The anterior subdivision of the embryonic PROSENCEPHALON or the corresponding part of the adult prosencephalon that includes the cerebrum and associated structures.
The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived.
The anterior of the three primitive cerebral vesicles of the embryonic brain arising from the NEURAL TUBE. It subdivides to form DIENCEPHALON and TELENCEPHALON. (Stedmans Medical Dictionary, 27th ed)
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL).
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
The processes occurring in early development that direct morphogenesis. They specify the body plan ensuring that cells will proceed to differentiate, grow, and diversify in size and shape at the correct relative positions. Included are axial patterning, segmentation, compartment specification, limb position, organ boundary patterning, blood vessel patterning, etc.
A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes.
A family of transcription factors that control EMBRYONIC DEVELOPMENT within a variety of cell lineages. They are characterized by a highly conserved paired DNA-binding domain that was first identified in DROSOPHILA segmentation genes.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
The largest portion of the CEREBRAL CORTEX in which the NEURONS are arranged in six layers in the mammalian brain: molecular, external granular, external pyramidal, internal granular, internal pyramidal and multiform layers.
The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulchi. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions.
A subclass of LIM domain proteins that include an additional centrally-located homeodomain region that binds AT-rich sites on DNA. Many LIM-homeodomain proteins play a role as transcriptional regulators that direct cell fate.
An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. They are used in embryological studies and to study the effects of certain chemicals on development.
Proteins obtained from the ZEBRAFISH. Many of the proteins in this species have been the subject of studies involving basic embryological development (EMBRYOLOGY).
Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells.
A family of intercellular signaling proteins that play and important role in regulating the development of many TISSUES and organs. Their name derives from the observation of a hedgehog-like appearance in DROSOPHILA embryos with genetic mutations that block their action.
Any of several Old World finches of the genus Serinus.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
Formation of NEURONS which involves the differentiation and division of STEM CELLS in which one or both of the daughter cells become neurons.
A fibroblast growth factor that preferentially activates FIBROBLAST GROWTH FACTOR RECEPTOR 4. It was initially identified as an androgen-induced growth factor and plays a role in regulating growth of human BREAST NEOPLASMS and PROSTATIC NEOPLASMS.
'Eye proteins' are structural or functional proteins, such as crystallins, opsins, and collagens, located in various parts of the eye, including the cornea, lens, retina, and aqueous humor, that contribute to maintaining transparency, refractive power, phototransduction, and overall integrity of the visual system.
Transference of brain tissue, either from a fetus or from a born individual, between individuals of the same species or between individuals of different species.
Sounds used in animal communication.
The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here.
Mice bearing mutant genes which are phenotypically expressed in the animals.
Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions.
A family of DNA-binding transcription factors that contain a basic HELIX-LOOP-HELIX MOTIF.
Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain.
The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.
A calbindin protein found in many mammalian tissues, including the UTERUS, PLACENTA, BONE, PITUITARY GLAND, and KIDNEYS. In intestinal ENTEROCYTES it mediates intracellular calcium transport from apical to basolateral membranes via calcium binding at two EF-HAND MOTIFS. Expression is regulated in some tissues by VITAMIN D.
Self-renewing cells that generate the main phenotypes of the nervous system in both the embryo and adult. Neural stem cells are precursors to both NEURONS and NEUROGLIA.
Raised area at the infundibular region of the HYPOTHALAMUS at the floor of the BRAIN, ventral to the THIRD VENTRICLE and adjacent to the ARCUATE NUCLEUS OF HYPOTHALAMUS. It contains the terminals of hypothalamic neurons and the capillary network of hypophyseal portal system, thus serving as a neuroendocrine link between the brain and the PITUITARY GLAND.
A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors.
An order of BIRDS comprising the waterfowl, particularly DUCKS; GEESE; swans; and screamers.
Common name for small PASSERIFORMES in the family Fringillidae. They have a short stout bill (BEAK) adapted for crushing SEEDS. Some species of Old World finches are called CANARIES.
Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.
A family of zinc finger transcription factors that share homology with Kruppel protein, Drosophila. They contain a highly conserved seven amino acid spacer sequence in between their ZINC FINGER MOTIFS.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Four CSF-filled (see CEREBROSPINAL FLUID) cavities within the cerebral hemispheres (LATERAL VENTRICLES), in the midline (THIRD VENTRICLE) and within the PONS and MEDULLA OBLONGATA (FOURTH VENTRICLE).
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body.
A Wnt protein subtype that plays a role in cell-cell signaling during EMBRYONIC DEVELOPMENT and the morphogenesis of the developing NEURAL TUBE. Defects in Wnt3 protein are associated with autosomal recessive tetra-AMELIA in humans.
Wnt proteins are a large family of secreted glycoproteins that play essential roles in EMBRYONIC AND FETAL DEVELOPMENT, and tissue maintenance. They bind to FRIZZLED RECEPTORS and act as PARACRINE PROTEIN FACTORS to initiate a variety of SIGNAL TRANSDUCTION PATHWAYS. The canonical Wnt signaling pathway stabilizes the transcriptional coactivator BETA CATENIN.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
A type VI intermediate filament protein expressed mostly in nerve cells where it is associated with the survival, renewal and mitogen-stimulated proliferation of neural progenitor cells.
A calbindin protein that is differentially expressed in distinct populations of NEURONS throughout the vertebrate and invertebrate NERVOUS SYSTEM, and modulates intrinsic neuronal excitability and influences LONG-TERM POTENTIATION. It is also found in LUNG, TESTIS, OVARY, KIDNEY, and BREAST, and is expressed in many tumor types found in these tissues. It is often used as an immunohistochemical marker for MESOTHELIOMA.
The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems.
Neural tracts connecting one part of the nervous system with another.
The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear.
Warm-blooded VERTEBRATES possessing FEATHERS and belonging to the class Aves.
The developmental history of specific differentiated cell types as traced back to the original STEM CELLS in the embryo.
A villous structure of tangled masses of BLOOD VESSELS contained within the third, lateral, and fourth ventricles of the BRAIN. It regulates part of the production and composition of CEREBROSPINAL FLUID.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Calcium-binding proteins that are found in DISTAL KIDNEY TUBULES, INTESTINES, BRAIN, and other tissues where they bind, buffer and transport cytoplasmic calcium. Calbindins possess a variable number of EF-HAND MOTIFS which contain calcium-binding sites. Some isoforms are regulated by VITAMIN D.
A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system.
A technique in which electric pulses of intensity in kilovolts per centimeter and of microsecond-to-millisecond duration cause a temporary loss of the semipermeability of CELL MEMBRANES, thus leading to ion leakage, escape of metabolites, and increased uptake by cells of drugs, molecular probes, and DNA.
A dense intricate feltwork of interwoven fine glial processes, fibrils, synaptic terminals, axons, and dendrites interspersed among the nerve cells in the gray matter of the central nervous system.
Morphological and physiological development of EMBRYOS or FETUSES.
Common name for Carassius auratus, a type of carp (CARPS).
The family Sturnidae, in the order PASSERIFORMES. The starling family also includes mynahs and oxpeckers.
Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS.
Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres.

A binding site for homeodomain and Pax proteins is necessary for L1 cell adhesion molecule gene expression by Pax-6 and bone morphogenetic proteins. (1/934)

The cell adhesion molecule L1 regulates axonal guidance and fasciculation during development. We previously identified the regulatory region of the L1 gene and showed that it was sufficient for establishing the neural pattern of L1 expression in transgenic mice. In the present study, we characterize a DNA element within this region called the HPD that contains binding motifs for both homeodomain and Pax proteins and responds to signals from bone morphogenetic proteins (BMPs). An ATTA sequence within the core of the HPD was required for binding to the homeodomain protein Barx2 while a separate paired domain recognition motif was necessary for binding to Pax-6. In cellular transfection experiments, L1-luciferase reporter constructs containing the HPD were activated an average of 4-fold by Pax-6 in N2A cells and 5-fold by BMP-2 and BMP-4 in Ng108 cells. Both of these responses were eliminated on deletion of the HPD from L1 constructs. In transgenic mice, deletion of the HPD from an L1-lacZ reporter resulted in a loss of beta-galactosidase expression in the telencephalon and mesencephalon. Collectively, our experiments indicate that the HPD regulates L1 expression in neural tissues via homeodomain and Pax proteins and is likely to be a target of BMP signaling during development.  (+info)

Ectopic bone morphogenetic proteins 5 and 4 in the chicken forebrain lead to cyclopia and holoprosencephaly. (2/934)

Proper dorsal-ventral patterning in the developing central nervous system requires signals from both the dorsal and ventral portions of the neural tube. Data from multiple studies have demonstrated that bone morphogenetic proteins (BMPs) and Sonic hedgehog protein are secreted factors that regulate dorsal and ventral specification, respectively, within the caudal neural tube. In the developing rostral central nervous system Sonic hedgehog protein also participates in ventral regionalization; however, the roles of BMPs in the developing brain are less clear. We hypothesized that BMPs also play a role in dorsal specification of the vertebrate forebrain. To test our hypothesis we implanted beads soaked in recombinant BMP5 or BMP4 into the neural tube of the chicken forebrain. Experimental embryos showed a loss of the basal telencephalon that resulted in holoprosencephaly (a single cerebral hemisphere), cyclopia (a single midline eye), and loss of ventral midline structures. In situ hybridization using a panel of probes to genes expressed in the dorsal and ventral forebrain revealed the loss of ventral markers with the maintenance of dorsal markers. Furthermore, we found that the loss of the basal telencephalon was the result of excessive cell death and not a change in cell fates. These data provide evidence that BMP signaling participates in dorsal-ventral patterning of the developing brain in vivo, and disturbances in dorsal-ventral signaling result in specific malformations of the forebrain.  (+info)

Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. (3/934)

Multipotent, self-renewing neural stem cells reside in the embryonic mouse telencephalic germinal zone. Using an in vitro neurosphere assay for neural stem cell proliferation, we demonstrate that FGF-responsive neural stem cells are present as early as E8.5 in the anterior neural plate, but EGF-responsive neural stem cells emerge later in development in a temporally and spatially specific manner. By separately blocking EGF and FGF2 signaling, we also show that EGF alone and FGF2 alone can independently elicit neural stem cell proliferation and at relatively high cell densities separate cell nonautonomous effects can substantially enhance the mitogen-induced proliferation. At lower cell densities, neural stem cell proliferation is additive in the presence of EGF and FGF2 combined, revealing two different stem cell populations. However, both FGF-responsive and EGF-responsive neural stem cells retain their self-renewal and multilineage potential, regardless of growth factor conditions. These results support a model in which separate, lineage-related EGF- and FGF-responsive neural stem cells are present in the embryonic telencephalic germinal zone.  (+info)

The flat-top gene is required for the expansion and regionalization of the telencephalic primordium. (4/934)

The telencephalic vesicles form in the mouse embryo by the expansion of precursor regions in the anterior neural tube. Once the vesicles have formed, discrete dorsal and ventral territories can be recognized that later give rise to cortical and subcortical structures, respectively. To investigate the mechanisms that regulate the expansion and regionalization of the telencephalon, we have carried out a screen to identify recessive mutations that disrupt these events. We isolated a mouse mutant in which an early and critical step in development of the telencephalic vesicles is disrupted. Telencephalic primordia are present in flat-top embryos but they fail to progress to form the telencephalic vesicles. An increased rate of proliferation in the forebrain neurectoderm that accompanies telencephalic expansion in wild-type embryos fails to occur in flat-top embryos. Regionalization events that would normally take place during expansion of the primordia also fail to occur. Thus the phenotype of the flat-top mouse reveals that outgrowth of the telencephalic vesicles and their regionalization are coupled processes.  (+info)

Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-deficient mice. (5/934)

We have analyzed the pathfinding of thalamocortical axons (TCAs) from dorsal thalamus to neocortex in relation to specific cell domains in the forebrain of wild-type and Mash-1-deficient mice. In wild-type mice, we identified four cell domains that constitute the proximal part of the TCA pathway. These domains are distinguished by patterns of gene expression and by the presence of neurons retrogradely labeled from dorsal thalamus. Since the cells that form these domains are generated in forebrain proliferative zones that express high levels of Mash-1, we studied Mash-1 mutant mice to assess the potential roles of these domains in TCA pathfinding. In null mutants, each of the domains is altered: the two Pax-6 domains, one in ventral thalamus and one in hypothalamus, are expanded in size; a complementary RPTP(delta) domain in ventral thalamus is correspondingly reduced and the normally graded expression of RPTP(delta) in that domain is no longer apparent. In ventral telencephalon, a domain characterized in the wild type by Netrin-1 and Nkx-2.1 expression and by retrogradely labeled neurons is absent in the mutant. Defects in TCA pathfinding are localized to the borders of each of these altered domains. Many TCAs fail to enter the expanded, ventral thalamic Pax-6 domain that constitutes the most proximal part of the TCA pathway, and form a dense whorl at the border between dorsal and ventral thalamus. A proportion of TCAs do extend further distally into ventral thalamus, but many of these stall at an aberrant, abrupt border of high RPTP(delta) expression. A small proportion of TCAs extend around the RPTP(delta) domain and reach the ventral thalamic-hypothalamic border, but few of these axons turn at that border to extend into the ventral telencephalon. These findings demonstrate that Mash-1 is required for the normal development of cell domains that in turn are required for normal TCA pathfinding. In addition, these findings support the hypothesis that ventral telencephalic neurons and their axons guide TCAs through ventral thalamus and into ventral telencephalon.  (+info)

Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. (6/934)

The olfactory bulb plays a central role in olfactory information processing through its connections with both peripheral and cortical structures. Axons projecting from the olfactory bulb to the telencephalon are guided by a repulsive activity in the septum. The molecular nature of the repellent is not known. We report here the isolation of vertebrate homologs of the Drosophila slit gene and show that Slit protein binds to the transmembrane protein Roundabout (Robo). Slit is expressed in the septum whereas Robo is expressed in the olfactory bulb. Functionally, Slit acts as a chemorepellent for olfactory bulb axons. These results establish a ligand-receptor relationship between two molecules important for neural development, suggest a role for Slit in olfactory bulb axon guidance, and reveal the existence of a new family of axon guidance molecules.  (+info)

Mutations in the zebrafish unmask shared regulatory pathways controlling the development of catecholaminergic neurons. (7/934)

The mechanism by which pluripotent progenitors give rise to distinct classes of mature neurons in vertebrates is not well understood. To address this issue we undertook a genetic screen for mutations which affect the commitment and differentiation of catecholaminergic (CA) [dopaminergic (DA), noradrenergic (NA), and adrenergic] neurons in the zebrafish, Danio rerio. The identified mutations constitute five complementation groups. motionless and foggy affect the number and differentiation state of hypothalamic DA, telencephalic DA, retinal DA, locus coeruleus (LC) NA, and sympathetic NA neurons. The too few mutation leads to a specific reduction in the number of hypothalamic DA neurons. no soul lacks arch-associated NA cells and has defects in pharyngeal arches, and soulless lacks both arch-associated and LC cell groups. Our analyses suggest that the genes defined by these mutations regulate different steps in the differentiation of multipotent CA progenitors. They further reveal an underlying universal mechanism for the control of CA cell fates, which involve combinatorial usage of regulatory genes.  (+info)

Seasonal neuroplasticity in the songbird telencephalon: a role for melatonin. (8/934)

Neuroplasticity in the vocal control system of songbirds is strongly influenced by seasonal fluctuations in circulating testosterone. These seasonally plastic telencephalic structures are implicated in the learning and production of song in songbirds. The role of the indoleamine melatonin in seasonal adaptations in birds has remained unclear. In this experiment, European starlings were castrated to remove the neuromodulating activity of gonadal steroids and were exposed to different photoperiods to induce reproductive states characteristic of different seasonal conditions. Long days increased the volume of the song-control nucleus high vocal center compared with its volume on short days. Exogenous melatonin attenuated the long-day-induced volumetric increase in high vocal center and also decreased the volume of another song-control nucleus, area X. This effect was observed regardless of reproductive state. To our knowledge, this is the first direct evidence of a role for melatonin in functional plasticity within the central nervous system of vertebrates.  (+info)

The telencephalon is the most anterior (front) region of the embryonic brain, which eventually develops into the largest portion of the adult human brain, including the cerebral cortex, basal ganglia, and olfactory bulbs. It is derived from the prosencephalon (forebrain) during embryonic development and is responsible for higher cognitive functions such as thinking, perception, and language. The telencephalon can be further divided into two hemispheres, each containing regions associated with different functions.

The diencephalon is a term used in anatomy to refer to the part of the brain that lies between the cerebrum and the midbrain. It includes several important structures, such as the thalamus, hypothalamus, epithalamus, and subthalamus.

The thalamus is a major relay station for sensory information, receiving input from all senses except smell and sending it to the appropriate areas of the cerebral cortex. The hypothalamus plays a crucial role in regulating various bodily functions, including hunger, thirst, body temperature, and sleep-wake cycles. It also produces hormones that regulate mood, growth, and development.

The epithalamus contains the pineal gland, which produces melatonin, a hormone that helps regulate sleep-wake cycles. The subthalamus is involved in motor control and coordination.

Overall, the diencephalon plays a critical role in integrating sensory information, regulating autonomic functions, and modulating behavior and emotion.

The prosencephalon is a term used in the field of neuroembryology, which refers to the developmental stage of the forebrain in the embryonic nervous system. It is one of the three primary vesicles that form during the initial stages of neurulation, along with the mesencephalon (midbrain) and rhombencephalon (hindbrain).

The prosencephalon further differentiates into two secondary vesicles: the telencephalon and diencephalon. The telencephalon gives rise to structures such as the cerebral cortex, basal ganglia, and olfactory bulbs, while the diencephalon develops into structures like the thalamus, hypothalamus, and epithalamus.

It is important to note that 'prosencephalon' itself is not used as a medical term in adult neuroanatomy, but it is crucial for understanding the development of the human brain during embryogenesis.

Developmental gene expression regulation refers to the processes that control the activation or repression of specific genes during embryonic and fetal development. These regulatory mechanisms ensure that genes are expressed at the right time, in the right cells, and at appropriate levels to guide proper growth, differentiation, and morphogenesis of an organism.

Developmental gene expression regulation is a complex and dynamic process involving various molecular players, such as transcription factors, chromatin modifiers, non-coding RNAs, and signaling molecules. These regulators can interact with cis-regulatory elements, like enhancers and promoters, to fine-tune the spatiotemporal patterns of gene expression during development.

Dysregulation of developmental gene expression can lead to various congenital disorders and developmental abnormalities. Therefore, understanding the principles and mechanisms governing developmental gene expression regulation is crucial for uncovering the etiology of developmental diseases and devising potential therapeutic strategies.

Homeodomain proteins are a group of transcription factors that play crucial roles in the development and differentiation of cells in animals and plants. They are characterized by the presence of a highly conserved DNA-binding domain called the homeodomain, which is typically about 60 amino acids long. The homeodomain consists of three helices, with the third helix responsible for recognizing and binding to specific DNA sequences.

Homeodomain proteins are involved in regulating gene expression during embryonic development, tissue maintenance, and organismal growth. They can act as activators or repressors of transcription, depending on the context and the presence of cofactors. Mutations in homeodomain proteins have been associated with various human diseases, including cancer, congenital abnormalities, and neurological disorders.

Some examples of homeodomain proteins include PAX6, which is essential for eye development, HOX genes, which are involved in body patterning, and NANOG, which plays a role in maintaining pluripotency in stem cells.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

"Body patterning" is a general term that refers to the process of forming and organizing various tissues and structures into specific patterns during embryonic development. This complex process involves a variety of molecular mechanisms, including gene expression, cell signaling, and cell-cell interactions. It results in the creation of distinct body regions, such as the head, trunk, and limbs, as well as the organization of internal organs and systems.

In medical terminology, "body patterning" may refer to specific developmental processes or abnormalities related to embryonic development. For example, in genetic disorders such as Poland syndrome or Holt-Oram syndrome, mutations in certain genes can lead to abnormal body patterning, resulting in the absence or underdevelopment of certain muscles, bones, or other structures.

It's important to note that "body patterning" is not a formal medical term with a specific definition, but rather a general concept used in developmental biology and genetics.

In situ hybridization (ISH) is a molecular biology technique used to detect and localize specific nucleic acid sequences, such as DNA or RNA, within cells or tissues. This technique involves the use of a labeled probe that is complementary to the target nucleic acid sequence. The probe can be labeled with various types of markers, including radioisotopes, fluorescent dyes, or enzymes.

During the ISH procedure, the labeled probe is hybridized to the target nucleic acid sequence in situ, meaning that the hybridization occurs within the intact cells or tissues. After washing away unbound probe, the location of the labeled probe can be visualized using various methods depending on the type of label used.

In situ hybridization has a wide range of applications in both research and diagnostic settings, including the detection of gene expression patterns, identification of viral infections, and diagnosis of genetic disorders.

Paired box (PAX) transcription factors are a group of proteins that regulate gene expression during embryonic development and in some adult tissues. They are characterized by the presence of a paired box domain, a conserved DNA-binding motif that recognizes specific DNA sequences. PAX proteins play crucial roles in various developmental processes, such as the formation of the nervous system, eyes, and pancreas. Dysregulation of PAX genes has been implicated in several human diseases, including cancer.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

The neocortex, also known as the isocortex, is the most recently evolved and outermost layer of the cerebral cortex in mammalian brains. It plays a crucial role in higher cognitive functions such as sensory perception, spatial reasoning, conscious thought, language, and memory. The neocortex is characterized by its six-layered structure and is divided into several functional regions, including the primary motor, somatosensory, and visual cortices. It is highly expanded in humans and other primates, reflecting our advanced cognitive abilities compared to other animals.

The cerebral cortex is the outermost layer of the brain, characterized by its intricate folded structure and wrinkled appearance. It is a region of great importance as it plays a key role in higher cognitive functions such as perception, consciousness, thought, memory, language, and attention. The cerebral cortex is divided into two hemispheres, each containing four lobes: the frontal, parietal, temporal, and occipital lobes. These areas are responsible for different functions, with some regions specializing in sensory processing while others are involved in motor control or associative functions. The cerebral cortex is composed of gray matter, which contains neuronal cell bodies, and is covered by a layer of white matter that consists mainly of myelinated nerve fibers.

LIM-homeodomain proteins are a family of transcription factors that contain both LIM domains and homeodomains. LIM domains are cysteine-rich motifs that function in protein-protein interactions, often mediating the formation of multimeric complexes. Homeodomains are DNA-binding domains that recognize and bind to specific DNA sequences, thereby regulating gene transcription.

LIM-homeodomain proteins play important roles in various developmental processes, including cell fate determination, differentiation, and migration. They have been implicated in the regulation of muscle, nerve, and cardiovascular development, as well as in cancer and other diseases. Some examples of LIM-homeodomain proteins include LMX1A, LHX2, and ISL1.

These proteins are characterized by the presence of two LIM domains at the N-terminus and a homeodomain at the C-terminus. The LIM domains are involved in protein-protein interactions, while the homeodomain is responsible for DNA binding and transcriptional regulation. Some LIM-homeodomain proteins also contain other functional domains, such as zinc fingers or leucine zippers, which contribute to their diverse functions.

Overall, LIM-homeodomain proteins are important regulators of gene expression and play critical roles in various developmental and disease processes.

A zebrafish is a freshwater fish species belonging to the family Cyprinidae and the genus Danio. Its name is derived from its distinctive striped pattern that resembles a zebra's. Zebrafish are often used as model organisms in scientific research, particularly in developmental biology, genetics, and toxicology studies. They have a high fecundity rate, transparent embryos, and a rapid development process, making them an ideal choice for researchers. However, it is important to note that providing a medical definition for zebrafish may not be entirely accurate or relevant since they are primarily used in biological research rather than clinical medicine.

Zebrafish proteins refer to the diverse range of protein molecules that are produced by the organism Danio rerio, commonly known as the zebrafish. These proteins play crucial roles in various biological processes such as growth, development, reproduction, and response to environmental stimuli. They are involved in cellular functions like enzymatic reactions, signal transduction, structural support, and regulation of gene expression.

Zebrafish is a popular model organism in biomedical research due to its genetic similarity with humans, rapid development, and transparent embryos that allow for easy observation of biological processes. As a result, the study of zebrafish proteins has contributed significantly to our understanding of protein function, structure, and interaction in both zebrafish and human systems.

Some examples of zebrafish proteins include:

* Transcription factors that regulate gene expression during development
* Enzymes involved in metabolic pathways
* Structural proteins that provide support to cells and tissues
* Receptors and signaling molecules that mediate communication between cells
* Heat shock proteins that assist in protein folding and protect against stress

The analysis of zebrafish proteins can be performed using various techniques, including biochemical assays, mass spectrometry, protein crystallography, and computational modeling. These methods help researchers to identify, characterize, and understand the functions of individual proteins and their interactions within complex networks.

According to the National Institutes of Health (NIH), stem cells are "initial cells" or "precursor cells" that have the ability to differentiate into many different cell types in the body. They can also divide without limit to replenish other cells for as long as the person or animal is still alive.

There are two main types of stem cells: embryonic stem cells, which come from human embryos, and adult stem cells, which are found in various tissues throughout the body. Embryonic stem cells have the ability to differentiate into all cell types in the body, while adult stem cells have more limited differentiation potential.

Stem cells play an essential role in the development and repair of various tissues and organs in the body. They are currently being studied for their potential use in the treatment of a wide range of diseases and conditions, including cancer, diabetes, heart disease, and neurological disorders. However, more research is needed to fully understand the properties and capabilities of these cells before they can be used safely and effectively in clinical settings.

Hedgehog proteins are a group of signaling molecules that play crucial roles in the development and regulation of various biological processes in animals. They are named after the hedgehog mutant fruit flies, which have spiky bristles due to defects in this pathway. These proteins are involved in cell growth, differentiation, and tissue regeneration. They exert their effects by binding to specific receptors on the surface of target cells, leading to a cascade of intracellular signaling events that ultimately influence gene expression and cell behavior.

There are three main types of Hedgehog proteins in mammals: Sonic hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). These protecules undergo post-translational modifications, including cleavage and lipid modification, which are essential for their activity. Dysregulation of Hedgehog signaling has been implicated in various diseases, including cancer, developmental abnormalities, and degenerative disorders.

"Canaries" is not a term that has a specific medical definition. It is most commonly known as the name of a type of small songbird, and can also refer to people or things associated with the Canary Islands or the color yellow, which is associated with the bird due to its plumage. If you have any confusion regarding a particular medical context where the term "canaries" has been used, I would recommend seeking clarification from the source.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

Neurogenesis is the process by which new neurons (nerve cells) are generated in the brain. It occurs throughout life in certain areas of the brain, such as the hippocampus and subventricular zone, although the rate of neurogenesis decreases with age. Neurogenesis involves the proliferation, differentiation, and integration of new neurons into existing neural circuits. This process plays a crucial role in learning, memory, and recovery from brain injury or disease.

Fibroblast Growth Factor 8 (FGF-8) is a growth factor that belongs to the fibroblast growth factor family. It plays crucial roles in various biological processes, including embryonic development, tissue repair, and cancer progression. Specifically, FGF-8 has been implicated in the regulation of cell proliferation, differentiation, migration, and survival.

During embryonic development, FGF-8 is involved in the formation of the nervous system, limbs, and other organs. It acts as a signaling molecule that helps to establish patterns of gene expression and cell behavior during development. In tissue repair, FGF-8 can stimulate the proliferation and migration of cells involved in wound healing, such as fibroblasts and endothelial cells.

In cancer, FGF-8 has been shown to promote tumor growth, angiogenesis (the formation of new blood vessels), and metastasis. It can do this by activating signaling pathways that promote cell proliferation, survival, and migration. Overexpression of FGF-8 has been found in various types of cancer, including breast, lung, prostate, and ovarian cancer.

In summary, Fibroblast Growth Factor 8 (FGF-8) is a signaling molecule that plays important roles in embryonic development, tissue repair, and cancer progression by regulating cell proliferation, differentiation, migration, and survival.

Eye proteins, also known as ocular proteins, are specific proteins that are found within the eye and play crucial roles in maintaining proper eye function and health. These proteins can be found in various parts of the eye, including the cornea, iris, lens, retina, and other structures. They perform a wide range of functions, such as:

1. Structural support: Proteins like collagen and elastin provide strength and flexibility to the eye's tissues, enabling them to maintain their shape and withstand mechanical stress.
2. Light absorption and transmission: Proteins like opsins and crystallins are involved in capturing and transmitting light signals within the eye, which is essential for vision.
3. Protection against damage: Some eye proteins, such as antioxidant enzymes and heat shock proteins, help protect the eye from oxidative stress, UV radiation, and other environmental factors that can cause damage.
4. Regulation of eye growth and development: Various growth factors and signaling molecules, which are protein-based, contribute to the proper growth, differentiation, and maintenance of eye tissues during embryonic development and throughout adulthood.
5. Immune defense: Proteins involved in the immune response, such as complement components and immunoglobulins, help protect the eye from infection and inflammation.
6. Maintenance of transparency: Crystallin proteins in the lens maintain its transparency, allowing light to pass through unobstructed for clear vision.
7. Neuroprotection: Certain eye proteins, like brain-derived neurotrophic factor (BDNF), support the survival and function of neurons within the retina, helping to preserve vision.

Dysfunction or damage to these eye proteins can contribute to various eye disorders and diseases, such as cataracts, age-related macular degeneration, glaucoma, diabetic retinopathy, and others.

Brain tissue transplantation is a medical procedure that involves the surgical implantation of healthy brain tissue into a damaged or diseased brain. The goal of this procedure is to replace the non-functioning brain cells with healthy ones, in order to restore lost function or improve neurological symptoms.

The brain tissue used for transplantation can come from various sources, including fetal brain tissue, embryonic stem cells, or autologous cells (the patient's own cells). The most common type of brain tissue transplantation is fetal brain tissue transplantation, where tissue from aborted fetuses is used.

Brain tissue transplantation has been explored as a potential treatment for various neurological conditions, including Parkinson's disease, Huntington's disease, and stroke. However, the procedure remains highly experimental and is not widely available outside of clinical trials. There are also ethical concerns surrounding the use of fetal brain tissue, which has limited its widespread adoption.

It is important to note that while brain tissue transplantation holds promise as a potential treatment for neurological disorders, it is still an area of active research and much more needs to be learned about its safety and efficacy before it becomes a standard treatment option.

Animal vocalization refers to the production of sound by animals through the use of the vocal organs, such as the larynx in mammals or the syrinx in birds. These sounds can serve various purposes, including communication, expressing emotions, attracting mates, warning others of danger, and establishing territory. The complexity and diversity of animal vocalizations are vast, with some species capable of producing intricate songs or using specific calls to convey different messages. In a broader sense, animal vocalizations can also include sounds produced through other means, such as stridulation in insects.

A mammalian embryo is the developing offspring of a mammal, from the time of implantation of the fertilized egg (blastocyst) in the uterus until the end of the eighth week of gestation. During this period, the embryo undergoes rapid cell division and organ differentiation to form a complex structure with all the major organs and systems in place. This stage is followed by fetal development, which continues until birth. The study of mammalian embryos is important for understanding human development, evolution, and reproductive biology.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

The olfactory bulb is the primary center for the sense of smell in the brain. It's a structure located in the frontal part of the brain, specifically in the anterior cranial fossa, and is connected to the nasal cavity through tiny holes called the cribriform plates. The olfactory bulb receives signals from olfactory receptors in the nose that detect different smells, processes this information, and then sends it to other areas of the brain for further interpretation and perception of smell.

A "mutant strain of mice" in a medical context refers to genetically engineered mice that have specific genetic mutations introduced into their DNA. These mutations can be designed to mimic certain human diseases or conditions, allowing researchers to study the underlying biological mechanisms and test potential therapies in a controlled laboratory setting.

Mutant strains of mice are created through various techniques, including embryonic stem cell manipulation, gene editing technologies such as CRISPR-Cas9, and radiation-induced mutagenesis. These methods allow scientists to introduce specific genetic changes into the mouse genome, resulting in mice that exhibit altered physiological or behavioral traits.

These strains of mice are widely used in biomedical research because their short lifespan, small size, and high reproductive rate make them an ideal model organism for studying human diseases. Additionally, the mouse genome has been well-characterized, and many genetic tools and resources are available to researchers working with these animals.

Examples of mutant strains of mice include those that carry mutations in genes associated with cancer, neurodegenerative disorders, metabolic diseases, and immunological conditions. These mice provide valuable insights into the pathophysiology of human diseases and help advance our understanding of potential therapeutic interventions.

Interneurons are a type of neuron that is located entirely within the central nervous system (CNS), including the brain and spinal cord. They are called "inter" neurons because they connect and communicate with other nearby neurons, forming complex networks within the CNS. Interneurons receive input from sensory neurons and/or other interneurons and then send output signals to motor neurons or other interneurons.

Interneurons are responsible for processing information and modulating neural circuits in the CNS. They can have either excitatory or inhibitory effects on their target neurons, depending on the type of neurotransmitters they release. Excitatory interneurons release neurotransmitters such as glutamate that increase the likelihood of an action potential in the postsynaptic neuron, while inhibitory interneurons release neurotransmitters such as GABA (gamma-aminobutyric acid) or glycine that decrease the likelihood of an action potential.

Interneurons are diverse and can be classified based on various criteria, including their morphology, electrophysiological properties, neurochemical characteristics, and connectivity patterns. They play crucial roles in many aspects of CNS function, such as sensory processing, motor control, cognition, and emotion regulation. Dysfunction or damage to interneurons has been implicated in various neurological and psychiatric disorders, including epilepsy, Parkinson's disease, schizophrenia, and autism spectrum disorder.

Basic Helix-Loop-Helix (bHLH) transcription factors are a type of proteins that regulate gene expression through binding to specific DNA sequences. They play crucial roles in various biological processes, including cell growth, differentiation, and apoptosis. The bHLH domain is composed of two amphipathic α-helices separated by a loop region. This structure allows the formation of homodimers or heterodimers, which then bind to the E-box DNA motif (5'-CANNTG-3') to regulate transcription.

The bHLH family can be further divided into several subfamilies based on their sequence similarities and functional characteristics. Some members of this family are involved in the development and function of the nervous system, while others play critical roles in the development of muscle and bone. Dysregulation of bHLH transcription factors has been implicated in various human diseases, including cancer and neurodevelopmental disorders.

The thalamus is a large, paired structure in the brain that serves as a relay station for sensory and motor signals to the cerebral cortex. It is located in the dorsal part of the diencephalon and is made up of two symmetrical halves, each connected to the corresponding cerebral hemisphere.

The thalamus receives inputs from almost all senses, except for the olfactory system, and processes them before sending them to specific areas in the cortex. It also plays a role in regulating consciousness, sleep, and alertness. Additionally, the thalamus is involved in motor control by relaying information between the cerebellum and the motor cortex.

The thalamus is divided into several nuclei, each with distinct connections and functions. Some of these nuclei are involved in sensory processing, while others are involved in motor function or regulation of emotions and cognition. Overall, the thalamus plays a critical role in integrating information from various brain regions and modulating cognitive and emotional processes.

Cell movement, also known as cell motility, refers to the ability of cells to move independently and change their location within tissue or inside the body. This process is essential for various biological functions, including embryonic development, wound healing, immune responses, and cancer metastasis.

There are several types of cell movement, including:

1. **Crawling or mesenchymal migration:** Cells move by extending and retracting protrusions called pseudopodia or filopodia, which contain actin filaments. This type of movement is common in fibroblasts, immune cells, and cancer cells during tissue invasion and metastasis.
2. **Amoeboid migration:** Cells move by changing their shape and squeezing through tight spaces without forming protrusions. This type of movement is often observed in white blood cells (leukocytes) as they migrate through the body to fight infections.
3. **Pseudopodial extension:** Cells extend pseudopodia, which are temporary cytoplasmic projections containing actin filaments. These protrusions help the cell explore its environment and move forward.
4. **Bacterial flagellar motion:** Bacteria use a whip-like structure called a flagellum to propel themselves through their environment. The rotation of the flagellum is driven by a molecular motor in the bacterial cell membrane.
5. **Ciliary and ependymal movement:** Ciliated cells, such as those lining the respiratory tract and fallopian tubes, have hair-like structures called cilia that beat in coordinated waves to move fluids or mucus across the cell surface.

Cell movement is regulated by a complex interplay of signaling pathways, cytoskeletal rearrangements, and adhesion molecules, which enable cells to respond to environmental cues and navigate through tissues.

S100 calcium binding protein G, also known as calgranulin A or S100A8, is a member of the S100 family of proteins. These proteins are characterized by their ability to bind calcium ions and play a role in intracellular signaling and regulation of various cellular processes.

S100 calcium binding protein G forms a heterodimer with S100 calcium binding protein B (S100A9) and is involved in the inflammatory response, immune function, and tumor growth and progression. The S100A8/A9 heterocomplex has been shown to play a role in neutrophil activation and recruitment, as well as the regulation of cytokine production and cell proliferation.

Elevated levels of S100 calcium binding protein G have been found in various inflammatory conditions, such as rheumatoid arthritis, Crohn's disease, and psoriasis, as well as in several types of cancer, including breast, lung, and colon cancer. Therefore, it has been suggested that S100 calcium binding protein G may be a useful biomarker for the diagnosis and prognosis of these conditions.

Neural stem cells (NSCs) are a type of undifferentiated cells found in the central nervous system, including the brain and spinal cord. They have the ability to self-renew and generate the main types of cells found in the nervous system, such as neurons, astrocytes, and oligodendrocytes. NSCs are capable of dividing symmetrically to increase their own population or asymmetrically to produce one stem cell and one differentiated cell. They play a crucial role in the development and maintenance of the nervous system, and have the potential to be used in regenerative medicine and therapies for neurological disorders and injuries.

The median eminence is a small, elevated region located at the base of the hypothalamus in the brain. It plays a crucial role in the regulation of the endocrine system by controlling the release of hormones from the pituitary gland. The median eminence contains numerous specialized blood vessels called portal capillaries that carry hormones and neurotransmitters from the hypothalamus to the anterior pituitary gland.

The median eminence is also the site where several releasing and inhibiting hormones produced in the hypothalamus are secreted into the portal blood vessels, which then transport them to the anterior pituitary gland. These hormones include thyroid-stimulating hormone (TSH) releasing hormone, growth hormone-releasing hormone, prolactin-inhibiting hormone, and gonadotropin-releasing hormone, among others.

Once these hormones reach the anterior pituitary gland, they bind to specific receptors on the surface of target cells, triggering a cascade of intracellular signals that ultimately lead to the synthesis and release of various pituitary hormones. In this way, the median eminence serves as an essential link between the nervous system and the endocrine system, allowing for precise regulation of hormone secretion and overall homeostasis in the body.

Bromodeoxyuridine (BrdU) is a synthetic thymidine analog that can be incorporated into DNA during cell replication. It is often used in research and medical settings as a marker for cell proliferation or as a tool to investigate DNA synthesis and repair. When cells are labeled with BrdU and then examined using immunofluorescence or other detection techniques, the presence of BrdU can indicate which cells have recently divided or are actively synthesizing DNA.

In medical contexts, BrdU has been used in cancer research to study tumor growth and response to treatment. It has also been explored as a potential therapeutic agent for certain conditions, such as neurodegenerative diseases, where promoting cell proliferation and replacement of damaged cells may be beneficial. However, its use as a therapeutic agent is still experimental and requires further investigation.

Anseriformes is a taxonomic order that includes approximately 150 species of waterfowl, such as ducks, geese, and swans. These birds are characterized by their short, stout bills, which often have serrated edges or a nail-like structure at the tip, and are adapted for filter-feeding or grazing on aquatic vegetation. Anseriformes species are found worldwide, with the exception of Antarctica, and they inhabit a wide range of wetland habitats, including freshwater lakes, rivers, marshes, and coastal estuaries. Many Anseriformes species are migratory and travel long distances between their breeding and wintering grounds. The order is divided into two families: Anatidae, which includes ducks, geese, and swans, and Anhimidae, which includes screamers, a group of large, terrestrial birds found in South America.

I'm sorry for any confusion, but "finches" generally refers to a group of small-sized songbirds that belong to the family Fringillidae. They are not a medical term and do not have a medical definition. Finches are commonly kept as pets and are known for their melodious songs and vibrant colors. If you have any medical questions or terms, I'd be happy to help clarify those for you!

Repressor proteins are a type of regulatory protein in molecular biology that suppress the transcription of specific genes into messenger RNA (mRNA) by binding to DNA. They function as part of gene regulation processes, often working in conjunction with an operator region and a promoter region within the DNA molecule. Repressor proteins can be activated or deactivated by various signals, allowing for precise control over gene expression in response to changing cellular conditions.

There are two main types of repressor proteins:

1. DNA-binding repressors: These directly bind to specific DNA sequences (operator regions) near the target gene and prevent RNA polymerase from transcribing the gene into mRNA.
2. Allosteric repressors: These bind to effector molecules, which then cause a conformational change in the repressor protein, enabling it to bind to DNA and inhibit transcription.

Repressor proteins play crucial roles in various biological processes, such as development, metabolism, and stress response, by controlling gene expression patterns in cells.

Kruppel-like transcription factors (KLFs) are a family of transcription factors that are characterized by their highly conserved DNA-binding domain, known as the Kruppel-like zinc finger domain. This domain consists of approximately 30 amino acids and is responsible for binding to specific DNA sequences, thereby regulating gene expression.

KLFs play important roles in various biological processes, including cell proliferation, differentiation, apoptosis, and inflammation. They are involved in the development and function of many tissues and organs, such as the hematopoietic system, cardiovascular system, nervous system, and gastrointestinal tract.

There are 17 known members of the KLF family in humans, each with distinct functions and expression patterns. Some KLFs act as transcriptional activators, while others function as repressors. Dysregulation of KLFs has been implicated in various diseases, including cancer, cardiovascular disease, and diabetes.

Overall, Kruppel-like transcription factors are crucial regulators of gene expression that play important roles in normal development and physiology, as well as in the pathogenesis of various diseases.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

The cerebral ventricles are a system of interconnected fluid-filled cavities within the brain. They are located in the center of the brain and are filled with cerebrospinal fluid (CSF), which provides protection to the brain by cushioning it from impacts and helping to maintain its stability within the skull.

There are four ventricles in total: two lateral ventricles, one third ventricle, and one fourth ventricle. The lateral ventricles are located in each cerebral hemisphere, while the third ventricle is located between the thalami of the two hemispheres. The fourth ventricle is located at the base of the brain, above the spinal cord.

CSF flows from the lateral ventricles into the third ventricle through narrow passageways called the interventricular foramen. From there, it flows into the fourth ventricle through another narrow passageway called the cerebral aqueduct. CSF then leaves the fourth ventricle and enters the subarachnoid space surrounding the brain and spinal cord, where it can be absorbed into the bloodstream.

Abnormalities in the size or shape of the cerebral ventricles can indicate underlying neurological conditions, such as hydrocephalus (excessive accumulation of CSF) or atrophy (shrinkage) of brain tissue. Imaging techniques, such as computed tomography (CT) or magnetic resonance imaging (MRI), are often used to assess the size and shape of the cerebral ventricles in clinical settings.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

An axon is a long, slender extension of a neuron (a type of nerve cell) that conducts electrical impulses (nerve impulses) away from the cell body to target cells, such as other neurons or muscle cells. Axons can vary in length from a few micrometers to over a meter long and are typically surrounded by a myelin sheath, which helps to insulate and protect the axon and allows for faster transmission of nerve impulses.

Axons play a critical role in the functioning of the nervous system, as they provide the means by which neurons communicate with one another and with other cells in the body. Damage to axons can result in serious neurological problems, such as those seen in spinal cord injuries or neurodegenerative diseases like multiple sclerosis.

Wnt3 protein is a member of the Wnt family of signaling proteins, which are secreted signaling molecules that play crucial roles in embryonic development and tissue homeostasis in adults. Specifically, Wnt3 is involved in the regulation of cell fate decisions, proliferation, and differentiation during embryogenesis. It binds to receptors on the target cells and activates a signaling pathway known as the canonical Wnt pathway, leading to the stabilization and nuclear accumulation of β-catenin, which then interacts with transcription factors to regulate gene expression. Defects in Wnt3 have been implicated in various developmental disorders, including some forms of congenital scoliosis and spina bifida.

Wnt proteins are a family of secreted signaling molecules that play crucial roles in the regulation of fundamental biological processes, including cell proliferation, differentiation, migration, and survival. They were first discovered in 1982 through genetic studies in Drosophila melanogaster (fruit flies) and have since been found to be highly conserved across various species, from invertebrates to humans.

Wnt proteins exert their effects by binding to specific receptors on the target cell surface, leading to the activation of several intracellular signaling pathways:

1. Canonical Wnt/β-catenin pathway: In the absence of Wnt ligands, β-catenin is continuously degraded by a destruction complex consisting of Axin, APC (Adenomatous polyposis coli), and GSK3β (Glycogen synthase kinase 3 beta). When Wnt proteins bind to their receptors Frizzled and LRP5/6, the formation of a "signalosome" complex leads to the inhibition of the destruction complex, allowing β-catenin to accumulate in the cytoplasm and translocate into the nucleus. Here, it interacts with TCF/LEF (T-cell factor/lymphoid enhancer-binding factor) transcription factors to regulate the expression of target genes involved in cell proliferation, differentiation, and survival.
2. Non-canonical Wnt pathways: These include the Wnt/Ca^2+^ pathway and the planar cell polarity (PCP) pathway. In the Wnt/Ca^2+^ pathway, Wnt ligands bind to Frizzled receptors and activate heterotrimeric G proteins, leading to an increase in intracellular Ca^2+^ levels and activation of downstream targets such as protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CAMKII). These signaling events ultimately regulate cell movement, adhesion, and gene expression. In the PCP pathway, Wnt ligands bind to Frizzled receptors and coreceptor complexes containing Ror2 or Ryk, leading to activation of small GTPases such as RhoA and Rac1, which control cytoskeletal organization and cell polarity.

Dysregulation of Wnt signaling has been implicated in various human diseases, including cancer, developmental disorders, and degenerative conditions. In cancer, aberrant activation of the canonical Wnt/β-catenin pathway contributes to tumor initiation, progression, and metastasis by promoting cell proliferation, survival, and epithelial-mesenchymal transition (EMT). Inhibitors targeting different components of the Wnt signaling pathway are currently being developed as potential therapeutic strategies for cancer treatment.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Nestin is a type of class VI intermediate filament protein that is primarily expressed in various types of undifferentiated or progenitor cells in the nervous system, including neural stem cells and progenitor cells. It is often used as a marker for these cells due to its expression during stages of active cell division and migration. Nestin is also expressed in some other tissues undergoing regeneration or injury.

Calbindin 2 is a calcium-binding protein that belongs to the calbindin family and is found in various tissues, including the brain and intestines. It has a molecular weight of approximately 28 kDa and plays a crucial role in regulating intracellular calcium levels, neurotransmitter release, and protecting neurons from excitotoxicity. Calbindin 2 is also known as calbindin D-28k or calbindin-D9k, depending on the species and its molecular weight. It has multiple isoforms generated by alternative splicing and is involved in various physiological processes, including muscle contraction, hormone secretion, and cell proliferation. In the nervous system, calbindin 2 is expressed in specific populations of neurons and glial cells, where it functions as a neuroprotective agent and modulates synaptic plasticity.

The mesencephalon, also known as the midbrain, is the middle portion of the brainstem that connects the hindbrain (rhombencephalon) and the forebrain (prosencephalon). It plays a crucial role in several important functions including motor control, vision, hearing, and the regulation of consciousness and sleep-wake cycles. The mesencephalon contains several important structures such as the cerebral aqueduct, tectum, tegmentum, cerebral peduncles, and several cranial nerve nuclei (III and IV).

Neural pathways, also known as nerve tracts or fasciculi, refer to the highly organized and specialized routes through which nerve impulses travel within the nervous system. These pathways are formed by groups of neurons (nerve cells) that are connected in a series, creating a continuous communication network for electrical signals to transmit information between different regions of the brain, spinal cord, and peripheral nerves.

Neural pathways can be classified into two main types: sensory (afferent) and motor (efferent). Sensory neural pathways carry sensory information from various receptors in the body (such as those for touch, temperature, pain, and vision) to the brain for processing. Motor neural pathways, on the other hand, transmit signals from the brain to the muscles and glands, controlling movements and other effector functions.

The formation of these neural pathways is crucial for normal nervous system function, as it enables efficient communication between different parts of the body and allows for complex behaviors, cognitive processes, and adaptive responses to internal and external stimuli.

Neuroglia, also known as glial cells or simply glia, are non-neuronal cells that provide support and protection for neurons in the nervous system. They maintain homeostasis, form myelin sheaths around nerve fibers, and provide structural support. They also play a role in the immune response of the central nervous system. Some types of neuroglia include astrocytes, oligodendrocytes, microglia, and ependymal cells.

I am not aware of a medical definition for the term "birds." Birds are a group of warm-blooded vertebrates constituting the class Aves, characterized by feathers, toothless beaked jaws, the laying of hard-shelled eggs, and lightweight but strong skeletons. Some birds, such as pigeons and chickens, have been used in medical research, but the term "birds" itself does not have a specific medical definition.

'Cell lineage' is a term used in biology and medicine to describe the developmental history or relationship of a cell or group of cells to other cells, tracing back to the original progenitor or stem cell. It refers to the series of cell divisions and differentiation events that give rise to specific types of cells in an organism over time.

In simpler terms, cell lineage is like a family tree for cells, showing how they are related to each other through a chain of cell division and specialization events. This concept is important in understanding the development, growth, and maintenance of tissues and organs in living beings.

The choroid plexus is a network of blood vessels and tissue located within each ventricle (fluid-filled space) of the brain. It plays a crucial role in the production of cerebrospinal fluid (CSF), which provides protection and nourishment to the brain and spinal cord.

The choroid plexus consists of modified ependymal cells, called plexus epithelial cells, that line the ventricular walls. These cells have finger-like projections called villi, which increase their surface area for efficient CSF production. The blood vessels within the choroid plexus transport nutrients, ions, and water to these epithelial cells, where they are actively secreted into the ventricles to form CSF.

In addition to its role in CSF production, the choroid plexus also acts as a barrier between the blood and the central nervous system (CNS), regulating the exchange of substances between them. This barrier function is primarily attributed to tight junctions present between the epithelial cells, which limit the paracellular movement of molecules.

Abnormalities in the choroid plexus can lead to various neurological conditions, such as hydrocephalus (excessive accumulation of CSF) or certain types of brain tumors.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Calbindins are a family of calcium-binding proteins that are widely distributed in various tissues, including the gastrointestinal tract, brain, and kidney. They play important roles in regulating intracellular calcium levels and modulating calcium-dependent signaling pathways. Calbindin D28k, one of the major isoforms, is particularly abundant in the central nervous system and has been implicated in neuroprotection, neuronal plasticity, and regulation of neurotransmitter release. Deficiencies or alterations in calbindins have been associated with various pathological conditions, including neurological disorders and cancer.

Oligodendroglia are a type of neuroglial cell found in the central nervous system (CNS) of vertebrates, including humans. These cells play a crucial role in providing support and insulation to nerve fibers (axons) in the CNS, which includes the brain and spinal cord.

More specifically, oligodendroglia produce a fatty substance called myelin that wraps around axons, forming myelin sheaths. This myelination process helps to increase the speed of electrical impulse transmission (nerve impulses) along the axons, allowing for efficient communication between different neurons.

In addition to their role in myelination, oligodendroglia also contribute to the overall health and maintenance of the CNS by providing essential nutrients and supporting factors to neurons. Dysfunction or damage to oligodendroglia has been implicated in various neurological disorders, such as multiple sclerosis (MS), where demyelination of axons leads to impaired nerve function and neurodegeneration.

Electroporation is a medical procedure that involves the use of electrical fields to create temporary pores or openings in the cell membrane, allowing for the efficient uptake of molecules, drugs, or genetic material into the cell. This technique can be used for various purposes, including delivering genes in gene therapy, introducing drugs for cancer treatment, or transforming cells in laboratory research. The electrical pulses are carefully controlled to ensure that they are strong enough to create pores in the membrane without causing permanent damage to the cell. After the electrical field is removed, the pores typically close and the cell membrane returns to its normal state.

Neuropil refers to the complex network of interwoven nerve cell processes (dendrites, axons, and their synaptic connections) in the central nervous system that forms the basis for information processing and transmission. It is the part of the brain or spinal cord where the neuronal cell bodies are not present, and it mainly consists of unmyelinated axons, dendrites, and synapses. Neuropil plays a crucial role in neural communication and is often the site of various neurochemical interactions.

Embryonic and fetal development is the process of growth and development that occurs from fertilization of the egg (conception) to birth. The terms "embryo" and "fetus" are used to describe different stages of this development:

* Embryonic development: This stage begins at fertilization and continues until the end of the 8th week of pregnancy. During this time, the fertilized egg (zygote) divides and forms a blastocyst, which implants in the uterus and begins to develop into a complex structure called an embryo. The embryo consists of three layers of cells that will eventually form all of the organs and tissues of the body. During this stage, the basic structures of the body, including the nervous system, heart, and gastrointestinal tract, begin to form.
* Fetal development: This stage begins at the end of the 8th week of pregnancy and continues until birth. During this time, the embryo is called a fetus, and it grows and develops rapidly. The organs and tissues that were formed during the embryonic stage continue to mature and become more complex. The fetus also begins to move and kick, and it can hear and respond to sounds from outside the womb.

Overall, embryonic and fetal development is a complex and highly regulated process that involves the coordinated growth and differentiation of cells and tissues. It is a critical period of development that lays the foundation for the health and well-being of the individual throughout their life.

I'm sorry for any confusion, but "Goldfish" is not a term used in medical definitions. Goldfish are small domesticated fish that are often kept as pets. They belong to the family Cyprinidae and the genus Carassius. The most common species of goldfish is Carassius auratus. If you have any questions about goldfish or their care, I might be able to help with some general information, but for specific medical concerns, it would be best to consult a veterinarian.

I'm sorry for any confusion, but "starlings" is not a medical term. It is a common name used to refer to a type of bird, specifically the species Sturnus vulgaris, also known as the European Starling. If you have any questions about medical terminology or concepts, I would be happy to help with those!

Homeobox genes are a specific class of genes that play a crucial role in the development and regulation of an organism's body plan. They encode transcription factors, which are proteins that regulate the expression of other genes. The homeobox region within these genes contains a highly conserved sequence of about 180 base pairs that encodes a DNA-binding domain called the homeodomain. This domain is responsible for recognizing and binding to specific DNA sequences, thereby controlling the transcription of target genes.

Homeobox genes are particularly important during embryonic development, where they help establish the anterior-posterior axis and regulate the development of various organs and body segments. They also play a role in maintaining adult tissue homeostasis and have been implicated in certain diseases, including cancer. Mutations in homeobox genes can lead to developmental abnormalities and congenital disorders.

Some examples of homeobox gene families include HOX genes, PAX genes, and NKX genes, among others. These genes are highly conserved across species, indicating their fundamental role in the development and regulation of body plans throughout the animal kingdom.

The basal ganglia are a group of interconnected nuclei, or clusters of neurons, located in the base of the brain. They play a crucial role in regulating motor function, cognition, and emotion. The main components of the basal ganglia include the striatum (made up of the caudate nucleus, putamen, and ventral striatum), globus pallidus (divided into external and internal segments), subthalamic nucleus, and substantia nigra (with its pars compacta and pars reticulata).

The basal ganglia receive input from various regions of the cerebral cortex and other brain areas. They process this information and send output back to the thalamus and cortex, helping to modulate and coordinate movement. The basal ganglia also contribute to higher cognitive functions such as learning, decision-making, and habit formation. Dysfunction in the basal ganglia can lead to neurological disorders like Parkinson's disease, Huntington's disease, and dystonia.

I. Telencephalon, diencephalon, mesencephalon". The Journal of Neuroscience. 12 (3): 1040-1062. doi:10.1523/JNEUROSCI.12-03- ...
Curwen, A.O. (April 1937). "The telencephalon of tupinambis nigropunctatus". Journal of Comparative Neurology. 66 (2): 375-404 ...
She completed doctoral studies in biology at Yale University, with a dissertation titled "The telencephalon of tupinambis ... Curwen, Alice Osborne (1937). "The telencephalon of tupinambis nigropunctatus. I. Medial and cortical areas". Journal of ...
Vocal circuitry in Xenopus laevis; telencephalon to laryngeal motor neurons. J. Comp. Neurol. 464:115-130. Yamaguchi, A. and ... Brahic, Catherine J.; Kelley, Darcy B. (2003). "Vocal Circuitry in Xenopus laevis: Telencephalon to Laryngeal Motor Neurons". ... Brahic, Catherine J.; Kelley, Darcy B. (2012). "Vocal circuitry in Xenopus laevis; telencephalon to laryngeal motor neurons". ... "Connections of vocal control nuclei in the canary telencephalon". The Journal of Comparative Neurology. 207 (4): 344-357. doi: ...
Northcutt, RG (1981). "Evolution of the telencephalon in nonmammals". Annual Review of Neuroscience. 4: 301-350. doi:10.1146/ ... the telencephalon) is greatly elaborated and expanded. Brains are most commonly compared in terms of their size. The ... the forebrain splits into two vesicles called the telencephalon (which will contain the cerebral cortex, basal ganglia, and ... subdivided into telencephalon and diencephalon), midbrain (mesencephalon) and hindbrain (rhombencephalon, subdivided into ...
doi: 10.1016/B978-0-444-63273-9.00004-6. Dingman M. Know Your Brain: Telencephalon. Neuroscientifically Challenged. http://www. ... neuroscientificallychallenged.com/blog/know-your-brain-telencephalon. Published 7 July 2017. Accessed 8 April 2019. Kühne, ...
Vargas JP, Bingman VP, Portavella M, López JC (Nov 2006). "Telencephalon and geometric space in goldfish". The European Journal ...
In the neuroanatomy of animals, an avian pallium is the dorsal telencephalon of a bird's brain. The subpallium is the ventral ... "Revised Nomenclature for Avian Telencephalon and Some Related Brainstem Nuclei" (PDF). The Journal of Comparative Neurology. ... "Revised nomenclature for avian telencephalon and some related brainstem nuclei". The Journal of Comparative Neurology. Wiley. ... telencephalon. The pallium of avian species tends to be relatively large, comprising ~75% of the telencephalic volume. Birds ...
Girós A, Morante J, Gil-Sanz C, Fairén A, Costell M (2007). "Perlecan controls neurogenesis in the developing telencephalon". ...
The dorsal telencephalon gives rise to the pallium (cerebral cortex in mammals and reptiles) and the ventral telencephalon ... The cerebrum (PL: cerebra), telencephalon or endbrain is the largest part of the brain containing the cerebral cortex (of the ... Birds and fish have a dorsal telencephalon, like all vertebrates, but it is generally unlayered and therefore not considered a ... The cerebrum develops prenatally from the forebrain (prosencephalon). In mammals, the dorsal telencephalon, or pallium, ...
The hippocampus arises from the medial telencephalon. In lower mammals, the hippocampus is located dorsally. Considerable ...
The cerebral hemispheres are derived from the telencephalon. They arise five weeks after conception as bilateral invaginations ...
These are the telencephalon, diencephalon, mesencephalon, metencephalon, and myelencephalon; the lateral ventricles, third ...
It is found in the dorsal telencephalon in fetuses. In adult humans, it is found throughout the cerebellum and forebrain; it is ...
In fish the telencephalon is concerned mostly with olfaction. Together these structures form the forebrain. The forebrain is ... Behind the olfactory lobes is the two-lobed telencephalon, the structural equivalent to the cerebrum in higher vertebrates. ...
Telencephalon transcriptome analysis of chronically stressed adult zebrafish. Scientific Reports. 9: 1379. PMID 30718621 DOI: ...
Rash BG, Grove EA (October 2007). "Patterning the dorsal telencephalon: a role for sonic hedgehog?". The Journal of ...
... subpallial basal telencephalon to the olfactory bulb) the latero-caudal migration (basal telencephalon to the striatum) These ... The eminence is divided into three regions of the ventral ventricular zone of the telencephalon (a lateral, medial and caudal ... 426-428 Marín, O; Rubenstein, JL (November 2001). "A long, remarkable journey: tangential migration in the telencephalon". ... subpallial telencephalon to cortex) the medio-rostral migration ( ...
In fish the telencephalon is concerned mostly with olfaction. Together these structures form the forebrain. Connecting the ... Behind the olfactory lobes is the two-lobed telencephalon, the structural equivalent to the cerebrum in higher vertebrates. ...
Marín O, Rubenstein JL (November 2001). "A long, remarkable journey: tangential migration in the telencephalon". Nat. Rev. ...
Rash BG, Grove EA (October 2007). "Patterning the dorsal telencephalon: a role for sonic hedgehog?". The Journal of ...
The dorsal telencephalon is then further divided into: Each of the aforementioned pallial domains will give rise to a distinct ... The embryonic telencephalon is subdivided into dorsal pallium and ventral subpallium. These two pallia become the mammalian ... The ventral telencephalon can also be subdivided into two distinguishable progenitor domains: The dorsal and ventral ... Emx1 is not only limited to the telencephalon, rather it is also expressed in branchial patterns and in the apical ectodermal ...
Rash BG, Grove EA (October 2007). "Patterning the dorsal telencephalon: a role for sonic hedgehog?". The Journal of ...
The brain divides into 5 vesicles, including the early telencephalon. Leg buds form and hands form as flat paddles on the arms ...
It is part of the telencephalon, but retains close functional ties with the subthalamus in the diencephalon - both of which are ... "Revised Nomenclature for Avian Telencephalon and Some Related Brainstem Nuclei". The Journal of Comparative Neurology. 473 (3 ...
Schuurmans C, Guillemot F: Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr Opin ... "Molecular mechanisms underlying cell fate specification in the developing telencephalon". Current Opinion in Neurobiology. 12 ( ...
In amphibians, the telencephalon distinctly shows medial, dorsal, lateral and ventral parts of the pallium, plus striatal, ... The non-pallial part of the telencephalon builds the subpallium. In basal vertebrates the pallium is a relatively simple three- ... The human pallium (cloak in Latin) envelops most of the telencephalon, due to extensive surface expansion of the isocortex. The ... which are stretched obliquely between the septal midline and the amygdala at the posterior pole of the telencephalon. At least ...
2001). A Long, Remarkable Journey: Tangential Migration in the Telencephalon. Nature Reviews Neuroscience, 2. Regina Bailey. " ...
May 2004). "Revised nomenclature for avian telencephalon and some related brainstem nuclei". J. Comp. Neurol. 473 (3): 377-414 ...
The prosencephalon gradually divides into the telencephalon and the diencephalon. The diencephalon consists of the following ... It is situated between the telencephalon and the midbrain (embryonic mesencephalon). The diencephalon has also been known as ...
Only a small fraction of the massive differential expression in the developing zebra finch telencephalon could be explained by ... Only a small fraction of the massive differential expression in the developing zebra finch telencephalon could be explained by ... but does not explain sexually dimorphic gene expression patterns in zebra finch telencephalon.. Keywords. DNA methylation, ... dynamics in matched zebra finch telencephalon samples of both sexes from 1 day post hatching (1 dph) to adulthood, spanning the ...
• Left and right cerebral hemispheres • Interbrain between the cerebrum and the brainstem termed the diencephalon • Deep gray nuclei In this section you will review the anatomy, functions, and specific testing of the cerebrum.
Internal Capsule is a specific area of white matter in the brain that separates the caudate nucleus and the thalamus from the lenticular nucleus
Off on a Tangent: Thalamocortical Axons Traverse a Permissive Corridor across the Basal Telencephalon. Neuron. 2006 Apr 20;50(2 ... Off on a Tangent: Thalamocortical Axons Traverse a Permissive Corridor across the Basal Telencephalon. / Maroof, Asif M.; ... title = "Off on a Tangent: Thalamocortical Axons Traverse a Permissive Corridor across the Basal Telencephalon", ... Off on a Tangent: Thalamocortical Axons Traverse a Permissive Corridor across the Basal Telencephalon. ...
Hébert JM, Fishell G. The genetics of early telencephalon patterning: Some assembly required. Nature Reviews Neuroscience. 2008 ... The genetics of early telencephalon patterning: Some assembly required. / Hébert, Jean M.; Fishell, Gord. In: Nature Reviews ... Hébert, J. M., & Fishell, G. (2008). The genetics of early telencephalon patterning: Some assembly required. Nature Reviews ... The genetics of early telencephalon patterning : Some assembly required. In: Nature Reviews Neuroscience. 2008 ; Vol. 9, No. 9 ...
Notch signaling controls oligodendrocyte regeneration in the injured telencephalon of adult zebrafish. / Kim, Hwan Ki; Lee, ... Dive into the research topics of Notch signaling controls oligodendrocyte regeneration in the injured telencephalon of adult ... Notch signaling controls oligodendrocyte regeneration in the injured telencephalon of adult zebrafish. In: Experimental ... Notch signaling controls oligodendrocyte regeneration in the injured telencephalon of adult zebrafish. Experimental ...
One key developmental step in shaping the forebrain is the partition of the telencephalon into ventral (basal ganglia) and ... Sylvester JB, Rich CA, Yi C, Peres JN, Houart C*, Streelman JT*. Competing signals drive telencephalon diversity. Nat Commun. ... Integration of cellular, molecular and mathematical investigation of the evolution of early telencephalon organisation. Corinne ... driving species-specific regionalisation of the telencephalon. The student will use animal, 3D cell culture, novel biomaterials ...
... compares to the telencephalon development (evagination) of mammals (upper row). (A) The telencephalon develops from the ... are found in the ventral telencephalon. (B-E) Likewise, in teleosts like zebrafish, the dorsal and ventral telencephalon, ... A-F2) Comparing topographically rostral and posterior ends of the telencephalon in transgenic lines Tg(vGlut2a:GFP) and Tg(lhx5 ... FIGURE S1 , substance P fiber tracts from the olfactory bulb into the telencephalon. (A-D) The antibody against substance P ...
I. Telencephalon, diencephalon, mesencephalon". The Journal of Neuroscience. 12 (3): 1040-1062. doi:10.1523/JNEUROSCI.12-03- ...
... telencephalon; weakly electric fish. ...
t, Telencephalon; vdi, ventral diencephalon; mb, midbrain; ov, otic vesicle; hb, hindbrain; p, pancreas; di, diencephalon; mhb ... CNS expression is first detectable in discrete regions of the forebrain (telencephalon and thalamic and hypothalamic ventral ...
Therefore, the telencephalon, diencephalons and POA may be possible sites of rhodopsin gene expression in the ayu brain. ... The brain was dissected out from the ayu and quickly divided into five parts; part A, olfactory bulb and telencephalon; part B ... The results of RT-PCR indicated that the rhodopsin gene is expressed in the telencephalon and/or diencephalon of ayu. In ... The brain was divided into five parts; part A, olfactory bulb and telencephalon; part B, diencephalon; part C, optic tectum; ...
Telencephalon / cytology * Telencephalon / embryology* * Telencephalon / metabolism* * Tubulin / metabolism Substances * ADGRG1 ...
Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon. ... Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon. ...
Telencephalon-Horiconatal.jpg 500 × 572; 78 KB. Abgerufen von „https://commons.wikimedia.org/w/index.php?title=Category:Putamen ...
Telenc-ephalon. The telenc-eph-alon, the largest brain division, includes the cerebral cortex, basal ganglia, and limbic system ...
I. Telencephalon, diencephalon, mesencephalon. J Neurosci 12:1040-1062.. OpenUrlAbstract/FREE Full Text ...
TS22: telencephalon septum. Weak. Ubiquitous. Embryo_N207_2_2D TS22: pallidum. Weak. Ubiquitous. Embryo_N207_2_2D Expression ... TS22: telencephalon. Moderate. Regionally restricted. Embryo_N207_2_1D TS22: cerebral cortex. Moderate. Regionally restricted. ...
Splitting of prosencephalon to make paired telencephalon. Holoprosencephaly. 70-100. Formation of corpus callosum ...
... it was severely reduced in the ventral telencephalon (Figure 3A). This reduced expression of Shh in the ventral telencephalon ... WM-ISH revealed that expression of neither Shh nor Gli1 was increased in the ventral telencephalons of Tctn2-/-;Ptch1+/- in ... Similarly, we investigated the function of TCTN2 in the facial ectoderm and telencephalon. Tcfap2aCre and Foxg1Cre activated ... We have revised the text (in the second paragraph of page 14) to state, "In the absence of TCTN2, the ventral telencephalon ...
Xu, Q., Tam, M., and Anderson, S. A. (2008). Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J. Comp. Neurol. 506 ... Campbell, K. (2003). Dorsal-ventral patterning in the mammalian telencephalon. Curr. Opin. Neurobiol. 13, 50-56. ... telencephalon. These populations express combinations of the homeodomain genes Pax6, Emx1, Gsx2, and Dbx1, which collectively ... A stream of cells migrating from the caudal telencephalon reveals a link between the amygdala and neocortex. Nat. Neurosci. 10 ...
Left to right: coronal sections of telencephalon midlevel caudate nucleus; diencephalon midlevel thalamus; midbrain; and ...
KEYWORDS: brain, brain atlas, goby, hippocampus, Spatial cognition, telencephalon, teleost. Read Abstract + ...
Categories: Telencephalon Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, CopyrightRestricted 2 ...
zebra finch; auditory cortex analogue; field L; telencephalon; neostriatum; brain mapping; birdsong; songbird. Translated ... Zebrafink; auditorischer Kortex Analogon; Feld L; Telencephalon; Neostriatum; Gehirnkartierung; Vogelgesang; Singvogel. ...
Telencephalon Medium. *. The preoptic recess is a distinct, isolated portion of the third ventricle and is bound on each side ... The wall of the telencephalon, in the area of the primordial olfactory bulb, evaginates to form the olfactory bulb. The ... The hypothalamus is continuous rostrally with the preoptic area of the telencephalon. Caudally it is adjacent to the tegmentum ...
Briñón, J.G.; Crespo, C.; Arévalo, R.; Lara, J.; Alonso J.R.; Aijón, J. (1997) A Golgi study of the telencephalon of the ... Nacher, J.; Crespo, C.; McEwin, B. (2001) Doublecortin expression in the adult rat telencephalon Eur. J. Neurosci. 14:629-644 ( ... Differential evolution of PSA-NCAM expression during aging of the rat telencephalon. Neurobiology of Aging, 30, pp. 808 - 818 ... Differential evolution of PSA-NCAM expression during aging of the rat telencephalon. Neurobiology of Aging. ISSN: 0197-4580 ...

No FAQ available that match "telencephalon"

No images available that match "telencephalon"