methyl jasmonate treatment. (4/779)

In barley leaves, the application of jasmonates leads to dramatic alterations of gene expression. Among the up-regulated gene products lipoxygenases occur abundantly. Here, at least four of them were identified as 13-lipoxygenases exhibiting acidic pH optima between pH 5.0 and 6.5. (13S,9Z,11E,15Z)-13-hydroxy-9,11,15-octadecatrienoic acid was found to be the main endogenous lipoxygenase-derived polyenoic fatty acid derivative indicating 13-lipoxygenase activity in vivo. Moreover, upon methyl jasmonate treatment > 78% of the fatty acid hydroperoxides are metabolized by hydroperoxide lyase activity resulting in the endogenous occurrence of volatile aldehydes. (2E)-4-Hydroxy-2-hexenal, hexanal and (3Z)- plus (2E)-hexenal were identified as 2,4-dinitro-phenylhydrazones using HPLC and identification was confirmed by GC/MS analysis. This is the first proof that (2E)-4-hydroxy-2-hexenal is formed in plants under physiological conditions. Quantification of (2E)-4-hydroxy-2-hexenal, hexanal and hexenals upon methyl jasmonate treatment of barley leaf segments revealed that hexenals were the major aldehydes peaking at 24 h after methyl jasmonate treatment. Their endogenous content increased from 1.6 nmol.g-1 fresh weight to 45 nmol.g-1 fresh weight in methyl-jasmonate-treated leaf segments, whereas (2E)-4-hydroxy-2-hexenal, peaking at 48 h of methyl jasmonate treatment increased from 9 to 15 nmol.g-1 fresh weight. Similar to the hexenals, hexanal reached its maximal amount 24 h after methyl jasmonate treatment, but increased from 0.6 to 3.0 nmol.g-1 fresh weight. In addition to the classical leaf aldehydes, (2E)-4-hydroxy-2-hexenal was detected, thereby raising the question of whether it functions in the degradation of chloroplast membrane constituents, which takes place after methyl jasmonate treatment.  (+info)

Cucumber cotyledon lipoxygenase during postgerminative growth. Its expression and action on lipid bodies. (5/779)

In cucumber (Cucumis sativus), high lipoxygenase-1 (LOX-1) activity has been detected in the soluble fraction prepared from cotyledons of germinating seeds, and the involvement of this enzyme in lipid turnover has been suggested (K. Matsui, M. Irie, T. Kajiwara, A. Hatanaka [1992] Plant Sci 85: 23-32; I. Fuessner, C. Wasternack, H. Kindl, H. Kuhn [1995] Proc Natl Acad Sci USA 92: 11849-11853). In this study we have investigated the expression of the gene lox-1, corresponding to the LOX-1 enzyme. LOX-1 expression is highly coordinated with that of a typical glyoxysomal enzyme, isocitrate lyase, during the postgerminative stage of cotyledon development. In contrast, although icl transcripts accumulated in tissue during in vitro senescence, no accumulation of lox-1 mRNA could be observed, suggesting that lox-1 plays a specialized role in fat mobilization. LOX-1 is also known to be a major lipid body protein. The partial peptide sequences of purified LOX-1 and lipid body LOX-1 entirely coincided with that deduced from the lox-1 cDNA sequence. The data strongly suggest that LOX-1 and lipid body LOX-1 are derived from a single gene and that LOX-1 can exist both in the cytosol and on the lipid bodies. We constructed an in vitro oxygenation system to address the mechanism of this dual localization and to investigate the action of LOX-1 on lipids in the lipid bodies. LOX-1 cannot act on the lipids in intact lipid bodies, although degradation of lipid body proteins, either during seedling growth or by treatment with trypsin, allows lipid bodies to become susceptible to LOX-1. We discuss the role of LOX-1 in fat mobilization and its mechanism of action.  (+info)

Evidence that lipid hydroperoxides inhibit plasma lecithin:cholesterol acyltransferase activity. (6/779)

The oxidation of low density lipoproteins (LDL) has been implicated in the development of atherosclerosis. Recently, we found that polar lipids isolated from minimally oxidized LDL produced a dramatic inhibition of lecithin: cholesterol acyltransferase (LCAT) activity, suggesting that HDL-cholesterol transport may be impaired during early atherogenesis. In this study, we have identified molecular species of oxidized lipids that are potent inhibitors of LCAT activity. Treatment of LDL with soybean lipoxygenase generated small quantities of lipid hydroperoxides (20 +/- 4 nmol/mg LDL protein, n = 3); but when lipoxygenase-treated LDL (1 mg protein/ml) was recombined with the d > 1.063 g/ml fraction of human plasma, LCAT activity was rapidly inhibited (25 +/- 4 and 65 +/- 16% reductions by 1 and 3 h, respectively). As phospholipid hydroperoxides (PL-OOH) are the principal oxidation products associated with lipoxygenase-treated LDL, we directly tested whether PL-OOH inhibited plasma LCAT activity. Detailed dose-response curves revealed that as little as 0.2 and 1.0 mole % enrichment of plasma with PL-OOH produced 20 and 50% reductions in LCAT activity by 2 h, respectively. To gain insight into the mechanism of LCAT impairment, the enzyme's free cysteines (Cys31 and Cys184) and active site residues were "capped" with the reversible sulfhydryl compound, DTNB, during exposure to either minimally oxidized LDL or PL-OOH. Reversal of the DTNB "cap" after such exposures revealed that the enzyme was completely protected from both sources of peroxidized phospholipids. We, therefore, conclude that PL-OOH inhibited plasma LCAT activity by modifying the enzyme's free cysteine and/or catalytic residues. These studies are the first to suggest that PL-OOH may accelerate the atherogenic process by impairing LCAT activity.  (+info)

The diversity of the lipoxygenase family. Many sequence data but little information on biological significance. (7/779)

Lipoxygenases form a family of lipid peroxidising enzymes, which oxygenate free and esterified polyenoic fatty acids to the corresponding hydroperoxy derivatives. They are widely distributed in both the plant and animal kingdoms. During the last couple of years more and more lipoxygenase isoforms have been discovered but for most of them the biological significance remains unclear. This review attempts to classify the currently known mammalian lipoxygenase isoforms and critically reviews the concepts for their biological importance.  (+info)

When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid. (8/779)

The inclusion of uric acid in the incubation medium during copper-induced low-density lipoprotein (LDL) oxidation exerted either an antioxidant or pro-oxidant effect. The pro-oxidant effect, as mirrored by an enhanced formation of conjugated dienes, lipid peroxides, thiobarbituric acid-reactive substances and increase in negative charge, occurred when uric acid was added late during the inhibitory or lag phase and during the subsequent extensive propagation phase of copper-stimulated LDL oxidation. The pro-oxidant effect of uric acid was specific for copper-induced LDL oxidation and required the presence of copper as either Cu(I) or Cu(II). In addition, it became much more evident when the copper to LDL molar ratio was below a threshold value of approx. 50. In native LDL, the shift between the antioxidant and the pro-oxidant activities was related to the availability of lipid hydroperoxides formed during the early phases of copper-promoted LDL oxidation. The artificial enrichment of isolated LDL with alpha-tocopherol delayed the onset of the pro-oxidant activity of uric acid and also decreased the rate of stimulated lipid peroxidation. However, previous depletion of alpha-tocopherol was not a prerequisite for unmasking the pro-oxidant activity of uric acid, since this became apparent even when alpha-tocopherol was still present in significant amounts (more than 50% of the original values) in LDL. These results suggest, irrespective of the levels of endogenous alpha-tocopherol, that uric acid may enhance LDL oxidation by reducing Cu(II) to Cu(I), thus making more Cu(I) available for subsequent radical decomposition of lipid peroxides and propagation reactions.  (+info)

Lipoxygenase is an enzyme that catalyzes the dioxygenation of polyunsaturated fatty acids containing a cis,cis-1,4-pentadiene structure, forming hydroperoxides. This reaction is important in the biosynthesis of leukotrienes and lipoxins, which are involved in various inflammatory responses and immune functions. There are several isoforms of lipoxygenase found in different tissues and organisms, including arachidonate 5-lipoxygenase, arachidonate 12-lipoxygenase, and arachidonate 15-lipoxygenase.

Arachidonate 5-Lipoxygenase (also known as ALOX5 or 5-LO) is a type of enzyme involved in the biosynthesis of leukotrienes, which are important inflammatory mediators. It catalyzes the conversion of arachidonic acid, a polyunsaturated fatty acid, to 5-hydroperoxyeicosatetraenoic acid (5-HPETE), which is then converted to leukotriene A4 (LTA4). LTA4 is a precursor for the synthesis of other leukotrienes, such as LTB4, LTC4, LTD4, and LTE4. These lipid mediators play key roles in various physiological and pathophysiological processes, including inflammation, immune response, and allergic reactions.

The gene encoding arachidonate 5-lipoxygenase is located on human chromosome 10 (10q11.2). Mutations in this gene have been associated with several diseases, such as severe congenital neutropenia, recurrent infections, and increased risk of developing asthma and other allergic disorders. Inhibitors of arachidonate 5-lipoxygenase are used as therapeutic agents for the treatment of inflammatory conditions, including asthma and rheumatoid arthritis.

Arachidonate 12-lipoxygenase (also known as ALOX12 or 12S-lipoxygenase) is an enzyme that catalyzes the conversion of arachidonic acid to 12(S)-hydroperoxyeicosatetraenoic acid (12(S)-HPETE). This reaction is part of the lipoxygenase pathway, which contributes to the biosynthesis of eicosanoids, a group of signaling molecules that play important roles in inflammation and immune response.

The enzyme's function includes introducing molecular oxygen into arachidonic acid at position 12, creating a hydroperoxide group. The product, 12(S)-HPETE, can be further metabolized to various eicosanoids, such as 12-hydroxyeicosatetraenoic acid (12-HETE) and lipoxin A4, which have diverse biological activities in the body.

Arachidonate 12-lipoxygenase is expressed in various tissues, including the vascular endothelium, platelets, and immune cells like monocytes and macrophages. Its activity can contribute to the development of certain diseases, such as atherosclerosis, cancer, and inflammatory disorders. Therefore, inhibiting this enzyme has been considered as a potential therapeutic strategy for treating these conditions.

Lipoxygenase inhibitors are a class of compounds that block the activity of lipoxygenase enzymes. These enzymes are involved in the metabolism of arachidonic acid and other polyunsaturated fatty acids, leading to the production of leukotrienes and other inflammatory mediators. By inhibiting lipoxygenase, these compounds can help reduce inflammation and may have potential therapeutic applications in the treatment of various diseases, including asthma, atherosclerosis, and cancer. Some examples of lipoxygenase inhibitors include nordihydroguaiaretic acid (NDGA), zileuton, and baicalein.

Arachidonate 15-lipoxygenase is an enzyme that catalyzes the conversion of arachidonic acid to 15-hydroperoxyeicosatetraenoic acid (15-HPETE). This enzyme plays a role in the metabolism of arachidonic acid, which is a polyunsaturated fatty acid that is released from membrane phospholipids and is a precursor for eicosanoids, which are signaling molecules that play a role in inflammation and other physiological processes.

15-lipoxygenase is one of several lipoxygenases that are found in various tissues throughout the body. These enzymes are involved in the production of leukotrienes, which are signaling molecules that play a role in inflammation and allergic responses. 15-lipoxygenase has also been implicated in the development and progression of certain diseases, including cancer and cardiovascular disease.

Inhibitors of 15-lipoxygenase have been investigated as potential therapeutic agents for the treatment of various inflammatory conditions. However, more research is needed to fully understand the role of this enzyme in health and disease and to determine the safety and efficacy of inhibiting its activity.

Arachidonate lipoxygenases (ALOXs or ALOXE's) are a group of enzymes that catalyze the dioxygenation of polyunsaturated fatty acids, such as arachidonic acid, to form hydroperoxides. These enzymes play a crucial role in the biosynthesis of various eicosanoids, which are signaling molecules involved in inflammation, immunity, and other physiological processes.

There are several isoforms of ALOXs, including 5-lipoxygenase (5-LOX), 12-lipoxygenase (12-LOX), and 15-lipoxygenase (15-LOX), which differ in their substrate specificity and the position of the hydroperoxide group they introduce into the fatty acid. These enzymes are widely distributed in various tissues, including the lungs, liver, and brain, and have been implicated in a variety of diseases, such as cancer, cardiovascular disease, and neurodegenerative disorders.

Inhibition of ALOXs has been explored as a potential therapeutic strategy for the treatment of these diseases, although the development of selective and safe inhibitors has proven to be challenging.

12-Hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) is a type of fatty acid that is produced in the body as a result of the metabolism of arachidonic acid, which is an omega-6 fatty acid that is found in the membranes of cells throughout the body.

12-HETE is synthesized by the enzyme 12-lipoxygenase (12-LOX), which adds a hydroxyl group (-OH) to the twelfth carbon atom of arachidonic acid. This lipid mediator plays a role in various physiological and pathophysiological processes, including inflammation, immune response, and cancer development.

Increased levels of 12-HETE have been found in several diseases, such as atherosclerosis, asthma, and cancer, suggesting that it may contribute to the development and progression of these conditions. However, further research is needed to fully understand the role of 12-HETE in human health and disease.

Leukotrienes are a type of lipid mediator derived from arachidonic acid, which is a fatty acid found in the cell membranes of various cells in the body. They are produced by the 5-lipoxygenase (5-LO) pathway and play an essential role in the inflammatory response. Leukotrienes are involved in several physiological and pathophysiological processes, including bronchoconstriction, increased vascular permeability, and recruitment of immune cells to sites of injury or infection.

There are four main types of leukotrienes: LTB4, LTC4, LTD4, and LTE4. These molecules differ from each other based on the presence or absence of specific chemical groups attached to their core structure. Leukotrienes exert their effects by binding to specific G protein-coupled receptors (GPCRs) found on the surface of various cells.

LTB4 is primarily involved in neutrophil chemotaxis and activation, while LTC4, LTD4, and LTE4 are collectively known as cysteinyl leukotrienes (CysLTs). CysLTs cause bronchoconstriction, increased mucus production, and vascular permeability in the airways, contributing to the pathogenesis of asthma and other respiratory diseases.

In summary, leukotrienes are potent lipid mediators that play a crucial role in inflammation and immune responses. Their dysregulation has been implicated in several disease states, making them an important target for therapeutic intervention.

Masoprocol is not a medication that has an established or widely accepted medical definition in the field of pharmacology or clinical medicine. It may refer to a chemical compound with the name 5-n-butyl-2-benzoxazolinone, which has been studied for its potential anti-cancer properties. However, it is not currently approved by regulatory agencies such as the U.S. Food and Drug Administration (FDA) for use in medical treatments.

Therefore, it's important to consult with healthcare professionals or reliable medical sources for information regarding medications and their uses, rather than relying on unverified or obscure sources.

Hydroxyeicosatetraenoic acids (HETEs) are a type of metabolite produced by the oxidation of arachidonic acid, a polyunsaturated fatty acid that is found in the membranes of cells in the human body. This oxidation process is catalyzed by enzymes called lipoxygenases (LOXs) and cytochrome P450 monooxygenases (CYP450).

HETEs are biologically active compounds that play a role in various physiological and pathophysiological processes, including inflammation, immune response, and cancer. They can act as signaling molecules, modulating the activity of various cell types, such as leukocytes, endothelial cells, and smooth muscle cells.

There are several different types of HETEs, depending on the position of the hydroxyl group (-OH) attached to the arachidonic acid molecule. For example, 5-HETE, 12-HETE, and 15-HETE are produced by 5-LOX, 12-LOX, and 15-LOX, respectively, while CYP450 can produce 20-HETE.

It's worth noting that HETEs have been implicated in various diseases, such as atherosclerosis, hypertension, and cancer, making them potential targets for therapeutic intervention. However, further research is needed to fully understand their roles and develop effective treatments.

5-Lipoxygenase-activating proteins (FLAPs) are a type of enzyme found in the cell membrane that play a crucial role in the biosynthesis of leukotrienes, which are lipid mediators involved in inflammation and immune responses. FLAPs activate 5-lipoxygenase, an enzyme that catalyzes the conversion of arachidonic acid to leukotriene A4, a precursor for other leukotrienes.

FLAP inhibitors are a class of drugs that block the activity of FLAPs and have been investigated as potential treatments for inflammatory diseases such as asthma, rheumatoid arthritis, and atherosclerosis. By inhibiting FLAP, these drugs can reduce the production of leukotrienes and other pro-inflammatory mediators, thereby alleviating the symptoms of inflammation and potentially slowing down the progression of related diseases.

Arachidonic acid is a type of polyunsaturated fatty acid that is found naturally in the body and in certain foods. It is an essential fatty acid, meaning that it cannot be produced by the human body and must be obtained through the diet. Arachidonic acid is a key component of cell membranes and plays a role in various physiological processes, including inflammation and blood clotting.

In the body, arachidonic acid is released from cell membranes in response to various stimuli, such as injury or infection. Once released, it can be converted into a variety of bioactive compounds, including prostaglandins, thromboxanes, and leukotrienes, which mediate various physiological responses, including inflammation, pain, fever, and blood clotting.

Arachidonic acid is found in high concentrations in animal products such as meat, poultry, fish, and eggs, as well as in some plant sources such as certain nuts and seeds. It is also available as a dietary supplement. However, it is important to note that excessive intake of arachidonic acid can contribute to the development of inflammation and other health problems, so it is recommended to consume this fatty acid in moderation as part of a balanced diet.

Leukotriene B4 (LTB4) is a type of lipid mediator called eicosanoid, which is derived from arachidonic acid through the 5-lipoxygenase pathway. It is primarily produced by neutrophils, eosinophils, monocytes, and macrophages in response to various stimuli such as infection, inflammation, or injury. LTB4 acts as a potent chemoattractant and activator of these immune cells, playing a crucial role in the recruitment and activation of neutrophils during acute inflammatory responses. It also enhances the adhesion of leukocytes to endothelial cells, contributing to the development of tissue damage and edema. Dysregulation of LTB4 production has been implicated in several pathological conditions, including asthma, atherosclerosis, and cancer.

Arachidonic acids are a type of polyunsaturated fatty acid that is primarily found in the phospholipids of cell membranes. They contain 20 carbon atoms and four double bonds (20:4n-6), with the first double bond located at the sixth carbon atom from the methyl end.

Arachidonic acids are derived from linoleic acid, an essential fatty acid that cannot be synthesized by the human body and must be obtained through dietary sources such as meat, fish, and eggs. Once ingested, linoleic acid is converted to arachidonic acid in a series of enzymatic reactions.

Arachidonic acids play an important role in various physiological processes, including inflammation, immune response, and cell signaling. They serve as precursors for the synthesis of eicosanoids, which are signaling molecules that include prostaglandins, thromboxanes, and leukotrienes. These eicosanoids have diverse biological activities, such as modulating blood flow, platelet aggregation, and pain perception, among others.

However, excessive production of arachidonic acid-derived eicosanoids has been implicated in various pathological conditions, including inflammation, atherosclerosis, and cancer. Therefore, the regulation of arachidonic acid metabolism is an important area of research for the development of new therapeutic strategies.

5,8,11,14-Eicosatetraynoic acid (ETYA) is a polyunsaturated fatty acid that contains four double bonds in its chemical structure. It is a non-methylene interrupted fatty acid, which means that the double bonds are separated by three methylene bridges. ETYA is not a naturally occurring fatty acid and is typically synthesized in the laboratory for research purposes.

ETYA has been used as a tool to study the biochemical mechanisms of inflammation and cancer. It can inhibit the activity of enzymes called lipoxygenases and cyclooxygenases, which are involved in the production of inflammatory mediators such as prostaglandins and leukotrienes. ETYA can also induce the formation of reactive oxygen species, which can contribute to cell damage and death.

While ETYA has been used in research to better understand the biochemical pathways involved in inflammation and cancer, it is not used as a therapeutic agent in clinical medicine due to its potential toxicity and lack of specificity for targeting disease processes.

Leukotriene A4 (LTA4) is a lipid mediator derived from arachidonic acid, which is released from membrane phospholipids by the action of phospholipase A2. LTA4 is synthesized in the cell through the 5-lipoxygenase pathway and serves as an intermediate in the production of other leukotrienes (LB4, LTC4, LTD4, LTE4) that are involved in inflammation, bronchoconstriction, increased vascular permeability, and recruitment of leukocytes.

Leukotriene A4 is an unstable compound with a short half-life, which can be converted to Leukotriene B4 (LTB4) by the enzyme LTA4 hydrolase or to Leukotriene C4 (LTC4) by the addition of glutathione through the action of LTC4 synthase. These leukotrienes play a significant role in the pathophysiology of asthma, allergies, and other inflammatory diseases.

Linoleic acid is a type of polyunsaturated fatty acid (PUFA) that is essential for human health. It is one of the two essential fatty acids, meaning that it cannot be produced by the body and must be obtained through diet.

Linoleic acid is a member of the omega-6 fatty acid family and has a chemical structure with two double bonds at the sixth and ninth carbon atoms from the methyl end of the molecule. It is found in various plant sources, such as vegetable oils (e.g., soybean, corn, safflower, and sunflower oils), nuts, seeds, and whole grains.

Linoleic acid plays a crucial role in maintaining the fluidity and function of cell membranes, producing eicosanoids (hormone-like substances that regulate various bodily functions), and supporting skin health. However, excessive intake of linoleic acid can lead to an imbalance between omega-6 and omega-3 fatty acids, which may contribute to inflammation and chronic diseases. Therefore, it is recommended to maintain a balanced diet with appropriate amounts of both omega-6 and omega-3 fatty acids.

Eicosanoids are a group of signaling molecules made by the enzymatic or non-enzymatic oxidation of arachidonic acid and other polyunsaturated fatty acids with 20 carbon atoms. They include prostaglandins, thromboxanes, leukotrienes, and lipoxins, which are involved in a wide range of physiological and pathophysiological processes, such as inflammation, immune response, blood clotting, and smooth muscle contraction. Eicosanoids act as local hormones or autacoids, affecting the function of cells near where they are produced. They are synthesized by various cell types, including immune cells, endothelial cells, and neurons, in response to different stimuli, such as injury, infection, or stress. The balance between different eicosanoids can have significant effects on health and disease.

"SRS-A" is an older abbreviation for "Slow-Reacting Substance of Anaphylaxis," which refers to a group of molecules called "leukotrienes." Leukotrienes are mediators of inflammation and play a key role in the pathogenesis of asthma and other allergic diseases. They are produced by mast cells and basophils upon activation, and cause bronchoconstriction, increased vascular permeability, and mucus production.

The term "SRS-A" is not commonly used in modern medical literature, as it has been largely replaced by the more specific names of its individual components: LTC4, LTD4, and LTE4. These leukotrienes are now collectively referred to as the "cysteinyl leukotrienes."

Lipid peroxides are chemical compounds that form when lipids (fats or fat-like substances) oxidize. This process, known as lipid peroxidation, involves the reaction of lipids with oxygen in a way that leads to the formation of hydroperoxides and various aldehydes, such as malondialdehyde.

Lipid peroxidation is a naturally occurring process that can also be accelerated by factors such as exposure to radiation, certain chemicals, or enzymatic reactions. It plays a role in many biological processes, including cell signaling and regulation of gene expression, but it can also contribute to the development of various diseases when it becomes excessive.

Examples of lipid peroxides include phospholipid hydroperoxides, cholesteryl ester hydroperoxides, and triglyceride hydroperoxides. These compounds are often used as markers of oxidative stress in biological systems and have been implicated in the pathogenesis of atherosclerosis, cancer, neurodegenerative diseases, and other conditions associated with oxidative damage.

Linoleic acid is an essential polyunsaturated fatty acid, specifically an omega-6 fatty acid. It is called "essential" because our bodies cannot produce it; therefore, it must be obtained through our diet. Linoleic acid is a crucial component of cell membranes and is involved in the production of prostaglandins, which are hormone-like substances that regulate various bodily functions such as inflammation, blood pressure, and muscle contraction.

Foods rich in linoleic acid include vegetable oils (such as soybean, corn, and sunflower oil), nuts, seeds, and some fruits and vegetables. It is important to maintain a balance between omega-6 and omega-3 fatty acids in the diet, as excessive consumption of omega-6 fatty acids can contribute to inflammation and other health issues.

Flavanones are a type of flavonoid, which is a class of plant pigments widely found in fruits, vegetables, and other plants. Flavanones are known for their antioxidant properties and potential health benefits. They are typically found in citrus fruits such as oranges, lemons, and grapefruits. Some common flavanones include hesperetin, naringenin, and eriodictyol. These compounds have been studied for their potential effects on cardiovascular health, cancer prevention, and neuroprotection, although more research is needed to fully understand their mechanisms of action and therapeutic potential.

Lipoxins are a group of naturally occurring, short-lived signaling molecules called eicosanoids that are derived from arachidonic acid, a type of omega-6 fatty acid. They were first discovered in the 1980s and are produced by cells involved in the inflammatory response, such as white blood cells (leukocytes).

Lipoxins have potent anti-inflammatory effects and play a crucial role in regulating and resolving the inflammatory response. They work by modulating the activity of various immune cells, including neutrophils, monocytes, and lymphocytes, and promoting the resolution of inflammation through the activation of anti-inflammatory pathways.

Lipoxins have been shown to have potential therapeutic applications in a variety of inflammatory diseases, such as asthma, arthritis, and inflammatory bowel disease. However, further research is needed to fully understand their mechanisms of action and therapeutic potential.

Calcimycin is a ionophore compound that is produced by the bacterium Streptomyces chartreusensis. It is also known as Calcineurin A inhibitor because it can bind to and inhibit the activity of calcineurin, a protein phosphatase. In medical research, calcimycin is often used to study calcium signaling in cells.
It has been also used in laboratory studies for its antiproliferative and pro-apoptotic effects on certain types of cancer cells. However, it is not approved for use as a drug in humans.

Cyclooxygenase (COX) inhibitors are a class of drugs that work by blocking the activity of cyclooxygenase enzymes, which are involved in the production of prostaglandins. Prostaglandins are hormone-like substances that play a role in inflammation, pain, and fever.

There are two main types of COX enzymes: COX-1 and COX-2. COX-1 is produced continuously in various tissues throughout the body and helps maintain the normal function of the stomach and kidneys, among other things. COX-2, on the other hand, is produced in response to inflammation and is involved in the production of prostaglandins that contribute to pain, fever, and inflammation.

COX inhibitors can be non-selective, meaning they block both COX-1 and COX-2, or selective, meaning they primarily block COX-2. Non-selective COX inhibitors include drugs such as aspirin, ibuprofen, and naproxen, while selective COX inhibitors are often referred to as coxibs and include celecoxib (Celebrex) and rofecoxib (Vioxx).

COX inhibitors are commonly used to treat pain, inflammation, and fever. However, long-term use of non-selective COX inhibitors can increase the risk of gastrointestinal side effects such as ulcers and bleeding, while selective COX inhibitors may be associated with an increased risk of cardiovascular events such as heart attack and stroke. It is important to talk to a healthcare provider about the potential risks and benefits of COX inhibitors before using them.

Indomethacin is a non-steroidal anti-inflammatory drug (NSAID) that is commonly used to reduce pain, inflammation, and fever. It works by inhibiting the activity of certain enzymes in the body, including cyclooxygenase (COX), which plays a role in producing prostaglandins, chemicals involved in the inflammatory response.

Indomethacin is available in various forms, such as capsules, suppositories, and injectable solutions, and is used to treat a wide range of conditions, including rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, gout, and bursitis. It may also be used to relieve pain and reduce fever in other conditions, such as dental procedures or after surgery.

Like all NSAIDs, indomethacin can have side effects, including stomach ulcers, bleeding, and kidney damage, especially when taken at high doses or for long periods of time. It may also increase the risk of heart attack and stroke. Therefore, it is important to use indomethacin only as directed by a healthcare provider and to report any unusual symptoms or side effects promptly.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

I'm sorry for any confusion, but "soybeans" are not a medical term. They are a type of legume that is commonly used in agriculture and food production. The medical community might discuss soybeans in the context of nutrition or allergies, but there isn't a formal medical definition for this term.

Here's some general information: Soybeans, scientifically known as Glycine max, are native to East Asia and are now grown worldwide. They are a significant source of plant-based protein and oil. Soybeans contain various nutrients, including essential amino acids, fiber, B vitamins, and minerals like calcium, iron, magnesium, and zinc. They are used in various food products such as tofu, soy milk, tempeh, and miso. Additionally, soybeans are also used in the production of industrial products, including biodiesel, plastics, and inks. Some people may have allergic reactions to soybeans or soy products.

Leukotriene antagonists are a class of medications that work by blocking the action of leukotrienes, which are chemicals released by the immune system in response to an allergen or irritant. Leukotrienes cause airway muscles to tighten and inflammation in the airways, leading to symptoms such as wheezing, shortness of breath, and coughing. By blocking the action of leukotrienes, leukotriene antagonists can help relieve these symptoms and improve lung function. These medications are often used to treat asthma and allergic rhinitis (hay fever). Examples of leukotriene antagonists include montelukast, zafirlukast, and pranlukast.

Prostaglandin-Endoperoxide Synthases (PTGS), also known as Cyclooxygenases (COX), are a group of enzymes that catalyze the conversion of arachidonic acid into prostaglandin G2 and H2, which are further metabolized to produce various prostaglandins and thromboxanes. These lipid mediators play crucial roles in several physiological processes such as inflammation, pain, fever, and blood clotting. There are two major isoforms of PTGS: PTGS-1 (COX-1) and PTGS-2 (COX-2). While COX-1 is constitutively expressed in most tissues and involved in homeostatic functions, COX-2 is usually induced during inflammation and tissue injury. Nonsteroidal anti-inflammatory drugs (NSAIDs) exert their therapeutic effects by inhibiting these enzymes, thereby reducing the production of prostaglandins and thromboxanes.

Hydroxyurea is an antimetabolite drug that is primarily used in the treatment of myeloproliferative disorders such as chronic myelogenous leukemia (CML), essential thrombocythemia, and polycythemia vera. It works by interfering with the synthesis of DNA, which inhibits the growth of cancer cells.

In addition to its use in cancer therapy, hydroxyurea is also used off-label for the management of sickle cell disease. In this context, it helps to reduce the frequency and severity of painful vaso-occlusive crises by increasing the production of fetal hemoglobin (HbF), which decreases the formation of sickled red blood cells.

The medical definition of hydroxyurea is:

A hydantoin derivative and antimetabolite that inhibits ribonucleoside diphosphate reductase, thereby interfering with DNA synthesis. It has been used as an antineoplastic agent, particularly in the treatment of myeloproliferative disorders, and more recently for the management of sickle cell disease to reduce the frequency and severity of painful vaso-occlusive crises by increasing fetal hemoglobin production.

Leukotriene C4 (LTC4) is a type of lipid mediator called a cysteinyl leukotriene, which is derived from arachidonic acid through the 5-lipoxygenase pathway. It is primarily produced by activated mast cells and basophils, and to a lesser extent by eosinophils, during an allergic response or inflammation.

LTC4 plays a crucial role in the pathogenesis of asthma and other allergic diseases by causing bronchoconstriction, increased vascular permeability, mucus secretion, and recruitment of inflammatory cells to the site of inflammation. It exerts its effects by binding to cysteinyl leukotriene receptors (CysLT1 and CysLT2) found on various cell types, including airway smooth muscle cells, bronchial epithelial cells, and immune cells.

LTC4 is rapidly metabolized to Leukotriene D4 (LTD4) and then to Leukotriene E4 (LTE4) by enzymes such as gamma-glutamyl transpeptidase and dipeptidases, which are present in the extracellular space. These metabolites also have biological activity and contribute to the inflammatory response.

Inhibitors of 5-lipoxygenase or leukotriene receptor antagonists are used as therapeutic agents for the treatment of asthma, allergies, and other inflammatory conditions.

Neutrophils are a type of white blood cell that are part of the immune system's response to infection. They are produced in the bone marrow and released into the bloodstream where they circulate and are able to move quickly to sites of infection or inflammation in the body. Neutrophils are capable of engulfing and destroying bacteria, viruses, and other foreign substances through a process called phagocytosis. They are also involved in the release of inflammatory mediators, which can contribute to tissue damage in some cases. Neutrophils are characterized by the presence of granules in their cytoplasm, which contain enzymes and other proteins that help them carry out their immune functions.

Phospholipases A are a group of enzymes that hydrolyze phospholipids into fatty acids and lysophospholipids by cleaving the ester bond at the sn-1 or sn-2 position of the glycerol backbone. There are three main types of Phospholipases A:

* Phospholipase A1 (PLA1): This enzyme specifically hydrolyzes the ester bond at the sn-1 position, releasing a free fatty acid and a lysophospholipid.
* Phospholipase A2 (PLA2): This enzyme specifically hydrolyzes the ester bond at the sn-2 position, releasing a free fatty acid (often arachidonic acid, which is a precursor for eicosanoids) and a lysophospholipid.
* Phospholipase A/B (PLA/B): This enzyme has both PLA1 and PLA2 activity and can hydrolyze the ester bond at either the sn-1 or sn-2 position.

Phospholipases A play important roles in various biological processes, including cell signaling, membrane remodeling, and host defense. They are also involved in several diseases, such as atherosclerosis, neurodegenerative disorders, and cancer.

Leukotriene receptors are a type of cell surface receptor that bind to and are activated by leukotrienes, which are lipid mediators derived from arachidonic acid. These receptors play an important role in the inflammatory response and are involved in various physiological and pathophysiological processes, including bronchoconstriction, increased vascular permeability, and recruitment of inflammatory cells.

There are two main types of leukotriene receptors: CysLT1 and CysLT2. The CysLT1 receptor has a high affinity for the cysteinyl leukotrienes LTC4, LTD4, and LTE4, while the CysLT2 receptor has a lower affinity for these ligands. Activation of the CysLT1 receptor leads to smooth muscle contraction, increased vascular permeability, and recruitment of inflammatory cells, while activation of the CysLT2 receptor is associated with vasoconstriction and bronchodilation.

Leukotriene receptors are found on various cell types, including immune cells (e.g., eosinophils, mast cells), airway smooth muscle cells, endothelial cells, and epithelial cells. They play a key role in the pathogenesis of asthma and other allergic diseases, as well as in the development of inflammation in response to infection or tissue injury.

Drugs that target leukotriene receptors, such as montelukast (a CysLT1 receptor antagonist), are used in the treatment of asthma and allergic rhinitis. These drugs work by blocking the activation of leukotriene receptors, thereby reducing inflammation and bronchoconstriction.

Phospholipase A2 (PLA2) is a type of enzyme that catalyzes the hydrolysis of the sn-2 ester bond in glycerophospholipids, releasing free fatty acids, such as arachidonic acid, and lysophospholipids. These products are important precursors for the biosynthesis of various signaling molecules, including eicosanoids, platelet-activating factor (PAF), and lipoxins, which play crucial roles in inflammation, immunity, and other cellular processes.

Phospholipases A2 are classified into several groups based on their structure, mechanism of action, and cellular localization. The secreted PLA2s (sPLA2s) are found in extracellular fluids and are characterized by a low molecular weight, while the calcium-dependent cytosolic PLA2s (cPLA2s) are larger proteins that reside within cells.

Abnormal regulation or activity of Phospholipase A2 has been implicated in various pathological conditions, such as inflammation, neurodegenerative diseases, and cancer. Therefore, understanding the biology and function of these enzymes is essential for developing novel therapeutic strategies to target these disorders.

Caffeic acids are a type of phenolic compounds that contain a catechol structure and a carboxylic acid group. They are found in various plants, including coffee, tea, fruits, and vegetables. The most common caffeic acid is caffeic acid itself, which is abundant in coffee. Caffeic acids have been studied for their potential health benefits, such as antioxidant, anti-inflammatory, and anticancer activities. However, more research is needed to fully understand their effects on human health.

Catechols are a type of chemical compound that contain a benzene ring with two hydroxyl groups (-OH) attached to it in the ortho position. The term "catechol" is often used interchangeably with "ortho-dihydroxybenzene." Catechols are important in biology because they are produced through the metabolism of certain amino acids, such as phenylalanine and tyrosine, and are involved in the synthesis of various neurotransmitters and hormones. They also have antioxidant properties and can act as reducing agents. In chemistry, catechols can undergo various reactions, such as oxidation and polymerization, to form other classes of compounds.

Linolenic acids are a type of polyunsaturated fatty acids (PUFAs) that are essential to the human body, meaning they cannot be produced by the body and must be obtained through diet. There are two main types of linolenic acids: alpha-linolenic acid (ALA), an omega-3 fatty acid, and gamma-linolenic acid (GLA), an omega-6 fatty acid.

Alpha-linolenic acid is found in plant-based sources such as flaxseeds, chia seeds, hemp seeds, walnuts, and soybeans. It is a precursor to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two other important omega-3 fatty acids that are found in fatty fish and are associated with numerous health benefits.

Gamma-linolenic acid is found in smaller amounts in certain plant-based oils such as borage oil, black currant seed oil, and evening primrose oil. It has been studied for its potential anti-inflammatory effects and may be beneficial for conditions such as rheumatoid arthritis, eczema, and premenstrual syndrome (PMS).

It is important to maintain a balance between omega-3 and omega-6 fatty acids in the diet, as excessive intake of omega-6 fatty acids can contribute to inflammation and chronic disease. ALA and GLA are both important components of a healthy diet and have been associated with numerous health benefits, including reduced inflammation, improved heart health, and reduced risk of chronic diseases such as cancer and diabetes.

Leukocytes, also known as white blood cells (WBCs), are a crucial component of the human immune system. They are responsible for protecting the body against infections and foreign substances. Leukocytes are produced in the bone marrow and circulate throughout the body in the bloodstream and lymphatic system.

There are several types of leukocytes, including:

1. Neutrophils - These are the most abundant type of leukocyte and are primarily responsible for fighting bacterial infections. They contain enzymes that can destroy bacteria.
2. Lymphocytes - These are responsible for producing antibodies and destroying virus-infected cells, as well as cancer cells. There are two main types of lymphocytes: B-lymphocytes and T-lymphocytes.
3. Monocytes - These are the largest type of leukocyte and help to break down and remove dead or damaged tissues, as well as microorganisms.
4. Eosinophils - These play a role in fighting parasitic infections and are also involved in allergic reactions and inflammation.
5. Basophils - These release histamine and other chemicals that cause inflammation in response to allergens or irritants.

An abnormal increase or decrease in the number of leukocytes can indicate an underlying medical condition, such as an infection, inflammation, or a blood disorder.

Leukotriene E4 (LTE4) is a biological mediator derived from the arachidonic acid pathway, which plays a significant role in the inflammatory response. It is a type of leukotriene that is synthesized from leukotriene C4 (LTC4) and leukotriene D4 (LTD4) via the action of enzymes such as gamma-glutamyl transpeptidase and dipeptidases.

LTE4 is a potent bronchoconstrictor, meaning it can cause narrowing of the airways in the lungs, and it also has chemotactic properties that attract inflammatory cells such as eosinophils to sites of inflammation. It is involved in the pathogenesis of asthma and other allergic diseases, where it contributes to bronchoconstriction, increased vascular permeability, and mucus production.

LTE4 can be measured in urine as a biomarker of airway inflammation, particularly in patients with asthma. Increased levels of LTE4 in the urine have been associated with more severe asthma symptoms, poorer lung function, and increased risk of exacerbations.

Blood platelets, also known as thrombocytes, are small, colorless cell fragments in our blood that play an essential role in normal blood clotting. They are formed in the bone marrow from large cells called megakaryocytes and circulate in the blood in an inactive state until they are needed to help stop bleeding. When a blood vessel is damaged, platelets become activated and change shape, releasing chemicals that attract more platelets to the site of injury. These activated platelets then stick together to form a plug, or clot, that seals the wound and prevents further blood loss. In addition to their role in clotting, platelets also help to promote healing by releasing growth factors that stimulate the growth of new tissue.

Benzeneacetamides are a class of organic compounds that consist of a benzene ring, which is a six-carbon cyclic structure with alternating double bonds, linked to an acetamide group. The acetamide group consists of an acetyl functional group (-COCH3) attached to an amide nitrogen (-NH-).

Benzeneacetamides have the general formula C8H9NO, and they can exist in various structural isomers depending on the position of the acetamide group relative to the benzene ring. These compounds are used in the synthesis of pharmaceuticals, dyes, and other chemical products.

In a medical context, some benzeneacetamides have been studied for their potential therapeutic effects. For example, certain derivatives of benzeneacetamide have shown anti-inflammatory, analgesic, and antipyretic properties, making them candidates for the development of new drugs to treat pain and inflammation. However, more research is needed to establish their safety and efficacy in clinical settings.

Unsaturated fatty acids are a type of fatty acid that contain one or more double bonds in their carbon chain. These double bonds can be either cis or trans configurations, although the cis configuration is more common in nature. The presence of these double bonds makes unsaturated fatty acids more liquid at room temperature and less prone to spoilage than saturated fatty acids, which do not have any double bonds.

Unsaturated fatty acids can be further classified into two main categories: monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). MUFAs contain one double bond in their carbon chain, while PUFAs contain two or more.

Examples of unsaturated fatty acids include oleic acid (a MUFA found in olive oil), linoleic acid (a PUFA found in vegetable oils), and alpha-linolenic acid (an omega-3 PUFA found in flaxseed and fish). Unsaturated fatty acids are essential nutrients for the human body, as they play important roles in various physiological processes such as membrane structure, inflammation, and blood clotting. It is recommended to consume a balanced diet that includes both MUFAs and PUFAs to maintain good health.

Reticulocytes are immature red blood cells that still contain remnants of organelles, such as ribosomes and mitochondria, which are typically found in developing cells. These organelles are involved in the process of protein synthesis and energy production, respectively. Reticulocytes are released from the bone marrow into the bloodstream, where they continue to mature into fully developed red blood cells called erythrocytes.

Reticulocytes can be identified under a microscope by their staining characteristics, which reveal a network of fine filaments or granules known as the reticular apparatus. This apparatus is composed of residual ribosomal RNA and other proteins that have not yet been completely eliminated during the maturation process.

The percentage of reticulocytes in the blood can be used as a measure of bone marrow function and erythropoiesis, or red blood cell production. An increased reticulocyte count may indicate an appropriate response to blood loss, hemolysis, or other conditions that cause anemia, while a decreased count may suggest impaired bone marrow function or a deficiency in erythropoietin, the hormone responsible for stimulating red blood cell production.

8,11,14-Eicosatrienoic acid is a type of fatty acid that contains 20 carbon atoms and three double bonds. The locations of these double bonds are at the 8th, 11th, and 14th carbon atoms, hence the name of the fatty acid. It is an omega-3 fatty acid, which means that the first double bond is located between the third and fourth carbon atoms from the methyl end of the molecule.

This particular fatty acid is not considered to be essential for human health, as it can be synthesized in the body from other fatty acids. It is a component of certain types of lipids found in animal tissues, including beef and lamb. It has been studied for its potential role in various physiological processes, such as inflammation and immune function, but its specific functions and effects on human health are not well understood.

Epoxide hydrolases are a group of enzymes that catalyze the hydrolysis of epoxides, which are molecules containing a three-membered ring consisting of two carbon atoms and one oxygen atom. This reaction results in the formation of diols, which are molecules containing two hydroxyl groups (-OH).

Epoxide hydrolases play an important role in the detoxification of xenobiotics (foreign substances) and the metabolism of endogenous compounds. They help to convert toxic epoxides into less harmful products, which can then be excreted from the body.

There are two main types of epoxide hydrolases: microsomal epoxide hydrolase (mEH) and soluble epoxide hydrolase (sEH). mEH is primarily responsible for metabolizing xenobiotics, while sEH plays a role in the metabolism of endogenous compounds such as arachidonic acid.

Impaired function or inhibition of epoxide hydrolases has been linked to various diseases, including cancer, cardiovascular disease, and neurological disorders. Therefore, these enzymes are considered important targets for the development of drugs and therapies aimed at treating these conditions.

Pyrazoles are heterocyclic aromatic organic compounds that contain a six-membered ring with two nitrogen atoms at positions 1 and 2. The chemical structure of pyrazoles consists of a pair of nitrogen atoms adjacent to each other in the ring, which makes them unique from other azole heterocycles such as imidazoles or triazoles.

Pyrazoles have significant biological activities and are found in various pharmaceuticals, agrochemicals, and natural products. Some pyrazole derivatives exhibit anti-inflammatory, analgesic, antipyretic, antimicrobial, antiviral, antifungal, and anticancer properties.

In the medical field, pyrazoles are used in various drugs to treat different conditions. For example, celecoxib (Celebrex) is a selective COX-2 inhibitor used for pain relief and inflammation reduction in arthritis patients. It contains a pyrazole ring as its core structure. Similarly, febuxostat (Uloric) is a medication used to treat gout, which also has a pyrazole moiety.

Overall, pyrazoles are essential compounds with significant medical applications and potential for further development in drug discovery and design.

Leukotriene B4 (LTB4) receptors are a type of G protein-coupled receptor that bind to and are activated by the lipid mediator Leukotriene B4. There are two main types of LTB4 receptors, named BLT1 and BLT2.

BLT1 is highly expressed in cells of the immune system such as neutrophils, eosinophils, monocytes, and dendritic cells, and it mediates many of the pro-inflammatory effects of LTB4, including chemotaxis, adhesion, and activation of these cells.

BLT2 is more widely expressed in various tissues, including the skin, lung, and intestine, and it has been shown to play a role in a variety of physiological and pathological processes, such as pain sensation, wound healing, and cancer progression.

Overall, LTB4 receptors are important targets for the development of therapies aimed at modulating inflammation and immune responses.

Thromboxane B2 (TXB2) is a stable metabolite of thromboxane A2 (TXA2), which is a potent vasoconstrictor and platelet aggregator synthesized by activated platelets. TXA2 has a very short half-life, quickly undergoing spontaneous conversion to the more stable TXB2.

TXB2 itself does not have significant biological activity but serves as a marker for TXA2 production in various physiological and pathophysiological conditions, such as thrombosis, inflammation, and atherosclerosis. It can be measured in blood or other bodily fluids to assess platelet activation and the status of hemostatic and inflammatory processes.

Oxylipins are a class of bioactive lipid molecules derived from the oxygenation of polyunsaturated fatty acids (PUFAs). They play crucial roles in various physiological and pathophysiological processes, including inflammation, immunity, and cellular signaling. Oxylipins can be further categorized based on their precursor PUFAs, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and linoleic acid (LA). These oxylipins are involved in the regulation of vascular tone, platelet aggregation, neurotransmission, and pain perception. They exert their effects through various receptors and downstream signaling pathways, making them important targets for therapeutic interventions in several diseases, such as cardiovascular disorders, cancer, and neurological conditions.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

'Cucumis sativus' is the scientific name for the vegetable we commonly know as a cucumber. It belongs to the family Cucurbitaceae and is believed to have originated in South Asia. Cucumbers are widely consumed raw in salads, pickled, or used in various culinary applications. They have a high water content and contain various nutrients such as vitamin K, vitamin C, and potassium.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Lipoxygenases (LOX) are a group of enzymes that catalyze the dioxygenation of polyunsaturated fatty acids, forming hydroperoxides. These enzymes play a role in various physiological and pathophysiological processes, including inflammation, immunity, and cancer. They are widely distributed in nature and can be found in animals, plants, and microorganisms. In humans, LOXs are involved in the biosynthesis of leukotrienes and lipoxins, which are important mediators of inflammation and resolution of inflammation, respectively.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Autacoids are endogenous substances that are released by various cells in the body and have a localized, hormone-like effect on nearby tissues. They include chemicals such as histamine, serotonin (5-HT), prostaglandins, leukotrienes, and bradykinin. Autacoids are involved in various physiological processes, including inflammation, pain perception, smooth muscle contraction, and blood vessel dilation or constriction. They often act as mediators of the immune response and can contribute to the symptoms of allergies, asthma, and other medical conditions.

Quinolines are a class of organic compounds that consist of a bicyclic structure made up of a benzene ring fused to a piperidine ring. They have a wide range of applications, but they are perhaps best known for their use in the synthesis of various medications, including antibiotics and antimalarial drugs.

Quinolone antibiotics, such as ciprofloxacin and levofloxacin, work by inhibiting the bacterial enzymes involved in DNA replication and repair. They are commonly used to treat a variety of bacterial infections, including urinary tract infections, pneumonia, and skin infections.

Quinoline-based antimalarial drugs, such as chloroquine and hydroxychloroquine, work by inhibiting the parasite's ability to digest hemoglobin in the red blood cells. They are commonly used to prevent and treat malaria.

It is important to note that quinolines have been associated with serious side effects, including tendinitis and tendon rupture, nerve damage, and abnormal heart rhythms. As with any medication, it is important to use quinolines only under the supervision of a healthcare provider, and to follow their instructions carefully.

Quinacrine is a medication that belongs to the class of drugs called antimalarials. It is primarily used in the treatment and prevention of malaria caused by Plasmodium falciparum and P. vivax parasites. Quinacrine works by inhibiting the growth of the malarial parasites in the red blood cells.

In addition to its antimalarial properties, quinacrine has been used off-label for various other medical conditions, including the treatment of rheumatoid arthritis and discoid lupus erythematosus (DLE), a type of skin lupus. However, its use in these conditions is not approved by regulatory authorities such as the US Food and Drug Administration (FDA) due to limited evidence and potential side effects.

Quinacrine has several known side effects, including gastrointestinal disturbances, skin rashes, headache, dizziness, and potential neuropsychiatric symptoms like depression, anxiety, or confusion. Long-term use of quinacrine may also lead to yellowing of the skin and eyes (known as quinacrine jaundice) and other eye-related issues. It is essential to consult a healthcare professional before starting quinacrine or any other medication for appropriate dosage, duration, and potential side effects.

Dinoprostone is a prostaglandin E2 analog used in medical practice for the induction of labor and ripening of the cervix in pregnant women. It is available in various forms, including vaginal suppositories, gel, and tablets. Dinoprostone works by stimulating the contraction of uterine muscles and promoting cervical dilation, which helps in facilitating a successful delivery.

It's important to note that dinoprostone should only be administered under the supervision of a healthcare professional, as its use is associated with certain risks and side effects, including uterine hyperstimulation, fetal distress, and maternal infection. The dosage and duration of treatment are carefully monitored to minimize these risks and ensure the safety of both the mother and the baby.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Peroxides, in a medical context, most commonly refer to chemical compounds that contain the peroxide ion (O2−2). Peroxides are characterized by the presence of an oxygen-oxygen single bond and can be found in various substances.

In dentistry, hydrogen peroxide (H2O2) is a widely used agent for teeth whitening or bleaching due to its oxidizing properties. It can help remove stains and discoloration on the tooth surface by breaking down into water and oxygen-free radicals, which react with the stain molecules, ultimately leading to their oxidation and elimination.

However, it is essential to note that high concentrations of hydrogen peroxide or prolonged exposure can cause tooth sensitivity, irritation to the oral soft tissues, and potential damage to the dental pulp. Therefore, professional supervision and appropriate concentration control are crucial when using peroxides for dental treatments.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

"Solanum tuberosum" is the scientific name for a plant species that is commonly known as the potato. According to medical and botanical definitions, Solanum tuberosum refers to the starchy, edible tubers that grow underground from this plant. Potatoes are native to the Andes region of South America and are now grown worldwide. They are an important food source for many people and are used in a variety of culinary applications.

Potatoes contain several essential nutrients, including carbohydrates, fiber, protein, vitamin C, and some B vitamins. However, they can also be high in calories, especially when prepared with added fats like butter or oil. Additionally, potatoes are often consumed in forms that are less healthy, such as French fries and potato chips, which can contribute to weight gain and other health problems if consumed excessively.

In a medical context, potatoes may also be discussed in relation to food allergies or intolerances. While uncommon, some people may have adverse reactions to potatoes, including skin rashes, digestive symptoms, or difficulty breathing. These reactions are typically caused by an immune response to proteins found in the potato plant, rather than the tubers themselves.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Benzoquinones are a type of chemical compound that contain a benzene ring (a cyclic arrangement of six carbon atoms) with two ketone functional groups (-C=O) in the 1,4-positions. They exist in two stable forms, namely ortho-benzoquinone and para-benzoquinone, depending on the orientation of the ketone groups relative to each other.

Benzoquinones are important intermediates in various biological processes and are also used in industrial applications such as dyes, pigments, and pharmaceuticals. They can be produced synthetically or obtained naturally from certain plants and microorganisms.

In the medical field, benzoquinones have been studied for their potential therapeutic effects, particularly in the treatment of cancer and infectious diseases. However, they are also known to exhibit toxicity and may cause adverse reactions in some individuals. Therefore, further research is needed to fully understand their mechanisms of action and potential risks before they can be safely used as drugs or therapies.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Cyclooxygenase-2 (COX-2) is an enzyme involved in the synthesis of prostaglandins, which are hormone-like substances that play a role in inflammation, pain, and fever. COX-2 is primarily expressed in response to stimuli such as cytokines and growth factors, and its expression is associated with the development of inflammation.

COX-2 inhibitors are a class of nonsteroidal anti-inflammatory drugs (NSAIDs) that selectively block the activity of COX-2, reducing the production of prostaglandins and providing analgesic, anti-inflammatory, and antipyretic effects. These medications are often used to treat pain and inflammation associated with conditions such as arthritis, menstrual cramps, and headaches.

It's important to note that while COX-2 inhibitors can be effective in managing pain and inflammation, they may also increase the risk of cardiovascular events such as heart attack and stroke, particularly when used at high doses or for extended periods. Therefore, it's essential to use these medications under the guidance of a healthcare provider and to follow their instructions carefully.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

5-Lipoxygenase-activating protein inhibitors (FLAP inhibitors) are a class of drugs that work by blocking the activity of 5-lipoxygenase-activating protein (FLAP), an enzyme that plays a crucial role in the biosynthesis of leukotrienes. Leukotrienes are inflammatory mediators that contribute to the development of various respiratory and allergic diseases, such as asthma, rhinitis, and chronic obstructive pulmonary disease (COPD).

By inhibiting FLAP, these drugs prevent the formation of leukotrienes, thereby reducing inflammation and airway hyperresponsiveness. Examples of FLAP inhibitors include MK-0886, CDC-H5247, and BAYx1005. These drugs have shown promise in preclinical and early clinical studies, but further research is needed to establish their safety and efficacy in larger patient populations.

Indole is not strictly a medical term, but it is a chemical compound that can be found in the human body and has relevance to medical and biological research. Indoles are organic compounds that contain a bicyclic structure consisting of a six-membered benzene ring fused to a five-membered pyrrole ring.

In the context of medicine, indoles are particularly relevant due to their presence in certain hormones and other biologically active molecules. For example, the neurotransmitter serotonin contains an indole ring, as does the hormone melatonin. Indoles can also be found in various plant-based foods, such as cruciferous vegetables (e.g., broccoli, kale), and have been studied for their potential health benefits.

Some indoles, like indole-3-carbinol and diindolylmethane, are found in these vegetables and can have anti-cancer properties by modulating estrogen metabolism, reducing inflammation, and promoting cell death (apoptosis) in cancer cells. However, it is essential to note that further research is needed to fully understand the potential health benefits and risks associated with indoles.

Leukotriene D4 (LTD4) is a biological mediator derived from arachidonic acid, which is released from membrane phospholipids by the action of phospholipase A2. It is one of the cysteinyl leukotrienes (cys-LTs), along with LTC4 and LTE4, that are produced in the body through the 5-lipoxygenase pathway.

LTD4 plays a significant role in the inflammatory response, particularly in the airways. It is a potent constrictor of bronchial smooth muscle, increases vascular permeability, and recruits eosinophils and other inflammatory cells to the site of inflammation. These actions contribute to the pathogenesis of asthma and allergic rhinitis.

LTD4 exerts its effects by binding to cys-LT receptors (CysLT1 and CysLT2) found on various cell types, including smooth muscle cells, endothelial cells, and inflammatory cells. The activation of these receptors leads to a cascade of intracellular signaling events that result in the observed biological responses.

Inhibitors of 5-lipoxygenase or cys-LT receptor antagonists are used as therapeutic agents for the treatment of asthma and allergic rhinitis, targeting the actions of LTD4 and other cys-LTs to reduce inflammation and bronchoconstriction.

Eicosanoid receptors are a type of cell surface receptor that bind and respond to signaling molecules called eicosanoids. These receptors play a crucial role in various physiological processes, including inflammation, immune response, blood clotting, and the regulation of blood pressure and flow.

Eicosanoids are derived from the metabolism of arachidonic acid and other polyunsaturated fatty acids with 20 carbon atoms (hence "eicosa" in eicosanoid). They include prostaglandins, thromboxanes, leukotrienes, and lipoxins.

Eicosanoid receptors are found on various cell types throughout the body, including immune cells, endothelial cells, smooth muscle cells, and neurons. When an eicosanoid binds to its specific receptor, it triggers a cascade of intracellular signaling events that ultimately lead to changes in gene expression, cell behavior, or both.

There are several families of eicosanoid receptors, including prostaglandin receptors, thromboxane receptors, leukotriene receptors, and lipoxin receptors. Each family contains multiple subtypes with distinct pharmacological properties and physiological functions.

Understanding the role of eicosanoid receptors in health and disease has important implications for drug development and the treatment of various medical conditions, such as inflammation, pain, asthma, cardiovascular diseases, and cancer.

Gas Chromatography-Mass Spectrometry (GC-MS) is a powerful analytical technique that combines the separating power of gas chromatography with the identification capabilities of mass spectrometry. This method is used to separate, identify, and quantify different components in complex mixtures.

In GC-MS, the mixture is first vaporized and carried through a long, narrow column by an inert gas (carrier gas). The various components in the mixture interact differently with the stationary phase inside the column, leading to their separation based on their partition coefficients between the mobile and stationary phases. As each component elutes from the column, it is then introduced into the mass spectrometer for analysis.

The mass spectrometer ionizes the sample, breaks it down into smaller fragments, and measures the mass-to-charge ratio of these fragments. This information is used to generate a mass spectrum, which serves as a unique "fingerprint" for each compound. By comparing the generated mass spectra with reference libraries or known standards, analysts can identify and quantify the components present in the original mixture.

GC-MS has wide applications in various fields such as forensics, environmental analysis, drug testing, and research laboratories due to its high sensitivity, specificity, and ability to analyze volatile and semi-volatile compounds.

Platelet-activating factor (PAF) is a potent phospholipid mediator that plays a significant role in various inflammatory and immune responses. It is a powerful lipid signaling molecule released mainly by activated platelets, neutrophils, monocytes, endothelial cells, and other cell types during inflammation or injury.

PAF has a molecular structure consisting of an alkyl chain linked to a glycerol moiety, a phosphate group, and an sn-2 acetyl group. This unique structure allows PAF to bind to its specific G protein-coupled receptor (PAF-R) on the surface of target cells, triggering various intracellular signaling cascades that result in cell activation, degranulation, and aggregation.

The primary functions of PAF include:

1. Platelet activation and aggregation: PAF stimulates platelets to aggregate, release their granules, and activate the coagulation cascade, which can lead to thrombus formation.
2. Neutrophil and monocyte activation: PAF activates these immune cells, leading to increased adhesion, degranulation, and production of reactive oxygen species (ROS) and pro-inflammatory cytokines.
3. Vasodilation and increased vascular permeability: PAF can cause vasodilation by acting on endothelial cells, leading to an increase in blood flow and facilitating the extravasation of immune cells into inflamed tissues.
4. Bronchoconstriction: In the respiratory system, PAF can induce bronchoconstriction and recruitment of inflammatory cells, contributing to asthma symptoms.
5. Neurotransmission modulation: PAF has been implicated in neuroinflammation and may play a role in neuronal excitability, synaptic plasticity, and cognitive functions.

Dysregulated PAF signaling has been associated with several pathological conditions, including atherosclerosis, sepsis, acute respiratory distress syndrome (ARDS), ischemia-reperfusion injury, and neuroinflammatory disorders. Therefore, targeting the PAF pathway may provide therapeutic benefits in these diseases.

Cyclopentanes are a class of hydrocarbons that contain a cycloalkane ring of five carbon atoms. The chemical formula for cyclopentane is C5H10. It is a volatile, flammable liquid that is used as a solvent and in the production of polymers. Cyclopentanes are also found naturally in petroleum and coal tar.

Cyclopentanes have a unique structure in which the carbon atoms are arranged in a pentagonal shape, with each carbon atom bonded to two other carbon atoms and one or two hydrogen atoms. This structure gives cyclopentane its characteristic "bowl-shaped" geometry, which allows it to undergo various chemical reactions, such as ring-opening reactions, that can lead to the formation of other chemicals.

Cyclopentanes have a variety of industrial and commercial applications. For example, they are used in the production of plastics, resins, and synthetic rubbers. They also have potential uses in the development of new drugs and medical technologies, as their unique structure and reactivity make them useful building blocks for the synthesis of complex molecules.

Intramolecular oxidoreductases are a specific class of enzymes that catalyze the transfer of electrons within a single molecule, hence the term "intramolecular." These enzymes are involved in oxidoreduction reactions, where one part of the molecule is oxidized (loses electrons) and another part is reduced (gains electrons). This process allows for the rearrangement or modification of functional groups within the molecule.

The term "oxidoreductase" refers to enzymes that catalyze oxidation-reduction reactions, which are also known as redox reactions. These enzymes play a crucial role in various biological processes, including energy metabolism, detoxification, and biosynthesis.

It's important to note that intramolecular oxidoreductases should not be confused with intermolecular oxidoreductases, which catalyze redox reactions between two separate molecules.

Prostaglandins are naturally occurring, lipid-derived hormones that play various important roles in the human body. They are produced in nearly every tissue in response to injury or infection, and they have diverse effects depending on the site of release and the type of prostaglandin. Some of their functions include:

1. Regulation of inflammation: Prostaglandins contribute to the inflammatory response by increasing vasodilation, promoting fluid accumulation, and sensitizing pain receptors, which can lead to symptoms such as redness, heat, swelling, and pain.
2. Modulation of gastrointestinal functions: Prostaglandins protect the stomach lining from acid secretion and promote mucus production, maintaining the integrity of the gastric mucosa. They also regulate intestinal motility and secretion.
3. Control of renal function: Prostaglandins help regulate blood flow to the kidneys, maintain sodium balance, and control renin release, which affects blood pressure and fluid balance.
4. Regulation of smooth muscle contraction: Prostaglandins can cause both relaxation and contraction of smooth muscles in various tissues, such as the uterus, bronchioles, and vascular system.
5. Modulation of platelet aggregation: Some prostaglandins inhibit platelet aggregation, preventing blood clots from forming too quickly or becoming too large.
6. Reproductive system regulation: Prostaglandins are involved in the menstrual cycle, ovulation, and labor induction by promoting uterine contractions.
7. Neurotransmission: Prostaglandins can modulate neurotransmitter release and neuronal excitability, affecting pain perception, mood, and cognition.

Prostaglandins exert their effects through specific G protein-coupled receptors (GPCRs) found on the surface of target cells. There are several distinct types of prostaglandins (PGs), including PGD2, PGE2, PGF2α, PGI2 (prostacyclin), and thromboxane A2 (TXA2). Each type has unique functions and acts through specific receptors. Prostaglandins are synthesized from arachidonic acid, a polyunsaturated fatty acid derived from membrane phospholipids, by the action of cyclooxygenase (COX) enzymes. Nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin and ibuprofen, inhibit COX activity, reducing prostaglandin synthesis and providing analgesic, anti-inflammatory, and antipyretic effects.

Non-heme iron proteins are a type of iron-containing protein that do not contain heme as their prosthetic group. Heme is a complex molecule consisting of an iron atom contained in the center of a porphyrin ring, which is a large organic molecule made up of four pyrrole rings joined together. In contrast, non-heme iron proteins contain iron that is bound to the protein in other ways, such as through coordination with amino acid side chains or through association with an iron-sulfur cluster.

Examples of non-heme iron proteins include ferritin and transferrin, which are involved in the storage and transport of iron in the body, respectively. Ferritin is a protein that stores iron in a form that is safe and bioavailable for use by the body. Transferrin, on the other hand, binds to iron in the intestines and transports it to cells throughout the body.

Non-heme iron proteins are important for many biological processes, including oxygen transport, electron transfer, and enzyme catalysis. They play a crucial role in energy metabolism, DNA synthesis, and other essential functions.

"Pyrans" is not a term commonly used in medical definitions. It is a chemical term that refers to a class of heterocyclic compounds containing a six-membered ring with one oxygen atom and five carbon atoms. The name "pyran" comes from the fact that it contains a pyroline unit (two double-bonded carbons) and a ketone group (a carbon double-bonded to an oxygen).

While pyrans are not directly related to medical definitions, some of their derivatives have been studied for potential medicinal applications. For example, certain pyran derivatives have shown anti-inflammatory, antiviral, and anticancer activities in laboratory experiments. However, more research is needed before these compounds can be considered as potential therapeutic agents.

Umbelliferone is not a medical term, but a chemical compound that belongs to the class of coumarins. It can be found in various plants, including those from the family Apiaceae (also known as Umbelliferae), hence its name. Coumarins like umbelliferone have been studied for their potential pharmacological properties, such as anticoagulant, anti-inflammatory, and antimicrobial activities. However, they are not typically considered as a medical treatment on their own.

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

Zymosan is a type of substance that is derived from the cell walls of yeast and some types of fungi. It's often used in laboratory research as an agent to stimulate inflammation, because it can activate certain immune cells (such as neutrophils) and cause them to release pro-inflammatory chemicals.

In medical terms, Zymosan is sometimes used as a tool for studying the immune system and inflammation in experimental settings. It's important to note that Zymosan itself is not a medical condition or disease, but rather a research reagent with potential applications in understanding human health and disease.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Dioctyl Sulfosuccinic Acid (DOS) is a type of organic compound that is used as a surfactant and a dispersing agent in various industrial and commercial applications. It is a white to off-white crystalline powder, soluble in water and most organic solvents.

In medical terms, Dioctyl Sulfosuccinic Acid is not commonly used as a therapeutic agent. However, it may be used as an excipient or a component of the formulation in some pharmaceutical products. It has been used as a component in some oral and topical medications to improve their solubility, absorption, and stability.

It is important to note that while Dioctyl Sulfosuccinic Acid itself is not considered harmful, like any other chemical substance, it should be handled with care and used appropriately to avoid any potential health risks.

Non-steroidal anti-inflammatory agents (NSAIDs) are a class of medications that reduce pain, inflammation, and fever. They work by inhibiting the activity of cyclooxygenase (COX) enzymes, which are involved in the production of prostaglandins, chemicals that contribute to inflammation and cause blood vessels to dilate and become more permeable, leading to symptoms such as pain, redness, warmth, and swelling.

NSAIDs are commonly used to treat a variety of conditions, including arthritis, muscle strains and sprains, menstrual cramps, headaches, and fever. Some examples of NSAIDs include aspirin, ibuprofen, naproxen, and celecoxib.

While NSAIDs are generally safe and effective when used as directed, they can have side effects, particularly when taken in large doses or for long periods of time. Common side effects include stomach ulcers, gastrointestinal bleeding, and increased risk of heart attack and stroke. It is important to follow the recommended dosage and consult with a healthcare provider if you have any concerns about using NSAIDs.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Cytosol refers to the liquid portion of the cytoplasm found within a eukaryotic cell, excluding the organelles and structures suspended in it. It is the site of various metabolic activities and contains a variety of ions, small molecules, and enzymes. The cytosol is where many biochemical reactions take place, including glycolysis, protein synthesis, and the regulation of cellular pH. It is also where some organelles, such as ribosomes and vesicles, are located. In contrast to the cytosol, the term "cytoplasm" refers to the entire contents of a cell, including both the cytosol and the organelles suspended within it.

Prostaglandin E (PGE) is a type of prostaglandin, which is a group of lipid compounds that are synthesized in the body from fatty acids and have diverse hormone-like effects. Prostaglandins are not actually hormones, but are similar to them in that they act as chemical messengers that have specific effects on certain cells.

Prostaglandin E is one of the most abundant prostaglandins in the body and has a variety of physiological functions. It is involved in the regulation of inflammation, pain perception, fever, and smooth muscle contraction. Prostaglandin E also plays a role in the regulation of blood flow, platelet aggregation, and gastric acid secretion.

Prostaglandin E is synthesized from arachidonic acid, which is released from cell membranes by the action of enzymes called phospholipases. Once formed, prostaglandin E binds to specific receptors on the surface of cells, leading to a variety of intracellular signaling events that ultimately result in changes in cell behavior.

Prostaglandin E is used medically in the treatment of several conditions, including dysmenorrhea (painful menstruation), postpartum hemorrhage, and patent ductus arteriosus (a congenital heart defect). It is also used as a diagnostic tool in the evaluation of kidney function.

Pleurisy is a medical condition characterized by inflammation of the pleura, which are the thin membranes that surround the lungs and line the inside of the chest cavity. The pleura normally produce a small amount of lubricating fluid that allows for smooth movement of the lungs during breathing. However, when they become inflamed (a condition known as pleuritis), this can cause pain and difficulty breathing.

The symptoms of pleurisy may include sharp chest pain that worsens with deep breathing or coughing, shortness of breath, cough, fever, and muscle aches. The pain may be localized to one area of the chest or may radiate to other areas such as the shoulders or back.

Pleurisy can have many different causes, including bacterial or viral infections, autoimmune disorders, pulmonary embolism (a blood clot that travels to the lungs), and certain medications or chemicals. Treatment typically involves addressing the underlying cause of the inflammation, as well as managing symptoms such as pain and breathing difficulties with medications such as nonsteroidal anti-inflammatory drugs (NSAIDs) or opioids. In some cases, more invasive treatments such as thoracentesis (removal of fluid from the chest cavity) may be necessary.

Gene expression regulation, enzymologic refers to the biochemical processes and mechanisms that control the transcription and translation of specific genes into functional proteins or enzymes. This regulation is achieved through various enzymatic activities that can either activate or repress gene expression at different levels, such as chromatin remodeling, transcription factor activation, mRNA processing, and protein degradation.

Enzymologic regulation of gene expression involves the action of specific enzymes that catalyze chemical reactions involved in these processes. For example, histone-modifying enzymes can alter the structure of chromatin to make genes more or less accessible for transcription, while RNA polymerase and its associated factors are responsible for transcribing DNA into mRNA. Additionally, various enzymes are involved in post-transcriptional modifications of mRNA, such as splicing, capping, and tailing, which can affect the stability and translation of the transcript.

Overall, the enzymologic regulation of gene expression is a complex and dynamic process that allows cells to respond to changes in their environment and maintain proper physiological function.

Pyrazolones are a group of non-steroidal anti-inflammatory drugs (NSAIDs) that contain a pyrazole ring in their chemical structure. They have analgesic, antipyretic, and anti-inflammatory properties. Pyrazolones include drugs such as phenylbutazone, oxyphenbutazone, and aminopyrine. However, due to their potential for serious side effects, including agranulocytosis (a severe decrease in white blood cells), pyrazolones are rarely used in modern clinical practice.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Spectrophotometry, Ultraviolet (UV-Vis) is a type of spectrophotometry that measures how much ultraviolet (UV) and visible light is absorbed or transmitted by a sample. It uses a device called a spectrophotometer to measure the intensity of light at different wavelengths as it passes through a sample. The resulting data can be used to determine the concentration of specific components within the sample, identify unknown substances, or evaluate the physical and chemical properties of materials.

UV-Vis spectroscopy is widely used in various fields such as chemistry, biology, pharmaceuticals, and environmental science. It can detect a wide range of substances including organic compounds, metal ions, proteins, nucleic acids, and dyes. The technique is non-destructive, meaning that the sample remains unchanged after the measurement.

In UV-Vis spectroscopy, the sample is placed in a cuvette or other container, and light from a source is directed through it. The light then passes through a monochromator, which separates it into its component wavelengths. The monochromatic light is then directed through the sample, and the intensity of the transmitted or absorbed light is measured by a detector.

The resulting absorption spectrum can provide information about the concentration and identity of the components in the sample. For example, if a compound has a known absorption maximum at a specific wavelength, its concentration can be determined by measuring the absorbance at that wavelength and comparing it to a standard curve.

Overall, UV-Vis spectrophotometry is a versatile and powerful analytical technique for quantitative and qualitative analysis of various samples in different fields.

Macrophages are a type of white blood cell that are an essential part of the immune system. They are large, specialized cells that engulf and destroy foreign substances, such as bacteria, viruses, parasites, and fungi, as well as damaged or dead cells. Macrophages are found throughout the body, including in the bloodstream, lymph nodes, spleen, liver, lungs, and connective tissues. They play a critical role in inflammation, immune response, and tissue repair and remodeling.

Macrophages originate from monocytes, which are a type of white blood cell produced in the bone marrow. When monocytes enter the tissues, they differentiate into macrophages, which have a larger size and more specialized functions than monocytes. Macrophages can change their shape and move through tissues to reach sites of infection or injury. They also produce cytokines, chemokines, and other signaling molecules that help coordinate the immune response and recruit other immune cells to the site of infection or injury.

Macrophages have a variety of surface receptors that allow them to recognize and respond to different types of foreign substances and signals from other cells. They can engulf and digest foreign particles, bacteria, and viruses through a process called phagocytosis. Macrophages also play a role in presenting antigens to T cells, which are another type of immune cell that helps coordinate the immune response.

Overall, macrophages are crucial for maintaining tissue homeostasis, defending against infection, and promoting wound healing and tissue repair. Dysregulation of macrophage function has been implicated in a variety of diseases, including cancer, autoimmune disorders, and chronic inflammatory conditions.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

In medical terms, "seeds" are often referred to as a small amount of a substance, such as a radioactive material or drug, that is inserted into a tissue or placed inside a capsule for the purpose of treating a medical condition. This can include procedures like brachytherapy, where seeds containing radioactive materials are used in the treatment of cancer to kill cancer cells and shrink tumors. Similarly, in some forms of drug delivery, seeds containing medication can be used to gradually release the drug into the body over an extended period of time.

It's important to note that "seeds" have different meanings and applications depending on the medical context. In other cases, "seeds" may simply refer to small particles or structures found in the body, such as those present in the eye's retina.

Cyclooxygenase-1 (COX-1) is a type of enzyme belonging to the cyclooxygenase family, which is responsible for the production of prostaglandins, thromboxanes, and prostacyclins. These are important signaling molecules that play a role in various physiological processes such as inflammation, pain perception, blood clotting, and gastric acid secretion.

COX-1 is constitutively expressed in most tissues, including the stomach, kidneys, and platelets, where it performs housekeeping functions. For example, in the stomach, COX-1 produces prostaglandins that protect the stomach lining from acid and digestive enzymes. In the kidneys, COX-1 helps regulate blood flow and sodium balance. In platelets, COX-1 produces thromboxane A2, which promotes blood clotting.

COX-1 is a target of nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, ibuprofen, and naproxen. These medications work by inhibiting the activity of COX enzymes, reducing the production of prostaglandins and thromboxanes, and thereby alleviating pain, inflammation, and fever. However, long-term use of NSAIDs can lead to side effects such as stomach ulcers and bleeding due to the inhibition of COX-1 in the stomach lining.

Cycloheptanes are organic compounds that consist of a seven-membered carbon ring, also known as a heptane ring, with each carbon atom bonded to either another carbon atom or a hydrogen atom. The chemical structure of cycloheptanes can be represented by the formula C7H14.

Cycloheptanes are classified as saturated hydrocarbons because all of the carbon-carbon bonds in the ring are single bonds. This means that there are no double or triple bonds between any of the carbon atoms in the ring.

Cycloheptanes have a variety of uses in the chemical industry, including as intermediates in the synthesis of other chemicals and as solvents. They can also be found in some natural sources, such as certain essential oils.

It is worth noting that cycloheptanes are not commonly encountered in medical contexts, as they do not have direct relevance to human health or disease. However, like all chemical compounds, cycloheptanes can potentially have toxic effects if ingested, inhaled, or otherwise introduced into the body in large enough quantities.

Ionophores are compounds that have the ability to form complexes with ions and facilitate their transportation across biological membranes. They can be either organic or inorganic molecules, and they play important roles in various physiological processes, including ion homeostasis, signal transduction, and antibiotic activity. In medicine and research, ionophores are used as tools to study ion transport, modulate cellular functions, and as therapeutic agents, especially in the treatment of bacterial and fungal infections.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Eicosapentaenoic acid (EPA) is a type of omega-3 fatty acid that is found in fish and some algae. It is a 20-carbon long polyunsaturated fatty acid with five double bonds, and has the chemical formula C20:5 n-3. EPA is an essential fatty acid, meaning that it cannot be produced by the human body and must be obtained through the diet.

EPA is a precursor to a group of hormone-like substances called eicosanoids, which include prostaglandins, thromboxanes, and leukotrienes. These compounds play important roles in regulating various physiological processes, such as inflammation, blood clotting, and immune function.

EPA has been studied for its potential health benefits, including reducing inflammation, lowering the risk of heart disease, and improving symptoms of depression. It is often taken as a dietary supplement in the form of fish oil or algal oil. However, it is important to note that while some studies have suggested potential health benefits of EPA, more research is needed to confirm these effects and establish recommended dosages.

Monocytes are a type of white blood cell that are part of the immune system. They are large cells with a round or oval shape and a nucleus that is typically indented or horseshoe-shaped. Monocytes are produced in the bone marrow and then circulate in the bloodstream, where they can differentiate into other types of immune cells such as macrophages and dendritic cells.

Monocytes play an important role in the body's defense against infection and tissue damage. They are able to engulf and digest foreign particles, microorganisms, and dead or damaged cells, which helps to clear them from the body. Monocytes also produce cytokines, which are signaling molecules that help to coordinate the immune response.

Elevated levels of monocytes in the bloodstream can be a sign of an ongoing infection, inflammation, or other medical conditions such as cancer or autoimmune disorders.

Enzyme induction is a process by which the activity or expression of an enzyme is increased in response to some stimulus, such as a drug, hormone, or other environmental factor. This can occur through several mechanisms, including increasing the transcription of the enzyme's gene, stabilizing the mRNA that encodes the enzyme, or increasing the translation of the mRNA into protein.

In some cases, enzyme induction can be a beneficial process, such as when it helps the body to metabolize and clear drugs more quickly. However, in other cases, enzyme induction can have negative consequences, such as when it leads to the increased metabolism of important endogenous compounds or the activation of harmful procarcinogens.

Enzyme induction is an important concept in pharmacology and toxicology, as it can affect the efficacy and safety of drugs and other xenobiotics. It is also relevant to the study of drug interactions, as the induction of one enzyme by a drug can lead to altered metabolism and effects of another drug that is metabolized by the same enzyme.

... soybean lipoxygenase L1 and L3, coral 8-lipoxygenase, human 5-lipoxygenase, rabbit 15-lipoxygenase and porcine leukocyte 12- ... erythrocyte type 15-lipoxygenase (or 15-lipoxygenase, erythrocyte type), reticulocyte type 15-lipoxygenase (or 15-lipoxygenase ... LOX-DB - LipOXygenases DataBase Lipoxygenases iron-binding region in PROSITE PDB: 1YGE​ - structure of lipoxygenase-1 from ... Certain types of the lipoxygenases, e.g. human and murine 15-lipoxygenase 1, 12-lipoxygenase B, and ALOXE3, are capable of ...
Linoleate+8R-lipoxygenase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (EC 1.13.11) ... Linoleate 8R-lipoxygenase (EC 1.13.11.60, linoleic acid 8R-dioxygenase, 5,8-LDS (bifunctional enzyme), 7,8-LDS (bifunctional ... 12-dienoate Linoleate 8R-lipoxygenase contains heme. Brodhun F, Göbel C, Hornung E, Feussner I (May 2009). "Identification of ...
... (EC 1.13.11.58, 9-lipoxygenase, 9S-lipoxygenase, linoleate 9-lipoxygenase, LOX1 (gene), 9S-LOX) is an ... Linoleate+9S-lipoxygenase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (EC 1.13.11) ... Andreou AZ, Hornung E, Kunze S, Rosahl S, Feussner I (March 2009). "On the substrate binding of linoleate 9-lipoxygenases". ... Bannenberg G, Martínez M, Hamberg M, Castresana C (February 2009). "Diversity of the enzymatic activity in the lipoxygenase ...
Hamberg M, Su C, Oliw E (1998). "Manganese lipoxygenase. Discovery of a bis-allylic hydroperoxide as product and intermediate ... In enzymology, a linoleate 11-lipoxygenase (EC 1.13.11.45) is an enzyme that catalyzes the chemical reaction linoleate + O2 ... This enzyme is also called linoleate dioxygenase, manganese lipoxygenase. This enzyme participates in linoleic acid metabolism ... Su C, Oliw EH (1998). "Manganese lipoxygenase. Purification and characterization". J. Biol. Chem. 273 (21): 13072-9. doi: ...
Linoleate+10R-lipoxygenase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (EC 1.13.11 ... Linoleate 10R-lipoxygenase (EC 1.13.11.62, 10R-DOX, (10R)-dioxygenase, 10R-dioxygenase) is an enzyme with systematic name ... 12-octadecadienoate Linoleate 10R-lipoxygenase is involved in biosynthesis of oxylipins. Garscha U, Oliw EH (May 2009). " ...
... (EC 1.13.11.61, NspLOX, (9R)-LOX, linoleate 9R-dioxygenase) is an enzyme with systematic name alpha- ... Linolenate+9R-lipoxygenase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (EC 1.13.11 ... Andreou AZ, Vanko M, Bezakova L, Feussner I (June 2008). "Properties of a mini 9R-lipoxygenase from Nostoc sp. PCC 7120 and its ... Lang I, Göbel C, Porzel A, Heilmann I, Feussner I (March 2008). "A lipoxygenase with linoleate diol synthase activity from ...
... , also known as ALOX5, 5-lipoxygenase, 5-LOX, or 5-LO, is a non-heme iron-containing enzyme (EC 1.13 ... Arachidonate 5-lipoxygenase is a member of the lipoxygenase family of enzymes. It transforms essential fatty acids (EFA) ... "5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes". J. ... "Alox5 - arachidonate 5-lipoxygenase". WikiGenes. Fahel JS, de Souza MB, Gomes MT, Corsetti PP, Carvalho NB, Marinho FA, de ...
Other names in common use include 8-lipoxygenase, and 8(R)-lipoxygenase. This enzyme participates in arachidonic acid ... Bundy GL, Nidy EG, Epps DE, Mizsak SA, Wnuk RJ (1986). "Discovery of an arachidonic acid C-8 lipoxygenase in the gorgonian ... Arachidonate 8-lipoxygenase (EC 1.13.11.40) is an enzyme that catalyzes the chemical reaction arachidonate + O2 ⇌ {\ ...
Arachidonate 5-lipoxygenase-activating protein also known as 5-lipoxygenase activating protein, or FLAP, is a protein that in ... synthase interact with 5-lipoxygenase and 5-lipoxygenase activating protein". Biochemical and Biophysical Research ... 5-lipoxygenase-activating+protein at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Human ALOX5AP genome ... Musiyenko A, Correa L, Stock N, Hutchinson JH, Lorrain DS, Bain G, Evans JF, Barik S (November 2009). "A novel 5-lipoxygenase- ...
... s are compounds that slow or stop the action of the arachidonate 5-lipoxygenase (5- ... Lipoxygenase+inhibitors at the U.S. National Library of Medicine Medical Subject Headings (MeSH) MeSH list of agents 82016859 ... 1. Arachidonate 5-lipoxygenase ...Specific function: Catalyzes the first step in leukotriene biosynthesis, and thereby plays a ... Zileuton is a specific inhibitor of 5-lipoxygenase and thus inhibits leukotriene (LTB4, LTC4, LTD4, and LTE4) formation. Both ...
"Pfam entry: Lipoxygenase". Archived from the original on 2007-09-29. Retrieved 2007-01-25. PDBsum entry: Alpha Toxin "Pfam ...
... also termed arachidonate-5-lipoxygenase, 5-lipoxygenase, 5-LO, and 5-LOX). ALOX5 metabolizes arachidonic acid to its ... 12-Lipoxygenase (i.e. ALOX12) to metabolize 5(S)-HETE to 5(S),12(S)-diHETE. The activity of this product has not yet been fully ... by the arachidonate 15-Lipoxygenase-1-based or arachidonate 15-lipoxygenased-2-based metabolism of 5-oxo-ETE; and f) conversion ...
Arachidonate 5-lipoxygenase "Flavocoxid". livertox.nlm.nih.gov. Retrieved 2016-07-20. This article incorporates text from this ...
It is a lipoxygenase inhibitor. Gowri MS, Azhar RK, Kraemer FB, Reaven GM, Azhar S (September 2000). "Masoprocol decreases rat ...
AM-679 is a drug which acts as a selective inhibitor of 5-Lipoxygenase-activating protein (FLAP). This protein is involved in ... "5-Lipoxygenase-activating protein inhibitors. Part 2: 3-{5-((S)-1-Acetyl-2,3-dihydro-1H-indol-2-ylmethoxy)-3-tert-butylsulfanyl ... "A Novel 5-Lipoxygenase-Activating Protein Inhibitor, AM679, Reduces Inflammation in the Respiratory Syncytial Virus-Infected ...
... possibly 15-lipoxygenase-2 (i.e. ALOX15B), 5-lipoxygenase (i.e. ALOX5), cyclooxygenase-2 (i.e. COX-2), and certain cytochrome ... The following oxygenase enzymes may be responsible for metabolizing PUFA to resolvins: 15-lipoxygenase-1 (i.e. ALOX15), ... range of cells and tissues by the initial metabolism of DHA to 7S-hydroperoxy-DHA and 4S-hydroperoxy-DHA by a 15-lipoxygenase ( ...
Lipoxygenase inhibitor "Zileuton (Oral Route)". MayoClinic. "Zyflo consumer information". Drugs.com. "Lethal Cancer Knocked ... Zileuton (trade name Zyflo) is an orally active inhibitor of 5-lipoxygenase, and thus inhibits leukotrienes (LTB4, LTC4, LTD4, ... Krutetskaya ZI, Milenina LS, Naumova AA, Antonov VG, Nozdrachev AD (July 2016). "5-Lipoxygenase inhibitor zileuton inhibits Ca( ... Zileuton is an active oral inhibitor of the enzyme 5-lipoxygenase, which forms leukotrienes, 5-hydroxyeicosatetraenoic acid, ...
... a Potent 5-Lipoxygenase Inhibitor, Isolated from Ardisia sieboldii, and Degree of 5-Lipoxygenase Inhibitory Activity of Its ... Ardisiaquinones are of research interest because they possess 5-lipoxygenase (5-LOX) inhibitor activity and 5-LOX has clinical ... Fukuishi, N.; Takada, T.; Fukuyama, Y.; Akagi, M. (2001). "Antiallergic effect of ardisiaquinone A, a potent 5-lipoxygenase ... "Naturally Occurring 5-Lipoxygenase Inhibitor. II. Structures and Syntheses of Ardisianones a and B, and Maesanin, Alkenyl-1,4- ...
Pinoresinol - inhibitor of 15-lipoxygenase. Uracil - isolated from the leaf of Fadogia homblei, significant as the first ...
Cho KJ, Seo JM, Kim JH (July 2011). "Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen ... Speed N, Blair IA (December 2011). "Cyclooxygenase- and lipoxygenase-mediated DNA damage". Cancer and Metastasis Reviews. 30 (3 ...
For example, 5-lipoxygenase (i.e. (ALOX5) in neutrophils and 15-lipoxygenase-1 (i.e. ALOX15) in immature erythrocytes and ... The double oxygenations may be conducted within a single cell type which possesses ALOX5 and an enzyme with 15-lipoxygenase ... A lipoxin (LX or Lx), an acronym for lipoxygenase interaction product, is a bioactive autacoid metabolite of arachidonic acid ... This step is catalyzed by enzymes with 15-lipoxygenase activity which in humans includes ALOX15, ALOX12, aspirin-treated ...
Epidermis-type lipoxygenase 3 (ALOXE3 or eLOX3) is a member of the lipoxygenase family of enzymes; in humans, it is encoded by ... The epidermis-type lipoxygenases are now regarded as a distinct subclass within the multigene family of mammalian lipoxygenases ... "Entrez Gene: ALOXE3 arachidonate lipoxygenase 3". Schneider C, Brash AR (August 2002). "Lipoxygenase-catalyzed formation of R- ... "Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE ...
15-Lipoxygenase-2: Cells also used 15-lipoxygenase 2 (i.e. 15-LOX-2 or ALOX15B) to make 15(S)-HpETE and 15(S)-HETE. However ... 15-Lipoxygenase-1: Cells metabolize arachidonic acid with 15-lipoxygenase-1 (i.e., 15-LO-1, ALOX15) to form 15(S)-HpETE as a ... inhibitor of 12-lipoxygenase but not other human lipoxygenases. This effect could also have anti-inflammatory and anti- ... Oxygenated by 5-lipoxygenase (ALOX5 to form its 5,6-trans epoxide derivative which may then rearrange to the lipoxins (LX), ...
Lipoxygenase homology domains 1 is a protein in humans that is encoded by the LOXHD1 gene. This gene encodes a highly conserved ... "Entrez Gene: Lipoxygenase homology domains 1". Retrieved 2012-04-10. Grillet N, Schwander M, Hildebrand MS, Sczaniecka A, ... protein consisting entirely of PLAT (polycystin/lipoxygenase/alpha-toxin) domains, thought to be involved in targeting proteins ...
The murine homolog of human 15(S)-lipoxygenase-2 (ALOX15B), 8(S)-lipoxygenase, while preferring arachidonic acid over linoleic ... However, ALOX15B, similar to human 15-lipoxygenase-1 (ALOX15), metabolizes linoleic acid to 13(S)-HODE but not to 9(S)-HODEs. ... Cho, K. J.; Seo, J. M.; Kim, J. H. (2011). "Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive ... Speed, N.; Blair, I. A. (2011). "Cyclooxygenase- and lipoxygenase-mediated DNA damage". Cancer and Metastasis Reviews. 30 (3-4 ...
The 15-lipoxygenases (particularly ALOX15) may also act in series with 5-lipoxygenase, 12-lipoxygenase, or aspirin-treated COX2 ... The enzymes 15-lipoxygenase-1 (15-LO-1 or ALOX15) and 15-lipoxygenase-2 (15-LO-2, ALOX15B) metabolize arachidonic acid to the S ... Other reactions of lipoxygenases generate cellular damage; murine models implicate 15-lipoxygenase in the pathogenesis of ... Lipoxygenases (LOXs): 5-Lipoxygenase (5-LOX or ALOX5) initiates the metabolism of arachidonic acid to 5- ...
... cyclooxygenases and lipoxygenases. In addition to the maresins, this class of mediators includes: the 15-lipoxygenase (i.e. ... certain 15-lipoxygenase-derived Resolvin D series metabolites of DHA; certain other 15-lipoxygenase-derived protectin D1 and ... Maresin 1, and more recently defined maresins, are 12-lipoxygenase-derived metabolites of the omega-3 fatty acid, ... Studies implicate the following pathway in its formation: 12-lipoxygenase converts DHA to its 14-hydroxperoxy intermediate, 14( ...
12-lipoxygenase gene, see lipoxygenase#Mouse lipoxygenases) are resistant to a) streptozotocin-induced, b) high fat diet- ... express platelet type 12-lipoxygenase but also a leukocyte type 12-lipoxygenase (also termed 12/15-lipoxygenase, 12/15-LOX or ... In humans, Arachidonate 12-lipoxygenase (12-LO, 12-LOX, ALO12, or platelet type 12-lipoxygenase) is encoded by the ALOX12 gene ... "CDNA cloning of a 8-lipoxygenase and a novel epidermis-type lipoxygenase from phorbol ester-treated mouse skin". Biochimica et ...
Delta12-lipoxygenase, 12Delta-lipoxygenase, and C-12 lipoxygenase. ALOX12, often termed plate platelet-type 12-lipoxygenase, is ... ALOX12 (EC 1.13.11.31), also known as arachidonate 12-lipoxygenase, 12-lipoxygenase, 12S-Lipoxygenase, 12-LOX, and 12S-LOX is a ... "Entrez Gene: ALOX12 arachidonate 12-lipoxygenase". Yamamoto S, Suzuki H, Ueda N (March 1997). "Arachidonate 12-lipoxygenases". ... Other systematic names for ALOX12 include 12S-Lipoxygenase, platelet-type 12-lipoxygenase, arachidonate:oxygen 12- ...
Compositae) on soybean lipoxygenase and prostaglandin synthetase". General Pharmacology: The Vascular System. 26 (4): 815-9. ...
... soybean lipoxygenase L1 and L3, coral 8-lipoxygenase, human 5-lipoxygenase, rabbit 15-lipoxygenase and porcine leukocyte 12- ... erythrocyte type 15-lipoxygenase (or 15-lipoxygenase, erythrocyte type), reticulocyte type 15-lipoxygenase (or 15-lipoxygenase ... LOX-DB - LipOXygenases DataBase Lipoxygenases iron-binding region in PROSITE PDB: 1YGE​ - structure of lipoxygenase-1 from ... Certain types of the lipoxygenases, e.g. human and murine 15-lipoxygenase 1, 12-lipoxygenase B, and ALOXE3, are capable of ...
Differential distribution of the lipoxygenase pathway enzymes within potato chloroplasts. Download Prime PubMed App to iPhone, ... Differential distribution of the lipoxygenase pathway enzymes within potato chloroplasts.. J Exp Bot. 2007; 58(3):555-68.JE ... The lipoxygenase pathway is responsible for the production of oxylipins, which are important compounds for plant defence ... Differential Distribution of the Lipoxygenase Pathway Enzymes Within Potato Chloroplasts. J Exp Bot. 2007;58(3):555-68. PubMed ...
It was shown that in vitro 11-keto-boswellic acids inhibit 5-lipoxygenase (5-LO, EC 1.13.11.34), the key enzyme in leukotriene ... It was shown that in vitro 11-keto-boswellic acids inhibit 5-lipoxygenase (5-LO, EC 1.13.11.34), the key enzyme in leukotriene ... On the interference of boswellic acids with 5-lipoxygenase: mechanistic studies in vitro and pharmacological relevance Eur J ...
12-Lipoxygenase plays a key role in cell death caused by glutathione depletion and arachidonic acid in rat oligodendrocytes. ... "Arachidonate 12-Lipoxygenase" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH ( ... This graph shows the total number of publications written about "Arachidonate 12-Lipoxygenase" by people in this website by ... Pneumolysin Induces 12-Lipoxygenase-Dependent Neutrophil Migration during Streptococcus pneumoniae Infection. J Immunol. 2020 ...
... fruigiperda 5-Lipoxygenase, Human, Recombinant, S. frugiperda E.C 1.13.11.34, catalyzes the formation of 5(S)-HpETE from ... 5-Lipoxygenase, Human, Recombinant, S. frugiperda E.C 1.13.11.34, catalyzes the formation of 5(S)-HpETE from arachidonic acid ... Recombinant, human 5-Lipoxygenase expressed in S. fruigiperda insect cells using a baculovirus overexpression system. It is ... Recombinant, human 5-Lipoxygenase expressed in S. fruigiperda insect cells using a baculovirus overexpression system. 5-LO ...
Mouse ALOX5(Arachidonate-5-Lipoxygenase) ELISA Kit. Mouse ALOX5(Arachidonate-5-Lipoxygenase) ELISA Kit ... Description: The ALOX5 gene encodes a member of the lipoxygenase gene family and plays a dual role in the synthesis of ... Description: A competitive ELISA for quantitative measurement of Mouse Arachidonate 15 lipoxygenase B(ALOX15B) in samples from ... Description: A competitive ELISA for quantitative measurement of Mouse Arachidonate 15 lipoxygenase B(ALOX15B) in samples from ...
Tang, Keqin., "Regulation of arachidonate 12-lipoxygenase and its role in tumor cell alpoptosis" (2000). Wayne State University ... Regulation of arachidonate 12-lipoxygenase and its role in tumor cell alpoptosis. ...
Mazzuca, J., Garashchuk, S., & Jakowski, J. (2012). Description of Proton Transfer in Soybean Lipoxygenase-1 Employing ... Description of Proton Transfer in Soybean Lipoxygenase-1 Employing Approximate Quantum Trajectory Dynamics ...
8(R)-lipoxygenase, 8-lipoxygenase, 8-LOX, 8R-lipoxygenase, 8R-LOX, 8S-lipoxygenase, 8S-LOX, allene oxide synthase-lipoxygenase ... 1.13.11.40: arachidonate 8-lipoxygenase. This is an abbreviated version!. For detailed information about arachidonate 8- ... protein, arachidonic acid C-8 lipoxygenase, eicosapentaenoic 8R-lipoxygenase, LOX-1, More ...
Lipoxygenase It has been proposed that VirS, a regulator of mono-oxygenase (operon are potential substrates for PknK. Posted ...
By Sandra Nomoto Commonly Called Frankincense, Boswellia Species Have Been Used to Treat Ailments for Thousands of Years in Traditional Medicine, Which Still Applies Today Boswellia is a genus of trees, flowering plants, and shrubs. Boswellia sacra, commonly known as frankincense or olibanum-tree, is native to the Arabian Peninsula and northeastern Africa. It grows up …. More Than Incense: Boswellias Wide-Ranging Potential Read More ». ...
Use SelfDecode to get personalized health recommendations based on your genes. Get started today with an existing DNA file or order a SelfDecode DNA kit!
lipoxygenase inhibitor. ChEBI Definition. A compound or agent that combines with lipoxygenase and thereby prevents its ...
Lipoxygenase 2, LOX antibodyLipoxygenases (LOXs; EC 1.13.11.12, synonym: lipoxydases) are a family of enzymes that catalyze ... LOX , Lipoxygenase. AS06 128 , Clonality: Polyclonal , Host: Rabbit , Reactivity: A.thaliana, G. max, L. longiflorum, L. luteus ... Lipoxygenases (LOXs; EC 1.13.11.12, synonym: lipoxydases) are a family of enzymes that catalyze oxygenation of polyunsaturated ... Aweak band at around 84 kDa is detected as a probable result of cross-reaction with another lipoxygenase ...
Inhibitor of 5-lipoxygenase, which inhibits formation of leukotrienes (LTB4, LTC4, LTD4, & LTE4). Inhibition of leukotriene ...
The presence of one lipoxygenase-active electrophoretic band was detected by a lipoxygenase- specific staining procedure. At ... Physicochemical Characterization of Barley-Lipoxygenase.. E. C. Lulai and C. W. Baker. Copyright 1976 by the American ... Barley lipoxygenase was not inhibited by iron binding compounds. Inhibition by p-chloromercuribenzoate was irreversible. No ... Linoleic acid was used as the substrate from optimizing the assay of barley lipoxygenase in the cultivar Larker. Maximal ...
... ... The present study aimed to ivnestigate the fole of 5-lipoxygenase (5-LOX)- and cyclooxygenase-2 (COX-2)- dependent enzymatic ... The present study aimed to ivnestigate the fole of 5-lipoxygenase (5-LOX)- and cyclooxygenase-2 (COX-2)- dependent enzymatic ...
Human ALOX15(Arachidonate-15-Lipoxygenase) ELISA Kit. Contact us: [email protected]. Pig Arachidonate 15-Lipoxygenase (ALOX15) ... Human ALOX15B(Arachidonate-15-Lipoxygenase, Type B) ELISA Kit. *Human ALPPL2(Alkaline Phosphatase, Placental Like Protein 2) ... Description: A competitive ELISA for quantitative measurement of Human Arachidonate 15 lipoxygenase B(ALOX15B) in samples from ... Description: A competitive ELISA for quantitative measurement of Human Arachidonate 15 lipoxygenase B(ALOX15B) in samples from ...
In addition to discussing the physiological role of lipoxygenase in plants, plant lipoxygenases described role in food ... Lipoxygenase enzymes are widely distributed in both the plants and animals. These enzymes catalyze the oxidation of ... The article discusses the structure and function of plant lipoxygenases. Also described are properties of biochemical and ... molecular reactions, including lipoxygenases which overlap with the enzyme in plant cells. Includes major and minor pathways of ...
5 Lipoxygenase Monoclonal antibody Storage Temperature: Store at -20°C. Stable for one year after shipment. Species: human, pig ... 5 Lipoxygenase Monoclonal antibody. 5 Lipoxygenase Monoclonal antibody. Storage Temperature: Store at -20°C. Stable for one ... 1 /shop/66326-1-ig-150ul-5-lipoxygenase-monoclonal-antibody-44491 $ 367,71 $ 367,71 367.71 USD 349,00 € (0% Off) ... 5 Lipoxygenase Monoclonal antibody Storage Temperature: Store at -20°C. Stable for one year after shipment. Species: human, pig ...
Home › Arachidonate 5-lipoxygenase Antibody, ALEXA FLUOR® 594 Conjugated Arachidonate 5-lipoxygenase Antibody, ALEXA FLUOR® 594 ... 5LO; 5LX; 5-LO; 5-LOX; AI85497; F7311J2; Arachidonate 5-lipoxygenase; 5-lipoxygenase; Alox5. ...
Home / ELISA Kits / Rat / Rat 15-LO (Arachidonate 15-Lipoxygenase) ELISA Kit. Search for:. Search. ... Rat 15-LO (Arachidonate 15-Lipoxygenase) ELISA Kit. Catalog #: ABCE-EL-R1001. Full Name: Rat 15-LO (Arachidonate 15- ...
You are here: Home1 / ELISA Kits2 / Mouse Arachidonate 15-lipoxygenase B (ALOX15B) ELISA Kit ... 24Mouse Arachidonate 15-lipoxygenase B (ALOX15B) ELISA Kit. ... Mouse Arachidonate 15-lipoxygenase B (ALOX15B) ELISA Kit. ...
Leukotrienes derived from 5-lipoxygenase (5-LOX) cause inflammation and are thus involved in the pathobiology of stroke injury ... Jatana, M., Giri, S., Ansari, M.A. et al. Inhibition of NF-κB activation by 5-lipoxygenase inhibitors protects brain against ... Zhao L, Moos MP, Grabner R, Pedrono F, Fan J, Kaiser B, John N, Schmidt S, Spanbroek R, Lotzer K: The 5-lipoxygenase pathway ... Brash AR: Lipoxygenases: Occurrence, Functions, Catalysis, and Acquisition of Substrate 10.1074/jbc.274.34.23679. J Biol Chem. ...
The generation of MMP2 is mediated by activation of phospholipase A(2) and 5-lipoxygenase. These results suggest that the ... production of soluble EMMPRIN, phospholipase A(2) and 5-lipoxygenase activities are sites for potential therapeutic ... The generation of MMP2 is mediated by activation of phospholipase A(2) and 5-lipoxygenase. These results suggest that the ... Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed ...
... Cicero AFG;DEROSA, GIUSEPPE;Gaddi A ... the lipoxygenase (LOX)/COX inhibitors, has been developed as a means of simultaneously inhibiting the synthesis of ... the lipoxygenase (LOX)/COX inhibitors, has been developed as a means of simultaneously inhibiting the synthesis of ...
... Dainese Enrico;Sabatucci ... In particular, lipoxygenases can generate hydroperoxy derivatives of endocannabinoids, endowed with distinct activities within ... In particular, lipoxygenases can generate hydroperoxy derivatives of endocannabinoids, endowed with distinct activities within ... The in vivo interaction between lipoxygenases and endocannabinoids is likely to occur within cell membranes; thus, we sought to ...
The peptidase inhibitor family I36 domain is only found in a small number of proteins restricted to Streptomyces species. All have four conserved cysteines that probably form two disulphide bonds. One of these proteins from Streptomyces nigrescens, is the well characterised metalloproteinase inhibitor SMPI.[10][11] The structure of SMPI has been determined. It has 102 amino acid residues with two disulphide bridges and specifically inhibits metalloproteinases such as thermolysin, which belongs to MEROPS peptidase family M4. SMPI is composed of two beta-sheets, each consisting of four antiparallel beta-strands. The structure can be considered as two Greek key motifs with 2-fold internal symmetry, a Greek key beta-barrel. One unique structural feature found in SMPI is in its extension between the first and second strands of the second Greek key motif which is known to be involved in the inhibitory activity of SMPI. In the absence of sequence similarity, the SMPI structure shows clear similarity to ...
  • Description: Quantitative sandwich ELISA for measuring Mouse Arachidonate 5-lipoxygenase (ALOX5) in samples from cell culture supernatants, serum, whole blood, plasma and other biological fluids. (glideruniversity.org)
  • Maintaining the correct balance between prostaglandins and leukotrienes is essential for continuing good health, but both classes of mediators also play an important role in the pathogenesis of several diseases.Recently, a new class of anti-inflammatory drugs, the lipoxygenase (LOX)/COX inhibitors, has been developed as a means of simultaneously inhibiting the synthesis of prostaglandins, thromboxanes and leukotrienes. (unipv.it)
  • Included under this category are inhibitors that are specific for lipoxygenase subtypes and act to reduce the production of LEUKOTRIENES. (bvsalud.org)
  • inhibition of 5-lipoxygenase (5-LO), which is expected to be involved in DHEA- and NALA-degradation pathway, also partially blocked the ability of DHEA and NALA to inhibit cell proliferation and phosphorylated Akt. (biomedcentral.com)
  • The lipoxygenase pathway is responsible for the production of oxylipins, which are important compounds for plant defence responses. (unboundmedicine.com)
  • Current evidence on the subcellular localization of the lipoxygenase pathway is conflicting, and the regulation of metabolic channelling between the two branches of the pathway is largely unknown. (unboundmedicine.com)
  • Wound-induced accumulation of the jasmonic acid biosynthetic enzymes may thus commit the lipoxygenase pathway to jasmonic acid production in damaged plants. (unboundmedicine.com)
  • It is shown that all enzymes of the lipoxygenase pathway differentially localize within chloroplasts, and are largely found associated to thylakoid membranes. (unboundmedicine.com)
  • It is suggested that, in addition to their differential expression pattern, this segregation underlies the regulation of metabolic fluxes through the alternative branches of the lipoxygenase pathway. (unboundmedicine.com)
  • Enteroaggregative Escherichia coli promotes transepithelial migration of neutrophils through a conserved 12-lipoxygenase pathway. (umassmed.edu)
  • Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. (ox.ac.uk)
  • CONTEXT: The 12-lipoxygenase (12-LO) pathway produces proinflammatory metabolites, and its activation is implicated in islet inflammation associated with type 1 and type 2 diabetes (T2D). (lvhn.org)
  • Eicosanoids are formed from arachidonic acid (AA) through different enzymatic pathways, including the cyclooxygenase (COX) pathway, synthesizing prostanoids and the 5-lipoxygenase (5-LOX) pathway, generating leukotrienes (LTs) 8 . (nature.com)
  • Leukotrienes belong to a family of biologically active conjugated trienes that are formed from arachidonic acid via the 5-lipoxygenase pathway and are important mediators of inflammatory reactions. (lu.se)
  • Cyclooxygenase (COX)-2 and 5-lipoxygenase (5-LOX) are key enzymes involved in arachidonic acid metabolism. (unifi.it)
  • This antibody recognizes with high specificity a Vitis vinifera chloroplastic lipoxygenase expressed in the berries along development (by western blotting). (agrisera.com)
  • 5 Lipoxygenase Monoclonal antibody Storage Temperature: Store at -20°C. Stable for one year after shipment. (ols-bio.de)
  • Based on detailed analyses of 15-lipoxygenase 1 and stabilized 5-lipoxygenase, lipoxygenase structures consist of a 15 kilodalton N-terminal beta barrel domain, a small (e.g. ~0.6 kilodalton) linker inter-domain (see Protein domain § Domains and protein flexibility), and a relatively large C-terminal catalytic domain which contains the non-heme iron critical for the enzymes' catalytic activity. (wikipedia.org)
  • Lipoxygenase enzymes are widely distributed in both the plants and animals. (pbkom.eu)
  • Lipoxygenases form a heterogeneous family of lipid peroxidizing enzymes, which have been implicated in the synthesis of inflammatory mediators, in cell development and in the pathogenesis of various diseases with major health and political relevance (atherosclerosis, osteoporosis). (univaq.it)
  • The 6 human lipoxygenases along with some of the major products that they make, as well as some of their associations with genetic diseases, are as follows: Arachidonate 5-lipoxygenase (ALOX5) (EC 1.13.11.34InterPro: IPR001885), also termed 5-lipoxygenase, 5-LOX, and 5-LO. (wikipedia.org)
  • Description: Quantitativesandwich ELISA kit for measuring Rat Arachidonate 5-lipoxygenase (Alox5) in samples from serum, plasma, cell culture supernates, tissue homogenates. (glideruniversity.org)
  • Description: The ALOX5 gene encodes a member of the lipoxygenase gene family and plays a dual role in the synthesis of leukotrienes from arachidonic acid. (glideruniversity.org)
  • Description: Quantitativesandwich ELISA kit for measuring Human Arachidonate 5-lipoxygenase (ALOX5/LOG5) in samples from serum, plasma, cell culture supernates, tissue homogenates. (glideruniversity.org)
  • Each extracts were tested for soybean lipoxygenase inhibitory activity, phytochemical screening and total flavonoid contents. (phcogj.com)
  • Furthermore, the same extract showed appreciable anti-inflammatory via lipoxygenase inhibitory activity (LOX), IC50 values ranged from 7.12-52.68 (μg mL -1 . (uaeu.ac.ae)
  • The present study aimed to ivnestigate the fole of 5-lipoxygenase (5-LOX)- and cyclooxygenase-2 (COX-2)- dependent enzymatic pathways in the pathogenesis of porcine parasitic bronchopneumonia caused by Metastrongylus spp. (uniba.it)
  • The current experiments were designed to determine whether cyclooxygenase- and lipoxygenase-derived mediators contribute to the phosgene induced lung injury. (cdc.gov)
  • Phosgene markedly increased lung weight gain, did not appear to increase the synthesis of cyclooxygenase metabolites, but increased 10-fold the synthesis of lipoxygenase products. (cdc.gov)
  • Exceptions to this rule include the 12R-lipoxygenases of humans and other mammals (see below). (wikipedia.org)
  • It is shown here that while a 13-lipoxygenase (LOX H3), allene oxide synthase and allene oxide cyclase proteins accumulate upon wounding in potato, a second 13-lipoxygenase (LOX H1) and hydroperoxide lyase are present at constant levels in both non-wounded and wounded tissues. (unboundmedicine.com)
  • In particular, variants which shifted positional specificity between 12-and 15-lipoxygenase activity were analyzed. (johnshopkins.edu)
  • Analysis of active site residues produced a model which accounts for observed lipoxygenase positional specificity and stereospecificity. (johnshopkins.edu)
  • Sequence data is available for the following lipoxygenases: Plants express a variety of cytosolic lipoxygenases (EC 1.13.11.12InterPro: IPR001246) as well as what seems to be a chloroplast isozyme. (wikipedia.org)
  • Description of Proton Transfer in Soybean Lipoxygenase-1 Employing App" by James Mazzuca, Sophya V. Garashchuk et al. (sc.edu)
  • thus, we sought to ascertain whether a prototypical enzyme like soybean (Glycine max) 15-lipoxygenase-1 is able to oxygenate endocannabinoids embedded in synthetic vesicles and how these substances could affect the binding ability of the enzyme to different lipid bilayers. (unite.it)
  • The structure of the 839-residue soybean lipoxygenase-1 was used as a template to model human 5-, 12-, and 15-lipoxygenases. (johnshopkins.edu)
  • Taken together, our results indicate that the rabbit 12/15-lipoxygenase is more susceptible to temperature-induced structural alterations than the soybean enzyme. (univaq.it)
  • In general, various phospholipase A2s and diacylglycerol lipases are activated during cell stimulation, proceed to release these fatty acids from their storage sites, and thereby are key regulators in the formation of lipoxygenase-dependent metabolites. (wikipedia.org)
  • moreover, these effects were mediated by the lipoxygenase (LOX) and cytochrome P450 (CYP450) EPA/DHA metabolites, 5-hydroxyeicosapentaenoic acid (HEPE), 4-hydroxydocosahexaenoic acid (HDHA), 18-HEPE, 20-HDHA, 17(18)-epoxyeicosatetraenoic acid (EpETE) and 19(20)-epoxydocosapentaenoic acid (EpDPA), detected here for the first time in human hippocampal neurones using mass spectrometry lipidomics of the supernatant. (nih.gov)
  • In mammals a number of lipoxygenases isozymes are involved in the metabolism of eicosanoids (such as prostaglandins, leukotrienes and nonclassic eicosanoids). (wikipedia.org)
  • A compound or agent that combines with lipoxygenase and thereby prevents its substrate-enzyme combination with arachidonic acid and the formation of the icosanoid products hydroxyicosatetraenoic acid and various leukotrienes. (foodb.ca)
  • Leukotrienes derived from 5-lipoxygenase (5-LOX) cause inflammation and are thus involved in the pathobiology of stroke injury. (biomedcentral.com)
  • Lipoxygenases are a class of non-heme iron dioxygenases which catalyze the hydroperoxidation of fatty acids for the biosynthesis of leukotrienes and lipoxins. (johnshopkins.edu)
  • MDM from convalescent SARS-CoV-2-infected individuals showed a downregulation of pro-resolving factors and an increased production of pro-inflammatory eicosanoids, particularly 5-lipoxygenase-derived leukotrienes. (nature.com)
  • Systemic disease during Streptococcus pneumoniae acute lung infection requires 12-lipoxygenase-dependent inflammation. (umassmed.edu)
  • Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero xyeicosatetraenoic acid (12-H(P)ETE). (reading.ac.uk)
  • In addition, cells, when so activated, may transfer their released polyunsaturated fatty acids to adjacent or nearby cells which then metabolize them through their lipoxygenase pathways in a process termed transcellular metabolism or transcellular biosynthesis. (wikipedia.org)
  • Linoleic acid was used as the substrate from optimizing the assay of barley lipoxygenase in the cultivar Larker. (cerealsgrains.org)
  • Physicochemical Characterization of Barley-Lipoxygenase. (cerealsgrains.org)
  • Barley lipoxygenase was not inhibited by iron binding compounds. (cerealsgrains.org)
  • A full length cDNA sequence for a barley grain lipoxygenase was obtained. (tno.nl)
  • It was shown that in vitro 11-keto-boswellic acids inhibit 5-lipoxygenase (5-LO, EC 1.13.11.34), the key enzyme in leukotriene biosynthesis, which may account for their anti-inflammatory effectiveness. (nih.gov)
  • 5-Lipoxygenase, Human, Recombinant, S. fruigiperda 5-Lipoxygenase, Human, Recombinant, S. frugiperda E.C 1.13.11.34, catalyzes the formation of 5(S)-HpETE from arachidonic acid and its subsequent conversion to leukotriene A4. (sigmaaldrich.com)
  • Certain types of the lipoxygenases, e.g. human and murine 15-lipoxygenase 1, 12-lipoxygenase B, and ALOXE3, are capable of metabolizing fatty acid substrates that are constituents of phospholipids, cholesterol esters, or complex lipids of the skin. (wikipedia.org)
  • Also described are properties of biochemical and molecular reactions, including lipoxygenases which overlap with the enzyme in plant cells. (pbkom.eu)
  • Twenty-six of the 56 conserved lipoxygenase residues were grouped in four distinct regions of the enzyme. (johnshopkins.edu)
  • The crystal structures of various lipoxygenase-isoforms have been reported, and X-ray coordinates for enzyme-ligand complexes are also available. (univaq.it)
  • 2015). The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin. (agrisera.com)
  • and that (iii) 15-lipoxygenase-1 oxidizes embedded endocannabinoids and thus reduces fluidity and local hydration of membrane lipids. (unite.it)
  • Applying fluorescence resonance energy transfer we also tested the membrane binding properties of the two lipoxygenase-isoforms, and compared their binding parameters. (univaq.it)
  • These results suggest that the production of soluble EMMPRIN, phospholipase A(2) and 5-lipoxygenase activities are sites for potential therapeutic intervention. (ox.ac.uk)
  • Most lipoxygenases catalyze the formation of initially formed hydroperoxy products that have S chirality. (wikipedia.org)
  • In particular, lipoxygenases can generate hydroperoxy derivatives of endocannabinoids, endowed with distinct activities within cells. (unite.it)
  • Plant lipoxygenase in conjunction with hydroperoxide lyases are responsible for many fragrances and other signalling compounds. (wikipedia.org)
  • while the third domain of terrestrial life, the archaea, possesses proteins with a slight (~20%) amino acid sequence similarity to lipoxygenases, these proteins lack iron-binding residues and therefore are not projected to possess lipoxygenase activity. (wikipedia.org)
  • This study aimed to determine IC 50 value of sweet potato tubers extracts in inhibiting lipoxygenase activity. (phcogj.com)
  • Structural properties of plant and mammalian lipoxygenases. (univaq.it)
  • Description: A competitive ELISA for quantitative measurement of Canine Arachidonate 15 lipoxygenase (ALOX15/LOG15) in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. (myelisakit.com)
  • Compounds that bind to and inhibit that enzymatic activity of LIPOXYGENASES. (bvsalud.org)
  • Its amino acid sequence shows a high homology with that of other plant lipoxygenases identified to date. (tno.nl)
  • The article discusses the structure and function of plant lipoxygenases. (pbkom.eu)
  • In addition to discussing the physiological role of lipoxygenase in plants, plant lipoxygenases described role in food technology and industry. (pbkom.eu)
  • Although the 3D-structures of plant and animal lipoxygenase-isoforms are very similar, recent small-angle X-ray scattering data suggested a higher degree of motional flexibility of mammalian isozymes in aqueous solutions. (univaq.it)
  • The lipoxygenases are related to each other based upon their similar genetic structure and dioxygenation activity. (wikipedia.org)
  • At least 92% of the lipoxygenase activity is localized in the germ. (cerealsgrains.org)
  • Antioxidant activity, lipoxygenase inhibitory effect and polyphenolic compounds from Calotropis procera (Ait. (uaeu.ac.ae)
  • Dive into the research topics of 'Antioxidant activity, lipoxygenase inhibitory effect and polyphenolic compounds from Calotropis procera (Ait. (uaeu.ac.ae)
  • These results suggest that lipoxygenase products contribute to the phosgene -induced lung damage. (cdc.gov)
  • Regulation of arachidonate 12-lipoxygenase and its role in tumor cell alpoptosis " by Keqin. (wayne.edu)
  • Recombinant, human 5-Lipoxygenase expressed in S. fruigiperda insect cells using a baculovirus overexpression system. (sigmaaldrich.com)
  • 12-Lipoxygenase Inhibitor Improves Functions of Cytokine-Treated Human" by Kaiwen Ma, An Xiao et al. (lvhn.org)
  • 12-Lipoxygenase Inhibitor Improves Functions of Cytokine-Treated Human Islets and Type 2 Diabetic Islets. (lvhn.org)
  • The effects of site directed mutagenesis variants were rationalized using the models of the human lipoxygenases. (johnshopkins.edu)
  • The presence of one lipoxygenase-active electrophoretic band was detected by a lipoxygenase- specific staining procedure. (cerealsgrains.org)
  • The generation of MMP2 is mediated by activation of phospholipase A(2) and 5-lipoxygenase. (ox.ac.uk)